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ABSTRACT
In this paper, we investigate how deviation in evaluation ac-
tivities may reveal bias on the part of reviewers and contro-
versy on the part of evaluated objects. We focus on a ‘data-
centric approach’ where the evaluation data is assumed to
represent the ‘ground truth’. The standard statistical ap-
proaches take evaluation and deviation at face value. We
argue that attention should be paid to the subjectivity of
evaluation, judging the evaluation score not just on ‘what is
being said’ (deviation), but also on ‘who says it’ (reviewer)
as well as on ‘whom it is said about’ (object). Furthermore,
we observe that bias and controversy are mutually depen-
dent, as there is more bias if there is higher deviation on
a less controversial object. To address this mutual depen-
dency, we propose a reinforcement model to identify bias and
controversy. We test our model on real-life data to verify its
applicability.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]; J.4 [Social and Behavioral Sciences]

General Terms: Algorithms, Experimentation, Measure-
ment

Keywords: bias, controversy, evaluation, social network

1. INTRODUCTION
Evaluation or assessment is a fundamental activity in our

life because it touches on various areas of human concerns.
Students evaluate instructors; referees evaluate athletes; re-
viewers evaluate submitted papers. Online evaluation is
just as prevalent, if not more. For example, product re-
view sites allow users to assign ratings to goods, such as
www.amazon.com and www.imdb.com. In any evaluation,
the key questions include whether the evaluation is “fair”,
whether reviewers are “biased”, whether a large deviation
is normal. For instance, an article in “The Scientist” [12]
raises such questions on the peer review practice. Another
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Figure 1: Example Scenario (with eij values)

example is buzz or stealth marketing [15] where companies
hire people to post the ratings of products. The questions on
“bias” and “fairness” are important and yet are very difficult
to define and answer. For one reason, “bias” and “fairness”
are subjective in that different people have different views.
For another reason, reviewers and evaluated objects are not
“uniform”. Some objects are more controversial and a larger
deviation among reviewers is expected.

In this paper, we study the notions of “bias” of review-
ers and “controversy” of objects evaluated. Given the sub-
jective nature of “bias” and “controversy”, a complete an-
swer to these questions goes way beyond computer science.
Therefore, our study focuses on a “data-centric approach”,
where “bias” and “controversy” can be objectively quanti-
fied from the evaluation scores given by reviewers to objects.
In this approach, we assume that the evaluation scores rep-
resent the “ground truth” that can be trusted for the study.
In particular, there is no fraud in the assignment of reviewers
to an object. For example, if the reviewers for an object are
chosen deliberately in favor of or against the object and if all
reviewers give similar scores to the object, the “data-centric
approach” is not able to identify the “bias” caused by such
systematic frauds. Essentially, our approach assumes that
most reviewers are “honest” in the sense of acting according
to their best judgment and yet can still be “biased”.

Moreover, we do not try to identify the causes of “bias”.
There are too many possible reasons behind “bias” and re-
viewers may have been influenced by different ones. Instead,
we focus on identifying and measuring the manifestation of
“bias”, which in turn can be used to investigate the causes
of “bias”. The same can be said for “controversy”. We for-
mally define our notions of “bias” and “controversy” shortly.

In its most basic construct, an evaluation system consists
of the type of reviewers and the type of objects. A reviewer



ri may assign to an object oj an evaluation score eij ∈ [0, 1].
Here, we use the terms reviewer and object in the general
sense, referring not to what they are, but to their respective
roles. It may well be the case that both reviewers and ob-
jects are of the same type (e.g., person). A bipartite graph
representation is given in Figure 1. The values given in the
figure are eij values, e.g., e11 = 0.7. For each eij , we may
derive dij ∈ [0, 1], which measures ri’s deviation from the
consensus (such as mean or median) of oj . Given such a
graph, we seek to measure the bias value bi ∈ [0, 1] of each
ri and the controversy value cj ∈ [0, 1] of each oj .

