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ABSTRACT
Electroencephalography (EEG) is a rich source of information regarding brain

function. However, the preprocessing of EEG data can be quite complicated, due to

several factors. For example, the distinction between true neural sources and noise is

indeterminate; EEG data can also be very large. The various factors create a large

number of subjective decisions with consequent risk of compound error. Existing

tools present the experimenter with a large choice of analysis methods. Yet it remains

a challenge for the researcher to integrate methods for batch-processing of the

average large datasets, and compare methods to choose an optimal approach across

the many possible parameter configurations. Additionally, many tools still require a

high degree of manual decision making for, e.g. the classification of artefacts in

channels, epochs or segments. This introduces extra subjectivity, is slow and is not

reproducible. Batching and well-designed automation can help to regularise EEG

preprocessing, and thus reduce human effort, subjectivity and consequent error. We

present the computational testing for automated preprocessing (CTAP) toolbox, to

facilitate: (i) batch-processing that is easy for experts and novices alike; (ii) testing

and manual comparison of preprocessing methods. CTAP extends the existing data

structure and functions from the well-known EEGLAB toolbox, based on Matlab

and produces extensive quality control outputs. CTAP is available under MIT licence

from https://github.com/bwrc/ctap.

Subjects Bioinformatics, Brain–Computer Interface

Keywords Computation, Testing, Automation, Preprocessing, EEGLAB, Electroencephalography,

Signal processing

INTRODUCTION
Measurement of human electroencephalography (EEG) is a rich source of information

regarding certain aspects of brain functioning, and is the most lightweight and affordable

method of brain imaging. Although it can be possible to see certain large effects without

preprocessing at all, in the general-case EEG analysis requires careful preprocessing, with

some degree of trial-and-error. Such difficult EEG preprocessing needs to be supported

with appropriate tools. The kinds of tools required for signal processing depends on the

properties of data, and the general-case properties of EEG are demanding: large datasets

and indeterminate data contribute to the number and complexity of operations.
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In most research applications EEG data can be very large; systems are available

with over 256 channels. This can result in the need to examine thousands or tens of

thousands of data-points; for instance, visual examination of raw data quality for

50 subjects � 256 channels � 1,200 s ≅ 16,000 plot windows (where each window shows

32 channels � 30 s). Also, normally EEG can require many operations (see e.g. Cowley

et al., 2016 for a review), such as referencing, event-handling, filtering, dimensional

reduction and artefact detection in channels, epochs or otherwise; all of which is time-

consuming and therefore costly. Many of these operations require repeated human

judgements, e.g. selection of artefactual independent components (ICs) (Chaumon,

Bishop & Busch, 2015), leading to subjectivity, non-reproducibility of outcomes and

non-uniformity of decisions. Nor is it possible that all such operations can ever be

completely automated, as it is not possible to provide a ground-truth for computational

methods by uniquely determination of the neural sources of EEG. With many relatively

complex standard operations, code for EEG processing can also be harder to debug

(Widmann & Schröger, 2012).

These issues illustrate the need for a software tool, a workflow management system,

that helps to integrate the wealth of existing methods. Some standards have been

suggested (Keil et al., 2014), however Bigdely-Shamlo et al. (2015) have pointed out that

‘artefact removal and validation of processing approaches remain a long-standing open

problem for EEG’. The EEGLAB toolbox (Delorme & Makeig, 2004) and its various

plug-ins provide a wealth of functions, but in this ecosystem it remains difficult and

time-consuming to build the necessary infrastructure to manage, regularise and

streamline EEG preprocessing.

A workflow management system for data-processing pipelines helps to ensure that

the researcher/analyst saves most of their cognitive effort for choosing analysis steps

(not implementing them) and assessing their outcome (not debugging them).

A regularised workflow maximises the degree to which each file is treated the same—

for EEG this means to minimise drift in file-wise subjective judgements, such as

estimating the accuracy of artefact detection algorithm(s) by visual inspection.

A streamlined workflow can be enabled by separating the building of functions

(for analysis or data management) from exploring and tuning the data. These features

improve reproducibility and separate the menial from the important tasks. To meet

these needs, in this paper we present the computational testing for automated

preprocessing (CTAP) toolbox.

Approach
The CTAP toolbox is available as a GitHub repository at https://github.com/bwrc/ctap.

It is built on Matlab (R2015a and higher) and EEGLAB v13.4.4b; limited functions,

especially non-graphical, may work on older versions but are untested.

The aim of CTAP is to regularise and streamline EEG preprocessing in the EEGLAB

ecosystem. In practice, the CTAP toolbox extends EEGLAB to provide functionality for:

(i) batch-processing using scripted EEGLAB-compatible functions; (ii) testing and
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comparison of preprocessing methods based on extensive quality control outputs. The

key benefits include:

� Ability to run a subset of a larger analysis

� Bookkeeping of intermediate result files

� Error handling

� Visualisations of the effects of analysis steps

� Simple to customise and extend

� Reusable code

� Feature and raw data export

We will next briefly motivate each of the benefits above.

Incomplete runs: A frequent task is to make a partial run of a larger analysis.

This happens, for example, when new data arrives or when the analysis fails for a

few measurements. The incomplete run might involve a subset of (a) subjects,

(b) measurements, (c) analysis branches, (d) collections of analysis steps, (e) single

steps; or any combination of these. CTAP provides tools to make these partial runs

while keeping track of the intermediate saves.

