
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2012

Dash: A Novel Search Engine for Database-
Generated Dynamic Web Pages
Ken C. K. LEE
University of Massachusetts Dartmouth

Kanchan BANKAR
University of Massachusetts Dartmouth

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Chi-Yin CHOW
City University of Hong Kong

Honggang WANG
University of Massachusetts Dartmouth

DOI: https://doi.org/10.1109/ICDCS.2012.53

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LEE, Ken C. K.; BANKAR, Kanchan; ZHENG, Baihua; CHOW, Chi-Yin; and WANG, Honggang. Dash: A Novel Search Engine for
Database-Generated Dynamic Web Pages. (2012). 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS
2012): Macau, China, 18-21 June 2012: Proceedings. 435-444. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1623

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICDCS.2012.53
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Dash: A Novel Search Engine for Database-
Generated Dynamic Web Pages

Ken C. K. Lee1 Kanchan Bankar1 Baihua Zheng2 Chi-Yin Chow3 Honggang Wang4
ken.ck.lee@umassd.edu kbankar@umassd.edu bhzheng@smu.edu.sg chiychow@cityu.edu.hk hwang1@umassd.edu

1 Department of Computer & Information Science, University of Massachusetts Dartmouth, USA
2 School of Information Systems, Singapore Management University, Singapore
3 Department of Computer Science, City University of Hong Kong, Hong Kong

4 Department of Electrical & Computer Engineering, University of Massachusetts Dartmouth, USA

Abstract—Database-generated dynamic web pages (db-pages,
in short), whose contents are created on the fly by web appli-
cations and databases, are now prominent in the web. However,
many of them cannot be searched by existing search engines.
Accordingly, we develop a novel search engine named Dash,
which stands for Db-pAge SearcH, to support db-page search.
Dash determines db-pages possibly generated by a target web
application and its database through exploring the application
code and the related database content and supports keyword
search on those db-pages. In this paper, we present its system
design and focus on the efficiency issue.

To minimize costs incurred for collecting, maintaining, index-
ing and searching a massive number of db-pages that possibly
have overlapped contents, Dash derives and indexes db-page
fragments in place of db-pages. Each db-page fragment carries
a disjointed part of a db-page. To efficiently compute and index
db-page fragments from huge datasets, Dash is equipped with
MapReduce based algorithms for database crawling and db-page
fragment indexing. Besides, Dash has a top-k search algorithm that
can efficiently assemble db-page fragments into db-pages relevant
to search keywords and returns the k most relevant ones. The
performance of Dash is evaluated via extensive experimentation.

Keyword: Database-Generated Dynamic Web Pages, Search
Engine, Database Crawling, Indexing, Top-k Search, MapRe-
duce, Hadoop and Performance.

I. INTRODUCTION

In the ever-growing World Wide Web (or the web, for
brevity, hereafter), search engines are indispensable facilities
enabling individuals to find web pages of interest efficiently.
However, as estimated in 2000, 550 billion web pages were not
reachable by search engines [23]. Compared with 8.41 billion
web pages collected and indexed by search engines as recorded
in mid-March 2012 [24], only a very small fraction of web
pages are really searchable! Even worse, those unsearchable
web pages should have been blooming along with the growth
of the entire web over the past decade.

Among various unsearchable web pages, database-
generated dynamic web pages (abbreviated as db-pages, here-
after) are the majority [23]. Many present websites for e-
commerce, e-learning, social networking services, etc., are all
database driven that hosted web applications generate db-pages
based on backend databases upon receiving input query strings
such as HTML form submissions [22]. We use Example 1 (our
running example) to exemplify query strings and db-pages.

Example 1. (Query string and db-page) Suppose that in
www.example.com, a web application Search lists local restau-
rants according to search criteria in given query strings. For
a query string ‘c = American&l = 10&u = 15’, it generates
db-page P1 about restaurants whose cuisines are American
and average budget ranges between $10 and $15 per per-
son as well as their customer comments. P1’s content and
URL, i.e., appending the query string to Search’s URI (i.e.,
www.example.com/Search) are shown in Figure 1(a).1

www.example.com/Search?c=American&l=10&u=15

Restaurants Budget Rate User comments
Burger Queen $10 4.3 Burger experts by David on 06/10
Wandy’s $12 4.1
Wandy’s $12 4.2 Unique burgers by Bill on 05/10;

Bad fries by Bill on 06/10
(a) P1’s URL and content

www.example.com/Search?c=American&l=10&u=20

Restaurants Budget Rate User comments
Burger Queen $10 4.3 Burger experts by David on 06/10
Wandy’s $12 4.1
Wandy’s $12 4.2 Unique burgers by Bill on 05/10;

Bad fries by Bill on 06/10
McRonald’s $18 2.2 Regret taking it by David on 06/10

(b) P2’s URL and content

Fig. 1. Example db-pages P1 and P2 and their URL

Other than P1, Search can generate many db-pages. For
instance, it generates db-page P2 that lists American restau-
rants with a budget range between $10 and $20 per per-
son and customer comments for another query string of
‘c = American&l = 10&u = 20’, as in Figure 1(b). �

In the following, let us first discuss the challenges faced in
db-page collection, indexing, and search, which are the three
most essential activities of search engines [9].

Conventionally, search engines discover static web pages
by traversing their hyperlinks. Nevertheless, many db-pages
are not linked by any others. As such, collecting db-pages is
the first and important challenge to search engines. There are
two approaches used by existing search engines to explore
some db-pages. First, search engines may collect cached db-
pages, which are generated for some query strings, from the
caches of web proxies and web servers [8], [17]. Second,
search engines may submit as many trial query strings as

1Some query strings are provided in HTTP requests through POST method.
Here, we consider a query string as a part of an URL, i.e., GET method, but
Dash can support both GET and POST methods.

possible to web applications to generate db-pages [19]. As
in Example 1, query strings to Search may be formed by
filling in c, l and u fields with some possible values. However,
these two approaches cannot guarantee the completeness of
collected db-pages. Besides, the second approach has to invoke
web applications, which may generate many valueless db-
pages, e.g., empty pages, error messages, and pages with
identical contents. In addition, both websites hosting web
applications and search engines will be easily exhausted by
such overwhelming web application invocations.

