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Abstract 26 

The spatial structure and underlying assembly mechanisms of bacterial communities have 27 

been widely studied across aquatic systems, focusing primarily on isolated sites, such as 28 

different lakes, ponds and streams. In contrast, biodiversity patterns within large aquatic 29 

systems have received less attention. Here, our main aim was therefore to determine the 30 

underlying mechanisms for biofilm bacterial assemblages within a large, highly-connected 31 

lake system in Northern Finland using associative approaches based on taxonomic and 32 

phylogenetic alpha- and beta-diversity and a large number of abiotic and biotic variables. 33 

Furthermore, null model approaches were used to quantify the relative importance of different 34 

community assembly processes. We found that the spatial variations in bacterial communities 35 

within the lake were structured by a combination of different assembly processes, including 36 

stochasticity, species sorting and potentially even dispersal limitation. Species sorting by 37 

abiotic environmental conditions explained more of the taxonomic and particularly 38 

phylogenetic turnover in community composition compared to that by biotic variables. 39 

Finally, we observed clear differences in alpha diversity (species richness and phylogenetic 40 

diversity), which were to a stronger extent determined by abiotic compared to biotic factors, 41 

but also by dispersal effects. In summary, our study shows that the biodiversity of bacterial 42 

biofilm communities in a highly-connected lake ecosystem is driven by within-habitat 43 

gradients in abiotic conditions as well as by stochastic and deterministic dispersal processes. 44 

45 
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Introduction 46 

In recent decades, several related conceptual frameworks have been developed to 47 

explain why the composition of ecological communities varies across space (e.g.	Leibold	et	48 

al.,	2004;	Vellend,	2010). Firstly, spatial variations in community can be due to species 49 

sorting (i.e. environmental filtering, habitat filtering or environmental selection) when species 50 

are selected by different abiotic and biotic conditions that prevail at different locations.  51 

Deviations from pure species sorting can occur if dispersal is limiting, so that species cannot 52 

reach locations with suitable conditions (Leibold	et	al.,	2004;	Martiny	et	al.,	2006;	53 

Nemergut	et	al.,	2013), rendering communities less similar than expected (Stegen et al., 54 

2013).  Alternatively, if dispersal rates are so high that they result in mass effects, species are 55 

maintained in local communities simply because dispersal rates outpace species sorting 56 

processes (Mouquet	and	Loreau,	2003;	Winegardner	et	al.,	2012), leading to at least partly 57 

homogenised communities. Finally, local communities can also be stochastically assembled 58 

by neutral or drift processes (Hubbell, 2001; Vellend, 2010). This means that a local 59 

community is shaped by random differences in birth, death, immigration and emigration 60 

among taxa, and hence is simply a random subsample of the regional species pool. Recent 61 

literature reviews on bacterial communities have shown that species sorting is the process that 62 

often regulates beta-diversity (i.e. differences in community composition between sites) 63 

(Hanson et al., 2012; Lindström and Langenheder, 2012; Nemergut et al., 2013). It is 64 

nevertheless clear that the other assembly processes can also be important (Hanson et al., 65 

2012; Lindström and Langenheder, 2012; Nemergut et al., 2013; Stegen et al., 2013; Wang et 66 

al., 2013). The relative importance of species sorting, compared to other processes, depends 67 

on spatial scale at which spatial processes are linked to differences in environmental 68 

heterogeneity and dispersal rates within a metacommunity (Martiny et al., 2011; Östman et 69 

al., 2012; Wang et al., 2013; Zinger et al., 2014; Comte et al., 2016), which is defined as a set 70 
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of local communities that are connected to each other through dispersal (Leibold et al., 2004).  71 

For example, Östman et al. (2012) found that bacterioplankton composition can be more 72 

strongly associated with stochastic processes in homogeneous compared to heterogeneous 73 

environments, because homogeneous environmental conditions do not allow species sorting 74 

to occur. Similar conclusions were also made by Wang et al. (2013) based on a comparative 75 

survey of several within- and across-habitat studies (including soil, sediments, stream biofilm 76 

and lake water). Wang et al. (2013) also presented a conceptual model according to which 77 

bacterial communities within habitats should be either assembled by species sorting or 78 

stochastic processes, depending on the strength of environmental gradients in the system. In 79 

addition, dispersal limitation should be more important in isolated systems, whereas increased 80 

connectivity and proximity should lead to increased importance of mass effects in 81 

metacommunity organization (Wang et al., 2013; Heino et al., 2015a). 82 

Most studies on community assembly processes in bacterial communities have used 83 

statistical approaches, such as distance-decay or variation partitioning methods, where spatial 84 

variations in taxonomic community are associated to differences in local environmental con-85 

ditions and spatial distances between sites, the latter being indicative of dispersal processes 86 

