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Abstract

This paper presents a method of automatic
construction extraction from a large cor-
pus of Russian. The term ‘construction’
here means a multi-word expression in
which a variable can be replaced with an-
other word from the same semantic class,
for example, a glass of [water/juice/milk].
We deal with constructions that consist of
a noun and its adjective modifier. We
propose a method of grouping such con-
structions into semantic classes via 2-step
clustering of word vectors in distributional
models. We compare it with other clus-
tering techniques and evaluate it against A
Russian-English Collocational Dictionary
of the Human Body that contains man-
ually annotated groups of constructions
with nouns denoting human body parts.

The best performing method is used to
cluster all adjective-noun bigrams in the
Russian National Corpus. Results of this
procedure are publicly available and can
be used to build a Russian construction
dictionary, accelerate theoretical studies of
constructions as well as facilitate teaching
Russian as a foreign language.

1 Introduction

Construction is a generalization of multi-word ex-
pression (MWE), where ‘lexical variables are re-
placeable but belong to the same semantic class,
e.g., sleight of [hand/mouth/mind]’ (Kopotev et
al., 2016). Constructions might be considered as
sets of collocations, but they are more abstract
units than collocations since they do not have a
clear surface form and play an intermediate role
between lexicon and grammar. A language can be
seen as a set of constructions that are organized hi-
erarchically. Thus, a speaker forms an utterance as

a combination of preexisting patterns.
This view has been developed into Construc-

tion Grammar, the theory that sees grammar as a
set of syntactic-semantic patterns, as opposed to
more traditional interpretation of grammar as a set
of rules (Fillmore et al., 1988).

Let us, for instance, consider English near-
synonyms strong and powerful. It is well-known
that they possess different distributional prefer-
ences manifested in collocations like strong tea
and powerful car (but not vice versa)1. These col-
locations are idiosyncratic and, frankly speaking,
should be a part of the lexicon.

On the other hand, it is possible to look
at these examples from the constructional point
of view. In this sense, the former collo-
cation would be a part of the construction
‘strong [tea/coffee/tobacco/...]’, while the latter
would be a part of the construction ‘power-
ful [car/plane/ship/...]’. Thus, collocations like
strong tea can be considered to be parts of more
general patterns, and all collocations that match
the same pattern, i.e. belong to the same construc-
tion, can be processed in a similar way. This is the
central idea of the constructional approach: lan-
guage grammar consists of more or less broad pat-
terns, rather than of general rules and vast amount
of exceptions, as it was seen traditionally.

A constructional dictionary might be useful for
both language learners and NLP systems that of-
ten require MWE handling as a part of semantic
analysis. Manual compiling of construction lists
is time-consuming and can be done only for some
specific narrow tasks, while automatic construc-
tion extraction seems to be a more difficult task
than collocation extraction due to the more ab-
stract nature of constructions.

In this paper, we present a novel approach to

1See (Church et al., 1991) for more examples and discus-
sion on how such regularities may be automatically extracted
from corpus.



construction extraction using word embeddings
and clustering. We focus on adjective-noun con-
structions, in particular on a set of 63 Russian
nouns denoting human body parts and their adjec-
tive modifiers. For each noun, the task is to clus-
ter its adjectival modifiers into groups, where all
members of a group are semantically similar, and
each group as a whole is a realization of a certain
construction2.

Our approach is based on the distributional
hypothesis suggesting that word co-occurrence
statistics extracted from a large corpus can repre-
sent the actual meaning of a word (Firth, 1957,
p. 11). Given a training corpus, each word is
represented as a dense vector (embedding); these
vectors are defined in a multi-dimensional space
in which semantically similar words are located
close to each other. We use several embedding
models trained on Russian corpora to obtain infor-
mation about semantic similarity between words.
Thus, our approach is fully unsupervised and does
not rely on manually constructed thesauri or other
semantic resources.

