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This paper proposes a supervised classification approach for the real-time pattern recogni-

tion of sows in an animal supervision system (asup). Our approach offers the possibility of

the foreground subtraction in an asup’s image processing module where there is lack of

statistical information regarding the background. A set of 7 farrowing sessions of sows,

during day and night, have been captured (approximately 7 days/sow), which is used for

this study. The frames of these recordings have been grabbed with a time shift of 20 s. A

collection of 215 frames of 7 different sows with the same lighting condition have been

marked and used as the training set. Based on small neighborhoods around a point, a num-

ber of image local features are defined, and their separability and performance metrics are

compared. For the classification task, a feed-forward neural network (NN) is studied and a

realistic configuration in terms of an acceptable level of accuracy and computation time is

chosen. The results show that the dense neighborhood feature (d.3 · 3) is the smallest local

set of features with an acceptable level of separability, while it has no negative effect on the

complexity of NN. The results also confirm that a significant amount of the desired pattern

is accurately detected, even in situations where a portion of the body of a sow is covered by

the crate’s elements. The performance of the proposed feature set coupled with our chosen

configuration reached the rate of 8.5 fps. The true positive rate (TPR) of the classifier is

84.6%, while the false negative rate (FNR) is only about 3%. A comparison between linear

logistic regression and NN shows the highly non-linear nature of our proposed set of

features.

� 2014 China Agricultural University. Production and hosting by Elsevier B.V. All rights

reserved.
1. Introduction

Nowadays, digital information in different forms, including

digital images, has relentlessly covered many aspects of our

daily lives. This rapid advancement is a natural result of

Moore’s law progression, as well as the establishment of stan-

dards in digital content [12].

Image processing (IP) has recently become an integral part

of a variety of domains such as health, multimedia, agricul-

ture, robotic, telecommunication, entertainment and many
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others [13]. Among them, modern agriculture has many chal-

lenges that could be appropriately addressed by IP techniques.

A major challenge in this field is continuous monitoring of ani-

mals, which has the potential to improve animal welfare and a

higher production level. The continuous supervision of ani-

mals by farm workers is expensive and expected to become

even more costly in the near future [15]. On the other hand,

digital videos include a considerable amount of data, while

they are cheap sources of information, so efficient conversion

of this data into information would serve many applications in

precision livestock farming (PLF), including supervisory tasks.

In fact, a number of behavior analyzers (such as aggression

detection [18] and sleeping detection [7]) are potentially eligi-

ble to be designed in a way to accept image-based features as

extra inputs. IP techniques are indeed the core part to handle

the complexities and produce the required information for

decision support routines of a higher level.

A well-designed image/video analysis routine can be con-

sidered as an expert routine that extracts information about

the current status and activity of animals (such as position

and movements) in order to predict upcoming events. This

means that the quality of an IP algorithm directly affects

the quality of consecutive predictor routines.

The role of automatic image-based monitoring is espe-

cially emphasized for high-risk situations (e.g. farrowing),

where the lack of human supervision could lead to animal

injuries or even death. In such cases, early warning from an

image-based system allows an efficient intervention to

improve the production performance and animal welfare.

Therefore, IP techniques should be integrated into such pre-

dictive routines to help farms by taking care of individuals

or groups of animals automatically.

The very first step in the process of designing a video-

based animal behavior classifier is finding the animal’s pat-

terns efficiently. This problem could generally be considered

as a supervised machine learning (ML) task, because there is

prior geometric and/or radiometric knowledge about the

underlying pattern, but it can also be treated as a semi-super-

vised approach by combining on-line estimations.

Many IP methods during the last decade have been

employed to locate animals in videos. For example, the com-

bination of likelihood ratios and shading was applied by Hu

and Xin [9] to segment pigs from the background. Chen

et al. [3,4] implemented an averaging/thresholding routine

inside an FPGA to detect animals. Haar of Oriented Gradients

(HOG) was employed by Zhang et al. [19] to capture the shape

and texture features of the animal’s head. Viazzi et al. [16]

used the frame difference to extract the pig image. Ahrendt

et al. [1] developed an image-based real-time tracking algo-

rithm for pigs. They employ support map segments to build

a Gaussian model of the individual pigs. A combination of

fuzzy-c means clustering, morphological operation and blob

analysis has been studied for segmentation by Kaiyan et al.