A straightforward solution to the problem stated above
is to employ standard statistical measures. Assuming that
dij is known, the bias value bi may simply be the average
deviation by ri on all objects she has evaluated, as given
in Equation 1. The controversy value cj may simply be
the average deviation on oj by all reviewers evaluating it,
as given in Equation 2. We call this pair of equations the
Naive solution.

bi = Avg
j

dij (1)

cj = Avg
i

dij (2)

For example, for the scenario in Figure 1, the Naive solu-
tion would conclude that r1 is less biased than r5. Here, we
derive dij as the absolute distance from eij to the mean eval-
uation by all reviewers of oj . For instance, we have d11 = 0.3
and d52 = 0.375. Since r1 evaluates only o1 and r5 evalu-
ates only o2, according to Equation 1, b1 = d11 = 0.3 and
b5 = d52 = 0.375. We see that b1 < b5, concluding r1 is less
biased than r5.

1.1 Bias and Controversy
The Naive approach is akin to taking deviation at its face

value. It is therefore naive as it treats all reviewers and ob-
jects equally. To use an analogy, the approach is to take into
account only ‘what is being said’ (deviation) while ignoring
‘who says it’ (reviewer) and ‘about whom it is said’ (object).
However, deviation could have arisen due to either bias or
controversy. Thus, there is a need to pay attention to the
particular reviewer or object that a deviation concerns.

It is further observed that bias and controversy are inter-
related quantities. When determining how biased a reviewer
is, we should use deviation attributed to the bias of this
reviewer, and not to the controversy of evaluated objects.
Similarly, when determining how controversial an object is,
we should use deviation attributed to the controversy of this
object, and not to the bias of evaluating reviewers.

In this paper, we investigate the two main issues ignored
by the Naive model in quantifying bias and controversy.

Subjectivity In determining bias and controversy, we should
look beyond deviation. Here, subjective does not mean
that the outcome of analysis is different to different
people. Rather, we refer to the objective subjectivity

of how deviation should be seen in the context of the
concerned reviewer or object, as given by the data.

Mutual Dependency Bias and controversy are mutually
dependent upon each other. Determining the bias of
a reviewer requires knowing the controversy of objects
she has evaluated, and vice versa.

We now present the following observation of bias and con-
troversy that underlines our basic approach to this problem.

Bias A reviewer is more biased if there is more deviation

on a less controversial object.

Controversy An object is more controversial if there is

more deviation by a less biased reviewer.

Re-examining the example in Figure 1, based on the above
observation, we now argue that r1 is in fact more biased
than r5. Visual inspection would reveal that co-reviewers of
o1 are much more in agreement (with 3 out of 4 reviewers
agreeing on the score) than co-reviewers of o2 (with 4 di-
vergent scores). Therefore, o2 is more controversial than o1

because there is a lack of consensus among o2’s reviewers.
However, in this case, r5 may not be biased as deviation d52

may be attributed to the controversy of o2. On the other
hand, r1 deviates on an object that her co-reviewers could
agree upon, implying bias on her part. Thus, Naive has
incorrectly concluded that r1 is less biased than r5.

1.2 Contributions
We present a new approach to the problem of quantify-

ing bias and controversy within an evaluation system. First,
we propose the above observation that incorporates a new
notion of mutual dependency between bias and controversy.
This will subsequently be developed into a reinforcement-
based model. Interestingly, this model has an underlying
presumption resulting in the so-called “no evidence cases”.
Moreover, we also examine several issues that significantly
affect the outcome of this model. Finally, we conduct ex-
periments on real-life data to analyze how our proposed ap-
proach is different from the Naive approach.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 develops the framework of
our reinforcement model. Section 4 highlights several issues
that would influence the outcome of the model. Section 5
seeks to verify the model’s applicability through experiments
on a real dataset. Section 6 concludes this paper.

2. RELATED WORK
The study of evaluation systems has also been conducted

in fields outside computer science. In management science,
[5] looks at how in evaluating start-up teams, venture capi-
talists seem to favor those similar to themselves, while [13]
investigates how using a diversity of objective and subjective
measures in performance evaluation may affect the evalua-
tion scores assigned. Different from these works, we do not
factor in any other information besides the evaluation scores
assigned by reviewers to objects.