We compare various techniques to perform
clustering and evaluate them against an estab-
lished dictionary. We then apply the best perform-
ing method to cluster all adjective-noun bigrams
in the Russian National Corpus and make the ob-
tained clusters publicly available.

2 Related Work

Despite the popularity of the constructional ap-
proach in corpus linguistics (Gries and Stefanow-
itsch, 2004), there were few works aimed at auto-
matic building of construction grammar from cor-
pus. Borin et al. (2013) proposed a method of
extracting construction candidates to be included
into the Swedish Constructicon, which is devel-
oped as a part of Swedish FrameNet. Kohonen
et al. (2009) proposed using the Minimum De-
scription Length principle to extract constructional
grammar from corpus. The common disadvan-
tage of both studies is the lack of formal evalua-
tion, which is understandable given the complex
lexical-syntactic nature of constructions and the
difficulty of the task.

Another line of research is to focus on one
particular construction type, for example, light

2A group may consist of a single member, since a pure
idiosyncratic or idiomatic bigram is considered an extreme
case of construction with only one surface form.

verbs (Tu and Roth, 2011; Vincze et al., 2013;
Chen et al., 2015) or verb-particle construc-
tions (Baldwin and Villavicencio, 2002). This ap-
proach allows to make a clear task specification
and build a test set for numerical evaluation. Our
study sticks to the latter approach: we focus on the
adjective-noun constructions, and, more specifi-
cally, on the nouns denoting body parts, because
manually compiled gold standard exists for these
data only.

To the best of our knowledge, the presented re-
search is the first attempt on automatic construc-
tion extraction for Russian. The approach we em-
ploy was first elaborated on in (Kopotev et al.,
2016). Their paper demonstrated (using several
Russian examples) that the notion of construc-
tion is useful to classify automatically extracted
MWEs. It also proposed an application of distri-
butional semantics to automatic construction ex-
traction. However, the study featured a rather sim-
plistic clustering method and shallow evaluation,
based on (rather voluntary) manual annotation.

Distributional semantics has been previously
used in the MWE analysis, for example, to mea-
sure acceptability of word combinations (Vecchi
et al., 2016) or to distinguish idioms from literal
expressions (Peng et al., 2015); in the latter work,
word embeddings were successfully applied.

Vector space models for distributional seman-
tics have been studied and used for decades
(see (Turney and Pantel, 2010) for an exten-
sive review). But only recently, Mikolov et al.
(2013) introduced the highly efficient Continu-
ous skip-gram (SGNS) and Continuous Bag-of-
Words (CBOW) algorithms for training the so-
called predictive distributional models. They be-
came a de facto standard in the NLP world in
the recent years, outperforming state-of-the-art in
many tasks (Baroni et al., 2014). In the present
research, we use the SGNS implementation in the
Gensim library (Řehůřek and Sojka, 2010).

3 Data Sources

2 data sources were employed in the experiments:

1. A Russian-English Collocational Dictionary
of the Human Body (Iordanskaja et al.,
1999)3, as a gold standard for evaluating our
approaches;

3http://russian.cornell.edu/body/



2. Russian National Corpus4 (further RNC),
to train word embedding models and as a
source of quantitative information on word
co-occurrences in the Russian language.

We now describe these data sources in more de-
tails.

3.1 Gold Standard
Our gold standard is A Russian-English Colloca-
tional Dictionary of the Human Body (Iordanskaja
et al., 1999). This dictionary focuses on the Rus-
sian nouns that denote body parts (‘рука’ (hand),
‘нога’ (foot), ‘голова’ (head), etc.). Each dictio-
nary entry contains, among other information, the
list of words that are lexically related to the entry
noun (further headword). These words or collo-
cates are grouped into syntactic-semantic classes,
containing ‘adjective+noun’ bigrams, like ‘лысая
голова’ (bald head).

For example, for the headword ‘рука’ (hand)
the dictionary gives, among others, the following
groups of collocates:

∙ Size and shape, aesthetics: ‘длинные’
(long), ‘узкие’ (narrow), ‘пухлые’ (pudgy),
etc.