[11]. To classify aggression behavior among pigs, Viazzi et al.

[17] defined a set of images features for Motion History Image

(MHI). They recognized the positive cases by employing Linear

Discriminant Analysis (LDA).

During recent years, a group of IP methods have been

developed and successfully employed in many real-time fore-

ground/background classification tasks (see e.g. [6,8,20,21]).
Background subtraction has been widely studied and used

in real applications since the late 1990s. The first versions

were mainly based on simple averaging. Those approaches

estimated the background by an average over the time and

then subtracted the current image from the average to derive

an estimation of dynamic objects. Subsequently, statistical

approaches have been introduced which have noticeably

improved the classification quality. They were mainly based

on a normality assumption about the distribution of gray lev-

els. Single Gaussian and the mixture of two Gaussian (MOG)

were the very first models. Single Gaussian has been proved

to work well, especially for indoor situations with a small

change in illumination, but it was unable to work for those

situations where the color density of the background and

foreground was close. MOG has since been developed, and

is now able to approximate more complicated distributions.

Many branches from the first MOG have been introduced to

improve the defects of the original algorithm. For example

Friedman and Russell [6] improved it by computing the effect

of shadow by adding a third cluster. He used the expectation–

maximization (EM) technique, such as the classic MOG

approach, in order to fit his clustering model to the data.

His approach has been proved to work well for the situations

where there is enough information for different labels (sha-

dow, pattern, and background).

Despite the considerable progress that has been made in

recent background-subtraction techniques, they mainly

works well in conditions where the target objects are uni-

formly visible to the camera, and active enough to capture

the movement variance (e.g. movements of cars or people),

whereas their performance can be significantly affected when

the scene becomes static, or the target pattern is covered by

some fixed elements (such as crate’s bars). In order to over-

come this problem, we here propose an algorithm for the spe-

cial condition of an animal supervision (asup) system that is

able in work in static conditions where the target patterns

of an asup are covered by some elements and divided into

small non-connected pieces.

In our paper we examine the above specific situation by:

proposing a set of image-based features according to local

neighborhoods, investigating their separability, comparing

them in terms of accuracy and required computational time

for classification with a feed-forward neural network (ffd-

NN), and selecting an optimized configuration for ffd-NN in

order to stay in a computationally acceptable timing frame.

The motivation for our research is to prepare algorithmic

and structural software platforms for automatic predictions

of a domestic animal’s behaviors. To enable this research, a

C++ image-processing framework has been developed with

the aim of reducing the complexity of design by deploying a

dynamic-programming scheme.

The first part of this article is a preliminary description of

the feature sets. The supervised classification scheme is pro-

posed next. Finally, the set of features are compared in detail,

and the process of finding the optimized feature set is

discussed.

The main objective of this work is to propose a supervised

scheme for the real-time detection of sows in live video

streams. The contributions of this paper include: (1) compar-

ing a set of image-based features for the pattern recognition
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task, (2) investigating their separability and selecting the most

promising feature set, (3) finding an optimum configuration

for the NN classifier in terms of acceptable accuracy and com-

putational complexity.

2. Materials and methods

To develop an image-based system for predicting the farrow-

ing of sows and alerting the farmer, a data set of 7 days/sow of

indoor surveillance for 7 sows for 24 h during the day and

night was recorded. Each single recording consists of a video

of a sow kept in farrowing crate of (220 · 75 cm). In each far-

rowing session, 8 surveillance cameras (Tracer TS 6030PSC

IR), with a capture rate of 12 fps, were connected via cables

to a central recording unit (Philips SAA7130HL) at the height

of 2.5 m. All the cameras were equipped with IR emitters, to

monitor in poor lighting conditions, and were configured to

capture frames with a resolution of 352 · 288 pel2 (MPEG-4

codec). The video dataset was preprocessed with a PC in order

to extract frames with a 20-s time shift, and filtered with a

Gaussian kernel. We filtered a total of 2,890,163 frames.

Among them, we selected a set of 215 frames from 7 different

random sows with similar lighting conditions and color con-

tent as a training database for the supervised training pro-

cess. All of the selected frames were marked by a human

operator by filling the regions of interests with one or more

tag colors. The data set was divided into three parts: a train-

ing, test, and cross-validation set with 70%, 20%, and 10% con-

tributions, respectively. The PC was a HP EliteBook 2560p

using an Intel Corei7 2620 M CPU at 2.7 GHz and 8 Gb of RAM.

