
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2009

Mining Hierarchical Scenario-Based Specifications
David LO
Singapore Management University, davidlo@smu.edu.sg

Shahar Maoz
The Weizmann Institute of Science, Israel

DOI: https://doi.org/10.1109/ASE.2009.19

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LO, David and Maoz, Shahar. Mining Hierarchical Scenario-Based Specifications. (2009). IEEE/ACM International Conference on
Automated Software Engineering (ASE). Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/486

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ASE.2009.19
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Mining Hierarchical Scenario-Based Specifications

David Lo
School of Information Systems

Singapore Management University
Email: davidlo@smu.edu.sg

Shahar Maoz
Department of Computer Science and Applied Mathematics

The Weizmann Institute of Science, Rehovot, Israel
Email: shahar.maoz@weizmann.ac.il

Abstract—Scalability over long traces, as well as compre-
hensibility and expressivity of results, are major challenges
for dynamic analysis approaches to specification mining. In
this work we present a novel use of object hierarchies over
traces of inter-object method calls, as an abstraction/refinement
mechanism that enables user-guided, top-down or bottom-up
mining of layered scenario-based specifications, broken down
by hierarchies embedded in the system under investigation. We
do this using data mining methods that provide statistically
significant sound and complete results modulo user-defined
thresholds, in the context of Damm and Harel’s live sequence
charts (LSC); a visual, modal, scenario-based, inter-object
language. Thus, scalability, comprehensibility, and expressivity
are all addressed.

Our technical contribution includes a formal definition of
hierarchical inter-object traces, and algorithms for ‘zooming-
out’ and ‘zooming-in’, used to move between abstraction levels
on the mined specifications.

An evaluation of our approach based on several case studies
shows promising results.

I. INTRODUCTION

Specification mining methods, which automatically infer
a system’s specification from its execution traces, have
attracted much research efforts in recent years [1]–[6].
The mined specifications, whether automata, likely invariant
properties, or scenarios, are aimed at aiding in program
comprehension and analysis tasks, specifically in the absence
of up-to-date documented specifications.

Scalability over long traces, as well as comprehensibility
and expressivity of results, are major challenges for specifi-
cation mining methods. Thus, various filters or abstractions
were suggested to address these challenges; e.g., removing
utility functions [7], limiting the trace to a predefined fixed
set of events of interest [5], nesting depth [8], random
sampling [9], considering triggers and effects [10], etc.

In this work we concentrate on scenario-based specifi-
cation mining [6], [10], [11], and introduce the use of a
novel abstraction mechanism over event traces, based on
hierarchies inherent in the architecture of the system under
investigation. Specifically, we consider inter-object method
calls as events. Given a hierarchy over the objects in the sys-
tem under investigation, the concept of inter-object becomes
relative, and depends on the level of abstraction chosen. An
event may be inter-object in one level of abstraction and
intra-object (and thus filtered out) when considered in the

context of a higher level. Thus, given a concrete execution
trace, a hierarchy of abstract traces is created above it. In
the maximal abstract trace, only events exchanged between
top-level objects are considered.

We consider scenario-based specification mining at the
level of abstraction defined by the user. Further, once a
scenario-based specification is mined at a certain level of
abstraction, our method allows the user to drill-up and down
the hierarchy, practically zooming-out and in on the mined
behavioral specifications of the system under investigation.

As a concrete example for a hierarchy that is inherent
in the architecture of the system under investigation, we
use the Java packages hierarchy. Other hierarchies may be
considered, see the discussion in Sec. VI.

The main contribution of our work is in showing how
specification mining may take advantage of inherent ar-
chitectural hierarchies in order to produce a scalable, top-
down or bottom-up user-guided abstraction/refinement inter-
active specification mining method. That is, static program
knowledge is used to support stepwise program compre-
hension through different levels of abstraction. We believe
object hierarchies are a useful and natural abstraction and
organization mechanism in many architectures, and thus
their application to execution traces and specification mining
methods is promising. The larger the system under investiga-
tion, the greater need arises for an hierarchical organization
mechanism of its structure and its specification.

The technical contribution of our work includes the
definition and implementation of inter-object event trace
hierarchies, the extended mining algorithms, and the algo-
rithms for zooming-out and zooming-in over the hierarchical
scenario-based specifications.

In our previous work [6] we used a data mining method
for scenario-based specification mining, extracting statisti-
cally significant behavioral specifications in the form of
a UML2-compliant variant of Damm and Harel’s live se-
quence charts (LSC) [12], [13]. Scalability was a major
challenge of this work. The key advantages of our current
approach over the previous one are (1) incremental, scalable
performance, and (2) intuitive, top-down layered results,
broken down by hierarchies embedded in the system under
investigation. Thus, both scalability and comprehensibility
are improved. Recent work on hierarchies in the context of

scenario-based programming [14] and the UML2 standard’s
support for interaction refinement using lifelines PartDecom-
position, further motivate our work. As in [6], we consider
the visual aspect of our work to be an important accessibility
factor for engineers; the scenarios mined can potentially be
viewed in any UML2-compliant tool.

We have implemented our ideas and evaluated them using
a number of case study applications; see Sec. V. The
examples throughout the paper are taken from one of these,
an instant messaging application called Jeti [15].

The paper is organized as follows. Sec. II presents back-
ground material on LSC, scenario-based specification min-
ing, and hierarchical structures in general. Sec. III introduces
hierarchical scenario-based specification mining with formal
definitions and examples. The algorithms used in our work
are described in Sec. IV. Sec. V presents the results of
case studies we have conducted in order to evaluate our
ideas. Sec. VI discusses some advanced issues of our work,
Sec. VII considers related work, and Sec. VIII concludes.

II. BACKGROUND

We provide background material on live sequence charts,
scenario-based specification mining, and system’s hierar-
chies.

A. Live sequence charts

Live sequence charts (LSC) [12], [13] extend classi-
cal sequence diagrams with a universal interpretation and
must/may modalities. They thus allow to specify scenario-
based temporal invariants describing interactions between
system objects. The language has been used in the context of
execution, verification, and synthesis (see, e.g., [16]–[18]).
A translation of LSC into temporal logics appears in [19].
A trace-based semantics for a UML2-compliant variant of
LSC appears in [13]. We use a subset of the language, with
total ordered messages.

An LSC is composed of two basic charts: a pre-chart and
a main-chart. A basic chart is a tuple C = (CL, CE , C<)
where CL is set of lifelines representing system objects,
CE is a set of inter-object events involving the objects
represented by the lifelines in CL, and C< is a total order
on CE . Thus, a chart can also be represented as a chain
of events 〈e1, . . . , en〉. We denote an LSC by L(pre, full),
where pre is the pre-chart and full is the concatenation of
the pre-chart and main-chart.

Syntactically, lifelines are drawn using vertical lines.
Inter-object events are drawn using horizontal arrows from
caller to callee; pre-chart events use dashed blue lines, main-
chart events use solid red lines.

Semantically, an LSC specifies a temporal invariant:
whenever the events in the pre-chart occur in the specified
order, eventually the events in the main-chart must occur
in the specified order. An LSC does not restrict events not
appearing in it to occur or not to occur during a run.