∙ Color and other visible properties: ‘белые’
(white), ‘волосатые’ (hairy), ‘загорелые’
(tanned), etc.

The authors do not employ the term ‘construc-
tion’ to define these groups; they use the no-
tion of lexical functions rooted in the Meaning-
Text Theory, known for its meticulous analysis
of MWEs (Mel’cuk, 1995). Nevertheless, we as-
sume that their groups can be roughly interpreted
as constructions; as we are unaware of any other
Russian data source suitable to evaluate our task,
the groups from the dictionary were used as the
gold standard in the presented experiments. Note
that only ‘adjective + noun’ constructions were ex-
tracted from the dictionary; we leave other types
of constructions for the future work. All the head-
words and collocates were lemmatized and PoS-
tagged using MyStem (Segalovich, 2003).

3.2 Utilizing the Russian National Corpus
The aforementioned dictionary is comparatively
small; though it can be used to evaluate clus-
tering approaches, its coverage is very limited.

4http://ruscorpora.ru/en

Thus, we used the full RNC corpus (209 million
tokens) to extract word collocations statistics in
the Russian language: first, to delete non-existing
bigrams from the gold standard, and second, to
compute the strength of connection between head-
words and collocates. In particular, we calculated
Positive Point-Wise Mutual Information (PPMI)
for all pairs of headwords and collocates.

It is important to remove the bigrams not
present in the RNC from the gold standard, since
the dictionary contains a small amount of adjec-
tives, which cannot naturally co-occur with the
corresponding headword and thus are simply a
noise (e.g. ‘остроухий’ (sharp-eared) cannot co-
occur with ‘ухо’ (ear)). In total, we removed 36
adjectives.

After this filtering, the dataset contains 63 nom-
inal headwords and 1 773 adjectival collocates,
clustered into groups. There is high variance
among the headwords both in terms of collo-
cates number—from 2 to 140, and the number of
groups—from 1 to 16. We believe that the variety
of the data represents the natural diversity among
nouns in their ability to attach adjective modifiers.
Thus, in our experiments we had to use clustering
techniques able to automatically detect the number
of clusters (see below).

We experimented with several distributional se-
mantics models trained on the RNC with the
Continuous Skip-Gram algorithm. The models
were trained with identical hyperparameters, ex-
cept for the symmetric context window size. The
first model (RNC-2) was trained with the win-
dow size 2, thus capturing synonymy relations
between words, and the second model (RNC-10)
with the window size 10, thus more likely to cap-
ture associative relations between words rather
than paradigmatic similarity (Levy and Goldberg,
2014). Our intention was to test how it influ-
ences the task of clustering collocates into con-
structions. For reference, we also tested our ap-
proaches on the models trained on the RNC and
Russian Wikipedia shuffled together (with win-
dow 10); however, these models produced sub-
optimal results in our task (cf. Section 6).

As a sanity check, we evaluated the RNC mod-
els against the Russian part of the Multilingual
SimLex999 dataset (Leviant and Reichart, 2015).
On this dataset, our models produced the reason-
able Spearman correlation values 0.42 for window
size 2 and 0.36 for window size 10. Thus, we



consider them suitable for downstream semantic-
related tasks.

4 Clustering Techniques

We now briefly overview several clustering tech-
niques used in this study.

4.1 Affinity Propagation

In most of our experiments we use the Affinity
Propagation algorithm (Frey and Dueck, 2007).
We choose Affinity Propagation because it de-
tects the number of clusters automatically and
supports assigning weights to instances providing
more flexibility in utilizing various features.