(e.g., Martiny et al., 2006; Ramette and Tiedje, 2007). Using such ‘associative methods’, 87 

many studies have shown that both species sorting and spatial processes explain spatial turno-88 

ver in bacterial communities; however, they often explain only a low fraction of the differ-89 

ences in community composition among sites (Lindström and Langenheder, 2012). It is cur-90 

rently not clear whether this ‘unexplained variation’ indicates that (a) bacterial communities 91 

are to a large extent stochastically assembled, (b) important environmental factors have been 92 

missed (Vellend et al., 2014; Heino et al., 2015a), or (c) because they neglect important pro-93 

cesses connected to biotic variables, such as the diversity and community composition of oth-94 

er organism groups feeding on bacteria or modifying habitat conditions, which are rarely 95 
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measured in the field.  96 

In parallel, new statistical frameworks based on null model approaches incorporating 97 

taxonomic beta-diversity (the total number of species and their relative abundance) and phy-98 

logenetic beta-diversity (species relatedness in a community) have been used to quantify the 99 

relative importance of different assembly processes (e.g., Wang et al. 2013, Chase and Myers 100 

2011). Stegen et al. (2013; 2015) developed a null model-based analysis framework to disen-101 

tangle the quantitative importance of species sorting, drift, dispersal limitation and mass ef-102 

fects (Stegen et al. 2013). Briefly, the first step is based on the assumption that communities 103 

that are phylogenetically clustered have similar traits that have between selected in response 104 

to variation in abiotic factors over time (Webb et al., 2002). Hence, if the phylogenetic beta-105 

diversity between a pair of communities deviates significantly from a random null model dis-106 

tribution, it suggests that the communities are assembled by species sorting (that is, ‘environ-107 

mental selection’ by Stegen et al. (2013)). Consequently, pairs of communities that do not 108 

deviate must be assembled by other processes (Stegen et al., 2013). These are then, in the se-109 

cond step, dismantled by determining null model deviations of taxonomic beta-diversity in-110 

stead. Communities that are more similar than expected by chance are assembled by mass 111 

effects (that is, ‘homogenizing dispersal’ by Stegen et al. (2013)), those that are less similar 112 

than expected by chance by dispersal limitation, and those that do not deviate from null model 113 

prediction by drift (Stegen et al., 2013). There are currently few studies that have used both 114 

‘associative’ and ‘null’ approaches, and it is therefore difficult to say whether they provide 115 

supportive or conflicting results. More generally, it has also been pointed out that there is a 116 

need for studies that compare different analytical methods and biodiversity metrics, such as 117 

taxonomic and phylogenetic beta-diversity, which provide complementary information on 118 

community assembly processes (Jin et al., 2015). 119 

 120 
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Even though bacterial metacommunity organization has been studied widely in aquatic 121 

systems in recent years, most studies have focused on patterns of bacterioplankton across 122 

isolated water bodies, such as lakes, ponds and rock-pools, or have studied biofilms in stream 123 

networks (Wang et al., 2012b; Besemer, 2015; Battin et al., 2016). On the contrary, there are 124 

only very few studies on benthic biofilm communities within lakes, where different sampling 125 

sites are highly connected (but see Bartrons et al., 2012; Vilmi et al., 2016b). Generally, the 126 

biodiversity of biofilms is influenced by local abiotic (i.e. physical and chemical) and biotic 127 

conditions, and by immigration of cells from the overlying water column (Besemer, 2015; 128 

Battin et al., 2016). The latter process is influenced by passive dispersal processes that 129 

transport microorganisms to suitable locations and interactions with the local biofilm 130 

community that ultimately determine the colonization success of bacteria from the source 131 

community (Besemer, 2015; Battin et al., 2016). Stream biofilm communities are in many 132 

circumstances assembled by species sorting processes (Besemer, 2015; Peipoch et al., 2015; 133 

Battin et al., 2016), but there are also examples showing that hydrological connectivity and 134 

directional flow patterns are important (Liu et al., 2013; Freimann et al., 2015) and may 135 

potentially lead to dispersal limitation at larger spatial scales (e.g. Lear et al., 2013). On the 136 

contrary, mass effects are of limited importance and cannot ‘overrule’ species sorting 137 

processes even at the level of highly interconnected sites at small spatial scales where the flux 138 

of cells between sites is high (Besemer et al., 2009). The degree to which dispersal processes 139 

influence the structure of benthic biofilm communities in lakes is currently unclear. In 140 

addition, local environmental conditions and dispersal also influence local biodiversity, which 141 

has also primarily been studied for bacterial biofilm communities in streams (Besemer, 2015; 142 