Picture
Chat

LSC Draw Rect

Picture
History

Rectangle
Mode

draw(…)

addShapeDrawnByMe(…)

Figure 1. Example LSC: Draw Rectangle

Fig. 1 shows an example LSC. Roughly, this
LSC means that ‘whenever an object of class
RectangleMode calls the draw() method of a
PictureChat object, eventually the PictureChat
will call the addShapeDrawnByMe() method of a
PictureHistory object’.

B. Scenario-based specification mining

Scenario-based specification mining [6], [10], [11] is
concerned with extracting statistically significant LSCs from
inter-object traces of a system under investigation.

Inter-object trace, event. A concrete inter-object trace
is a sequence of inter-object events. A concrete inter-object
event ev is a tupple 〈el1, el2,m〉 representing an object el1
(the caller) calling method m of object el2 (the callee); we
require that el1 6= el2.

We define the significance of an LSC based on its
occurrences in the traces. It is gauged using support and
confidence, commonly used metrics in data mining. Below
we recall the concepts of scenario instance, positive and
negative witnesses, support, and confidence, defined in [6].

Chart instance. Satisfaction of a chart follows the se-
mantics of LSC. We refer to a sub-trace (or a segment of
consecutive events in the trace) satisfying the chart C as an
instance of C. A segment of a trace is said to be an instance
of a chart C if it obeys the ordering specified by C. Each
event in the chart must map to a corresponding event in the
segment appearing in the specified order. Other events not
specified by the chart can occur in any order unrestrictedly.

To describe an LSC chart instance, we use the following
Quantified Regular Expressions (QRE) [20]. A quantified
regular expression is very similar to standard regular ex-
pression with ‘;’ as concatenation operator, ‘[-]’ as exclusion
operator (i.e. [-P,S] means any event except P and S) and
* as the standard kleene-star. The formal definition of an
instance of a chart is given in Defn. 2.1 (c.f., [6]):

Definition 2.1 (Instance of a Concrete Chart): Given
a concrete chart C = (CL, CE , C<), a trace segment
SB = 〈sbi,sbi+1, . . ., sbi+m−1〉 is an instance of C if SB
follows the QRE expression

e1; [−G]∗; e2; . . . ; [−G]∗; en where,

CE = {e1, e2, . . . , en}, ∀0<i<n.ei <C ei+1, and G = CE .

Fig. 2 shows a short sample from an inter-object trace.
The trace includes 3 instances of the LSC shown in Fig. 1:
I1 = 〈1, 2, 3〉, I2 = 〈5, 6〉, I3 = 〈9, 10〉.
1 RM PC draw()
2 PC Backend getMyJID()
3 PC PH addShapeDrawnByMe()
4 Backend Connect send()
5 RM PC draw()
6 PC PH addShapeDrawnByMe()
7 Backend Connect send()
8 RM PC draw()
9 RM PC draw()
10 PC PH addShapeDrawnByMe()

Figure 2. Part of a sample trace (RM stands for RectangleMode, PC
for PictureChat, PH for PictureHistory; the actual trace includes
the full qualified name and signatures of the classes and methods involved).

Witnesses. Based on the above definition of a chart
instance, we define the notion of positive and negative
witnesses of an LSC. Recall that an LSC is composed of
a pre-chart and a main-chart. A positive witness of an LSC
L = L(pre,full), is a trace segment satisfying the full chart
– by extension the pre chart as well, since pre is a prefix
of full. A negative witness of L is positive witness of pre
which can not be extended to a positive witness of L (or
full). We say that a negative witness is a weak negative
witness if the positive witness of pre cannot be extended
due to end-of-trace being reached (see discussion in [6]).

Support & Confidence. We use the above notions of
witnesses to define the statistical support and confidence
metrics for LSC. Support and confidence are commonly
used statistics in data mining [21]. Given a trace T , the
support of an LSC L= L(pre, full), denoted by sup(L),
is simply defined as the number of positive witnesses of
full found in T . The confidence of an LSC L, denoted
by conf (L), measures the likelihood of a sub-trace in T
satisfying L’s pre-chart, to be extended such that L’s main-
chart is satisfied or the end of the trace is reached. Hence,
confidence is expressed as the ratio between the number of
positive-witnesses and weak-negative-witnesses of the LSC
and the number of positive-witnesses of the LSC’s pre-chart:

conf (L, T) ≡def
|pos(full,T)|+|w neg(full,T)|

|pos(pre,T)|
Notation-wise, when T is understood from the context, it
can be omitted.

The support metric is used to limit the extraction to
frequently observed interactions. The confidence metric re-
stricts mining to such pre-charts that are followed by par-
ticular main-charts with high likelihood. In scenario-based
specification mining we are interested in mining statistically
significant LSCs: those which occur frequently in the trace
(have high support) and in which the pre- is followed by
the main- chart with high likelihood (have high confidence).
A chart is said to be significant if it obeys minimum
thresholds of support and confidence, denoted by min sup
and min conf respectively.

For the LSC shown in Fig. 1 and the trace shown in Fig. 2,
supp(L) = 3, conf(L) = 3/4.

Data mining algorithms to compute a statistically sound
and complete set of LSCs, given a trace (or a set of traces)
and thresholds for minimal support and confidence, were
presented in [6]. These were extended in [11], to handle
symbolic scenario-based specifications (at the class level
rather than the object level), and in [10], to handle the special
case of trigger and effect mining.

C. System’s hierarchies

Hierarchical structures are used as an organizing principle
in many systems’ architectures. Different hierarchies may
be used, e.g., the ‘part-of’ composition hierarchy of compo-
nents and sub-components, the ‘is-a’ inheritance hierarchy of
classes and subclasses, etc. They are used during systems’
development as a way to cope with complexity and size,
enabling, e.g., division of labor and reuse.

Specifically, we use here the Java packages hierarchy. For-
mally, this defines a partial order on classes and packages.
An example of such a hierarchy is given in Fig. 3.

jeti.
backend.

Jabber
jabber.

Backend
plugins.

titlescroller.
Plugin

titleflash.
Plugin.

Flash
ui.

ChtWndw
ChtWndws
ChtSplitPane

Figure 3. Part of Jeti’s packages hierarchy.

III. HIERARCHICAL SCENARIO-BASED
SPECIFICATION MINING

We are now set out to present hierarchical scenario-based
specification mining. We define a hierarchy over inter-object
traces and LSCs, and show how hierarchical information is
incorporated to enable an interactive mining experience. We
use formal definitions and examples.

A. Hierarchy, abstraction, and traces

Hierarchy. Given a system S made of elements
el1, el2, . . . , a hierarchy h is defined by a partial order ¹h

on its elements. In our specific setting, system elements are
Java packages and classes; h is defined using the inclusion
relation between packages and classes in the system under
investigation.

Abstraction map. An abstraction map is a map amap :
S → S, which maps elements of S into higher level

elements: amap(el1) = el2 entails el1 ¹ el2. Note that
two elements of S may be mapped by amap to the same
higher level element.

The abstraction map is used to define the user’s level of
abstraction of interest.

Abstract inter-object events. An abstract inter-object
event ev is a tuple ev = 〈el1, el2,m〉 representing element
el′1 (the caller) calling method m of object el′2 (the callee)
where el1 6= el2, el′1 ¹h el1, and el′2 ¹h el2. We refer to el1
and el2 as the abstract caller and callee of ev, respectively.