In this algorithm, during the clustering process
all data points are split into exemplars and in-
stances; exemplars are data points that represent
clusters (similar to centroids in other clustering
techniques), instances are other data points that
belong to these clusters. At the initial step, each
data point constitutes its own cluster, i.e. each
data point is an exemplar. At the next steps, two
types of real-valued messages are exchanged be-
tween data points: 1) an instance 𝑖 sends to a can-
didate exemplar 𝑘 a responsibility that is a likeli-
hood of 𝑘 to be an exemplar for 𝑖 given similar-
ity (squared negative euclidean distance) between
embeddings for 𝑖 and 𝑘 and other potential exem-
plars for 𝑖; 2) a candidate exemplar 𝑘 sends to 𝑖
an availability that is a likelihood of 𝑖 to belong to
the cluster exemplified by 𝑘 given other potential
exemplars. The particular formulas for responsi-
bility and availability rely on each other and can
be computed iteratively until convergence. Dur-
ing this process, the likelihood of becoming an ex-
emplar grows for some data points, while for the
others it drops below zero and thus they become
instances.

One of the most important parameters of the
algorithm is preference, which affects the initial
probability of each data point to become an exem-
plar. It can be the same for each data point, or
assigned individually depending on external data.

The main disadvantage of this algorithm is its
computational complexity: it is quadratic, since at
every step each data point sends a message to all
other data points. However, in our case this draw-
back is not crucial, since we have to cluster only
few instances for each headword (the maximum
number of collocates is about 150).

4.2 Spectral Clustering

Since the number of clusters is different for each
headword, we cannot use clustering techniques
with a pre-defined number of clusters, like k-
means and other frequently used techniques. That
is why we employ a cascade approach where the
first algorithm defines the optimal number of clus-
ters and this number is used to initialize the sec-
ond algorithm. The Spectral Clustering (Ng et al.,
2001) was used for the second step; essentially, it
performs dimensionality reduction over the initial
feature space and then runs k-means on top of the
new feature space.

4.3 Community Detection

For comparison, we test community detection al-
gorithms (Fortunato, 2010) that take as an in-
put a graph where nodes are words and edges
are weighted by their pairwise similarities (in our
case, cosine similarities).

The Spin glass algorithm (Reichardt and Born-
holdt, 2006) is based on the idea of spin adopted
from physics. Each node in a graph has a spin
that can be in 𝑞 different states; spins tend to be
aligned, i.e. neighboring spins prefer to be in the
same state. However, other types of interactions in
the system lead to the situation where various spin
states exist at the same time within homogeneous
clusters. For any given state of the system, its
overall energy can be calculated using mathemati-
cal apparatus from statistical mechanics; spins are
initialized randomly and then the energy is mini-
mized by probabilistic optimization. This model
uses both topology of the graph and the strength
of pairwise relations. The disadvantage is that this
algorithm works with connected graphs only.

The Infomap community detection algo-
rithm (Rosvall et al., 2009) is based on a random
walk model over networks and the Minimum
Description Length principle. In this model, each
node has a code that consists of two parts: a
cluster code and a node code within the cluster.
A trajectory of a random walker is described
as a concatenation of codes of all nodes on the
path. Each time a walker passes from one cluster
to another, a new cluster code should be added,
which makes the overall description longer; at the
same time if a cluster is too big or not connected,
the node codes are too long, which is also not
optimal. The task is to assign optimal codes to the
nodes, so that the overall description length of a



random trajectory is minimal.
The algorithm works in an agglomerative fash-

ion: first, each node is assigned to its own module.
Then, the modules are randomly iterated and each
module is merged with the neighboring module
that resulted in maximum decrease of description
length; if such a merge is impossible, the module
stays as it is. This procedure is repeated until the
state where no module can be used. Weights on the
edges linking to a particular node may increase or
decrease the probability of a walker to end up at
this node.

5 Proposed Methods

The input of a clustering algorithm consists of
nominal headwords accompanied with several ad-
jectival collocates (one headword, obviously, cor-
responds to several collocates). For each head-
word, the task is to cluster its collocates in an un-
supervised way into groups maximally similar to
those in the gold standard5. The desired number
of clusters is not given and should be determined
by the clustering algorithm.

In this paper, we test 2 novel approaches com-
pared with a simple baseline and with a commu-
nity detection technique. These methods include:

1. Baseline: clustering collocates with the Affin-
ity Propagation using their vectors in word
embedding models as features.