Battin et al., 2016; Wang et al., 2016). Here, our main aim was therefore to determine the 143 

mechanisms that determine alpha- and beta-diversity of biofilm bacterial communities within 144 

a large, highly-connected lake ecosystem. We first used associative approaches based on 145 
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taxonomic and phylogenetic alpha- and beta-diversity and a large number of abiotic and biotic 146 

variables. Second, we apply the null model approach to further quantify the relative 147 

importance of different community assembly processes (Stegen et al. (2013)).  We 148 

hypothesized that within-habitat environmental gradients (both biotic and abiotic) are strong 149 

enough to cause differences in alpha- as well as in beta-diversity of biofilm bacterial 150 

communities in the lake ecosystem. We further hypothesized that the dispersal of bacteria 151 

among sites is high enough to diminish the effects of dispersal limitation on biofilm assembly, 152 

but may potentially cause mass effects in some cases. 153 

 154 

Material and methods 155 

 156 

Study area 157 

The study area, Lake Kitkajärvi, is a large (305 km2) lake system located in north-eastern 158 

Finland where some changes in the water quality and land use have  recently been reported 159 

(Vilmi et al., 2015). In September 2013, we sampled 36 stony littoral sites for bacteria, algal 160 

biomass, diatoms, macroinvertebrates and water (Fig. 1). The 36 sites were as evenly 161 

distributed as possible across the perimeter of the whole lake system. The spatial 162 

characteristics of the lake system (i.e. the areal extent and high connectivity) enable the 163 

organisms to disperse freely among sites. 164 

 165 

Bacterial sampling and laboratory procedures 166 

In the field, 10 cobble-sized stones were randomly collected from the water depth of 40 cm at 167 

each site. To collect biofilm samples, the surface of each stone was brushed for 20s with a 168 

piece of wet foam plastic (4 cm × 4 cm × 4 cm) after which the sample was squeezed into a 169 

sampling jar. The samples were immediately stored cold and frozen within the same day.  170 
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In the laboratory, DNA was extracted from freeze-dried sample material using a 171 

PowerSoil DNA Isolation Kit (MOBIO, Carlsbad, USA) and the 16S rRNA gene amplified 172 

with the bacterial primers 519f and 926trP1 as described in Vilmi et al (2016b) and sequences 173 

on an Ion Torrent PGM™ sequencer (Life Technologies, Gaithersburg, USA). 174 

We processed a total number of 404,030	total	reads	with	a	mean	length	of	187	bp 175 

mainly using the QIIME pipeline (v1.8) (Caporaso et al., 2010) following previous studies 176 

(e.g. Wang et al., 2013). Briefly, the sequences were clustered into OTUs at 97% pairwise 177 

identity with the seed-based uclust algorithm (Edgar, 2010). After chimeras were removed via 178 

Uchime, representative sequences from each OTU were aligned to the Greengenes imputed 179 

core reference alignment V.201308 (DeSantis et al., 2006) using PyNAST (Caporaso et al., 180 

2010). The alignments were then used to construct an approximate maximum-likelihood 181 

phylogenetic tree with Jukes-Cantor distance using FastTree (Price et al., 2010) after 182 

removing gaps and hypervariable regions using a Lane mask. Taxonomic identity of each 183 

representative sequence was determined using the RDP Classifier (Wang et al., 2007) and 184 

chloroplast or archaeal sequences were separated out. The lowest sequence depth was 704 and 185 

all samples were rarefied to 600 reads for the preparation of the final OTU tables that was 186 

used in the alpha- and beta-diversity analyses described below. 187 

 188 

Biotic and abiotic environmental variables 189 

Biotic variables. At each site, algal biomass was estimated as epilithic phytobenthos 190 

chlorophyll a, which was measured from the surfaces of 10 stones (collected randomly from 191 

40 cm depth) using a BenthoTorch fluorometer (bbe Moldaenke, Cincinnati, USA). Further, 192 

diatoms and macroinvertebrates were sampled or surveyed as described in Vilmi et al. 193 