The bipartite structure of evaluation systems resembles
two-mode social networks (consisting of two types of nodes).
One classic problem in such networks is identifying the cen-
tral nodes [4] or those playing mediative role in facilitating
linkages among nodes of both types. Alternatively, anoma-
lous nodes [16] or those with low affiliation to any neighbor-
hood may be of interest.

Beyond bipartite structures, there are also other works
on social networks or Web graphs, such as identifying the
most influential individuals [8] or finding the most interest-
ing connections among several nodes [3] or grouping together
related Web pages into Web communities [6]. None of these
works is concerned with evaluation data. Moreover, most



deal with non-directional relationships and graph topolo-
gies. Thus far, we have not come across any existing work
that addresses the issues of bias and controversy.

The iterative computation method used to implement the
mutual dependency in this paper has first been addressed
in linear algebra [1, 7]. Several other works have also made
use of mutual dependency property, notably as applied to
ranking pages for Web search [9, 14] and ranking products
based on propagated profitability [17]. However, such works
are primarily based on the notion of popularity, which is not
congruent with either bias or controversy. Simply evaluating
the most number of objects would not imply bias.

Finally, our work also has some relation to outlier detec-
tion [10], which is concerned with identifying points, from a
set of points, that are far away from the majority of points.
In a way, the distance measure is similar to the statistical ap-
proach of taking deviation at face value. For instance, high
deviation by a biased reviewer may mark her as an outlier.
However, in our approach, how outlying such a reviewer is
would depend on how controversial the concerned object is.
These notions of subjectivity and mutual dependency again
are not usually factored into outlier detection problems.

3. INVERSE REINFORCEMENT MODEL
In this section, we develop a computational model of bias

and controversy that factors in their mutual dependency.
While the raw data would likely contain evaluation score
eij , as a matter of generality, in our model development, we
work with deviation value dij . More on how deviation may
be derived from evaluation will be discussed in Section 4.1.

The Naive model simply translates more deviation to more
bias. In fact, deviation could have arisen because of either
bias or controversy. As much as possible, we should at-
tribute to a reviewer only deviation due to her bias, and
not to the controversy of evaluated object. Therein lies our
proposed approach: to reduce the amount of deviation at-
tributed to bias by the amount of controversy that could
have contributed to that deviation.

This approach is summed up by the pair of Equation 3,
which determines bias, and Equation 4, which determines
controversy. Here, we use b̄i and c̄j to denote the comple-
ments of bi and cj respectively, which means that b̄i and c̄j

grow inversely with bi and cj respectively. Moreover, we use
Agg to represent the class of aggregate functions to combine
the relevant values over i or j respectively. An appropriate
aggregate function should yield a value that is representa-
tive of a reviewer or an object’s “behavior”. We avoid using
summation so as not to incorporate the notion of popularity.
Possible options include minimum, maximum, and average.
Particularly, average is an intuitive choice as it takes into
account repeated deviation by a biased reviewer.

bi = Agg
j

dij · c̄j (3)

cj = Agg
i

dij · b̄i (4)

The above equations reflect the inversely proportional re-
lationship between bias and controversy, which gives this
model its name: Inverse Reinforcement or IR model. A re-
viewer’s bias value is higher for high deviation on objects
with low controversy (high c̄j values). An object’s contro-

versy value is higher for high deviation by reviewers with
low bias (high b̄i values).

A reviewer’s deviation values on less controversial objects
would better reveal her bias, as more controversial objects
reflect their own controversy. In a way, we rely more on the
less controversial objects (high c̄j values) as “evidence” to
reveal bias. However, in the case where a reviewer evaluates
only very controversial objects, there is no “evidence” to
reveal her bias. Thus, we refer to reviewers who have evalu-
ated only very controversial objects as “no evidence cases”.
Such “no evidence cases” will be assigned low bias values by
the IR model (Equation 3). Similar remarks can be made
on the controversy of objects. Hence, the IR model adopts
the presumption below.

Presumption

• A reviewer is presumed not biased unless proven bi-

ased.

• An object is presumed not controversial unless proven

controversial.