Once web pages are retrieved via web page collection, their
contents need to be indexed to facilitate search functions.
Intuitively, each db-page, if collected, can be trivially treated
as an independent web page. However, many db-pages, even
generated by different query strings, would share similar (or
even identical) contents. This is mainly because they are
generated from some common records in a database. Handling
numerous content-overlapped db-pages clearly increases index
storage and access overheads. Thus, this intuitive approach
is not efficient. What’s worse, those content-overlapped db-
pages are very likely to be relevant to queried keywords and
returned as search results altogether, considerably deteriorating
the quality of search results. As in Example 1, db-pages P1
and P2 have similar contents; and specifically, P1 is totally
covered by P2. With respect to a queried keyword “burger”,
both P1 and P2 are qualified and returned. As no additional
content provided by P2 (relative to P1) contains “burger”, P2
would be interpreted as redundant in presence of P1 in the
same search result.

Motivated by the lack of search engines to support the
efficient retrieval and search of db-pages, we, in this paper,
introduce a novel search engine named Dash, which stands
for db-page search. Specialized for db-pages, Dash suggests
URLs that refer to web applications and includes query strings
for the applications to generate db-pages relevant to queried
keywords. To address the aforementioned challenges, Dash is
developed based on several innovative ideas, making its design
and implementation very unique.

To effectively and efficiently collect db-pages and corre-
sponding query strings, Dash directly explores the implemen-
tation of the web applications and the contents of underlying
databases. Specifically, Dash performs reverse engineering on
db-page generations. It first analyzes a given web applica-
tion to determine how it accesses an underlying database to
generate db-pages, with the help of some advanced software
engineering techniques, such as data flow analysis [15] and
symbolic execution [16]. As will be discussed later, the
logic of a web application can be roughly formulated as a
parameterized query, based on which query strings and db-
page contents for the application can all be deduced. It is
noteworthy that the assumptions about the availability of web
application implementations and their database accesses to
search engines are feasible, realistic and practical. First, many
corporates nowadays rely on search engines to advertise their
web pages in the Internet and they are even willing to permit
those search engines to access their databases [12]. Second,

only a portion of data in a database is needed to be accessed
and it is expected to be publicized through db-pages generated
by web applications. Third, many websites can explore their
web applications and databases to determine all their db-
pages as for their own keyword search. As opposed to some
off-the-shelf embedded search engines, e.g., Google Custom
Search [11], Apache Lucene [2], etc., that are designed for
static web pages, Dash can be a tool for those websites to
quickly offer keyword search on their own db-pages.

Besides, Dash exploits the concept of db-page fragments,
i.e., indivisible parts of any db-page, to address the issue of
potential content overlaps among different db-pages. Instead of
generating all possible db-pages whose contents may overlap,
Dash derives disjoint db-page fragments from an underlying
database.2 By deriving, storing and searching those db-page
fragments, Dash effectively avoids processing and storing
overlapped db-page contents. Accordingly, Dash is designed to
manipulate db-page fragments for keyword search. To derive
numerous db-page fragments from a huge dataset, Dash has
MapReduce based algorithms to derive and index db-page
fragments, respectively. In addition, a specialized index called
fragment index is devised to index individual fragments ac-
cording to their contents and their inter-relationship. Based on
the index, a top-k search algorithm can synthesize k db-pages
most relevant to queried keywords and suggest their URLs
at the search time. The efficiency of those algorithms was
evaluated via extensive experimentation. In our experiments,
the top-k search took less than 0.3 millisecond to form and
return relevant db-pages, which well indicates the feasibility
of using db-page fragments to support db-page search.

The details about Dash will be presented in the rest of
the paper, which is organized as follows. Section II reviews
background and related work. Section III provides the prelim-
inaries. Section IV provides the overview of Dash. Section V
presents Map-Reduce based algorithms for database crawling
and db-page fragment indexing. Section VI discusses top-k
search algorithm. Section VII evaluates Dash performance.
Section VIII concludes this paper, summarizes our contribu-
tions and states our future work.

II. BACKGROUND AND RELATED WORKS

This section reviews TF/IDF and inverted files, Google’s
MapReduce paradigm, and keyword search in relational
databases, which are related to this research, and discusses
the differences between those and Dash.

TF/IDF and Inverted Files. To determine web pages relevant
to certain queried keywords, TF/IDF scheme [5] and inverted
file [27] are commonly adopted by existing search engines.3

With TF/IDF scheme, the relevance of a web page p to
a set of queried keywords W is measured by its TF/IDF
score, denoted by TF-IDFW (p), as the sum of products of
term frequency (TFw(p)) and inverse document frequency

2The concept of db-page fragments was also adopted in [7] for db-page
content generation and management.

3To date, several TF/IDF variants and some other metrics, e.g., pager-
ank [21], are used to determine documents’ weights.

rid name cuisine budget rate
001 Burger Queen American 10 4.3
002 McRonald’s American 18 2.2
003 Wandy’s American 12 4.1
004 Wandy’s American 12 4.2
005 Thaifood Thai 10 4.8
006 Bangkok Thai 10 3.9
007 Bond’s Cafe American 9 4.3

restaurant(rid, name, cuisine, budget, rate)

cid rid uid comment date
201 001 109 Burger experts 06/10
202 004 132 Unique burger 05/10
203 004 132 Bad fries 06/10
204 002 109 Regret taking it 06/10
205 006 180 Thai burger 08/11
206 007 171 Nice coffee 01/11
comment(cid, rid , uid , comment, date)

uid uname
109 David
120 Ben
132 Bill
171 James
180 Alan
customer(uid, uname)

Fig. 2. fooddb database

(IDFw(p)) values with respect to individual keywords w in W ,
i.e.,

∑
w∈W TFw(p)× IDFw. A web page receives a relatively

high TF/IDF score if it contains many queried keywords and/or
those included keywords are not common to other web pages.

Inverted file, on the other hand, facilitates searches for web
pages with high TF/IDF values by indexing web pages against
their contained keywords. Its index structure is a collection
of multiple inverted lists. Corresponding to a keyword w, an
inverted list Lw maintains (the URLs of) those web pages
that contain w and sorts them in descending order of their
TF values with respect to w. As such, IDFw can be quickly
computed as an inverse of the number of web pages indexed
in Lw; and web pages with higher TF values on w can be
retrieved from an initial part of Lw.

TF/IDF scheme and inverted file are developed based
on an assumption that all web pages are independent. This
assumption, however, is invalid for db-pages as their contents
may be derived from common records in backend databases.
Thus, in Dash, a slightly modified relevance score function
and a new index scheme to support keyword search based on
db-page fragments are derived, as will be detailed later.

MapReduce Paradigm. Google’s MapReduce paradigm [10]
(or MR for simplicity) was introduced to provide scalable
distributed data processing in clusters of commodity comput-
ers. Recently, various open-source MR implementations have
been released, e.g., Hadoop [1] initially as a part of Nutch
search engine [3]. Inspired by the map and reduce functions
in functional programming, MR partitions and distributes data
in computers (i.e., nodes) in a cluster, and performs a job in
parallel among nodes in map phase and reduce phase. In the
map phase, each participating node parses a segment of input
data and generates intermediate results. Next in the reduce
phase, each node gathers and processes intermediate results
and delivers final results. In MR, all input data, intermediate
results and output results are in form of (key,value) pairs.