2. Fine-tuning preference parameter in the
Affinity Propagation by linking it to word fre-
quencies, thus employing them as pointers to
the selection of cluster centers.

3. Cascade: detecting the number of clusters
with the Affinity Propagation (using collo-
cates’ embeddings as features), and then us-
ing the detected clusters number in spectral
clustering of the same feature matrix.

4. Clustering collocates using community detec-
tion methods on semantic similarity graphs
where collocates are nodes.

Below we describe these approaches in detail.
5It is also possible to instead use adjectives as entry words

and to cluster nouns. In theory, each utterance may be under-
stood as a set of corresponding and hierarchically organized
constructions; e.g., any ADJ+NOUN phrase is a combination
of two constructions: ADJ+X and X+NOUN. However, there
is no gold standard to evaluate the latter task. The dictionary
contains noun entries only, and many adjectives appear only
in a couple of entries.

5.1 Baseline

The baseline approach uses Affinity Propagation
with word embeddings as features and with de-
fault settings, as implemented in the scikit-learn
library (Pedregosa et al., 2011).

In all our methods—the baseline and the ap-
proaches proposed in the next sections—the head-
word itself participates in the clustering, as if it
was a collocate; at the final stage of outputting the
clustering results, it is eliminated. In our experi-
ments, this strategy consistently improved the per-
formance. The possible explanation is that includ-
ing the headword as a data point structures the net-
work of collocates and makes it more ‘connected’;
the headword may also give a context and to some
extend help to disambiguate polysemantic collo-
cates.

5.2 Clustering with Affinity Propagation

We introduce two improvements over the baseline:
fine-tuning of the Affinity Propagation and using it
in pair with the spectral clustering.

5.2.1 Fine-tuning Affinity Propagation
Many clusters in the gold standard contain one
highly frequent word around which the others
group. It should be beneficial for the cluster-
ing algorithm to take this into account. There is
the preference parameter in the Affinity Propaga-
tion, which defines the probability for each node
to become an exemplar. By default, preference
is the same for all instances and is equal to the
median negative Euclidean distance between in-
stances, meaning all instances (words) have ini-
tially equal chances to be selected as exemplars.

Instead, we make each word’s preference pro-
portional to its logarithmic frequency in the cor-
pus. Thus, frequent words now have higher prob-
ability to be selected as exemplars, which also in-
fluences the produced number of clusters6.

All the other hyperparameters of the Affinity
Propagation algorithm were kept default.

5.2.2 Cascade clustering
The clustering techniques that require a pre-
defined number of clusters, such as spectral clus-
tering, cannot be directly applied to our data.
Thus, we employ Affinity Propagation to find out
the number of clusters for a particular headword,

6We tried using corpus frequencies of full bigrams to this
end; it performed worse than with the collocates’ frequencies,
though still better than the baseline.
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Figure 1: Clustering of the collocates for
‘ладонь’ (palm) by the Two-Step algorithm; the
measure units on the axes are artificial coordi-
nates used only for the 2-d projection of high-
dimensional word embeddings.

and then the clustering itself is done by the spec-
tral clustering algorithm7 with the default hyper-
parameters.

We further refer to this method as Two-Step.
Figure 1 shows a t-SNE (Van der Maaten and Hin-
ton, 2008) two-dimensional projection of an ex-
ample clustering of the collocates for ‘ладонь’
(palm), with ‘шершавый’ (rough), ‘широкий’
(broad) and ‘мягкий’ (soft) chosen as exemplars
(large dots on the plot). Note that the Russian data
was used to obtain clustering; dictionary-based
English translations serve only as labels in this and
the following plot.