Therefore, in the presence of “no evidence cases”, this pre-
sumption bears the following implications on bias (similarly
on controversy).

1. We have more “confidence” on those assigned high bias
values, as they would have come about due to high
deviation and low controversy.

2. We have less “confidence” on those assigned low bias
values, as some of them may have evaluated only con-
troversial objects (“no evidence cases”).

Because the data may potentially contain “no evidence
cases”, we focus on the more “confident” aspects of the out-
come of IR model. We recommend that IR should primar-

ily be used for identifying biased reviewers and controversial

objects. However, in practice, several steps may be taken
to avoid “no evidence cases”, such as (1) having reviewers
review more objects to increase the probability of having
non-controversial objects or (2) ensuring each reviewer is al-
located at least a few non-controversial objects, assuming
we have prior knowledge about the controversy of objects.

Note also that when the effects of mutual dependency are
removed, IR degenerates into Naive. For instance, by fixing
c̄j as a constant in Equation 3, the bi values determined by
Equation 3 will have the same ordering as those determined
by Equation 1.

4. OTHER ISSUES
Several issues that may affect the effectiveness of IR’s ap-

plication include the derivation of deviation from evaluation
and the convergence of the iterative method for IR.

4.1 Deviation
In Section 1, we introduce one way to derive deviation

from evaluation, which we now term deviation from mean.
It takes deviation dij as the absolute distance between ri’s
evaluation and the mean evaluation by all reviewers rk of
object oj . Equation 5 gives the definition of this measure,
where mj denotes the number of reviewers of oj .

dij = |eij −
1

mj

∑

rk

ekj | (5)



Another possible deviation measure is deviation from co-

reviewers. This measure takes deviation dij as the average
distance between ri’s evaluation and the evaluation by each
co-reviewer rk. For mj > 1 number of reviewers of oj (in-
cluding ri), dij can be worked out according to Equation 6.

dij =
1

mj − 1

∑

rk 6=ri

|ekj − eij | (6)

For example, suppose reviewers r1, r2, and r3 assign the
following evaluations e1j = 0.0, e2j = 0.5, and e3j = 1.0
on the same object oj . For this case, deviation from mean

would yield the following deviation values, d1j = 0.5, d2j =
0.0, d3j = 0.5, claiming that r2 has not deviated at all.
On the other hand, deviation from co-reviewers would yield
d1j = 0.75, d2j = 0.50, d3j = 0.75. Firstly, deviation from

mean’s claim that r2 has not deviated at all is not reason-
able, as clearly all the reviewers do not agree on oj ’s eval-
uation score. Furthermore, we think that deviation from

co-reviewers’s claim that d1j is 1.5 times d2j (0.75÷ 0.50) is
more reasonable than the deviation from mean’s claim that
d1j is infinitely greater than d2j (0.50 ÷ 0).

The above example highlights the weakness of deviation

from mean, which is more likely to produce deviation val-
ues close to zero. As the number of reviewers of an ob-
ject grows, the distribution of evaluation scores would likely
peak at or near the mean. Deviation from the mean would
then approach zero. This is disadvantageous because the ra-
tio among deviation values would determine the outcome of
computation. Very small values mean that a small change
in absolute value may trigger a large change in ratio, making
the system potentially too sensitive to small changes. Hence,
deviation from co-reviewers is our recommended measure as
it is more likely to have a distribution of dij away from zero.
We also use this deviation measure in the implementation
of the Naive and IR models for experiments.

4.2 Convergence
The computation of bias and controversy in IR can be

modeled as a problem of finding an eigenvector of a square
matrix. Average is the aggregate function used for the fol-
lowing computation. We also assume that the linear rela-
tionships bi + b̄i = 1 and cj + c̄j = 1 hold 1. We may then
re-write Equations 3 and 4 as Equations 7 and 8 respectively.
n denotes total number of objects; m denotes total number
of reviewers; ni denotes number of objects evaluated by ri;
and mj denotes number of reviewers evaluating oj .

bi = Avg
j

dij · (1 − cj) =

∑n

j=1
dij · (1 − cj)

ni

(7)

cj = Avg
i

dij · (1 − bi) =

∑m

i=1
dij · (1 − bi)

mj

(8)