The classification process is performed through the fol-

lowing steps:

• In order to avoid the over fitting problem due to similarities

between structures along a line, a randomized process

selects the locations of the training points (the density of

the positive and the negative cases are considered to be

different), and for each point a coordinate is calculated.

The padding between positive and negative cases is an

adjustable parameter that plays a key role in the skew con-

dition of the problem.

• A preprocessing routine whitens the input data (sub sec.

3.4).

• A trainer process randomly initializes the weights (or loads

the previous weights, in the case that they exist), and then

calls the optimizer. When the optimizer needs the gradi-

ents of the network, it calculates them with the back-prop-

agation algorithm. The optimizer trains the network using

a set of pair-tagged images, each of which consists of an

image and a corresponding map. The desired regions are

indicated in the maps by filling with one or more tag color.

• A ffd-NN classifier process uses the forward-propagation

algorithm to classify a new data set.

We used a logistic-regression classifier with the same

inputs to compare the classification accuracy and investigate

the non-linearity of our feature set. PCA technique has been

employed for preprocessing task. Receiver operating charac-

teristic (ROC) curve, in this paper, has been calculated by
sorting the predictive scores, and walking over different deci-

sion thresholds. The area under the ROC curve has been used

as an indicator to quantify the efficiency of an underlying

classifier.

In order to make the design and testing easier, a C++ com-

putational core, as well as a graphical user interface (GUI) has

been developed. An IP algorithm has been considered as a

directed acyclic graph (DAG), where nodes represent a pro-

cess, sockets act as inputs and outputs, and directed edges

are responsible for the data connection that acts as the pipes

which allow the data to flow.

3. Feature sets review

This part proposes a promising set of simple features, that

can be employed to separate a sow from the background.

Fig. 1 illustrates a small neighbor-based topological structure

around a point. Each structure is labeled with a 3-letter code

that represents the windowing size, a sparse/dense structure,

and the proportion of local points. Each of these features

exposes special characteristics. The computational complex-

ity of their classification is proportional to the number of

points they contain. The best feature is well separable, and

produces the best classification result, while needing less

computational time. There is a trade-off between the non-

linearity of a feature and the required computational time,

which is considered in section [5].

4. Classification methodology

Choosing a classification method strongly depends on a set of

factors, including the characteristics of a feature set, the

dimensionality of the data, and size of the training set

(Demšar [5]). In an easy case, when a feature set is linearly

separable, a lightweight linear classifier, such as logistic

regression, is able to separate class members.

We employed the logistic regression classifier and also a

ffd-NN to separate the positive cases from the negatives.

The decision boundary between positive and negative cases

has been estimated by using a ffd-NN as a compact represen-

tation of a non-linear decision boundary for the set of contin-

uous random variables.

5. Data analysis

5.1. Preprocessing

Preprocessing is a mandatory step that robustifies the estima-

tion. It can be done during a two-step procedure. In the first

step, the data matrix is constructed, and normalized to a

zero-mean and unit-variance matrix, as follows:

X̂ðiÞ ¼ XðiÞ � �X ð1Þ

~XðiÞj ¼ X̂ðiÞj =rj ð2Þ

Data points in Eq. (1) are inserted in column order inside the

data matrix (X). So each column represents a pixel. The cardi-

nality of this space, which the points lie in, is equal to (3 · n),

where (n) is the number of points that a structure contains.



Fig. 1 – List of local features. The red square indicates the central point, and the yellow indicates cooperation of neighbor

points in the structure. The items (a–c) are dense features (their labels started by ‘d’), while the rest are sparse (their labels

started by ‘s’) and double sparse (their labels started by ‘ds’). The features (e and i) are plus-shape (their labeled ended with

‘.P’), (d and h) are cross-shape (their labeled ended with ‘.C’), while features (f and g) contains both directions (their labeled

ended with ‘.CP’). As we move from top to bottom, we can see that the number of features reduces.
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In Eq. (1), X represents the mean value of the vector points,

and ~XðiÞi is the jth component of the ith normalized data sam-

ple. The standard deviation along the jth axis is represented

by rj.