5.3 Clustering with the Spin Glass
Community Detection on Graphs

For comparison with Affinity Propagation meth-
ods, we use community detection algorithms on
semantic similarity graphs. First, a graph is con-
structed, in which the words (the headword and
its collocates) are vertexes. Then, for each pair
of vertexes, we calculate their cosine similarity in
the current word embedding model. If it exceeds a
pre-defined threshold, an edge between these two
vertexes is added to the graph with the cosine sim-
ilarity value as the edge weight.8

The Spin glass community detection algorithm
7In our preliminary experiments, we tried to use K-Means

for the second step, but it performed worse than spectral clus-
tering.

8The threshold is automatically adapted for each head-
word separately, based on the average cosine similarity be-
tween pairs of its collocates; thus, in more semantically
‘dense’ sets of collocates, the threshold is higher.
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Figure 2: Clustering of the collocates for ‘голос’
(voice) by the Spin glass algorithm.

was employed to find clusters in the graph. Spin
glass cannot process unconnected graphs; thus, if
this is the case (about 10-15% of the headwords
in the gold standard), we fall back to the Infomap
community detection algorithm; with connected
graphs, it performs worse than Spin glass. We use
the implementations of the community detection
algorithms in the Igraph library (Csardi and Ne-
pusz, 2006), and the whole gold standard as a de-
velopment set to fine-tune the hyperparameters of
the algorithms. Figure 2 shows the results of graph
clustering for ‘голос’ (voice) headword, with dif-
ferent clusters shown in colors and edge widths
representing cosine similarities. The visualization
shows that the similarities between words belong-
ing to one cluster are on average higher than those
on the inter-cluster edges.

6 Results

We report our clustering performance as macro-
average Adjusted Rand Index (Hubert and Arabie,
1985) between the clusterings produced by our al-
gorithms and the gold standard. The Adjusted
Rand Index (ARI) is the ratio of correctly clas-
sified pairs to all pairs, adjusted for chance. All
possible pairs of data points are used to compute
ARI; each pair in the gold set may fall either in
the same cluster or in two different clusters and
the pair is counted as correctly classified if it does
the same in the automatically obtained clustering.
ARI values range from -1 to 1, where 1 means



Table 1: Clustering evaluation, average ARI and
standard deviation

Method RNC-2 RNC-10 RNCW-2 RNCW-10

Baseline 0.22 0.17 0.17 0.16
StDev 0.27 0.23 0.24 0.24

Spin glass 0.22 0.22 0.18 0.18
StDev 0.28 0.30 0.27 0.28

AffProp 0.33 0.31 0.30 0.28
StDev 0.38 0.37 0.38 0.37

Two-Step 0.34 0.33 0.31 0.29
StDev 0.36 0.37 0.37 0.37

perfect correspondence between the gold standard
and the clustering; -1 means negative correlation;
0 means the clustering and the gold standard are
not related to each other.

We compute ARI individually for each head-
word and then average over all 63 entries. The
Table 1 presents the evaluations results. RNC-2
and RNC-10 stand for the word embedding mod-
els trained on the RNC with symmetric window 2
and 10 respectively; RNCW stands for the respec-
tive models trained on the RNC and the Russian
Wikipedia together. Spin glass is the method using
communities detection on graphs (Section 5.3),
AffProp is the single-step Affinity Propagation
clustering (Section 5.2), and Two-Step is our pro-
posed approach of cascade clustering. We also re-
port the standard deviation of the individual head-
words ARI for each approach (StDev).

As can be seen from the table, the baseline,
which is a simple clustering of word embeddings,
is difficult to beat. The graph-based community
detection algorithm performs on par with the base-
line on the models with window size 2 and only
slightly outperforms it on the models with win-
dow 10. However, using the fine-tuned Affin-
ity Propagation makes a huge difference, push-
ing ARI higher by at least 10 decimal points for
all models. Feeding the number of clusters de-
tected by the Affinity Propagation into the spectral
clustering algorithm (our Two-Step approach) con-
sistently increases the performance by one point
more. Note that the Two-Step method is also con-
siderably faster than the graph-based Spin glass al-
gorithm.