We extend the relation ¹h from elements to events as
follows: for ev1 = 〈el1, el2,m1〉 and ev2 = 〈el3, el4, m2〉,
ev1 ¹h ev2 iff el1 ¹h el3, el2 ¹h el4, and m1 = m2.

The abstraction map amap is extended in a natural way
from elements to events too. If amap(el1) = el′1 and
amap(el2) = el′2 then amap(〈el1, el2,m〉) = 〈el′1, el′2,m〉.

A hierarchy over inter-object traces. The ≺h rela-
tion and map amap are extended from events to inter-
object traces. However, high-level events that are no longer
inter-object, i.e., where the abstract caller and the ab-
stract callee are equal, are removed from the high-level
trace. That is, for each event 〈el1, el2,m〉 in the trace, s.t.
amap(el1) = el′1 and amap(el2) = el′2, if el′1 6= el′2 then
amap(〈el1, el2,m〉) = 〈el′1, el′2,m〉; otherwise, if el′1 = el′2,
amap(〈el1, el2,m〉) =⊥.

Given a hierarchy over the objects in the system under
investigation, the concept of inter-object becomes relative,
and depends on the level of abstraction chosen, as defined
by amap. An event may be inter-object in one level of
abstraction and intra-object (and thus filtered out from the
inter-object trace) when considered in the context of a
higher level. Thus, given a concrete execution trace and
an abstraction map, an abstract inter-object trace is created
above it.

B. High-level scenarios

Given a hierarchy h, we define high-level LSCs as fol-
lows.

High-level scenarios. High-level LSCs may include life-
lines representing high-level elements, e.g., packages. Events
specified in high-level LSCs are abstract inter-object events.

A refinement relation between LSCs. An LSC L1

refines an LSC L2, denoted by L1 ¹h L2, iff
• each lifeline in L1 has a corresponding high-level

lifeline in L2: ∀l1 ∈ L1∃l2 ∈ L2 s.t. l1 ¹h l2,
• each event in L2 has a corresponding lower-level event

in L1: ∀ev ∈ L2∃ev′ ∈ L1 s.t. ev′ ¹h ev,
• the partial order between corresponding events is pre-

served: ∀eva, evb ∈ L2 s.t. eva <L2 evb, ∃ev′a, ev′b ∈
L1 s.t. ev′a ¹h eva ∧ ev′b ¹h evb ∧ ev′a <L1 ev′b.

For example, the LSC shown in Fig. 4 (left) refines the
LSC shown in Fig. 4 (right). Note that the order of corre-
sponding events is preserved between the two charts. Also
note that the event send between backend.Connect and

backend.Output in Send Packet [refined] does
not have a corresponding event in Send Packet [abs];
at the level of abstraction defined by the lifelines of the latter,
send is intra-object, and is thus not included in this higher-
level LSC.

High-level chart instance. Defn 3.1 defines an instance
of a high-level chart. It follows as a natural extension of the
semantics of an LSC concrete chart given in Defn 2.1.

Definition 3.1 (Instance of a High-Level Chart):
Given a high-level chart C = (CL, CE , C<) and an
abstraction map amap, a trace segment SB = 〈sbi,sbi+1,
. . ., sbi+m−1〉 is an instance of C if SB follows the QRE
expression

e1; [−G]∗; e2; . . . ; [−G]∗; en

where CE = {amap(e1), amap(e2), . . . , amap(en)},
∀0<i<n. amap(ei) <C amap(ei+1), and
G = {e|amap(e) ∈ CE}.

Witnesses, support and confidence. Based on the above
definition of high-level LSC instance, the measures of posi-
tive and negative witnesses, support and confidence could
be calculated based on the description in Sec. II. Only
those LSCs whose support and confidence are above the
respective threshold of min sup and min conf are defined
as significant.

C. Zoom-out and zoom-in

Given an LSC, two operations are defined to assist the
engineer in moving between levels of abstraction and inves-
tigating the specification.

Zoom-out. Zoom-out operation abstracts an LSC higher
up in the hierarchy. In the process, some lifelines are
relabeled and some inter-object events becomes intra-object
and are abstracted away. Formally, given an LSC L1 and
an abstraction map amap, the operation returns L2 such
that L1 ≺h L2 and ∀l1 ∈ L1∃l2 ∈ L2 s.t. l1 ¹h l2 and
amap(l1) = l2. The operation is denoted by zout(L1).

Zoom-in. Zoom-in operation adds details to a higher level
LSC. It moves a higher level LSC down in the hierarchy.
Some intra-object events become inter-object and are added
to the LSC. Formally, given an LSC L and an abstraction
map amap, the operation returns the set of all LSCs Li

such that Li ¹h L and ∀lij ∈ Li∃l ∈ L s.t. lij ¹h l and
amap(lij) = l. The operation is denoted by zin(L1).

Some examples of zoom-out and zoom-in operations are
given in Fig. 4 and Fig. 5 respectively.

Most importantly, in the context of specification mining,
the refinement relation ¹h on LSCs and the zoom-in/out
operations defined above must be revised to include the
statistical support and confidence of the LSCs on the given
trace. Intuitively, if L1 ¹h L2, sup(L1) may be lower than
sup(L2): since L2 is more abstract it may have instances
that are not instances of L1. Thus, the revised definitions
for the zoom operations are as follows:

jabber

LSC Send Packet [refined]

Connect Output

sendMessage(…)

ui

send(…)

send(…)

jabber

LSC Send Packet [abs]

backendui

sendMessage(…)

send(…)

nu.fw.jeti.backend

Zoom-out

Figure 4. Zoom-Out

jabber

LSC Msg Flash [refined]

Cht
Wndws

Cht
Wndw

JID
ChtSplit

Pane

msg(…)

title
flash

apndMsg(…)

apndMsg(…)

equals(…)

start(…)

nu.fw.jeti.ui
jabber

LSC Msg Flash [abs]

ui

msg(…)

title
flash

start(…)

Zoom-in

Figure 5. Zoom-In

Statistical zoom-out. Given an LSC L1 and an ab-
straction map amap, the operation returns L2 such that
zout(L1) = L2, sup(L1) = sup(L2), and conf (L1) =
conf (L2). We denote this operation by szout(L1).

Statistical zoom-in. Given an LSC L1 and an abstraction
map amap, the operation returns a set of LSCs {L2|L2 ∈
zin(L1) ∧ sup(L1) = sup(L2) ∧ conf (L1) = conf (L2)}.
We denote this operation by szin(L1).

Unless otherwise stated, for the remainder of the paper,
we use zoom-in and zoom-out to refer to statistical zoom-in
and zoom-out respectively. The algorithms to compute the
above are given in the next section.

IV. FRAMEWORK & ALGORITHMS

In this section we present an overview of our framework.
We then describe the algorithm to mine a set of statistically
significant LSCs at the selected abstraction level and the
algorithms to compute the zoom-out and zoom-in operations.

A. Mining framework

Hierarchical scenario-based specification mining starts
with a hierarchy and a concrete inter-object trace. Given
these inputs and user-defined thresholds of support and
confidence, LSCs at various abstraction levels are mined
interactively, following the steps described below.

1) (Abstraction) Abstract the concrete trace to a user
selected abstraction level defined using an abstraction
map. An abstract inter-object trace is created.