(2016b). Diatom samples were brushed from the surfaces of 10 cobble-sized stones from 40 194 

cm depth at each site. In the laboratory, permanent slides were made and approximately 500 195 
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diatom valves were identified to the lowest possible taxonomic level. Macroinvertebrates 196 

were sampled using a kick-net with a total kicking effort of 3 min and 6 m at each site and 197 

animals were preserved in ethanol. In the laboratory, the animals were sorted and identified to 198 

the lowest possible taxonomic level. Further, macroinvertebrates were assigned into different 199 

groups based on their feeding habits to separate out biofilm-eating scrapers and their 200 

abundance. The following biotic variables were used as predictor variables in the statistical 201 

analyses described below: 1) site-specific richness, Shannon’s diversity and Pielou’s evenness 202 

for diatom and macroinvertebrate communities, and biofilm-eating scrapers; 2) the first and 203 

second axes of separate non-metric multidimensional scaling analysis (NMDS) for diatom 204 

and macroinvertebrate communities, and biofilm-eating scrapers. Finally, we also used the 205 

relative abundance of the dominant primary producer Achnanthidium minutissimum s.l., as 206 

well as the abundance of biofilm-eating scrapers, as biotic predictor variables (see Table S1 207 

for a summary). 208 

Water chemistry. We performed an extensive sampling campaign for water chemical 209 

measurements within two weeks of the sampling of the biotic variables. This time lag was a 210 

result of logistic constraints since various chemical variables require immediate analyses in 211 

fresh water samples. Samples were taken from a depth of 0.5-1.0 m using a LIMNOS water 212 

sampler from a boat at the littoral zone near the bacterial sampling site (i.e. a couple of meters 213 

offshore in deeper water to avoid sample contamination by disturbed bottom sediments). 214 

Water samples were analyzed within 24 hours of sampling in an accredited laboratory. A total 215 

of 35 chemical parameters were analyzed from the site-specific samples (Table S1).  216 

Physical characteristics. As physical variables, bottom slope (%) and particle size 217 

distribution were measured in the field. Modified Wentworth classes were used to visually 218 

assess the coverages of different particle sizes which were mud, fine inorganic sediment (<2 219 

mm), gravel (2-16 mm), pebbles (16-64 mm), cobbles (64-256 mm), boulders (256-1024 220 
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mm), large boulders (>1024 mm) and bedrock. Subsequently, wind fetch describing the 221 

openness of a site was calculated according to Rohweder et al. (2008). For descriptive 222 

statistics and abbreviations of the physical variables, see Table S1. 223 

 224 

Biodiversity estimators 225 

To determine beta-diversity, we calculated community dissimilarity with and without 226 

phylogenetic information. Dissimilarities based on relative abundance data were chosen 227 

because they give more weight to dominant OTUs and reduce chance effects that may be 228 

involved in the detection of rare OTUs, which may decrease the overall degree of explained 229 

variation when presence-absence data are used (Souffreau et al. 2015). Taxonomic turnover 230 

was determined using Bray-Curtis dissimilarities based on relative abundances of OTUs 231 

between a given pair of samples. To determine phylogenetic turnover, we used the mean 232 

nearest taxon distance index (βMNTD) (Fine and Kembel, 2011; Stegen et al., 2012). 233 

βMNTD is the mean phylogenetic distance to the closest relative in a paired community for 234 

all taxa (Fine and Kembel, 2011) and is sensitive to the changes of lineages close to the 235 

phylogenetic tips. Weighted βMNTD based on relative abundance data was calculated 236 

according to Stegen et al. (2013).  237 

Bacterial alpha diversity was quantified using species richness and Faith’s phylogenetic 238 

diversity (PD) (Faith and Baker, 2006). 239 

 240 

Statistical analyses 241 

Beta-diversity 242 

To investigate the underlying mechanisms determining beta-diversity in bacterial commu-243 

nities, we used two different approaches. First, we used multiple regression on matrices 244 

(MRM) to tease apart the relative importance of sets of variables related to spatial (SPA), abi-245 
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otic (ABIO, i.e. chemical and physical) and biotic variables (BIO) on bacterial community 246 

similarity. Second, we performed null model analyses according to Stegen et al. (2013) to 247 

quantify the relative importance of environmental selection (species sorting), homogenizing 248 

dispersal (mass effects), drift and dispersal limitation. 249 

Multiple regression on matrices. To tease apart the relative importance of the three 250 

components (SPA, ABIO and BIO) as well as individual variables on taxonomic and 251 

phylogenetic community similarity, we further used the MRM approach (Legendre	et	al.,	252 

1994) with z-score transformed Euclidean distance matrices of the predictor variables 253 

(Euclidean distance matrices), as suggested by Martiny et al.  (2011). We only included 254 

abiotic and biotic variables that were highly correlated (Pearson r > 0.8) with community 255 

similarities  using the “bioenv” function of the “vegan” packages in R (Table S2, (Clarke	and	256 