In the second step, the resultant data will be whitened.

Whitening is the process of making the data’s distribution

normal (Gaussian). Without this step, the classification prob-

lem would possibly suffer from an ill-posedness and singular-

ity that instabilizes the classification accuracy. Whitening is

addressed by principal component analysis (PCA). In order

to perform PCA, the inner product (or covariance) matrix of

the normalized data vectors (Eq. (2)) is calculated by:

C ¼ ~X:~XT ð3Þ

Then the spectral decomposition of (C) is constructed as:

C ¼ U:R:UT ð4Þ

In the final stage, each point is projected on the orthonor-

mal pc directions as:

XðiÞW ¼ ~X:ðiÞ � U ð5Þ
In Eq. (4), the eigenvalues exist as the diagonal elements of

(r), and corresponding eigenvectors are stored as columns of

(U).

Finally, the normalized data points of Eq. (5) are fed to the

nodes of the ffd-NN input layer.

5.2. Logistic regression

In a classification with a logistic regression (LR) approach, the

following hypothesis is assumed:

hhðXÞ ¼ gðhT:XÞ ð6Þ

where g(X) is the logistic function. Hypothesis of a LR (Eq. (6)),

which is always in the interval (0,1), is assumed to represent

the dependency of a sample point (X) to a class, where the

decision boundary is linearly approximated. Basic LR is able

to solve linear two-class classification problem, while some

minor modification over the parameters makes it possible to

estimate non-linear decision boundaries.

In order to classify the data with the LR classifier, the

parameters (h) of the hypothesis (hh (X)) are computed through

minimizing the following cost function:



Fig. 2 – An example of the contributions of the positive and

negative cases in the training set. Red points are the positive

cases and blue points are the background.
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JðHÞ ¼ � 1
m

Xm

i¼1

costðhhðXÞ; yðiÞÞ ð7Þ

Cost hhðXÞ; yðiÞ
� �

¼
� logðhhðXÞÞ; if yðiÞ ¼ 1

� logð1� hhðXÞÞ; if yðiÞ ¼ 0

8><
>:

ð8Þ

Due to the nonlinear characteristic of the sigmoid func-

tion, the cost function for every individual sample of the

logistic regression is modified as (Eq. (8)). Consequently, this

modification makes the main cost function (Eq. (7)) convex.

After approximating the optimum parameters, the decision

is made based on the values of (hh (X)) such that the values

less than a threshold (which is often 0.5) considered to belong

to the first class, and similarly the higher values as the second

class.
Fig. 3 – An example of the classification graph, which is executin

and are processed by every unit.
5.3. Feed-forward neural network

A feed-forward neural network (ffd-NN) is among the most

powerful non-linear supervised classifiers. It is a branch of

the perceptron algorithm, which can amazingly adapt to

highly non-linear high-dimensional data. A well-optimized

implementation of this classifier can be fast enough and

acceptable for many real-time classification tasks, including

background/foreground classification [10].

ffd-NN consists of layers of connected nodes. The first and

last layers are called the input and output, respectively. The

layers in between are named hidden. The topological struc-

ture of a ffd-NN allows the nodes of each layer to be con-

nected to the nodes of only the next layer in the chain. Each

layer contains a fixed additional element that is disconnected

from the previous node and acts as a constant.

A ffd-NN could consist of several hidden layers. Adding

more hidden layers theoretically increases the flexibility of

the classifier by increasing the degrees of freedom, but in

practice, it will make the classification process time consum-

ing. This flexibility is handled by finding a trade-off between

the computational complexity and the classification accuracy.

The cost of the computation is an important factor in

between, which logarithmically increases as a function of

the parameters.