Procedure ZoomOut
Inputs:

T : Input trace
amap: Abstraction map
L(pre, full): Input LSC
pre = 〈e1, . . . , en〉: L’s pre-chart
full = 〈e1, . . . , em〉: L’s pre- & main- chart

Output:
A corresponding high level LSC

Method:
1: Let ts = sup(L(pre, full))
2: Let tc = conf (L(pre, full))
3: Let pre ′ = 〈e′1, . . . , e′n〉, where ∀i.e′i = amap(ei)
4: Let full ′ = 〈e′1, . . . , e′m〉, where ∀i.e′i = amap(ei)
5: Compute pos(pre ′), w neg(full ′), and pos(full ′) on T
6: Let conf = |pos(full′,T)|+|w neg(full′,T)|

|pos(pre′,T)|
7: If (pos(full ′,T) = ts ∧ conf = tc)
8: Output L(pre ′,full ′)

Figure 6. Zooming-Out

Procedure ZoomIn
Inputs:

T : Input trace
amap: Abstraction map
L(pre, full): Input LSC
pre = 〈e1, . . . , en〉: L’s pre-chart
full = 〈e1, . . . , em〉: L’s pre- & main- chart

Output:
A set of corresponding lower level LSCs

Method:
1: Let ts = sup(L(pre,full)), Let tc = conf (L(pre,full))
2: Let preS = {〈e′1, . . . , e′n〉 | ∀i. amap(e′i) = ei}
3: Let fullS = {〈e′1, . . . , e′m〉 | ∀i. amap(e′i) = ei}
4: Let SIG = ∅
5: For each pair p ∈ preS and f ∈ fullS, where p is

a prefix of f
6: Let conf = pos(f)+w neg(f)

pos(p)

7: If (pos(f) = ts ∧ conf = tc)
8: SIG = SIG ∪ AddDetails (T ,L(p,f),amap,ts ,tc)
9: Output LSCs in SIG

Figure 7. Zooming-In

2) (Mining) Mine high-level LSCs from the abstract
inter-object trace. A set of statistically significant high-
level LSCs is mined.

3) (Selection) The user chooses a subset of the mined
LSCs for further investigation.

4) (Zoom-out, zoom-in, and event filtering)
a) Zoom-out. Based on a new abstraction map, the

user instructs the miner to abstract a selected
LSC further up the hierarchy. Some inter-object

Procedure AddDetails
Inputs:

T : Input trace
L(pre ′,full ′): Lower level LSC to be expanded
amap: Abstraction map
ts: Support of L, tc: Confidence of L

Output:
Maximal lower-level LSCs corres. to L(pre ′,full ′)

Method:
1: Let EVS = {e|e ∈ T ∧ pos(e) ≥ ts}
2: Let SIG = {0,L(pre ′, full ′)}
3: For (int i=0;i<|full ′|;i++)
4: For every (off ,L(pre,full)) in SIG
5: InsertAtLoc (T ,pre,full ,i,off ,EVS ,SIG ,ts ,tc)
6: Remove non maximal LSCs in SIG
7: Output LSCs in SIG

Procedure InsertAtLoc
Inputs:

T : Input trace
pre, full : Pre-chart, Full-chart
iO : Location to insert in original chart
off : Offset (due to events being added)
EVS : Set of frequent single-events
SIG : Temporary set of lower-level LSCs with offsets
ts , tc: Support and confidence of input LSC

Output:
SIG contains an updated set of lower-level LSCs

Method:
8: For each ev in EVS not in full
9: Let loc = iO+off
10: Let pre’ = Insert ev in pre at loc, if |pre ′| ≤ loc
11: Let full ′ = Insert ev in full at loc
12: Let conf = (pos(full′,T)+w−neg(full′,T))

pos(pre′,T)

13: if (pos(full ′,T) = ts ∧ conf = tc)
14: Add (off +1,L(pre ′,full ′)) to SIG
15: InsertAtLoc(T ,pre ′,full ′,iO,off +1,EVS ,SIG ,ts ,tc)

Figure 8. Add Details Procedure

events become internal (intra-object) and are
removed.

b) Zoom-in. Alternatively, based on a new abstrac-
tion map, the user instructs the miner to refine a
selected LSC by adding lower-level details; some
internal (intra-object) events become inter-object
and the miner expands the LSCs accordingly.

c) Event filtering. During the interactive mining
process, the user may find some events uninter-
esting. The user could then instruct the miner to
remove uninteresting events from a selected LSC
and recompute its support and confidence.

Zooming-out/in is done while considering the support
and confidence of the resulting LSCs.

The above enables one to mine for specifications at
a selected abstraction level of interest. Then, the zoom-
in and out operations provide an interactive mechanism
allowing to elicit user feedback on the mined specifications.
If more details are required, the user may choose to zoom-
in. Otherwise, if the specification gets too detailed, the user
may choose to zoom-out.

B. Mining LSCs

The basic algorithm for LSC mining given support
and confidence thresholds was presented in detail in [6].
Roughly, this involves a search space traversal process to
identify significant LSCs. We consider the space of all
possible LSCs and navigate this space in a systematic way.
The following monotonicity property is used to prune the
search space containing insignificant LSCs en masse hence
enabling the algorithm to run in a reasonable amount of
time.

Property 1 (Prefix monotonicity): If one chart is a pre-
fix of another chart, the number of positive witnesses of
the earlier should be larger than or equal to the number
of positive witnesses of the latter. Formally, given charts C
= 〈e1, e2, . . . , en〉 and C ′ = 〈e′1, e′2, . . . , e′m〉, if ∀i∈{1,...,n}.
ei=e′i, then pos(C) ≥ pos(C ′).

We first consider charts of length 1, and grow this chart by
appending events one by one. Once the number of positive
witnesses of the chart is lower than the minimum support
threshold, based on Prop. 1, we know that any extension
of the chart would not have a higher number of positive
witnesses. When this is the case we stop extending the
chart and backtrack. When this process ends, we obtain a
set of charts whose number of positive witnesses is larger
than the minimum support threshold. These basic charts are
composed to form LSCs – consisting of a pre-chart and
a main-chart. Only LSCs that are significant are outputted
(see [6] for details).

In this paper we consider only LSCs with no repeated
events. Under this condition, Prop. 1 could be strengthened
to Prop. 2 described below. This is used by the algorithm
for zoom-in described in subsection IV-D.

Property 2 (Sub-chart monotonicity): If a chart is a
sub-chart of another chart and there are no repeated events in
the chart, then the number of positive witnesses of the former
is larger or equal than the number of positive witnesses
of the latter. Formally, given charts C = 〈e1, e2, . . . , en〉
and C ′ = 〈e′1, e′2, . . . , e′m〉, if 6 ∃ei,ej∈C′ . i 6=j ∧ ei=ej and
there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m s.t.
∀j∈{1,...,n}ej = e′ij

, then pos(C) ≥ pos(C ′).
For the initial LSC mining, given a trace and an abstrac-

tion map amap, we first compute the abstract inter-object
trace induced by amap and then use it as input for the
basic LSC mining algorithm of [6], using the semantics of
high-level LSC instance. We now focus on the zoom-out
and zoom-in operations, which are unique to hierarchical

specification mining and are thus part of the technical
contribution of the present work.

