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Introduction 
 
Dynamical diffraction in a deformed (often bent) crystal is described by the Takagi equations 1 
which, in general, have to be solved numerically on a regular 2-D grid of points representing a 
planar cross section of the crystal in which the diffraction of an incident X-ray wavefront occurs . 
Presently, the majority of numerical approaches are based on a finite difference solving scheme2-4 
which can be easily implemented on a regular Cartesian grid but is not suitable for deformed 
meshes. In this case, the inner deformed crystal structure can be taken into account, but not the 
shape of the crystal surface if this differs substantially from a planar profile 5,6. 
 
Conversely, a finite element method (FEM) can be easily applied to a deformed mesh and serves 
very well to the purpose of modelling any incident wave on an arbitrarily shaped entrance surface 7 
e.g. that of a bent crystal or a crystal submitted to a strong heat load 8-10. 
For instance, the cylindrical shape of the surface of a strongly bent crystal plate can easily be taken 
into account in a FEM calculation. Bent crystals are often used as focusing optical elements in X-
ray beamlines 11-13. 
 
In the following, we show the implementation of a general numerical framework for describing the 
propagation of X-rays inside a crystal based on the solution of the Takagi equations via the 
COMSOL Multiphysics FEM software package (www.comsol.com). A cylindrically bent crystal 
will be taken as an example to illustrate the capabilities of the new approach. 
  
 
Theoretical frame 
 
Considering an incident wave exp( . ) ( )inc incik r E rΨ =

r r r and the corresponding wave-field in a 

deformed crystal as ( ) exp( . )[ ( ) exp( . ) ( )]o hr ik r E r ih r E rψ = +
r rr r r r r  where the modulation amplitudes are 

slowly varying functions, it can be shown that the modified amplitudes  
 

( , ) exp[ ( ) sin 2 ] ( , )
2o h o o h h B o o h
kT s s i s s iks E s sχ θ θ= + − Δ                  (1a) 

( , ) exp[ ( ) sin 2 . ] ( , )
2o h o o h h B h o h
kD s s i s s iks ih u E s sχ θ θ= + − Δ −

r r        (1b) 
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are solutions of the following Takagi equations 
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In the above equations, ( , )o hs s are oblique coordinates along the directions of  k
r

 and hk k h= +
r r r

, 
respectively; ( )u rr r  is the deformation field, , ,o h hχ are the relevant Fourier coefficients of the 

undeformed crystal polarizability (to be multiplied by cos 2 Bθ in the case of π instead 
of σ polarization); Bθ  is the Bragg angle and θΔ  is the crystal misorientation from the geometrical 
Bragg position. 
 
In order to numerically solve the system of equations (2a, 2b) we present a new Finite Element 

Method (FEM) scheme based on the following integral weak formulation of these equations: 
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where ( )i rω r  is a set of test functions; ,ˆo hs  are unit vectors in the ,o hs directions. The FEM code 

generates a mesh of 2-D elements (generally triangles) adapted to the geometry of the integration 

domain Ω  with boundary Γ. The boundary conditions are included in the boundary line integrals.  

In the chosen discretization scheme, a linear shape function ( )iN rr is associated to each knot (i) of 

the mesh, ranging from the value 1 at the knot (i) to 0 on the polygonal line formed by the other 

knots that are apices of the triangles sharing (i) as apex. Test functions analogous to the chosen 

shape functions can be used. An approximate solution in the form ( ) ( )i ii
T r T N r= ∑r r  

and ( ) ( )i ii
D r D N r= ∑r r , with coefficients Ti and Di to be numerically determined, is calculated. 

From this solution, it is in general necessary to use the relations (1a, 1b) to obtain the physically 

significant amplitudes , ( )o hE rr . This is essential for the simulation of the focusing effect considered 

hereafter. 
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Numerical simulations 
 
We present FEM simulations of reflectivity curves of a flat undeformed crystal (Figs. 1 and 2) and 

of a cylindrically bent crystal (Fig. 3), both in symmetric Bragg geometry, as well as the related 

focusing properties, as implemented by using COMSOL. We consider a monochromatic point 

source in all cases. The Cartesian components of the displacement field, with the z-axis along the 

inward normal to the plate surface, are ( / 2) /xU x z t R= −  and 2 2[ ( / 2) ] / 2zU x z t Rν= − + − , where 
R is the bending radius, t is the plate thickness and the Poisson ratio was chosen to be 

ν = 0.27.     

The source-to-crystal distance p is varied by using 2 2 2( ) exp[ ( sin ) / 2 / ]inc BE x ik x p x wθ= −  on the 

crystal surface. The curved shape of the surface of the bent crystal is taken into account in the FEM 

simulation: we have verified that the results do not change significantly if this surface is considered 

to be flat. 