Our matrix representation for IR is then as follows. We
represent the m×1 vector of bi values as B, n×1 vector of cj

values as C, column vector of appropriate length whose all
elements are all 1’s as 1, and m×n matrix of dij as D. From
D, we may derive two other matrices, I whose each element

1There are other options of defining complement mathemat-
ically, such as making b̄i the reciprocal of bi, but such options
are not explored in this paper.

is dij ÷ ni for corresponding i, and J whose each element is
dij ÷ mj for corresponding j. Then Equations 7 and 8 can
be re-written as matrix Equations 9 and 10 respectively.

B = I (1 − C) (9)

C = JT (1 − B) (10)

By substituting Equations 9 and 10 into each other, we
have recursive Equations 11 and 12.

B = (I1 − IJT 1) + IJT B (11)

C = (JT 1 − JT I1) + JT IC (12)

Suppose for any w×1 column vector W , we use the nota-
tion W m to denote w × m matrix formed by replicating W
across m columns. If B is L1-normalized, i.e.,

∑m

i=1
|bi| = 1,

then W mB = W holds. We use this notation to transform
the previous equations into equivalent Equations 13 and 14.

B = (I1 − IJT 1)m B + IJT B (13)

C = (JT 1 − JT I1)n C + JT IC (14)

Factorizing out B from the right-hand side of Equation 13
and C from the right-hand side of Equation 14 would yield
recursive forms B = XB and C = Y C. The iterative pro-
cess for B is given by Bk+1 = XBk, where the output of
the k-th iteration is used as input for the (k + 1)-th itera-
tion. Subject to the assumption that the square asymmet-
ric matrix X is diagonalizable (it has linearly-independent
eigenvectors) and has a uniquely largest eigenvalue [7], then
as k increases, Bk will converge to the dominant eigenvec-
tor of X almost independently of the initial B0. If desired,
these conditions for convergence can be tested, for instance
by inspecting the eigenvalues or eigenvectors of the square
matrix [1]. In that case, eigenvalues or eigenvectors may be
determined using other methods such as [11]. Experimen-
tally, convergence can be observed as stable B values (after
normalization) across consecutive iterations. Convergence
for C can be similarly argued.

Normalization Before each iteration, the input vector
(e.g., B) is normalized. Normalization maintains an invari-
ant state between two consecutive iterations so that conver-
gence can be observed as no change or very little change in
values. It involves dividing elements of a vector by a con-
stant, such that their relative ratio remains unchanged.

Lp normalization of a vector B results in
∑m

i=1
|bi|

p =
1. Commonly L1 or L2 is used [9, 14]. The summation
means that as m increases, the individual bi approaches zero.
When bi → 0, IR (Equation 8) may degenerate into Naive

(Equation 2). To counter the effect of summation, higher
values of p could be used. We employ L∞ normalization,
which is equivalent to dividing vector elements by the largest
one. The largest element after L∞ normalization is 1.

5. EXPERIMENTS
The objective is to compare the efficacy of Naive and IR in

identifying bias and controversy. First, exemplary reviewers



Rank
dij Naive IR

user-dlockeretz 16 4

mvie mu-1059489 0.400 78 90
mvie mu-1032176 0.200 84 93
mvie mu-1028572 0.029 92 92

Table 1: Bias Rank for user-dlockeretz

and objects are examined. Then, ranked lists by Naive and
IR are compared using various similarity measures.

All our experimental runs involve few iterations and con-
verge in less than a second. Computational complexity is
not an important issue and will not be further examined.

5.1 Data
The data is acquired by crawling the product review Web

site Epinions (www.epinions.com) for two days, starting with
the seed page “Epinions Top Reviewers in Books” 2. The
crawled Web pages represent a subset of all products, re-
viewers and evaluation ratings available from Epinions. The
subset consists of 57320 web pages capturing 3797 products,
14607 reviewers, and 24008 evaluation ratings.