C. Zooming-out

The zoom-out operation defined earlier takes a mined LSC
L1 and a user-defined abstraction map amap, and outputs a
higher-level LSC L2 s.t. L1 ¹h L2 and ∀l1 ∈ L1∃l2 ∈ L2

s.t. l1 ¹h l2 and amap(l1) = l2. In the context of mining,
we need to find L2 and compute its support and confidence
metrics. L2 is outputted if it has the same support and
confidence as L1.

Fortunately, computing L2 and its statistical significance
does not require re-mining for all significant LSCs from the
higher-level trace induced by amap. Instead, we first find L2

from L1, and then find its positive and negative instances on
the trace, to compute its support and confidence.

Finding L2 from L1 is trivial: lifelines are mapped ac-
cording to amap, inter-object events that have become intra-
object are removed from L2.

Computing a given LSC’s support and confidence on a
trace is significantly much cheaper operation than mining all
significant LSCs from a trace; its complexity is linear to the
length of the trace. No backtracking and thus no exponent
is involved in the algorithm.

Pseudo-code summarizing the above appears in Fig. 6.

D. Zooming-in

Zooming-in is more challenging, as it has to return all
lower level LSCs that refine the given higher-level LSC and
whose support and confidence are equal to its support and
confidence. Again the user specifies a mapping amap. Based
on this mapping, we first refine all high-level lifelines to the
corresponding lower-level lifelines. This results in a set of
corresponding lower-level LSCs. Zoom-in potentially returns
a set rather than a single LSC. Each of the LSCs in the set
adds different set of low-level events to the original higher-
level events.

Next we add the intra-object events that are inter-object
vis-á-vis the more refined lifelines. This poses a compu-
tational challenge. Given a lower level LSC L(pre,full)
prescribed by amap, adding newly introduced inter-object
events must be done to the pre and full charts.

We refer to each of these steps as growing a chart. Let us
illustrate this process with the full chart (the same applies for
the pre-chart). We try to insert new events at the various loca-
tions or positions in the chart resulting in a new chart full′;
we then compute pos(full′). If pos(full′)< pos(full) we
stop growing the chart further – based on Prop. 2 – and try
to insert at another location. The detailed pre- and full-charts
are later composed to form significant LSCs with the same
support and confidence as the higher level LSC. We output
LSCs containing the maximal number of inter-object events
that could be added to the LSC without affecting its support
and confidence values.

Pseudo-code summarizing the zoom-in algorithm appears
in Fig. 7. This corresponds to the lifelines refinement
process. It makes use of the AddDetails procedure de-
scribed in Fig. 8, which weaves in newly introduced inter-
object events. The AddDetails procedure invokes the
InsertAtPos procedure, iteratively, trying to insert events
at various locations in the LSC.

E. Correctness and Complexity

Below we describe our statistical soundness and complete-
ness guarantee and informally discuss the complexity and
performance benefits of using hierarchies in LSC mining.

Statistical soundness and completeness. An algorithm
mining significant specifications is statistically sound and
complete if all mined specifications are significant (sound),
and all significant specifications are mined (complete). This
notion is commonly used in data mining, and is guaranteed
by, e.g., Daikon [22] or data mining applications [21]. Our
algorithms are sound and complete modulo the given traces,
user-defined thresholds and abstraction level considered (our
notion of soundness and completeness is thus independent
of the quality of the traces used in terms of coverage etc.,
that is, in contrast to, e.g., [23]).

Our zoom-in algorithm guarantees that all maximal LSCs
refined from the input LSC having the same support and
confidence would be outputted. Also, the support of the
resulting LSCs will be equal to the support of the input LSC.
Our zoom-out algorithm guarantees that the output LSC (if
any) has the same support and confidence as the input LSC.
If no LSC is found, we know that there is no corresponding
higher-level LSC with the same support and confidence.

Complexity. The complexity of the mining algorithm is
linear in the number of frequent charts considered (c.f. [6]).
However, the higher the abstraction in the hierarchy, the less
frequent charts are expected to appear in the trace. This has
far reaching consequences on mining times; see Sec. V.

In zoom-in, since only one LSC is zoomed-in to the
lower-level search space, the frequent charts that need to
be generated are only a small fraction of the total number
of frequent charts at the lower abstraction level. These charts
are also easy to find as the high-level LSC provides a
constraint that restricts the search space to be significantly
smaller. The complexity of zoom-out is very small as one
needs only scan the trace once.

V. EXPERIMENTS & EVALUATION

We have implemented our ideas and applied them to
several applications. We report on two of these below.

Experiments setup. We generated inter-object traces
from two open source applications: Jeti [15], a full featured
instant messaging application, consisting of 49K LOC, 3400
methods, and 511 classes in 62 packages; and Columba [24],
a rich email client, consisting of 46K LOC, 6200 methods,
and 1139 classes in 226 packages. Trace generation was

Filter &
Zoom-in on nu.fw.jeti.jabber

Filter &
Zoom-in on nu.fw.jeti.ui

jabber

LSC Session 1:1

ui plugins

message(…)

backend

hashCode(…)

scroller_start(…)

getMessageListener(…)

equals(Object)

getDomain(…)

flash_start(…)

requestComposing(…)

jabber.
JID

LSC Session 1:2

ui plugins
jabber.

elements
jabber.
Backend

toString()

backend

getMessageListener(…)

message(…)

scroller_start(…)

flash_start(…)

getDomain(…)

requestComposing(…)

getMessageListener(…)

jabber.
JID

LSC Session 1:3

ui.
ChtWndws

plugins
jabber.

elements
jabber.
Backend

backend

message(…)

start(…)

start(…)

getDomain(…)

ui.
ChtWndw

ui.
ChtSplitPanel

equals(JID)

appendMessage(…)

appendMessage(…)

requestComposing(…)
composingID(…)

composingID(…)

Filter &
Zoom-in on nu.fw.jeti.jabber

Filter &
Zoom-in on nu.fw.jeti.ui

jabber

LSC Session 1:1

ui plugins

message(…)

backend

hashCode(…)

scroller_start(…)

getMessageListener(…)

equals(Object)

getDomain(…)

flash_start(…)

requestComposing(…)

jabber

LSC Session 1:1

ui plugins

message(…)

backend

hashCode(…)

scroller_start(…)

getMessageListener(…)

equals(Object)

getDomain(…)

flash_start(…)

requestComposing(…)

jabber.
JID

LSC Session 1:2

ui plugins
jabber.

elements
jabber.
Backend

toString()

backend

getMessageListener(…)

message(…)

scroller_start(…)

flash_start(…)

getDomain(…)

requestComposing(…)

jabber.
JID

LSC Session 1:2

ui plugins
jabber.

elements
jabber.
Backend

toString()

backend

getMessageListener(…)

message(…)

scroller_start(…)

flash_start(…)

getDomain(…)

requestComposing(…)

getMessageListener(…)

jabber.
JID

LSC Session 1:3

ui.
ChtWndws

plugins
jabber.

elements
jabber.
Backend

backend

message(…)

start(…)

start(…)

getDomain(…)

ui.
ChtWndw

ui.
ChtSplitPanel

equals(JID)

appendMessage(…)

appendMessage(…)

requestComposing(…)
composingID(…)

composingID(…)

getMessageListener(…)

jabber.
JID

LSC Session 1:3

ui.
ChtWndws

plugins
jabber.

elements
jabber.
Backend

backend

message(…)

start(…)

start(…)

getDomain(…)

ui.
ChtWndw

ui.
ChtSplitPanel

equals(JID)

appendMessage(…)

appendMessage(…)

requestComposing(…)
composingID(…)

composingID(…)

Figure 9. Interactive Mining Session 1: Jeti’s Message Receive

done using AspectJ, recording inter-object method calls, in a
format similar to the one shown in Fig. 2. We collected traces
of length 11,230 and 5,921 events from Jeti and Columba
respectively.