 

               
 
Fig.1 FEM simulation, using a triangular grid size of 1 μm, of the (Si111, E=8 Kev) reflectivity 
curve (RC) of a 100 μm thick undeformed crystal plate in symmetric Bragg geometry, compared to 
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the output of the XOP INPRO program taken as a reference 14. In the COMSOL simulation, the 
footprint of the incident plane wave on the crystal surface is modulated by a Gaussian window (σ = 
w/  =100 µm) implying the boundary condition: 

2 2( , 0) exp[ ( sin 2 / 2cos ) / ]B o BT x z ikx x wθ θ χ θ= = Δ + −  on the crystal surface. 
 
                

  
 
 Fig2. RC simulation as in fig.1, but with two different grid sizes, showing that a grid size as small 
as 1 μm is necessary to obtain reliable results; the accuracy can also be improved by using a 
“boundary layer option” available in COMSOL. 
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Fig. 3. RC simulations of the (Si111, 7 Kev) of 5 μm thick cylindrically bent crystal plate 
(bending radius R = 5 m) in symmetric Bragg geometry for different source-to-crystal distances. 
The extinction length (0.735 µm) in this case is much smaller than the plate thickness. The other 
parameters are reported in the title of the Figs. 4a and 4b display the maps of the total intensities 
inside a bent crystal (R = 5 m) for two cases: a) source on the Rowland circle (Si111, E=8 Kev; 
p = R sinθB = 1.40 m). b) p = 5m. 

 
Fig. 4a. Map of the total intensity in the crystal illuminated by a source on the Rowland circle. 
Same parameters as in Fig.1. The beam penetration is limited to a very slight crystal depth 
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Fig. 4b. Map of the total intensity in the crystal illuminated by a source off-Rowland circle. To be 
noticed: the “mirage effect” 
 
 
Fig.5 shows the reflected intensity distributions on a bent crystal surface (R = 5 m), in the case of 

the same source at different distances; the Gaussian window (σ = 200 μm) is centered at the crystal 

surface point corresponding to the center of the RC. The reflected intensity distribution is not very 

different from the incident one if the source is on the Rowland circle (p = 1.236 m), indicating 

almost total reflection as expected, with, accordingly, a small penetration range in the crystal, as 

shown in fig. 4a. This is no longer the case for p = 5 m: in this case a part of the incident wave 

penetrates in the crystal and is reflected back towards the surface due to the “mirage effect” 15,16. 

This gives rise by interference to the oscillations seen in Fig.5. By using (1b), the reflected 

amplitude ( , )h o hE s s is obtained from the reflected amplitude ( , )o hD s s  provided by the solution of 

(2a, 2b). The distribution of ( , )h o hE s s on the crystal surface can be projected on a plane 

perpendicular to the reflected direction and further propagated in free space, in order to investigate 

its focusing properties. The focusing distance is found to be in agreement with the lens equation 

1/ 1/ 2 / sin Bp q R θ+ =  17. The corresponding intensity distributions in the focus position is plotted 

in fig.6, for the source-to-crystal distances considered in fig.5.   
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Fig. 5. Reflected intensity distributions on the crystal surface for different source-to-crystal 
distances compared with the incident wave intensity. 
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Fig.6. Focus intensity profiles in the same conditions as in fig.5 
 
 
 
 
Figs. 7 and 8 show surface intensity distributions for two values of the misorientation angle. 
Because of the refraction effect, 0θΔ = arcsec corresponds actually to an off-Bragg position; while 

5θΔ =  arcsec corresponds to the effective Bragg condition. In Fig. 8, the intensity oscillations are 
due to the part of the beam reflected by the crystal back surface. The crystal thickness is 20 µm.  
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Fig. 7. Reflected intensity distributions on the crystal surface. Bending radius 10 m; source on 
Rowland circle; Si 111, 12 Kev; red curve for 0θΔ = , green curve for 5θΔ =  arcsec; the blue curve 
represents the incident intensity. 
        
 
 

 
Fig. 8: Same conditions as in Fig. 7, except that the source is at a large distance (p = 30 m).  
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Conclusions 
 
A very general finite element approach to Takagi equations in their integral form is presented. This 

allows for wide flexibility in numerically simulating the X-ray propagation in both a flat and 

deformed crystal for any complex geometric domain. The finite element solution is computationally 

efficient and comparable to the finite difference method in conventional cases, where the 

computational domain is rectangular or, more broadly, delimited by straight lines. However, in 

general the deformation modifies this simple geometry and when the diffracted phase plays a 

crucial role, the deformed surface has to be accounted for in the calculations. In a forthcoming work 

we will demonstrate the phase propagation effects in air after diffraction from a crystal 

polychromator in Bragg geometry as simulated by our finite element code. 