Inside a ffd-NN with one or more hidden layers, each node

(in the hidden or output layer) applies the logistic function

(Eq. (9)) to the summation of inputs, and sends the result

(Eq. (10)) to the connected nodes (in next layer) [13], as

follows:

gðxÞ ¼ 1

1þ e�x
ð9Þ

al
j ¼ gðhl

j0:a
l�1
0 þ hl

j1:a
l�1
1 þ � � � þ hl

jm:a
l�1
m Þ ð10Þ

Where al
j is the activation of node (j) in layer (l), and hl

jk is the

corresponding weight of the connection between node (j) in

layer (l) and node (k) in layer (l-1).
g inside the graph manager. The data flows from left to right,



Fig. 4 – The examples of successful classifications cases. The first row contains images from a single sow. The second row

contains the classification result. The sow patterns have been marked by the red color according to ffd-NN’s output node

value, whereas the background is marked by the blue.
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The cost function for a ffd-NN is formulated according to

Eq. (11):

JðHÞ ¼ �1=m
Xm

i¼1

XK

k¼1

yi
k: log hhðxðiÞÞk þ ð1� yi

kÞ: logð1� hhðxðiÞÞkÞÞ

þ regðHÞ ð11Þ

In the above equation, H represents the weights between

the nodes (parameters), (m) represents the number of sam-

ples, (K) is the number of points, and (regH) stands for the reg-

ularization term regarding the parameters H.

5.4. Training of the ffd-NN

Despite the fact that the cost function of a ffd-NN is not con-

vex [2], it is differentiable, and its gradients with respect to
Fig. 5 – The examples of unsuccessful classifications cases. The

contains the classification result. Outliers are marked by a red a
the parameters are efficiently calculated by the back-propaga-

tion algorithm. Most of the times, a local minimum of the cost

of a ffd-NN regarding the parameters is an acceptable approx-

imation for the parameters, so a gradient-based optimization

technique is able to solve the training problem.

The training process is started by a random initialization

of parameters, and then in each step, gradients of the cost

function (Eq. (3)) are calculated. The trainer algorithm would

then take a leap towards the location of the minimum by

the following equation:

Hj ¼ Hj � a
@

@H
JðHÞ ð12Þ

Accelerated gradient descent [14] is a gradient-based opti-

mization method that finds the location of a minimum (or a

maximum) faster than the classic gradient descent approach
first row contains images from a single sow. The second row

rrow.
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Fig. 6 – Comparison between logistic regression (LR) and

feed-forward neural network (ffd-NN) for d.5 · 5 feature.
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(Eq. (12)). Because of its convergence speed, it has been

employed to train our ffd-NN classifier. The basic matrix

optimization techniques, as well as the hardware-specific

optimizations (SSE2 and SSE3), are employed to make the

classification task faster.

5.5. Classification by the ffd-NN

After the training phase, the ffd-NN classifier is employed for

the classification task (Fig. 3). The process of using the struc-

ture, topology, and weights of a ffd-NN in order to calculate

the values of output nodes is called forward propagation.

After this step, each output node will contain a number in

the range [0,1] that shows the dependency of an input on each

of the classes.

6. Results

Fig. 3 demonstrates the usefulness of a module-base data-

processing framework for the algorithm-design phase. By

employing this frame-work, the non-linearity of our proposed
Table 1 – Performance comparison table. Topological neighbor-b
tional complexity and classification performance.

No. Future specific parameters Statistical p

Code No. of
elements

No. of
flop per
imagea

Classification
time per
imageb (ms)

Foreground
TPR (%)

1 d.3 · 3 9 · 3 2320 191 92.1
2 d.5 · 5 25 · 3 6160 307 94.2
3 d.7 · 7 49 · 3 11,920 483 94.2
4 s.5 · 5.C 9 · 3 2320 191 74.4
5 s.5 · 5.P 9 · 3 2320 191 65.9
6 s.5 · 5.CP 17 · 3 4240 238 75.9
7 ds.5 · 5.C 5 · 3 1360 170 68.7
8 ds.5 · 5.C 5 · 3 1360 170 59.1
9 ds.5 · 5.CP 9 · 3 2320 191 64.0

a Floating-point operation.