Below we describe three interactive hierarchical specifi-
cation mining sessions, involving mining, zoom-in, zoom-
out, and event filtering. We compare our algorithm with
previous work on LSC mining [6], which did not utilize
hierarchies. All experiments were executed on an Intel
Core2 Duo 2.40GHz 3.24GB RAM Windows XP Tablet
PC. The algorithms are programmed using C#.Net compiled
using VS.Net 2005. Additional results from our experiments,
including traces, are available in [25].

Interactive mining session 1. We describe a mining
session of Jeti, consisting of several steps. First, we set up an
amap and mined the LSC shown in Fig. 9 (top) with support
10 and confidence 1. The amap used maps every class

in the trace to its corresponding package at depth 4, e.g.,
nu.fw.jeti.ui.ChatWindow 7→ nu.fw.jeti.ui.
This LSC describes the behavior that takes place when
Jeti receives a new message. We filtered out the meth-
ods hashCode() and equals(), as we consider them
uninteresting, and then zoom-in on the jabber package,
resulting in the LSC shown in the middle of Fig. 9. Another
filtering on method toString() and zoom-in to expand
the ui package, resulted in the LSC shown in Fig. 9
(bottom). The scenario shows how, after a new message was
received, the application gets information about the commu-
nicating parties, flashes the title bar, scrolls the incoming
message on the title bar, and prepares for composing a
reply. The more detailed LSC describes the internal behavior
within the ui package where the message is appended to
the ChatSplitPanel and message identifier is set in the
user interface’s window and panel.

LSC Session 2:2

pop3.
command

pop3.
Store

command
mc.

Manager
pop3.

Server

checkAll()

gui

getAccountItem(…)

tryToGetLock(…)

getMessageCount(…)

synchronize(…)

cleanUpServer(…)

fireNewMessageArrived(…)

logout(…)

logout(…)

getMessageCount(…)

releaseLock(…)

getFolder(…)

mc.
Action

mc.
Listener

isCheckAll()

check()

newMessageArrived(…)

mail
check

LSC Session 2:1

pop3 command

getAccountItem(…)

gui

tryToGetLock(…)

checkAll(…)

fireNewMessageArrived(…)

releaseLock(…)

pop3.
command

LSC Session 2:3

pop3.
Store

command
mail

check
pop3.

Server

checkAll()

gui

getAccountItem(…)

tryToGetLock(…)

getMessageCount(…)

synchronize(…)

cleanUpServer(…)

fireNewMessageArrived(…)

logout(…)

logout(…)

getMessageCount(…)

releaseLock(…)

getFolder(…)

Zoom-out on org.columba.mail.mailchecking

Zoom-in on org.columba.mail.pop3 &
Zoom-in on org.columba.mail.mailchecking

LSC Session 2:2

pop3.
command

pop3.
Store

command
mc.

Manager
pop3.

Server

checkAll()

gui

getAccountItem(…)

tryToGetLock(…)

getMessageCount(…)

synchronize(…)

cleanUpServer(…)

fireNewMessageArrived(…)

logout(…)

logout(…)

getMessageCount(…)

releaseLock(…)

getFolder(…)

mc.
Action

mc.
Listener

isCheckAll()

check()

newMessageArrived(…)

LSC Session 2:2

pop3.
command

pop3.
Store

command
mc.

Manager
pop3.

Server

checkAll()

gui

getAccountItem(…)

tryToGetLock(…)

getMessageCount(…)

synchronize(…)

cleanUpServer(…)

fireNewMessageArrived(…)

logout(…)

logout(…)

getMessageCount(…)

releaseLock(…)

getFolder(…)

mc.
Action

mc.
Listener

isCheckAll()

check()

newMessageArrived(…)

mail
check

LSC Session 2:1

pop3 command

getAccountItem(…)

gui

tryToGetLock(…)

checkAll(…)

fireNewMessageArrived(…)

releaseLock(…)

mail
check

LSC Session 2:1

pop3 command

getAccountItem(…)

gui

tryToGetLock(…)

checkAll(…)

fireNewMessageArrived(…)

releaseLock(…)

pop3.
command

LSC Session 2:3

pop3.
Store

command
mail

check
pop3.

Server

checkAll()

gui

getAccountItem(…)

tryToGetLock(…)

getMessageCount(…)

synchronize(…)

cleanUpServer(…)

fireNewMessageArrived(…)

logout(…)

logout(…)

getMessageCount(…)

releaseLock(…)

getFolder(…)

pop3.
command

LSC Session 2:3

pop3.
Store

command
mail

check
pop3.

Server

checkAll()

gui

getAccountItem(…)

tryToGetLock(…)

getMessageCount(…)

synchronize(…)

cleanUpServer(…)

fireNewMessageArrived(…)

logout(…)

logout(…)

getMessageCount(…)

releaseLock(…)

getFolder(…)

Zoom-out on org.columba.mail.mailchecking

Zoom-in on org.columba.mail.pop3 &
Zoom-in on org.columba.mail.mailchecking

Figure 10. Interactive Mining Session 2: Columba’s Check Mail

Interactive mining session 2. Next, we describe a mining
session of Columba, consisting of several steps too. First,
we set up an amap and mined the LSC shown in Fig. 10
(top) with support 10 and confidence 1. Again, the amap
maps every class in the trace to its corresponding package
at depth 4. This LSC describes a scenario of checking for
new emails. The system gets account information, locks the
server, processes new emails (if any), and finally releases the
lock. To get more details about this scenario, we zoomed-in
on the pop3 and mailcheck packages. After reviewing
the new LSC, we decided that the internal communication
within the mailcheck package is not of interest. Thus, we
zoomed-out from mailcheck, arriving at the LSC shown
in Fig. 10 (bottom). This LSC gives detailed information
regarding the processing of new emails namely: all new

App. min sup No Hier. Hier. TRed

Jeti 10 > 10 hrs 2.45 sec 78.94%5 > 10 hrs 2.58 sec

Columba 10 123.31 sec 0.41 sec 11.78%5 Out-of-mem 2.58 sec

Table I
INITIAL MINING SPEED

messages are retrieved, synchronization is performed, old
messages are deleted, logout is performed, and the inbox
folder is accessed.