As an example, let us consider how MR can create an
inverted file over a collection of documents. Suppose all
the documents presented as 〈id, text〉 pairs, where id and
text are the ID and content of a document, respectively.
In the map phase, every node extracts keywords from text
from a 〈id, text〉 pair and generates intermediate results as
〈w,TFw(id)〉 pairs, where TFw(id) is the term frequency of
a keyword w in text of the document referred by id. Next, in
the reduce phase, each node gathers and sorts all TFw(id) for
the same word w; and it outputs each result inverted list Lw

as 〈w, (TFw(id1),TFw(id2) · · ·TFw(id|Lw|)
)〉.

In MR, communication and I/O costs are important

performance factors and they need to be minimized for high
processing efficiency. Thus, the design of MR applications as
a workflow of MR jobs is critical to performance. As will be
discussed later, we devise MR based algorithms for database
crawling and fragment indexing; and smart rearrangement of
operations can boost the processing efficiency.

Keyword Search in Relational Databases. In addition to web
pages which are categorized as unstructured data, keyword
search on semi-structured data (e.g., XML documents [13])
and structured data (e.g., relational databases) has started to
receive attention from research community and industry. We
review works on keyword search in relational databases below.

In relational databases, information is stored and accessed
as the attribute values of records in multiple relations, as a
result of database normalization [6]. Despite many database
systems support string comparison functions, e.g., LIKE and
CONTAINS, in their queries, it is not so straightforward to
locate (joined) records that contain queried keywords in any
of their attributes; and some recent research studies [14], [18],
[20], [26] have been conducted to tackle this issue. Their
common idea is to (i) locate records whose attributes contain
any queried keywords, and then (ii) join those records as long
as they are linked through referential constraints.

To illustrate the idea, let us consider fooddb database as
depicted in Figure 2. Here, rid, cid, and uid are the primary
keys in three relations restaurant, comment, and customer,
respectively; and comment has two foreign keys rid and uid
referencing restaurant and customer, respectively. Given an
example queried keyword “burger”, all records that contain
“burger” are identified, i.e., record 001 in relation restaurant
and records 201, 202, and 205 in relation comment. Then,
those linked through foreign keys are joined, and we obtain
following three result records.

1) “205, 006, 180,Thai burger, 08/11” (from comment),

2) “202, 004, 120,Unique burger, 05/10” (from comment), and
3) “001,Burger Queen,American, 10, 4.3, 201, 001, 109,

Burger experts, 06/10” (from restaurant �� comment). 4

These existing approaches could return some useful results
but they have several obvious defects, which limit their
practicality. First, they cannot provide a complete view of
searched information. Refer to the example. The first two
result records do not come with any restaurant information,
since their corresponding restaurant records do not contain
“burger”. Also, some uninterested values, e.g., rid, uid, etc.,
are included. As a result, these output records are uneasy for

4We omit the result record schemas to save space.

general users to interpret. Likewise, the three result records
do not mention customers who make the retrieved comments.
Second, different queries need to issue to retrieve candidate
records from one or multiple relations individually. Such query
evaluation can take a long processing time, especially when
many records contains queried keywords.

Google Search Appliance [12] performs keyword search in
a single relation, which may be derived from other relations.
Then, all the attribute values of each record in the relation
collectively resemble a document. It guarantees all attribute
values are included and saves join cost at the search time. Con-
tinue the example. A derived relation is formed as restaurant
outer-joined with comment and customer. Then, for the same
queried keyword “burger”, both restaurant information and
customer names are included in a search result.

However, all these works are just designed to retrieve sep-
arate (joined) records with queried keywords but not deriving
information from groups of records in the same relation.
For example, in our fooddb database, “Wandy′s” has two
comments ”Unique burger” and “Bad fries”. However, as two
records, they are retrieved independently; and either one can
only be shown in some cases. Differently, Dash is designed to
support keyword search on db-pages that are derived based on
a collection of database records according to web applications.
Those db-pages should be in more user understandable form
than raw database records.

III. PRELIMINARIES

This section discusses a generalized execution model of
web applications and the idea of reverse engineering, based
on which we can derive all db-pages generated by a web
application and corresponding query strings from a database.

Here, without loss of generality, web application A is re-
garded as a wrapper of some access to an underlying database
D. While the implementation of A can significantly vary,
depending on development methodologies used, developers’
programming style, etc., the execution of A can logically be
divided into three major steps: (a) query string parsing, (b)
application query evaluation, and (c) query result presentation.

When it is invoked, A receives a query string from a web
server W . Then, in (a), a query string q is parsed into some
values used in the remaining execution. In (b), application
queries are formulated according to some query parameters
(from q, other query results or both) and evaluated in D.
Finally in (c), the query results are formatted in a HTML
page, which is then returned to a web browser via W .

With respect to application queries, query parameters should
be a part of operand relations in D. Thus they are accessi-
ble/deducible from D and they can be used to deduce all query
strings Q. They can also be used to determine corresponding
query results, which in turn constitute the contents of all db-
pages P . In other words, we only need to reverse engine the
query string parsing step. As such, the corresponding reverse
query parsing can derive query strings according to some
possible query parameter values. Example 2 below shows the
three execution steps of Search, our example web application

introduced in Example 1, and how query strings and db-page
contents can be deduced by means of reverse engineering.

Example 2. (Search’s Implementation and Reverse En-
gineering) The implementation of Search, as Java servlet
is outlined in Figure 3. Here, Search performs query string
parsing (in line 1-3), extracting cuisine, max and min values
from l, c, and u of a request (i.e., a query string) q as
parameters to an application query Q (at line 6) evaluated in
fooddb database. The query result is presented by a function
output at (line 7), to a response (i.e., a db-page) p.5

public class Search extends HttpServlet{
public void doGet(HttpServletRequest q, HttpServletResponse p) ...{

Query String
Parsing

1. String cuisine = q.getParameter(‘c’);
2. String min = q.getParameter(‘l’);
3. String max = q.getParameter(‘u’);

5. Q = ‘SELECT name, budget, rate, comment, uname,’ +
‘ date FROM (restaurant LEFT JOIN comment) ’ +
‘ JOIN customer WHERE (cuisine = “’ + cuisine +
‘”) AND (budget BETWEEN ’+ min + ‘ AND ’
+ max + ‘)’;

6. ResultSet r = cn.createStatement().executeQuery(Q);
Result

Presentation 7. output(p, r); }}

Application
Query

Evaluation

Fig. 3. Search’s implementation

According to Q, proper values for cuisine and budget
should present in operand relations in fooddb database. Re-
fer to the database contents as already shown in Figure 2,
available cuisine and budget values are {American, Thai}
and {9,10,12,18}, respectively. One possible combination of
parameter values for cuisine, min and max can be American,
10 and 12, respectively. As they are extracted from l, c
and u of q, q should be ‘c = American&l = 10&u = 12’.
Meanwhile, the query result (which produces a db-page with
the same content as P1 in Example 1) can be obtained. �

Other than the presented idea, issues regarding system de-
sign and optimization strategies are valuable to be investigated,
so as to turn this idea into a practical solution. The coming
three sections present the design of Dash and its algorithms.