We impose several filtering conditions to make the data
more suitable for experiments. Firstly, we prune the net-
work such that all products have at least 5 reviewers and
all reviewers have rated at least 3 products. This weeds
out the occasional reviewers and products and gives greater
support in determining a reviewer or product’s “behavior”.
Any higher threshold would result in too small a network.
Epinions assigns each product a category. The three most
popular categories in the dataset are books, videos, and mu-

sic. After filtering, only videos has a significant network size,
with 113 products (objects), 138 reviewers, and 910 evalua-
tion ratings. This category is selected for further analysis.

Since the focus of the experiments is not on scalability, the
selection of data is not so much driven by the size of the data.
The data selected is reasonably large for the propagation
effect to take place within the network, and yet is not so
overly large that analysis of the results is made difficult.

A reviewer assigns 0 to 5 stars to an object, with 5 being
the best. We rescale these evaluation scores to a range from
0 to 1 by a simple division by 5 (e.g., 2 stars is 0.4).

5.2 Case Examples
Below are specific examples contrasting how Naive and

IR determine biased reviewers and controversial objects.
Biased (IR) vs. Less Biased (Naive) Reviewers are

placed in ranked lists in descending order of bias values
(highest bias value is rank 1) as computed by Naive and IR

respectively. First, we look at a reviewer who is assigned a
lower bias rank by Naive than by IR. user-dlockeretz, whose
profile is given in Table 1, is ranked 16 by Naive and 4 by IR.
This profile includes dij values and controversy ranks (high-
est controversy value is rank 1) of the objects she reviewed.
Notably, user-dlockeretz has high deviation on the first two
objects. These objects also have very low controversy ranks
by IR (ranks 90 and 93 out of 113). Furthermore, these

2http://www.epinions.com/member/community lists.
html/show ∼6/display list ∼true/vert ∼3321654/
year ∼1900/sec ∼community member list/pp ∼1/pa ∼1

Rank
dij Naive IR

mvie mu-1016922 13 8

user-millymac 0.400 31 41
user-susidee34 0.320 71 98
user-moonmoods 52 0.240 99 97
user-pmills1210 0.160 39 45
user-andrew hicks 0.160 62 67
user-mfunk75 0.160 110 108

Table 2: Controversy Rank for mvie mu-1016922

Rank
dij Naive IR

user-ynmaeven 10 54

mvie mu-1019525 0.375 12 9
mvie mu-1023730 0.267 2 2
mvie mu-1084155 0.200 7 5
mvie mu-1041911 0.160 14 22
mvie mu-1102698 0.127 31 25

Table 3: Bias Rank for user-ynmaeven

two objects are given lower controversy ranks by IR than by
Naive. Given these objects’ low controversy, IR takes the
high dij values more seriously. Naive ignores these objects’
low controversy and decides based on deviation alone.

Controversial (IR) vs. Less Controversial (Naive)
Next, we examine an object given a lower controversy rank
by Naive than by IR. For instance, mvie mu-1016922 (Ta-
ble 2), is ranked 13 by Naive, but 8 by IR. Looking at the
bias ranks of mvie mu-1016922 ’s reviewers, we see that some
of these reviewers have very low bias ranks (ranks 97, 98, 108
out of 138). Also, the bias ranks assigned by IR to mvie mu-

1016922 ’s reviewers tend to be lower than those by Naive.
Deviation by reviewers with low bias values would better
reflect mvie mu-1016922 ’s controversy. Naive ignores this
notion of subjectivity, and decides on a lower controversy
rank of mvie mu-1016922 based solely on deviation values.

Less Biased (IR) vs. Biased (Naive) We present one
example where Naive’s claim of bias is not really substan-
tiated. Consider user-ynmaeven whose profile is given in
Table 3. The objects on which user-ynmaeven has highest
deviation on also have very high controversy ranks (ranks 2,
5, 9). The high deviation values could be attributed to the
high controversy of these objects. There is no substantial
case to claim that user-ynmaeven is really biased.

Due to space constraint, example of the only other case
(objects determined to be highly controversial by Naive but
less by IR) is not given here, but similar results apply.