Interactive mining session 3. Here we started off with
the LSC Send Packet [abs] shown in Fig. 11 (left).
This was not a previously mined LSC, but rather one we
suggested as a hypothesis, describing the process of sending
a message. First, the miner found that the given LSC support
and confidence are 11 and 1, respectively. Second, we

jabber

LSC Send Packet [refined]

Connect Output

sendMessage(…)

ui

send(…)
send(…)

jabber

LSC Send Packet [abs]

backendui

sendMessage(…)

send(…)

nu.fw.jeti.backend

Zoom-in on nu.fw.jeti.backend

getIdentifier(…)

jabber

LSC Send Packet [refined]

Connect Output

sendMessage(…)

ui

send(…)
send(…)

jabber

LSC Send Packet [abs]

backendui

sendMessage(…)

send(…)

nu.fw.jeti.backend

Zoom-in on nu.fw.jeti.backend

getIdentifier(…)

Figure 11. Interactive Mining Session 3: Jeti’s Send Message

Session Filter Zoom-in Zoom-out
1 0.02 sec 0.16 sec + 0.23 sec N/A
2 N/A 0.64 sec + 0.17 sec 0.03 sec
3 N/A 0.17 sec N/A

Table II
FILTER/ZOOM-IN/ZOOM-OUT SPEED

applied zoom-in to expand on the nu.fw.jeti.backend
lifeline. The result is shown in Fig. 11 (right); it revealed
the internal communication with the backend package and
another method between the ui and jabber packages.

The three mining sessions described above show the
utility of our work in enabling an interactive user-guided
spec. mining process, resulting in valuable knowledge about
the systems under investigation, taking advantage of the hi-
erarchical setting to produce expressive and comprehensible
results at various levels of abstraction. Next we report on
running times.

Performance results. The use of abstraction maps for
initial mining resulted in significant reduction in running
time. Table I shows a summary of running times. The
columns (from left to right) correspond to the program
under investigation, the minimum support threshold used,
the runtime when no hierarchy and abstraction is utilized
(based on the algorithm in [6]), the runtime when a hierarchy
is utilized, and the percentage of reduction of trace length
due to the abstraction map used. The results show that a
speed up of more than 290 times could be achieved in all
the cases considered. When running the algorithm in [6]
on the Columba dataset at support level 5, the algorithm
crashes after running for 1.5 hours due to an out of memory
exception.

Moreover, zooming-in and zooming-out work very fast,
as summarized in Table II. This is expected, as explained in
subsection IV-E.

Lessons learned. While the above experiments show
promising results in terms of the quality of scenarios mined
and of the scalability of our approach, we have also learned
some important lessons about the limitations and challenges
faced by our current work, some of which are briefly listed
below.

First, using the packages hierarchy works well, but is
somewhat limiting. Sometime, we look for some flexibility

in defining the hierarchy; say, grouping objects by some
custom user-defined criteria, e.g., all classes implementing
a selected interface of interest.

Second, automating the definition of amap. We envision
heuristics that scan the trace and suggest ‘best abstraction
maps’. For example, given an abstract LSC, find lowest (i.e.,
most detailed) possible abstraction level where support is
still not below threshold.

Finally, the visual aspect and interactive nature of our
work is a significant advantage. At the moment, we only
have a prototype graphical user interface accepting inputs in
the form of mouse clicks and text and outputting a textual
representation of mined LSCs. Thus, the full potential of the
graphical representation is not fulfilled. We plan to address
this by completing an integrated solution where mined LSCs
are automatically graphically visualized and allow direct
manipulation, e.g., zooming-in by clicking on the lifeline
to be expanded.

VI. DISCUSSION

Some issues related to our work warrant a discussion.
Other hierarchies. While we demonstrate the use of

the Java packages hierarchy for hierarchical spec. mining,
our method is general and may be applied to other hier-
archies (e.g., a ‘part-of’ relation between sub-components
and components, an ‘is-a’ relation between subclasses and
classes, etc.). In addition, it may be applied to a user-defined
custom hierarchy. This is of interest in case a user has
some prior knowledge about the system or is interested in a
specific task; e.g., grouping together all implementations of
a selected interface, so that mined LSCs show only a single
lifeline representing this interface and include only those
method calls common to all its implementations, regardless
of their location in the packages hierarchy. Finally, one may
consider the development of ‘ad-hoc hierarchies’, derived
from the specific features of an input trace. We leave this
direction for future work.

Limitations of expressivity. Our choice of LSC as the
target formalism of our mining approach is motivated by
its expressive power, allowing the specification of univer-
sal temporal invariants. It is important to note, however,
that due to the mix between liveness and safety in the
semantics of LSC, the refinement relation ¹h between LSCs
indicates neither logical implication nor trace containment.
Still, following [14] and the UML2 standard’s support for
PartDecomposition, we believe the relation ¹h is indeed
valuable, in particular when it is based on a hierarchy that
is inherent in the structure of the system under investigation.

Scalability. The scalability of hierarchical spec. mining
depends on the level of abstraction chosen. The higher the
level of abstraction, the shorter the traces and patterns, and
hence mining runs faster (see Sec. V). Thus, we recommend
starting with the highest level of abstraction of interest, then

zooming-in to lower levels only on selected LSCs, as is
deemed necessary for better comprehension.

Object IDs. In the present work, object IDs are ab-
stracted away from the input traces. As discussed in previous
work [11], this cannot be done in the general case; thus,
we implicitly assume no overlapping LSCs. Relaxing this
restriction requires further work, see [11].

Relaxing support requirement during zoom-out and
zoom-in. In our current study, we require that output chart(s)
of zoom-in and zoom-out have the same support and confi-
dence as the input chart. This requirement could be relaxed
to only require that the output charts have support values
greater than a certain minimum support threshold. However,
this comes at a cost, as the number of frequent charts to
be investigated would then increase and so will the running
time. In this paper, we focus on the more strict version. The
algorithm could be extended to support the more relaxed
version. The material in [25] gives the description of the
relaxed version and a case study showing that it could be
useful and run in a reasonable amount of time.

VII. RELATED WORK

Much work has been published on specification mining.
For lack of space in this proceedings we briefly discuss only
the ones most relevant to our work.

Reverse engineering of sequence diagrams. Many work
suggest and implement different variants of reverse engi-
neering of objects’ interactions from program traces and
their visualization using sequence diagrams (see, e.g., [26],
[27]), which may seem similar to our work. Unlike our work,
however, all consider and handle only concrete, continuous,
non-interleaving, and complete object-level interactions and
are not using aggregations and statistical methods to look
for higher level recurring scenarios; the reverse engineered
sequences are used as a means to describe single, concrete,
and relatively short (sub) traces in full (and thus may be
viewed not only as concrete but also as ‘existential’). In
contrast, we look for universal (modal) sequence diagrams,
which aim to abstract away from the concrete trace and
reveal significant recurring potentially universal abstract
scenario-based specification, ultimately suggesting scenario-
based system requirements, broken down by architectural
hierarchies embedded in the system under investigation.

Scenario-based specification mining. Scenario-based
specification mining was first introduced in [6], which
presented a data mining algorithm to compute a statistically
sound and complete set of LSCs, given a trace (or a set
of traces) and thresholds for minimal support and confi-
dence. These were extended in [11], to handle symbolic
scenario-based specifications (at the class level rather than
the object level), and in [10], to handle the special case
of trigger and effect mining. The present work extends
the original work with hierarchical structures, and shows

significant improvements in terms of scalability, expressivity,
and comprehensibility.