IV. OVERVIEW OF DASH

Intuitively, all possible query strings and query results (i.e.,
db-page contents) need to be derived in advance for keyword
search. Nevertheless, such an intuitive approach is infeasible,
because of very high processing, storage and search cost
incurred for a large quantity of db-pages. Besides, the presence
of overlapped db-page contents can deteriorate the quality of
search results. Rather, Dash exploits the concept of db-page
fragments. As will be discussed later, each db-page fragment
carries a disjoint part of a db-page content and a db-page
can be reconstructed based on some db-page fragments online.
Also, the costs for collecting, storing, and searching db-page
fragments are reasonably smaller than those for all db-pages.
Further, db-pages sharing db-page fragments for sure have
overlapped contents, and they can be easily identified to be
excluded from search results.

5The details of these functions are not important to the context and omitted
to save space.

As depicted in Figure 4, Dash is developed and equipped
with a suite of algorithms, namely, database crawling al-
gorithm, fragment indexing algorithm, and search algorithm,
together with a specialized fragment index, all dealing with
db-page fragments.

Top-k
search

Fragment
Indexing

Database
Crawling

Web
Application

Analysis

application queries

reverse query string parsing logic

fragments

queried
keywords W

k URLs of
db-pages

web application A

Fragment
Index Database D

application queries

integrated approach

Fig. 4. The organization of Dash search engine

First of all, web application analysis identifies the logic of
the three execution steps of a given web application A and
application queries issued by A. Then, based on identified
application queries, database crawling looks up a database
D for db-page fragments, and fragment indexing constructs
a fragment index. The fragment index indexes the content
of db-page fragments with respect to query parameters and
captures the relationship among db-page fragments to facilitate
db-page reconstruction at the search time. Thereafter, top-k
search assembles db-page fragments into db-pages according
to queried keywords, with the help of the fragment index. It
formulates query strings and URLs (based on reverse query
string parsing) of reconstructed db-pages. Finally, it returns
the URLs of the k most relevant ones.

Since web application analyzer is subject to programming
languages used in web application implementation and many
studies have been done in static program analysis [4], in
the next two sections, we focus only on database crawling,
fragment indexing, and top-k search and assume only one web
application in our discussion.

V. DATABASE CRAWLING AND FRAGMENT INDEXING

This section presents MapReduce (MR) based algorithms
for database crawling and fragment indexing. The algorithms
easily scale up for larger datasets by expanding an underlying
computer cluster.

To facilitate our following discussion, we make three as-
sumptions. First, we consider that a web application A issues
only one application query. Second, every application query is
formulated as a parameterized project-select-join (PSJ) query,
which is formally expressed in Definition 1. Third, the content
of a db-page equals to the result of an application query.

Definition 1. Parameterized Project-Select-Join (PSJ)
Query. A parameterized PSJ query Q is expressed in rela-
tional algebra:

πa1,a2,···al
σc1⊗1v1∧c2⊗2v2∧···cm⊗mvm

(R1 �� R2 �� · · ·Rn)

where R1, R2 · · ·Rn are n operand relations joined through
inner- or outer-joins; each selection attribute ci is compared
with one query parameter value vi, according to a comparison
operator ⊗i; and a1, a2, · · · am, are m projected attributes.

For simplicity, we consider comparison operator ⊗i as =, ≥,
or ≤. The conditions are in conjunctive form. �

With respect to a given parameterized PSJ query, db-page
fragments are formed and each of them is formulated in
Definition 2.

Definition 2. Db-Page Fragment. Given a parameterized PSJ
query (as in Definition 1), a db-page fragment is formulated
as

πa1,a2,···al
σc1=v1∧c2=v2∧···cm=vm

(R1 �� R2 �� · · ·Rn)

In the db-page fragment, all records share the same selection
attribute values, i.e., v1, v2, · · · vm, and we denote 〈v1, v2,
· · · vm〉 as the identifier of this db-page fragment. �

In order to quickly find db-page fragments relevant to
queried keywords, an inverted fragment index is built to
index db-page fragment identifiers (i.e., v1, v2 · · · vm) against
the keywords extracted from all projected attributes (i.e.,
a1, a2, · · · am). The structure of the inverted fragment index
is identical to the conventional inverted file (as reviewed
in Section II). In addition, a fragment graph is maintained
to capture the relationship between db-page fragments. Both
inverted fragment index and fragment graph constitute a frag-
ment index. We leave the detailed discussion of the fragment
graph in the next section.

Before presenting two different algorithms, namely, step-
wise algorithm and integrated algorithm for database crawling
and fragment indexing in two following subsections, we use
Example 3 to illustrate the notion of fragments and the
structure of an inverted fragment index.

Example 3. (Db-page fragments and inverted fragment in-
dex) Continue Example 2. According to the application query
Q, db-page fragments are derived from operand relations:
restaurant, comment and customer based on two selection
attributes: cuisine and budget, as depicted in Figure 5. Next,
an inverted fragment index is created to index the identifiers
and the numbers of keyword occurrences of those fragments
against keywords, e.g., “burger”, “coffee” and “fries”, as
shown in Figure 6. �

A. Stepwise Algorithm

The stepwise approach considers database crawling and
fragment indexing as two separate steps. In the database
crawling step, db-page fragments are derived from operand
relations. In more details, all records from individual operand
relations are first exported from a database to a MR cluster.
Next, as defined below, a crawling query, which projects all
the selection attributes in addition to the projection attributes
from the same operand relations, is used to collect records in
all db-page fragments.

crawling query: πa1,a2,···al,c1,c2,···cm (R1 �� R2 �� · · ·Rn)

Here, joins over three or more relations are performed through
several MR jobs. Thereafter, retrieved records are grouped
according to the db-page fragment identifiers (the values of
their selection attributes (i.e., c1, c2, · · · cm)). This grouping
can be conducted in another single MR job.