Ainsworth,	1993)	(Oksanen	et	al.,	2016)). To reduce the effect of spurious relationships 257 

between variables, the MRM model was run twice. After the first run, we removed non-258 

significant variables, and we reported the results from the second run only (Martiny	et	al.,	259 

2011). To identify the importance of individual abiotic and biotic variables to the overall 260 

correlations, we calculated their partial regression coefficients. Partial regression coefficients 261 

provide information about the degree of change in community similarity per standardized unit 262 

of similarity for the variable of interest, while all other variables are constant, and thereby 263 

identify the variables that make the strongest independent contribution to changes in 264 

community composition. The MRM analysis was performed using the R package ecodist 265 

v1.2.9 (Goslee	and	Urban,	2007). Finally, we calculated distance-decay relationships for 266 

both taxonomic and phylogenetic beta-diversity to compare their degree of community 267 

turnover with increasing spatial distance across sites (Martiny et al. 2006).	268 

Null model analysis. In the first step, we calculated standardized effect size of βMNTD, 269 

which measures (in units of SDs) how much observed βMNTD deviated from the mean of 270 
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null distribution (999 null iterations) based on random shuffling of OTU labels across the tips 271 

of the phylogeny (Hardy, 2008; Fine and Kembel, 2011; Stegen et al., 2012). This randomiza-272 

tion keeps the observed species richness, species occupancy and species turnover constant. 273 

We used a significance cut-off of < -2 or > 2, respectively to determine the proportion of 274 

community pairs that is phylogenetically more or less similar than expected by chance, re-275 

spectively. Both cases indicate that environmental selection determines observed composi-276 

tional differences between samples (Stegen et al., 2013; Dini-Andreote et al., 2015). For all 277 

cases where βMNTD did not deviate significantly from the null model distribution (i.e. com-278 

munities that were not assembled by environmental selection), we calculated the Raup-Crick 279 

beta-diversity metric for each pair of local communities after a total of 1,000 iterations (Chase 280 

et al., 2011), but based on species relative abundances (RCbray) as in Stegen et al. (2013). Ob-281 

served RCbray values were compared with those of a random null model distribution according 282 

to Chase et al. (2011) and then we followed the procedure described in detail in Stegen et al. 283 

(2013) to disentangle the importance of drift, dispersal limitation and mass effects: RCbray 284 

values between -0.95 and +0.95 indicate drift, RCbray values > +0.95 indicate that communi-285 

ties are less similar than expected by chance as a result of dispersal limitation, and RCbray val-286 

ues < -0.95 indicate that communities are more similar than expected by chance as a result of 287 

mass effects. 288 

 289 

Alpha-diversity 290 

Variation in alpha diversity was partitioned between the	three	components	(SPA,	ABIO	and	291 

BIO) using linear models (Borcard et al., 1992; Anderson and Gribble, 1998). By generating 292 

models with the three sets of explanatory variables, we estimated the proportions of variation 293 

in bacterial diversity explained by the pure effects of SPA, ABIO and BIO, and by the 294 

intersections of these three components. For spatial variables, principal coordinates of 295 
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neighborhood matrices (PCNM; Borcard and Legendre, 2002; Borcard et al., 2004) were used 296 

to represent original spatial distance matrices as sets of orthogonal eigenvectors. The first 297 

PCNM eigenvector represents the broadest spatial gradient, while each successive eigenvector 298 

represents a finer spatial scale. A set of PCNM eigenvectors for each analysis was determined 299 

by selecting only positive eigenvectors, which were significant (alpha = 0.05) explanatory 300 

variables in a distance-based redundancy analysis DeleteMe model including the eigenvector 301 

set and the native spatial distance matrix.   302 

 303 
Results 304 

Beta-diversity and community assembly processes. Significant positive relationships between 305 

spatial distance and community dissimilarity were found and the slopes were similar for 306 

taxonomic and phylogenetic metrics (Fig. S1). The multiple regression analysis showed that 307 

abiotic factors had a relatively stronger effect on both the taxonomic (Bray-Curtis similarities) 308 

and phylogenetic (βMNTD) turnover than spatial distance (which had no significant effect) or 309 

biotic parameters, where the partial regression coefficients were lower and only marginally 310 

significant (Table 1). Moreover, when MRM was run to tease apart the relative importance of 311 

individual environmental variables, the partial regression coefficients of algal biomass was 312 

significant in the case of taxonomic turnover, whereas no single biotic variable had significant 313 

partial regression coefficients in the case of phylogenetic turnover. Among abiotic variables, 314 

significant partial regression coefficients were found for NOx, alkalinity and NH4 in the case 315 

of Bray-Curtis similarities and NOx in case of βMNTD. Generally, however, the explanatory 316 

power of the MRM was low (R2 values < 0.25 in all cases), so that the largest fraction in 317 

differences in community composition remained unexplained.  318 

The null model-based approach showed that the majority of pairs of communities were 319 

assembled by drift (56% of all pairwise comparisons) whereas 14 % were assembled by 320 
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environmental selection, 24 % by dispersal limitation and 6 % by homogenizing dispersal 321 