b For an image of size 352 · 288.
features was investigated by a comparison with a LR-based

classifier. This comparison for the feature coding (d.3 · 3) is

illustrated by Fig. 6. For each feature of Fig. 1, Table 1 lists the

required number of calculations per point and the estimated

required time for classification of the pixels of an image. A

comparison between the proposed features has been also

conducted and illustrated in Figs. 8 and 9. The set of

neighbor-based local features was studied, and the progressive

improvement in separability measures was observed (Figs. 10

and 11). The ROC of each of the feature codings for foreground

and background nodes was separately calculated and com-

pared (Figs. 8 and 9). AUC was also calculated as a performance

measure, and compared. Fig. 4 demonstrates a few samples as

representatives of high-quality classification cases, while Fig. 5

shows some of the low-quality cases (see Fig. 7).
7. Discussion

Most of the feature sets in Fig. 2 show non-linear properties

for our data (Fig. 6), which implies the non-linearity of the

optimal decision boundary. The main reason is that the

desired pattern is very similar to components of our scene

(such as lighting reflections, floor, bars). This problem could

therefore be treated as a two-class classification problem with

a non-linear decision boundary, where the size of the training

set is approximately 100,000. In our experiment, a significant

processing cost was introduced by adding more than one

hidden layer, while the non-linearity of the classifier was

not significantly improved. Thus, a three-layered ffd-NN has

been chosen as the optimal structure, with an input layer,

one hidden layer with 40 nodes, and an output layer. Because

only two different classes exist (the sow and the background),

it was possible to put only one node in the output layer and

perform the inference according to (sub sec. 5.3). However,

adding an additional node had considerable advantages. It

robustified the estimation by introducing the additional

degrees of freedom, and brought the possibility of estimating

the background separately from the foreground, by introduc-

ing two different decision boundaries, while it did not

produce a considerable computational overhead. By using
ased structures are compared according to their computa-

erformance

Foreground
FPR (%)

Background
TNR (%)

Foreground
FNR (%)

Accuracy
(%)

Precision
F1 (%)

4.1 95.9 7.9 93.9 94.1
3.4 96.9 5.8 95.3 95.6
3.0 97.0 5.8 95.5 95.7
3.0 97.0 25.6 92.9 79.0
3.8 96.2 34.1 90.7 71.8
3.5 96.5 24.1 92.8 79.0
3.7 96.3 31.3 91.4 74.1
4.1 95.9 40.9 89.3 66.5
4.1 95.9 36.0 90.2 70.1



Fig. 7 – An example of a vectorized input with 147 features for the (d.7 · 7) structure.
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this additional node, it is also possible to estimate ‘unknown’

cases that are dissimilar to both the foreground and the back-

ground training samples.

The classification precision obviously increased by moving

from the sparse structures towards the dense ones. The dense

structures (d.3 · 3, d.5 · 5, and d.7 · 7) show acceptable perfor-

mance when they were coupled with the non-linear classifier.

Generally, among the sparse features (‘s’ and ‘ds’ codings),

those with a higher density of points showed better classifica-

tion performance, while they had lower computational com-

plexity. In equal situations, the dense structures showed a

higher ability in the foreground detection than the sparse

counterparts. Among the sparse structures, (C) and (CP) cod-

ings showed better performance than (P) coding. Generally,

by increasing the number of local points, the precision of

detecting the foreground (animal pattern) increases with a

fairly considerable rate, while the improvement rate of back-

ground detection almost stays constant. This means that by

increasing the feature density, the ability to detect the sow

patterns will be positively increased, while the ability to

detect the foreground will stay almost constant.
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Despite the fact that (s.5 · 5.C), (s.5 · 5.P) and (ds.5 · 5.CP)

have the same number of points as (d.3 · 3), they showed a

lower performance for foreground detection, so the 3 · 3

dense structure (d.3 · 3) is selected as the most economical

structure, which showed acceptable classification accuracy

and precision, while it is suitable for real-time applications,

and can be employed within an acceptable time frame (pro-

cessing more than 4 frames per second).

After the training phase, the network efficiently extracts

the pig image, even in complicated occluded scenes, where

the whole body is not visible to the camera (Fig. 4).

8. Conclusion

Our supervised classification algorithm (the optimum feature

coupled with the optimum ff-NN configuration) was proved to

work with an acceptable performance in the static condition

of an asup, where the other statistical approaches (such as

MOG) significantly suffered from a lack of information on

the distribution of the background, and were unable to per-

form the classification tasks. Despite the benefits of employ-

ing a ffd-NN in a foreground-background subtraction task, it

is affected by the over fitting to the training condition, that

caused the network to be unable to classify the black–white

images that captured under IR illumination (part (B) and (D)

in Fig. 5). For further studies, we suggest to employ a condi-

tional classification scheme, instead of a single classifier, to

enable the system to select a correct classifier according to

a set of probabilistic criteria.
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