Identifier Projection attributes
(cuisine,budget) name budget rate comment uname date
(American,9) Bond’s Cafe 9 4.3 Nice coffee James 01/11
(American,10) Burger Queen 10 4.3 Burger experts David 06/10
(American,12) Wandy’s 12 4.1

Wandy’s 12 4.2 Unique burger Bill 05/10
Wandy’s 12 4.2 Bad fries Bill 06/10

(American,18) McRonald’s 18 2.2 Regret taking it David 06/10
(Thai,10) Thaifood 10 4.8

Bangkok 10 3.9 Thai burger Alan 08/11

Fig. 5. Db-page fragments

keyword (identifier):occurrence
burger (American,10):2,

(American,12):1,
(Thai:10):1

coffee (American,9):1
fries (American,12):1

Fig. 6. Inverted fragment index (sample)

Next, in the fragment indexing step, individual db-page
fragments are indexed against their contained keywords. With
every db-page fragment treated as a single document, fragment
indexing step is performed exactly as building an inverted file
on documents, as already discussed in Section II. This step is
also performed by a single MR job.

Finally, Example 4 below illustrates this stepwise approach.

Example 4. (Stepwise algorithm) Figure 7 demonstrates the
stepwise algorithm that derives an inverted fragment index
according to the application query Q of Search (in Figure 3).

Join

Join

Group

Index

restaurant comment customer

(keyword,
((cuisine,budget):#occur))

Inverted fragment index

(rid, uid, comment, date)(rid, name, cuisine,
budget, rate)

(name, cuisine, budget,
rate, uid, comment, date) (uid, uname)

(name, cuisine, budget,
rate, comment, date,

uname)

Fig. 7. The Stepwise approach

First, records from the three operand relations: restaurant,
comment and customer in separate files are joined through
two MR jobs. In the figure, the underlined attributes are
used as keys in map outputs. Further, joined records are
grouped according to the values of the selection attributes,
i.e., cuisine and budget to form db-page fragments (as shown
in Figure 5). Finally, cuisine and budget values are indexed
against individual keywords (as exemplified in Figure 6). �
B. Integrated Algorithm

The stepwise algorithm is straightforward. Yet, it is inef-
ficient due to its high data transmission and I/O overheads.
As already illustrated in Example 4, it involves multiple MR
jobs to join the operand relations. Projection attributes are
copied in intermediate results along the join processing, but
they are only used in the fragment indexing step, i.e., the last
task of the approach. This approach also has to store bulky
intermediate joined results in files and transmit them between
cluster nodes in map and reduce phase, incurring high I/O and
transmission costs. Further, projection attributes of a record
can be replicated whenever the record joins with multiple
records, further amplifying the mentioned overheads.

To effectively reduce the overheads, we develop an in-
tegrated algorithm. Different from the stepwise algorithm,
the integrated approach first determines the identifiers of
individual db-page fragments and then estimates the numbers
of keyword occurrences (from individual operand relations) in
identified db-page fragments.

In details, the integrated approach includes three steps:
(1) derivation of query parameter values, (2) extraction of
keywords from operand relations and estimation of their
occurrences in db-page fragments, and (3) consolidation of
all the keywords for db-page fragments. We detail the steps
followed by an illustrative example below.

(1) Query parameters derivation. For each operand relation
Ri, we extract a selection attribute (ci) and a join attribute
(ji), which is used to join other operand relations, together
with counts (θi) of records sharing the same ci and ji values.
Its logic is equivalent to the following aggregate query:

aggregate query: ci, ji Gcount(∗) as θi (Ri)

Here, for notational convenience, we assume Ri has only one
selection attribute ci and one project attribute ji. The use
of θi serves two purposes. First, it represents the number of
duplicate records and saves duplicates from being transferred.
Second, it is used to determine keyword occurrence in the next
step. Notice that in MR, the evaluation of θi with respect to
ci and ji can be performed during the join, as ji is used as
both a join key and one of group-by keys for θi.

Finally, selection attribute values, join attribute values and
the record counts from all operand relations denoted by R are
derived. R is expressed as follows:

R = π c1,c2,···cn, j1,j2,···jn, θ1,θ2,··· θn (R1 �� R2 �� · · ·Rn)

(2) Keyword extraction and occurrence determination.
Based on R, we extract keywords from projection attributes
of records in individual operand relations and determine their
numbers of occurrences in db-page fragments. Systematically,
we determine (i) db-page fragments that projection attribute
values are put into and (ii) the number of times the projection
attributes are replicated in join. Both of them can be performed
logically together as the following query:

project query: π
ai,c1,···cn,

∏
x∈[1,n] θx

θi
as Θi

(R ��ci,ji Ri)

Notice that
∏

x∈[1,n] θx presents the total number of records
having the same values for c1, c2, · · · cn, j1, j2, · · · jn. It in-
cludes θi records from Ri and hence a record with the same

ci and ji is expected to be joined with
∏

x∈[1,n] θx

θi
(i.e., Θi)

records in other relations.
Next, we extract keywords from the projection attribute

(ai) and assign them to a db-page fragment with identifier
equal to selection attribute values (c1, · · · cn). Further, the
number of occurrences for any keyword equals its occurrence
in a record multiplied by Θi. Finally, keywords are outputted
with their assigned db-page fragments and numbers of
occurrences. Likewise, we adopt the same idea to determine
the total number of keywords contributed by each record.

(3) Keyword occurrence consolidation and sorting. In (2),
the same keywords for a db-page fragment may be extracted
from different records in the same or different operand rela-
tions. In this step, for each keyword, we sum up the numbers
of occurrences for the same db-page fragments and sort
all db-page fragments according to their total numbers of
occurrences. Finally, each sorted list becomes an entry in an
inverted fragment index.

Example 5. (Integrated Algorithm) As depicted in Figure 8,
the integrated algorithm first performs join on the selection
attributes and join attributes of operand relations Restaurant,
Comment and Customer,

Join

Join

Extract

Consolidate

restaurant comment customer

Inverted fragment index

Extract Extract

(keyword,
((cuisine, budget), #occur))

(rid, uid, com)
(rid, cuisine, budget, rest)

(uid, cust)

(rid, cuisine, budget,
uid, rest, com)

(rid, cuisine, budget, uid,
rest, com, cust)

Fig. 8. The integrated approach

After all, query parameters (cuisine, budget), some join
attributes (rid, cid, uid), and some counts are derived. One
example result record is

cuisine budget rid uid θrest. θcomm. θcust.
American 12 004 132 1 2 1

This record means Restaurant record (rid=004) joins with two
Comment records, which in turn join with a single Customer
record (uid=132).