(Fig. 2). 322 

 323 

Alpha diversity. At the local scale, species richness and PD at the local scale were 324 

significantly correlated to each other (r2 = 0.544, p < 0.05, Fig. 3).  Generally, a lower fraction 325 

of variation in bacterial diversity across sampling sites could be explained by abiotic (7% 326 

compared to 18%) and spatial variables (16% compared to 26%) for richness than for PD, 327 

respectively. Larger proportion of variation in local diversity were explained by spatial 328 

variables than by local environmental conditions, whereas mainly smaller spatial scale 329 

variables were significant for species richness and various spatial scale variables for PD. We 330 

also found that abiotic variables accounted for significant fractions of variation in both alpha 331 

diversity metrics, while the abiotic factors explaining variation in species richness and PD 332 

were different (Fig. S2). Richness was negatively correlated to suspended solids and nitrogen, 333 

whereas PD was positively correlated to alkalinity, but negatively correlated to aluminium 334 

concentrations and Fetch (Fig. S2). Moreover, for PD, we found a significant, albeit minor, 335 

effect of biotic variables, as well as considerable co-variation between abiotic, spatial and 336 

biotic variables (Fig. 3). Of the biotic variables, PD was positively related to algal biomass 337 

and macroinvertebrate richness (Fig. S2).  338 

 339 

 340 

Discussion 341 

This study shows that within-habitat environmental gradients in one large, highly-connected 342 

lake ecosystem were strong enough to cause differences in alpha- and beta-diversity of 343 

biofilm bacterial communities. Further, we show that abiotic conditions explained more of the 344 

taxonomic and phylogenetic turnover in community composition compared to biotic 345 
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variables, and that drift, species sorting and dispersal processes contribute to differences in the 346 

composition of bacterial biofilm communities between sites. 347 

 348 

Even though it has been shown that within-lake beta-diversity of bacterial 349 

communities is lower compared to that between lakes (Yannarell and Triplett, 2004; Wang et 350 

al., 2013), it has become clear that there are significant spatial signals for the bacterial 351 

communities in sediments (Wang et al., 2013), biofilm (Vilmi et al., 2016b) and lake water 352 

(Jones et al., 2012; Lear et al., 2014) within lakes. Data from global surveys in marine 353 

systems has also shown that there is stronger community turnover in habitats with stronger 354 

environmental gradients (e.g., sediment vs. plankton and coastal vs. open ocean habitats) 355 

(Zinger et al., 2011; Zinger et al., 2014). For inland waters, previous studies attributed these 356 

spatial patterns in communities to both species sorting and dispersal effects (Wang et al., 357 

2013; Lear et al., 2014; Vilmi et al., 2016b), which was also supported by the results of our 358 

study for bacterial biofilms within a lake system. The null model approach showed, moreover, 359 

that drift was the predominant assembly process, which fits with conceptual ideas that 360 

stochastic assembly should prevail within lakes where environmental gradients should be 361 

relatively weak (Wang et al. (2013) and because they are relatively homogenous, well-mixed 362 

system where biofilm bacteria are recruited from the water (Besemer, 2015; Battin et al., 363 

2016). At the same time, we might have even underestimated stochastic processes, since they 364 

might be masked by indirect species sorting processes by conditions in the water, i.e., species 365 

sorting that acted on planktonic bacteria, which then randomly colonized the biofilms. Hence, 366 

the variations in biofilm composition reflect the differences in the composition of plankton 367 

source communities, which have shown to vary in composition within systems at relatively 368 

small spatial scales (Lear et al., 2014). However, as biofilms form at the interface between the 369 

substrate (in our case stones) and the water, and are dependent on inorganic nutrients and 370 
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organic matter from the water to support their growth, it seems unlikely that species sorting 371 

effects were indirect. Hence, it has been shown that biofilm assembly is a selective process 372 

and not just the results of random dispersal from the surrounding water (Besemer et al., 2012). 373 