It is worth noticing that the larger window mod-

els consistently perform worse in this task. It
seems that the reason is exactly that they pay more
attention to broad associative relatedness between
words and less to direct functional or paradigmatic
similarity. But this is precisely what is important
in the task of clustering collocates: we are try-
ing to find groups of adjectives which can roughly
substitute each other in modifying the headword
noun. For example, ‘beautiful’ and ‘charming’ are
equally suitable to characterize a pretty face, but
‘beloved face’ does not belong to the same con-
struction; however, in the models with larger win-
dow size ‘beautiful’ and ‘beloved’ are very close
and will fall into the same cluster.

At the same time, the variance among head-
words may be higher than the variance be-
tween models. For example, in our experiments,
for the headword ‘ступня’ (foot/sole), all four
methods—two-step and spin glass on the RNC2
and the RNC10—yield ARI 0.816 and produce
identical results. At the same time, for the head-
word ‘живот’ (stomach/belly) all four methods
produced negative ARI, which probably means
that clustering for this headword is especially dif-
ficult to predict.

In Figure 3 we present individual headwords
ARI for the 4 best performing methods. The head-
words in the plot are sorted by the number of col-
locates. The headwords with less than 10 collo-
cates are excluded from the plot: these smaller
entries are more diverse and in many cases yield
ARI=0 or ARI=19. It can be seen from the figure
that for many headwords ARI from different meth-
ods are almost identical and there are clear ‘easy’
and ‘difficult’ headwords. The more collocates the
headword has the closer are the results produced
by different approaches. Similar variability among
headwords was observed before in various MWE-
related tasks (Pivovarova et al., 2018); we assume
that this can be at least partially explained by dif-
ferent abilities of words to form stable MWEs.
Nevertheless, it can be seen from Figure 3 that in
most cases ARI is higher than zero, pointing at sig-
nificant correlation between the gold standard and
the automatic clustering.

Another interesting finding is that the models
trained on the RNC and Wikipedia together show
worse results than the models trained on the RNC
only, as can be seen from Table 1. Thus, despite

9However, all 63 headwords were used to compute the
average values in Table 1.
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Figure 3: Individual headwords ARI for 4 best-performing methods; the headwords are sorted by the
number of collocates.

the fact that the training corpus was more than two
times larger, it did not result in better embeddings.
This seems to support the opinion in (Kutuzov and
Andreev, 2015) that when training distributional
models, versatile and balanced nature of the cor-
pus might be at least as important as its size.

Using our Two-Step algorithm and the RNC-
2 model, we produced clusterings for all ‘adjec-
tive+noun’ bigrams in the RNC with PPMI more
than 1, the corpus frequency of the bigram more
than 10 and the frequency of the nominal head-
word more than 1 000. This corresponds to 6 036
headwords and 143 314 bigrams (headwords with
only 1 collocate were excluded). We publish this
dataset online together with our gold standard on
the home page of the CoCoCo project10. For bet-
ter cross-linguistic comparability, all PoS tags in
these datasets were converted to the Universal PoS
Tags standard (Petrov et al., 2012).

This clustering was evaluated against our gold

10Collocations, Colligations, Corpora,
http://cosyco.ru/cococo/

standard (A Russian-English Collocational Dictio-
nary of the Human Body) as well. We had to work
only with the intersection of the gold standard data
and the resulting clustering, thus only a part of
the gold standard was actually used for the eval-
uation (59 headwords out of 63, and 966 collo-
cations out of 1758). It produced ARI=0.38 cal-
culated on all headwords and ARI=0.31 after we
excluded 6 headwords that have only one collo-
cate in this dataset—their evaluation always pro-
duces ARI=1, independent of what the clustering
algorithm outputs. These results confirm that the
proposed algorithm performs well not only on the
limited artificial data from the gold standard, but
on the real world data.