Next, in the second step, a Restaurant record joins with the
above result record. From it, keywords such as “Wandy′s” are
put into db-page fragments with keys of (American,12). Also,
their numbers of occurrences are multiplied by 2. In the final
step, an inverted fragment index is generated. �

VI. TOP-k DB-PAGE SEARCH

In Dash, top-k db-page search algorithm combines some db-
page fragments into db-pages and returns k db-pages, mostly

relevant to queried keywords. The relevance of a db-page to
queried keywords is estimated through a slightly modified
TF/IDF scheme. Since no db-pages are physically derived,
the exact IDF is not available. Rather, Dash approximates the
IDF of a keyword w as the inverse of the number of db-
page fragments containing w. Intuitively, w, if it is common
to many db-page fragments, is expected to be included in many
db-pages possibly sharing those db-page fragments.

On the other hand, to facilitate the determination of a db-
page’s size and a query string, a fragment graph is derived and
maintained. Both fragment graph and inverted fragment index
constitute a fragment index. In what follows, we present the
fragment graph and top-k search algorithm.

A. Fragment Graph

A fragment graph captures the relationship between db-
page fragments. In a fragment graph, every node presents a
single db-page fragment and indicates the total number of
keywords included in the fragment. An edge connects two
fragments f and f ′, if f and f ′ can be combined to form a
db-page, according to an application query, and the formed
db-page contains no other db-page fragments. Example 6
shows a fragment graph with respect to our example db-page
fragments.

Example 6. (Fragment Graph) Figure 9 shows a fragment
graph of our example db-page fragments, as discussed in
Example 3.

8 8 17 8
10

(American, 9) (American, 10) (American, 12)

(American, 18)(Thai, 10)

Fig. 9. Fragment graph

Here, all db-page fragments about American cuisine are
connected. Take the node representing a fragment (American,
9) as an example. The value 8 means eight keywords contained
in the fragment, i.e., Bond′s, Cafe, 9, 4.3, Nice, Coffee, James,
and 01/11, from six projection attributes specified in the appli-
cation query Q from Search. Another node about Thai cuisine
is disconnected from others, because db-page fragments with
different cuisine values are definitely not included in any db-
page provided by Search. �

A fragment graph can be created incrementally. In each
turn, a db-page fragment as a node is added to graph until
all db-page fragments are added. When a db-page fragment f
is added into a fragment graph, f is checked against individual
nodes. If f and any node f ′ can be combined into a db-page
that contains no other nodes, an edge connecting f and f ′

are formed. On the other hand, if f is covered by a db-page
formed by two connected nodes f0 and f1, the corresponding
edge between f0 and f1 is removed and new edges are formed
between f and f0 and between f and f1. Strategically, a lot
of comparisons can be saved if db-fragments are pre-sorted
based on their query parameter values before they are added
to a fragment graph.

B. Top-k Search Algorithm

Our top-k search algorithm accepts three parameters,
namely, (i) a set of queried keywords (W), (ii) a requested
number of URLs of db-pages mostly relevant to W (k),
and (iii) a db-page size threshold (s). The size threshold s
(expressed as the number of words) is used to control the
minimum size of suggested db-pages. Logically, a db-page
can be simply formed by a few db-page fragments and thus
this small db-page should have a large number of queried
keywords. However, such db-page with no much contents other
than the queried keywords might not be valuable to users.
Therefore, a larger value of s can force the search algorithm to
combine more db-page fragments if possible into a coarser db-
page. Meanwhile, huge db-pages, which are likely to contain
a lot less relevant information, are avoided to be derived.

The logic of the top-k search algorithm is outlined in
Algorithm 1. First, it determines a set of db-page fragments
F relevant to queried keywords W from an inverted fragment
index (line 1). Next, F are inserted into a priority queue Q
sorted by their TF/IDF scores in descending order (line 2). If
multiple queued entries have the same TF/IDF score, the tie is
resolved arbitrarily. A result set O is vacated initially (line 3).

Algorithm 1 Top-k Db-Page Search
input: queried keywords W ; a req. no. of answer URLs k;

db-page threshold size s;
inverted fragment index I; fragment graph G;

output: at most k URLs;
1. determine db-page fragments F relevant to W from I;
2. initialize a priority queue Q with F ;
3. initialize an output set O to {};
4. while (Q is not empty and |O| < k) do {
5. dequeue Q to get the head entry ε;
6. if ε is not expandable with respect to s then
7. add ε to O; goto 4
8. expand ε based on G to ε′

9. add ε′ to Q; }
10. output the URLs of db-pages in O;

Thereafter, Q is accessed iteratively (line 4-9). The itera-
tion ends when Q becomes empty or k result db-pages are
collected. Then, the URLs of collected result db-pages are
formulated and returned (line 10).

At each turn, a head entry, ε, i.e., a pending db-page with the
greatest TF/IDF score among all queued entries, is accessed
from Q (line 5). If ε cannot be expanded, it is added into
O (line 6). ε is not expandable because (i) the size of ε is
not smaller than s, or (ii) no db-page fragments are available
to be combined with. Otherwise, ε is expanded to ε′ (line 7)
and then ε′ is inserted to Q for later examination (line 8).
Whenever possible, relevant db-page fragments are favored to
combine to maintain high TF/IDF score. If a relevant db-page
is used in expansion, it is removed from Q. Due to additional
text, ε′ should have its TF/IDF score no greater than ε. Due
to this monontonicity property, the first k collected db-pages
should have the greatest relevance scores.

After the iteration, query strings of k db-pages in Q with the
greatest TF/IDF scores are deduced and corresponding URLs

are returned as the search result (line 11). Our final example
provided below demonstrates this search algorithm.

Example 7. (Top-k search algorithm) With respect to a
queried keyword “burger”, k and s, which are set to 2 and 20,
respectively, the search first identifies three db-page fragments,
namely, (American, 10), (Thai, 10) and (American, 12).

First, (American, 10) (whose TF is 2
8) is dequeued and it

is expanded by merging it with (American, 12) as it is also
relevant to “burger”. The expanded db-page is formed with TF
equal to 3

25 and the query parameters are (American, (10, 12)).
Then, (American, 12) is no longer queued.

Next, (Thai, 10) with TF of 1
10 is accessed and it cannot

be expanded. Then, it is directly placed into the result set.
Further, (American, (10, 12)) is retrieved. It is greater than
s = 20 and so it is put into the result set. Finally, two
URLs: www.example.com/Search?c=Thai&l=10&u=10
and www.example.com/Search?c=American&l=10&u=12
corresponding to the two resulted db-pages are returned. �

VII. PERFORMANCE EVALUATION

This section evaluates the performance of (i) the two ap-
proaches for database crawling and fragment indexing (Sec-
tion V), (ii) fragment graph construction (Section VI-A), and
(iii) top-k search algorithm (Section VI-B). The efficiency of
those directly indicates the practicality of Dash.