5.3 Comparison of Ranked Lists
To see if the differences between IR and Naive surface on

a larger scale as well, we compare greater subsections of the
ranked lists (top 10%, 20%, 30%). We focus on the most
biased (or controversial) ends of the ranked lists as these
are the ends targeted by IR (see Section 3).

5.3.1 Measures of Comparison
For comparing two ranked lists, we use three similarity

functions originally proposed to compare various permuta-
tions [2], with some adaptations for our needs.



reviewers objects

10% 20% 30% 10% 20% 30%
Overlap 0.64 0.71 0.76 0.73 0.78 0.88
Kendall 0.75 0.70 0.77 0.84 0.84 0.82
Spearman 0.67 0.60 0.68 0.73 0.73 0.72

Table 4: Most Biased and Controversial: Naive vs. IR

Overlap Similarity between two ranked lists is the pro-
portion of items common to both lists. For two ranked lists
τ1 and τ2 of length n, where A is the set of items in τ1 and
B the set of items in τ2, the Overlap similarity between the
two lists can be evaluated as shown in Equation 15. Overlap

similarity ranges from 0 (disjoint) to 1 (total overlap).

Overlap(τ1, τ2) =
|A ∩ B|

n
(15)

Kendall Similarity [2] counts the number of pairs for
which the two ranked lists agree on their ordering. Hence,
Kendall similarity penalizes for each pair of items (x, y)
where rank(x) > rank(y) in one list but rank(x) < rank(y)
in the other list. Equation 16 shows how this similarity
is evaluated. Kendall similarity ranges from 0 (completely
reversed) to 1 (completely identical).

Kendall(τ1, τ2) =
|{(x, y) | τ1 and τ2 agree on order of (x, y)|}

1

2
n(n − 1)

(16)

Spearman Similarity [2] counts, for each item x, the
difference between its rank in the first list rank1(x) and its
rank in the second list rank2(x). The aggregate differences
across all items in the list contribute to the final similarity
score as in Equation 17. The normalization denominator
is N = n2/2 for even values of n and N = (n + 1)(n −
1)/2 for odd values of n. Spearman similarity ranges from
0 (completely reversed) to 1 (completely identical).

Spearman(τ1, τ2) = 1−

∑n

x=1
|rank1(x) − rank2(x)|

N
(17)

5.3.2 Comparison Results
The top k% of two lists may not contain the same set of

reviewers or objects. For Kendall and Spearman, we take the
top k% items of IR as the reference set. We then construct
a ranked list of the same items according to their ordering
in Naive, with any gap between rank orders removed.

As Table 4 shows, similarity values between ranked lists
produced by Naive and IR range from 0.60 to 0.88. We
do not expect the ranked lists by Naive and IR to be com-
pletely different. This is because in any typical evaluation
system most reviewers (and objects) would “behave nor-
mally”. Nevertheless, the similarity values in Table 4 sug-
gest that there are significant differences between the ranked
lists by Naive and IR. These differences come about due to
cases, such as those in Section 5.2, where IR disagrees with
Naive. Unlike Naive, IR takes into account the mutual de-
pendency between bias and controversy. We further observe
that Spearman values are generally the lowest compared to
the other similarity values. Spearman compares exact ranks,
which implies that even if Naive and IR may feature the
same reviewers/objects, their ranks in respective lists would
be different.

6. CONCLUSION
In this paper, we seek to quantify the notions of bias and

controversy within an evaluation system. Deviation is a
common occurrence in evaluation activities, and significant
deviation may help reveal bias of reviewers or controversy of
objects. However, statistical measures tend towards objec-
tivity, taking deviation values as they are. Here, we propose
tackling the problem based on two major issues: (1) subjec-

tivity, taking into account bias of reviewer and controversy of
object related to deviation and (2) mutual dependency, rec-
ognizing that quantifying bias requires knowing controversy
and vice versa. We have proposed the Inverse Reinforcement

or IR model based on these ideas. Another contribution is in
working out several crucial issues that might affect the out-
come, such as derivation of deviation as well as convergence
of iterative computation of IR. We have also sought to verify
the proposed model through experiments with real-life data,
and the results have been encouraging.
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