Automata-based specification mining. Most specifica-
tion miners produce an automaton (e.g., [1]–[3], [28]),
and have been used for various purposes from program
comprehension to verification. Unlike these, we mine a set
of LSCs from traces of program executions. We believe
sequence diagrams in general and LSCs in particular, are
suitable for the specification of inter-object behavior, as they
make the different role of each participating object and the
communications between the different objects explicit. Thus,
our work is not aimed at discovering the complete behavior
or APIs of certain components, but, rather, to capture the
way components cooperate to implement certain system
features. Indeed, inter-object scenarios are popular means
to specify requirements (see, e.g., [29]–[31]). Specifically,
the hierarchical extension aids us in coping with the length
of the traces, and aids the user of the miner in coping with
the complexity of the system under investigation.

VIII. CONCLUSION & FUTURE WORK

We presented hierarchical scenario-based specification
mining, which uses object hierarchies over traces of inter-
object method calls, as an abstraction/refinement mechanism
that enables user-guided, top-down or bottom-up mining
of layered scenario-based specifications, broken down by
hierarchies embedded in the system under investigation.
Our technical contribution includes a formal definition of
hierarchical inter-object traces, and algorithms for ‘zooming-
out’ and ‘zooming-in’, used to move between abstraction
levels on the mined specifications.

An evaluation of our approach, based on several case
studies, demonstrated its utility and its scalability to long
traces and complex, large systems. We believe object hier-
archies are a useful and natural abstraction and organization
mechanism in many architectures, and thus their application
to execution traces and specification mining methods is
promising. Our experiments confirm this expectation.

The larger the system under investigation, the greater
need arises for an hierarchical organization mechanism
of its structure and its specification. Indeed, hierarchical
structures are used as an organizing principle in many
systems’ architectures, during systems’ design, development,
and deployment, as a way to cope with complexity and size,
enabling, e.g., division of labor and reuse. Thus, we expect
that further experiments with larger applications, will reveal
similar, perhaps even stronger, results.

The work is part of the larger framework of user-guided
specification mining, where specification mining is viewed as
a task oriented iterative interactive process allowing the user
to focus on issues of interest and use accumulated knowledge
about the application under investigation. It aims to support
property discovering tasks for debugging, evolution, runtime
monitoring, and formal verification.

Future work on scenario-based specification mining in
general includes the extension of our work to cover a larger
subset of the LSC language, adding support for partial-order
and conditions. Related work in-progress concerns various
usages of the mined scenarios in practice, e.g., as suggested
in [6], the compilation of the mined LSCs into monitoring
scenario aspects [18], [32], thus using them for runtime
verification of the system under investigation.

More specific to hierarchical scenario-based specification
mining, based on the lessons learned listed above, planned
future work includes further experiments with different
hierarchies, the development of heuristics for semi-automatic
computation of ‘best abstraction maps’ under various crite-
ria, and the design of an integrated graphic user interface
that takes advantage of the visual nature of our work.

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns
as Partial Orders from Source Code: From Usage Scenarios
to Specifications,” in SIGSOFT FSE, 2007.

[2] G. Ammons, R. Bodik, and J. R. Larus., “Mining Specifica-
tion,” in POPL, 2002.

[3] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic Gener-
ation of Software Behavioral Models,” in ICSE, 2008.

[4] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das, “Perra-
cotta: Mining temporal API rules from imperfect traces.” in
ICSE, 2006.

[5] F. C. de Sousa, N. C. Mendonça, S. Uchitel, and J. Kramer,
“Detecting Implied Scenarios from Execution Traces,” in
WCRE, 2007, pp. 50–59.

[6] D. Lo, S. Maoz, and S.-C. Khoo, “Mining Modal Scenario-
Based Specifications from Execution Traces of Reactive Sys-
tems,” in ASE, 2007.

[7] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the con-
tent of large traces to facilitate the understanding of the
behaviour of a software system,” in ICPC, 2006.

[8] A. Kuhn and O. Greevy, “Exploiting analogy between traces
and signal processing,” in ICSM, 2006.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in PLDI, 2003, pp.
141–154.

[10] D. Lo and S. Maoz, “Mining Scenario-Based Triggers and
Effects,” in ASE. IEEE, 2008, pp. 109–118.

[11] ——, “Specification mining of symbolic scenario-based mod-
els,” in PASTE. ACM, 2008, pp. 29–35.

[12] W. Damm and D. Harel, “LSCs: Breathing Life into Message
Sequence Charts,” J. on Formal Methods in System Design,
vol. 19, no. 1, pp. 45–80, 2001.

[13] D. Harel and S. Maoz, “Assert and Negate Revisited: Modal
Semantics for UML Sequence Diagrams,” Software and Sys-
tems Modeling, vol. 7, no. 2, pp. 237–252, 2008.

[14] Y. Atir, D. Harel, A. Kleinbort, and S. Maoz, “Object Com-
position in Scenario-Based Programming,” in FASE, 2008.

[15] “Jeti. Version 0.7.6 (Oct. 2006).” http://jeti.sourceforge.net/.

[16] J. Klose, T. Toben, B. Westphal, and H. Wittke, “Check it out:
On the efficient formal verification of Live Sequence Charts,”
in CAV, 2006.

[17] H. Kugler and I. Segall, “Compositional Synthesis of Reactive
Systems from Live Sequence Chart Specifications,” in TACAS,
2009.

[18] S. Maoz and D. Harel, “From multi-modal scenarios to code:
compiling LSCs into AspectJ,” in SIGSOFT FSE, 2006.

[19] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bon-
temps, “Temporal Logic for Scenario-Based Specifications,”
in TACAS, 2005.

[20] K. Olender and L. Osterweil, “Cecil: A sequencing constraint
language for automatic static analysis generation.” IEEE TSE,
vol. 16, pp. 268–280, 1990.

[21] J. Han and M. Kamber, Data Mining Concepts and Tech-
niques. Morgan Kaufmann, 2006.

[22] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” TSE, vol. 27, no. 2, pp. 99–123, 2001.

[23] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments on the effectiveness of dataflow- and control-flow-
based test adequacy criteria,” in ICSE, 1994.

[24] “Columba, Java Email Client.”
http://sourceforge.net/projects/columba.

[25] “Hierarchical LSC Mining - Supplementary Website,”
http://www.mysmu.edu/faculty/davidlo/hie/hie.html.

[26] “Eclipse Test and Performance Tools Platform,”
http://www.eclipse.org/tptp/.

[27] D. F. Jerding, J. T. Stasko, and T. Ball, “Visualizing Interac-
tions in Program Executions,” in ICSE, 1997.

[28] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller,
“Mining Object Behavior with ADABU,” in WODA, 2006.

[29] I. Krüger, “Capturing Overlapping, Triggered, and Preemptive
Collaborations Using MSCs.” in FASE, 2003.

[30] G. Sibay, S. Uchitel, and V. A. Braberman, “Existential live
sequence charts revisited,” in ICSE, 2008, pp. 41–50.

[31] J. Whittle, R. Kwan, and J. Saboo, “From scenarios to code:
An air traffic control case study,” Software and Systems
Modeling, vol. 4, no. 1, pp. 71–93, 2005.

[32] D. Harel, A. Kleinbort, and S. Maoz, “S2A: A compiler for
multi-modal UML sequence diagrams,” in FASE, 2007.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2009

	Mining Hierarchical Scenario-Based Specifications
	David LO
	Shahar Maoz
	Citation

	tmp.1320226244.pdf.yxjRr