To save space, we present a representative subset of ex-
periments and their results, based on experiment settings as
summarized in Table I.

Parameters Values
datasets small, medium and large
application queries Q1, Q2, and Q3
no. of returned db-pages (k) 1, 5, 10, 20
db-page threhold size (s) 100, 200, 500, 1000
keywords cold (bottom 10%), warm (middle

10%) and hot (top 10%)

TABLE I
EXPERIMENT PARAMETERS

In this evaluation, we used TPC-H benchmark database [25],
which has been also used in the performance evaluation of
research works on keyword search in relational databases [14],
[18], [20], [26]. We generated three TPC-H datasets (i.e.,
small, medium, and large) that provide operand relations of
different sizes, as listed in Table II.

R N C O L P
small 389B 2KB 23MB 163MB 725MB 23MB
medium 389B 2KB 116MB 830MB 3,684MB 116MB
large 389B 2KB 234MB 1,668MB 7,416MB 232MB

TABLE II
THREE EXPERIMENTED DATA SETS

Besides, we defined three application queries Q1, Q2, and
Q3 for the experiments. They are detailed in Table III. 6 Q1
includes small operand relations (i.e., R N, and C); Q2 and Q3
query three common large operand relations (i.e., C, O, and
L), while Q3 includes one additional operand relation (i.e., P).
These queries take $r, $min, and $max as query parameters and
project all attributes whose contents are collected as keywords.

6In these queries, R, N, C, O, L and P represent relations: region, nation,
customer, orders, lineitem, part, respectively, in TPC-H schema.

1

10

100

1000

10000

100000

SW INT SW INT SW INT SW INT SW INT SW INT SW INT SW INT SW INT

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

small medium large

SW-Idx SW-Grp SW-Jn
INT-Cnsd INT-Ext INT-Jn

el
ap

se
d

ti
m

e
(s

ec
on

ds
)

9.8 hrs
8.2 hrs

3.1 min

5.0 min
41.7 min 20.5 min 243.2 min

91.2 min

Fig. 10. Database crawling and fragment indexing performance

0.0

0.1

0.2

0.3

100 200 500 1000 100 200 500 1000 100 200 500 1000

cold terms warm terms hot terms

k=1 k=5 k=10 k=20

se
ar

ch
 ti

m
e

(m
ill

is
ec

on
ds

)

0.26 ms

0.18 ms

0.06 ms
0.10 ms

Fig. 11. Top-k search performance (Q2, medium)

Q1: select * from (R �� N) �� C
where R.RID = $r and C.ACCBAL between $min and $max

Q2: select * from (C �� O) �� L
where C.CID = $r and L.QTY between $min and $max

Q3: select * from (C �� O) �� (L �� P)
where C.CID = $r and L.QTY between $min and $max

TABLE III
THREE EXPERIMENTED APPLICATION QUERIES

We also use different requested numbers of result db-pages
(k) (i.e., 1, 2, 5, 10), various minimum size thresholds (s)
(i.e., 100, 200, 500, 1000) and different groups of keywords to
evaluate top-k search performance. All the experiments were
conducted in a cluster of four Intel Xeon 2.8Ghz 4GB RAM
computers running Debian Linux, Hadoop 0.20.3 and Sun
JRE 1.7.0 and connected through a gigabit ethernet. In the
following, we first report the efficiency of database crawling
and fragment indexing, and then present that of fragment graph
building and top-k search algorithm.

A. Evaluation of Database Crawling and Fragment Indexing

The first set of experiments evaluate the elapsed time of the
stepwise algorithm (SW) and the integrated algorithm (INT)
for database crawling and fragment indexing, based on three
queries Q1, Q2, and Q3 in small, medium and large datasets.

Figure 10 shows their resulted elapsed time in unit of
seconds (in log scale). As shown in the figure, their elapsed
time dramatically increases with the dataset size. For small
operands like R and N accessed by Q1, database crawling and
fragment indexing can finish within a few minutes. In contrast,
for large operands, the same algorithms can spend 8-9 hours
to complete. On the other hand, INT runs generally faster than
SW. Compared with SW, INT saves 21.4% elapsed time, on
average, and 64% elapsed time for the best case situation (i.e.,
Q2 against medium). SW runs faster than INT only when very
small operand, e.g., R and N, are accessed. From this, we can
see the outperformance of INT.

We also examined the impact of the number of nodes for
reduce tasks on the performance while fixing the cluster size.
However, the difference is not significant (3-8%). This can be
explained that most of the MR jobs for the approaches are
I/O bound, so map tasks are the main performance bottleneck
and adding more nodes for reduce tasks cannot improve
performance much. Besides, Hadoop assigns nodes for map

tasks according to the number of file blocks. For the same
datasets, the same numbers of cluster nodes for map tasks are
resulted. We omit the experiment results to save space.

B. Evaluation of Fragment Graph Building and Top-k Search

In the second set of experiments, we measure the elapsed
time incurred for fragment graph building and top-k search.
Due to limited space, we focus only on medium dataset in
the rest of the discussion. First, we report (i) fragment graph
building time, (ii) the quantity of db-page fragments, (iii) the
average number of keywords contained in a db-page fragment,
with respect to different queries in Table IV. From the result,
we can see that the fragment graphs can be built by a single
computer within few minutes.

building time #db-page fragments average # keywords
Q1 27.5 sec 700,851 12.6
Q2 515.0 sec 7,481,097 22.5
Q3 518.8 sec 7,481,097 86.2

TABLE IV
DB-PAGE FRAGMENT GRAPH BUILDING PERFORMANCE

Next, we evaluate the top-k search performance. Here, we
report the results based on db-page fragments derived for Q2
in medium datasets. All top-k searches are performed based
on three different sets of keywords. The selection of keywords
is based on their DFs. In details, we order all keywords
according to their DFs. Among all those, 30 hot keywords,
30 warm keywords and 30 cold keywords are extracted from
top 10%, middle 10% and bottom 10% of the keywords. As
anticipated, hot (cold) keywords are included in many (few)
db-page fragments.