 
 
References 
 
 
[1] Takagi, S., “A dynamical theory of diffraction for a distorted crystal,” J Phys Soc Japan 

26(5), 1239–1253 (1969). 
[2] Epelboin, Y., “Simulation of X-ray topographs,” Materials Science and Engineering 73, 1–

43 (1985). 
[3] Epelboin, Y., Mocella, V., Soyer, A., “Optical characteristics of synchrotron sources and 

their influence in the simulation of X-ray topographs,” Philosophical Transactions of the 
Royal Society A: Mathematical, Physical and Engineering Sciences 357(1761), 2731–2739 
(1999). 

[4] Mocella, V., Lee, W. K., Tajiri, G., Mills, D., Ferrero, C., Epelboin, Y., “A new approach 
to the solution of the Takagi–Taupin equations for X-ray optics: application to a thermally 
deformed crystal monochromator,” J Appl Crystallogr 36(1), 129–136 (2003). 

[5] Honkanen, A. P., Monaco, G., Huotari, S., IUCr, “A computationally efficient method to 
solve the Takagi–Taupin equations for a large deformed crystal,” J Appl Crystallogr 49(4), 
1284–1289 (2016). 

[6] Guigay, J. P., Morawe, C., Mocella, V., Ferrero, C., “An analytical approach to estimating 
aberrations in curved multilayer optics for hard x-rays: 1. Derivation of caustic shapes.,” 
Opt. Express 16(16), 12050–12059 (2008). 

[7] Mocella, V., Ferrero, C., Guigay, J. P., “ Dynamical diffraction approach of deformed 
crystals using finite element method,” SPIE Optics+ … 9510, R. Hudec and L. Pina, Eds., 
95100H–95100H–6, International Society for Optics and Photonics (2015). 

[8] Hoszowska, J., Migliore, J. S., Mocella, V., Ferrero, C., Freund, A. K., Zhang, L., 
“Performance of synchrotron X-ray monochromators under heat load Part 1: finite element 
modeling,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 
Spectrometers, Detectors and Associated Equipment 467-468, 409–413 (2001). 

[9] Mocella, V., Ferrero, C., Freund, A. K., Hoszowska, J., “Performances of synchrotron X-

Proc. of SPIE Vol. 10236  1023605-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

ray monochromators under heat load. Part 2. Application of the Takagi–Taupin diffraction 
theory,” Nuclear Instruments and … 467-468, 414–417 (2001). 

[10] Hoszowska, J., Mocella, V., Zhang, L., Migliore, J. S., Freund, A. K., Ferrero, C., 
“Performance of synchrotron X-ray monochromators under heat load.Part 3: Comparison 
between theory and experiment,” Nuclear Instruments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468, 
631–634 (2001). 

[11] Mocella, V., Guigay, J. P., Hrdy, J., Ferrero, C., Hoszowska, J., “Bent crystals in Laue 
geometry: dynamical focusing of a polychromatic incident beam,” J Appl Crystallogr 
37(6), 941–946 (2004). 

[12] Lagomarsino, S., Cedola, A., Di Fonzo, S., Jark, W., “Advances in microdiffraction with x-
ray waveguide,” Crystal Research and Technology 37(7), 758–769 (2002). 

[13] Di Caprio, G., Dardano, P., Coppola, G., Cabrini, S., Mocella, V., “Digital holographic 
microscopy characterization of superdirective beam by metamaterial,” Opt. Lett. 37(7), 
1142 (2012). 

[14] del Río, M. S., Dejus, R. J., “XOP v2.4: recent developments of the x-ray optics software 
toolkit,” SPIE Optical Engineering + Applications 8141, M. Sanchez del Rio and O. 
Chubar, Eds., 814115–814115–5, International Society for Optics and Photonics (2011). 

[15] Gronkowski, J., Malgrange, C., IUCr, “Propagation of X-ray beams in distorted crystals 
(Bragg case). I. The case of weak deformations,” Acta Crystallogr A Found Crystallogr 
40(5), 507–514, International Union of Crystallography (1984). 

[16] Gronkowski, J., Malgrange, C., IUCr, “Propagation of X-ray beams in distorted crystals 
(Bragg case). II. The case of strong deformations,” Acta Crystallogr A Found Crystallogr 
40(5), 515–522, International Union of Crystallography (1984). 

[17] Chukhovskii, F. N., Krisch, M., “The lens equation for Bragg diffraction optics. The 
general case of asymmetrical reflection,” J. Appl. Cryst (1992). 25, 211-213 
[doi:10.1107/S0021889891012074] 25(2), 1–3, International Union of Crystallography 
(1992). 

 

Proc. of SPIE Vol. 10236  1023605-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