Note that this is partial evaluation and many
bigrams are left unattended. For example,
for the headword ‘лицо’ (face), the collocates
‘увядший’ (withered) and ‘морщинистый’
(wrinkled) are grouped together by the algorithm,
which is correct according to the gold standard,
and these two collocates are used in the evalua-



tion to compute ARI. However, in the complete
clustering results these collocates are also grouped
together with some other words not present in
the gold standard: ‘сморщенный’ (withered) and
‘иссохший’ (exsiccated), which is probably cor-
rect, and ‘отсутствующий’ (absent), which is
obviously wrong. As the dictionary lacks these
collocates, they cannot affect the evaluation re-
sults, whether they are correct or incorrect. After
analyzing the data, we can suggest that the clus-
tering quality of the complete RNC data is more
or less the same as it was for the dictionary data,
but more precise evaluation would require a man-
ual linguistic analysis.

7 Conclusion

The main contributions of this paper are the fol-
lowing:

1. We investigated MWE analysis techniques
beyond collocation extraction and proposed
a new approach to automatic construction ex-
traction;

2. Several word embedding models and vari-
ous clustering techniques were compared to
obtain MWE clustering similar to manual
grouping with the highest ARI value being
0.34;

3. We combined two clustering algorithms,
namely the Affinity Propagation and the
Spectral Clustering, to obtain results higher
than can be achieved by each of this methods
separately;

4. The best algorithm was then applied to clus-
ter all frequent ‘adjective+noun’ bigrams in
the Russian National Corpus. The obtained
clusterings are publicly available and could
be used as a starting point for constructional
studies and building construction dictionar-
ies, or utilized in various NLP tasks.

The main inference from our experiments is
that the task of clustering Russian bigrams into
constructions is a difficult one. Partially it can
be explained by the limited coverage of the gold
standard, but the main reason is that bigrams are
grouped in non-trivial ways, that combine seman-
tic and syntactic dimensions. Moreover, the num-
ber of clusters in the gold standard varies among
headwords, and thus should be detected at the test

time, adding to the complexity of the task. How-
ever, it seems that distributional semantic mod-
els can still be used to at least roughly reproduce
manual grouping of collocates for particular head-
words.

We believe that automatic construction extrac-
tion is a fruitful line of research that may be help-
ful both in practical applications and in corpus lin-
guistics, for better understanding of constructions
as lexical-semantic units.

In future we plan to explore other constructions
besides ‘adjective + noun’; first of all we plan
to start with the ‘verb+noun’ constructions, since
they are also present in the dictionary used as the
gold standard. We would also try to find or com-
pile other gold standards, since the dictionary we
use is limited in its coverage; for example, the
authors allowed only literal physical meanings of
the words in the dictionary, intentionally ignoring
metaphors.

In all our experiments, we used embeddings
for individual words. However, it seems natu-
ral to learn embeddings for bigrams since they
may have quite different semantics than individ-
ual words (Vecchi et al., 2016). It is crucial to de-
termine bigrams that need a separate embedding
and/or try to utilize already learned embeddings
for individual words11.

Another interesting topic would be cluster la-
beling, which is finding the most typical rep-
resentative of a construction, or a construction
name. The Affinity Propagation outputs exem-
plars for each cluster, but these exemplars are not
always suitable as cluster labels. For example,
for the headword ‘ступня’ (foot) the algorithm
correctly identifies the following group of adjec-
tive modifiers: [‘широкий’ (wide), ‘узкий’ (nar-
row), ‘большой’ (large), ‘маленький’ (small),
‘изящный’ (elegant)] with ‘узкий’ (narrow) be-
ing the exemplar for this class. However, in the
dictionary this group is labeled ‘Size and shape;
aestetics’, which is more suitable from the human
point of view. Some kind of an automatic hyper-
nym finding technique is necessary for this task.

Finally, we plan to use hierarchical cluster-
ing algorithms to obtain a more natural structure
of high-level constructions split into smaller sub-
groups.

11We tried additive and multiplicative strategies (Mitchell
and Lapata, 2008) to obtain bigram representations from in-
dividual word vectors, but for the present moment, they did
not yield significant improvements over the baseline.
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