With respect to different k values and size threshold s,
the average elapsed time is plot in Figure 11. As shown in
the figure, searches on cold keywords result in more or less
the same elapsed time 0.08 millisecond for k=1 and 0.10
millisecond for other k settings. It is because only a few db-
page fragments are retrieved and expanded. In the experiment,
there are about 6 db-pages formed for a cold keyword. Thus,
very similar performance is obtained for k=5, 10 and 20.
On the contrary, when warm keywords and hot keywords are
experimented, longer elapsed time is resulted, because many
candidate db-page fragments are collected and examined. Also,
for those warm and hot keywords, s makes a greater impact

on the efficiency than cold keywords while the average size
of fragments are listed in Table IV. From the experiments, all
search time is very small and the longest search time is still
less than 0.27 millisecond.

In summary, the presented evaluation results indicate (i)
reasonable performance of database crawling and fragment
indexing and the outperformance of the integrated algorithm
over the stepwise algorithm, and most importantly (ii) the
efficiency of using db-page fragments to derive db-pages
according to runtime settings of k, s and queried keywords
at the search time. These experiment results demonstrate the
efficiency and thus the practicality of our Dash.

VIII. CONCLUSION

We developed Dash, a novel search engine that supports
keyword search on db-pages, whose contents are generated on
the fly by web applications and databases. Based on the imple-
mentation of a web application and the content of its database,
Dash can deduce db-pages and their query strings/URLs to
answer keyword search. In this paper, we presented the details
of Dash and made the following contributions:

1) We exploited the concept of db-page fragments. A db-
page fragment contains a disjointed db-page content. By
using db-page fragments in place of db-pages, a massive
number of db-pages, which may have overlapped con-
tents, can be avoided from being collected, indexed and
searched in Dash.

2) We developed MapReduce based algorithms, namely,
stepwise algorithm and integrated algorithm for
database crawling and fragment indexing. The integrated
algorithm smartly arranges tasks to minimize the overall
processing time.

3) We designed the fragment index that consists of (i) an
inverted fragment index, which is to facilitate the lookup
of relevant db-page fragments, and (ii) a fragment graph
that indicates whether db-page fragments can be com-
bined to form a db-page.

4) We devised the top-k search algorithm that constructs k
db-pages relevant to queried keywords and that controls
the minimum size of formed db-pages.

5) We implemented all the proposed algorithms and frag-
ment index, and evaluated them via extensive experi-
ments. The experiment results consistently demonstrate
the efficiency of our proposed approach.

As the next steps of this presented work, we consider several
directions. First, in presence of updates in an underlying
database, a fragment index would become outdated and need
to be updated. It should be very costly to rebuild the entire
fragment index. Some efficient update mechanisms that can
efficiently update (affected portions of) a fragment index are
desirable and they are valuable to be investigated. Second,
the presented Dash is assumed to support keyword search on
db-pages generated by a single web application. For quite
common situations, multiple web applications would derive
db-pages based on some common contents from a database. As
such, the contents of those db-pages could still be overlapped.

A new approach is demanded to eliminate duplicate contents
of db-pages from different web applications. Last but not least,
our discussion simply considered that all db-page fragments
are needed to be derived. There exists a tradeoff between (i) the
amount of db-page fragments to be collected and (ii) crawling
and index efficiency.

ACKNOWLEDGMENTS

In the research, Ken C. K. Lee was in part supported by
UMass Dartmouth’s Healey Grant 2010-2011. Baihua Zheng
was partially funded through a research grant 12-C220-SMU-
002 from the Office of Research, Singapore Management Uni-
versity. Chi-Yin Chow was partially supported by grants from
the City University of Hong Kong (Project No. 7200216 and
7002686). Honggang Wang was in part supported by UMass
President’s 2010 Science & Technology (S&T) Initiatives.

REFERENCES

[1] Apache Hadoop, 2011. http://hadoop.apache.org/.
[2] Apache Lucene, 2011. http://lucene.apache.org.
[3] Apache Nutch, 2011. http://nutch.apache.org/.
[4] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh.

Using static analysis to find bugs. IEEE Software, 25:22–29, 2008.
[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

Pearson, 1999.
[6] C. Beeri, P. A. Bernstein, and N. Goodman. A Sophisticate’s Intro-

duction to Database Normalization Theory. In VLDB, pages 113–124,
1978.

[7] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A Fragment-Based
Approach for Efficiently Creating Dynamic Web Content. ACM Trans.
Internet Technology, 5(2):359–389, 2005.

[8] Y.-K. Chang, I.-W. Ting, and Y.-R. Lin. Caching Personalised and
Database-Related Dynamic Web Pages. IJHPCN, 6(3/4):240–247, 2010.

[9] B. Croft, D. Metzler, and T. Strohman. Search Engines: Information
Retrieval in Practice. Addison Wesley, 2009.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, pages 137–150, 2004.

[11] Google Custom Search Engine, 2011. http://www.google.com/cse/.
[12] Google Database Crawling and Serving, 2011.

http://code.google.com/apis/searchappliance/documentation/52/database
crawl serve.html.

[13] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. In ACM SIGMOD Conf., pages
16–27, 2003.

[14] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in
Relational Databases. In VLDB, pages 670–681, 2002.

[15] U. P. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory
and Practice. CRC Press, 2009.

[16] J. C. King. Symbolic Execution and Program Testing. J. ACM,
19(7):385–394, 1976.

[17] W.-S. Li, W.-P. Hsiung, and K. S. Candan. Multitiered Cache Man-
agement and Acceleration for Database-Driven Websites. Concurrent
Engineering: R&A, 12(3):221–235, 2004.

[18] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective Keyword
Search in Relational Databases. In ACM SIGMOD Conf., pages 563–
574, 2006.

[19] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy. Google’s DeepWeb Crawl. In VLDB, pages 1241–1252,
2008.

[20] A. Markowetz, Y. Yang, and D. Papadias. Keyword Search over
Relational Tables and Streams. ACM TODS, 34(3), 2009.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, InfoLab, Stanford
Unversity, 1999.

[22] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In
VLDB, pages 129–138, 2001.

[23] The Deep Web: Surfacing Hidden Value, 2001.
http://quod.lib.umich.edu/cgi/t/text/text-idx?c=jep;view=text;rgn=
main;idno=3336451.0007.104.

[24] The size of the World Wide Web, 2011.
http://www.worldwidewebsize.com.

[25] TPC-H Database, 2011. http://www.tpc.org/tpch/.
[26] B. Yu, G. Li, K. R. Sollins, and A. K. H. Tung. Effective Keyword-

based Selection of Relational Databases. In ACM SIGMOD Conf., pages
139–150, 2007.

[27] J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM
Computing Survey, 38(2), 2006.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2012

	Dash: A Novel Search Engine for Database-Generated Dynamic Web Pages
	Ken C. K. LEE
	Kanchan BANKAR
	Baihua ZHENG
	Chi-Yin CHOW
	Honggang WANG
	Citation

	paper.dvi