 374 

This finding that almost 25 % of all pairwise assemblages are assembled by dispersal 375 

limitation is puzzling, in particular because the MRM showed that spatial variables were not 376 

significantly related to community similarity. One possible explanation for these deviating 377 

results is that the null model analysis overestimates the effect of dispersal limitation. Stegen et 378 

al. (2013) define that pairs of communities are assembled by dispersal limitation if RCbray is 379 

close to 1, indicating that communities are less similar than expected by chance. This can, 380 

however, also be the result of strong biotic forces that create very different communities at 381 

adjacent sites (Chase et al., 2011). Here, we found that biotic factors had stronger effects on 382 

beta-diversity in the case of taxonomic compared to phylogenetic beta-diversity, and since 383 

Stegen et al.’s (2013) approach only used the latter in the identification of species sorting 384 

processes, it seems possible that their definition of dispersal limitation to some extent masks 385 

the effects of biotic sorting. Another possibility is that the spatial distance matrix that we used 386 

in the MRM analyses does not depict the hydrodynamics of our study lake, therefore resulting 387 

in non-significant spatial effects. Collectively, the results from different statistical analyses are 388 

contradictory, but we cannot currently rule out that dispersal limitation can produce spatial 389 

differences in biofilm composition even within a highly-connected lake ecosystem. To fully 390 

understand how dispersal influences biofilm community assembly, future studies should 391 

therefore utilize new statistical approaches that disentangle effects of directional dispersal 392 

through water masses and non-directional processes (e.g. aggregation) at various spatial 393 

scales (Bertolo et al., 2012) and integrate direct measurements of water flow rates and 394 

directions. In addition to deviating results regarding the importance of dispersal limitation by 395 
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the MRM and null model approaches, we also found that the results of MRM model differed 396 

between taxonomic and phylogenetic beta-diversity. Generally, both biotic and abiotic factors 397 

explained less of the similarities in phylogenetic compared to taxonomic beta-diversity. This 398 

is, for example, in contrast to a study that compared taxonomic and phylogenetic beta-399 

diversity in a vertical soil gradient, where species sorting was more important in case of the 400 

latter (Hu et al., 2015). These deviating results might indicate that the environmental gradients 401 

in the highly-connected lake system were not strong enough to select for traits that are 402 

phylogenetically conserved, and that community turnover along environmental gradients is 403 

therefore better captured by taxonomic diversity metrics. 404 

 405 

Another important finding from our study is that biotic variables were less important 406 

than abiotic conditions in structuring biofilm bacterial communities. The most significant 407 

biotic factor was algal biomass, which suggests that overall availability of organic substrates 408 

released from periphyton influenced bacterial community composition (Wagner	et	al.,	2015;	409 

Battin	et	al.,	2016). Algal biomass was significantly correlated to taxonomic but not to 410 

phylogenetic turnover, which shows that OTUs irrespective of their phylogenetic affiliation 411 

responded to changes in algal biomass. This might reflect the fact that the organic substrates 412 

released by periphyton are often highly available and readily used by a wide range of different 413 

bacteria (Wagner et al., 2014), and, hence, are not phylogenetically conserved (Martiny et al., 414 

2013).  Effects of grazers were generally weak and not significant. For diatom communities in 415 

stream biofilms, it has also been shown that abiotic parameters are relatively more important 416 

than biotic variables (Göthe et al., 2013). However, the importance of grazers in structuring 417 

diatom assemblages was different when the analyses were done for guilds that differed in 418 

traits, such as growth form or body size (Göthe et al., 2013). This suggests that the trait 419 

composition of the response community also affects the influence of grazers as a structuring 420 
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force of the spatial turnover of the grazed communities. Moreover, it might also be possible 421 

that the effects of selective grazers, such as protozoa, would have shown a similar picture in 422 

our study.  Among abiotic variables, nitrite/nitrate concentrations had the strongest 423 

independent contribution to the changes in taxonomic and phylogenetic community similarity, 424 

confirming previous studies that have shown that nitrogen concentrations are an important 425 

structuring factor for biofilm bacterial communities (Kelly et al., 2014; Zeglin, 2015). One 426 

methodological caveat of our study was that there was a gap between the sampling for biotic 427 

variables (including biofilm composition) and abiotic variables, which were sampled two 428 

weeks later. The fact that abiotic factors nevertheless could explain differences in biofilm 429 

composition suggests that the time of the sampling was not a major problem. However, it is 430 

possible that we actually underestimated the contribution of abiotic factors, which would 431 

further strengthen our conclusion because they were more important in structuring biofilm 432 

communities compared to biotic factors. 433 

 434 

Interestingly, alpha diversity were also affected by similar environmental factors 435 

which were most important for determining beta-diversity. However, different factors 436 

correlated with the variation in taxonomic richness and PD across sampling sites, and the 437 

relationship between species richness and PD, r2 = 0.544, was relatively weak compared to 438 

other studies (e.g. Wang et al., 2012a). This is in congruence with unimodal productivity-439 

diversity relationships, which have also been found in bacteria (Song et al., 2016). PD, on the 440 

contrary, was positively related to Mg concentration, algal biomass and macroinvertebrate 441 

richness. This shows that PD is higher in more benign alkaline environments and that 442 

interactions with other trophic groups may promote the co-existence of a phylogenetically 443 

diverse bacterial biofilm community as well. Moreover, high algal biomass and 444 

macroinvertebrate richness may reflect thicker and more mature biofilm that provide more 445 
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physical niches and resources. This idea is supported by the finding that fetch, reflecting 446 

effects of physical disturbances by wave action, was negatively related to PD.  Moreover, Al 447 

concentrations were negatively related to PD, which many generally reflect negative effects of 448 

metal pollution on biofilm richness (Bier et al., 2015). Taken together, the results suggests that 449 

adaptation to environmental pollution and resistance towards strong physical disturbances 450 

require traits that might be phylogenetically conserved (Martiny et al., 2015) and therefore 451 

decreases PD. Opposite to what we found for beta-diversity, spatial variables had a stronger 452 

effect than environmental variables on differences in alpha diversity between sites. This may 453 

indicate that the total number of species found in a locality can be influenced by dispersal 454 

(including rates and pathways) that transports taxa to a location (Besemer et al., 2013; Zha et 455 

al., 2016), but that most taxa remain inactive and contribute primarily to seed-bank at local 456 

sites and only occasionally to the active community (Shade et al., 2014). We are, however, 457 

aware of the fact that the sequencing depth in our study might have been too low to obtain 458 

robust estimates of alpha-diversity (Lundin et al., 2012), so these results need to be 459 

interpreted with care. 460 

 461 

To summarize, there is now an increasing number of studies that show clear turnover 462 

of bacterial communities at relatively small spatial scales within aquatic ecosystems.  Such 463 

turnover can be attributed to a combination of different assembly processes, including 464 

stochasticity, species sorting and potentially even dispersal limitation. More studies are, 465 

however, still needed to integrate the importance of different community assembly processes 466 

at different spatial scales depending on connectivity patterns and dispersal pathways between 467 

and within different types of inland water bodies.  468 
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Table 1. Multiple regression analysis on distance matrices for taxonomic (Bray- Curtis) and 685 

phylogenetic beta diversity metrics (βMNTD). Overall R2 values as well as partial regression 686 

coefficients for sets of abiotic (ABIO), biotic (BIO) and spatial (SPA) variables selected by 687 

the bioenv analysis, as well as individual ABIO and BIO variables are shown. Note that only 688 

variables with significant partial regression coefficient of at least one of the beta-diversity 689 

metrics (p < 0.05) are listed. Partial regression coefficients and p-values for all variables are 690 

shown in Table S4. 691 

 Bray- Curtis p-value βMNTD p-value 
Sets of variables     
R2 0.217 0.000 0.189 0.011 
ABIO 0.025 0.001 0.012 0.021 
BIO 0.011 0.044 0.005 0.047 
SPA 0.002 0.699 -0.001 0.643 
Individual variables     
R2 0.241 0.000 0.217 0.039 
Alkalinity 0.026 0.000   
NH4

+ -0.028 0.010   
NOx-N 0.043 0.000 0.012 0.028 
Particle mean size     
Algal biomass 0.10 0.018   
	692 

693 



28	

Figure legends 694 
 695 
Figure 1. The study area with 36 littoral sampling sites. 696 

 697 

Figure 2. Proportions of community pairs assembled by drift, species sorting (Selection), 698 

dispersal limitation (Disp. Lim) and mass effects or homogenizing dispersal (Hom. Disp.). 699 

 700 

Figure 3. (A) Relationship between species richness and phylogenetic diversity. (B) and (C) 701 

Variation in bacterial species richness (B) and phylogenetic diversity (C) related to spatial 702 

distance (SPA), abiotic (ABIO), and biological variables (BIO). Inorganic SS: inorganic sus-703 

pended solids (µg L-1), NOx: NO2+NO3-N (µg L-1), Mg: Mg concentration (mg L-1), Al: 704 

Aluminum concentration (mg L-1), Macro.comm.richness: Species richness of macroinverte-705 

brates. PCNM eigenvectors were determined as described in the material and methods. 706 
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Figure	2	712 
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Figure	3	717 
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