Bookkeeping: A given EEG analysis workflow can have several steps, branches to

explore alternatives and a frequent need to reorganise analysis steps or to add additional

steps in between. Combined with incomplete runs, these requirements call for a system

that can find the correct input file based on step order alone. CTAP does this and saves

researchers time and energy for more productive tasks.

Error handling: Frequently, simple coding errors or abnormal measurements can cause

a long batch run to fail midway. CTAP catches such errors, saves their content into log files

for later reference and continues the batch run. For debugging purposes it is also possible

to override this behaviour and use Matlab’s built-in debugging tools to solve the issue.

Visualisations: It is always good practice to check how the analysis alters the data.

CTAP provides several basic visualisations for this task giving the user additional insight

into what is going on. See ‘Results’ for examples.

Customisation: In research it is vital to be able to customise and extend the tools in

use. Extending CTAP with custom functions is easy as the interface that CTAP_�.m
functions must implement is simple. Intermediate results are stored in EEGLAB format

and can be directly opened with the EEGLAB graphical user interface (GUI) for inspection

or manual processing.

Code reuse: The CTAP_�.m functions act as wrappers that make it possible to combine

methods to build analysis workflows. Most analysis steps are actually implemented as

standalone functions, such that they can be used also outside CTAP. In contrast to

EEGLAB, CTAP functions do not pop-up configuration windows that interfere with

automated workflows.

Export facilities: Exporting results might prove time-consuming in Matlab as there

are no high-level tools to work with mixed text and numeric data. To this end, CTAP

provides its own format of storing data and several export options. Small datasets can be
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exported as, e.g. comma delimited text (csv) while larger sets are more practically saved in

an SQLite database. CTAP also offers the possibility to store single-trial and average

event-related potential (ERP) data in HDF5 format, which makes the export to R and

Python simple.

In summary, CTAP lets the user focus on content, instead of time-consuming

implementation of foundation functionality. In the rest of the paper, we describe how

CTAP toolbox does this using a synthetic dataset as a running example.

We start with related work followed by the ‘Materials and Methods’ section detailing

the architecture and usage of CTAP. The ‘Results’ section then describes the technical

details and outcomes of a motivating example application. In the ‘Discussion’ section we

set out the philosophy and possible uses of CTAP toolbox, including development as well

as preprocessing; and describe issues and potential directions for future work.

Related work
Many methods are available from the literature to facilitate automated preprocessing

(Agapov et al., 2016; Baillet et al., 2010; Barua & Begum, 2014), and the rate of new

contributions is also high.1 In a milestone special issue (Baillet, Friston & Oostenveld,

2011) gathered many of the academic contributions available at that time. This special

issue is quite skewed towards tools for feature extraction, which illustrates again the need

for better/more up-to-date solutions for the fundamental stages of EEG processing.

Among tools dedicated to EEG processing, EEGLAB stands out for its large user

community and high number of third-party contributors, to the degree that it is

considered by some to be a de facto standard. Although EEGLAB functions can be called

from the command-line interface and thus built into a preprocessing pipeline by the user’s

own scripts, in practice this is a non-trivial error-prone task.

Other popular tools focus on a more diverse set of signals, especially including

magnetoencephalography (MEG). Brainstorm (Tadel et al., 2011), Fieldtrip (Oostenveld

etal.,2011) and EMEGS (ElectroMagnetic EncaphaloGraphy Software) (Peyk, De Cesarei &

Junghöfer, 2011) are all open source tools for EEG and MEG data analysis. Brainstorm in

particular, but also the others, have originated with an emphasis on cortical source

estimation techniques and their integration with anatomical data. Like EEGLAB, these

tools are all free and open source, but based on the commercial platform Matlab (Natick,

MA, USA), which can be a limitation in some contexts due to high licence cost. The most

notable commercial tool is BrainVISION Analyzer (Brain Products GmbH, Munich,

Germany), a graphical programming interface with a large number of features.

Tools which are completely free and open source are fewer in number and have received

much less supplemental input from third parties. Python tools include MNE-Python for

processing MEG and EEG data (Gramfort et al., 2013) and PyEEG (Bao, Liu & Zhang,

2011), a module for EEG feature extraction. MNE, like Brainstorm and Fieldtrip, is

primarily aimed at integrating EEG and MEG data. Several packages exist for the

R computing environment, e.g. (Tremblay & Newman, 2015), however these do not seem

to be intended as general-purpose tools.

1 For example, we conducted a search of

the SCOPUS database for articles pub-

lished after 1999, with “EEG” and

“electroencephalography” in the title,

abstract or keywords, plus “Signal

Processing” or “Signal Processing,

Computer-Assisted” in keywords,

and restricted to subject areas

“Neuroscience”, “Engineering” or

“Computer Science”. The search

returned over 300 hits, growing year-by-

year from 5 in 2000 up to a mean value of

36 between 2010 and 2015.
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However, CTAP was designed to complement the existing EEGLAB ecosystem, not

to provide a stand-alone preprocessing tool. This is an important distinction, because

there exist some excellent stand-alone tools which work across data formats and platforms

(Bellec et al., 2012; Ovaska et al., 2010)2; these features are valuable when collaborators

are trying to work across, e.g. Windows and Linux, Matlab and Python. However, we do

not see a need in this domain; rather we see a need in the much narrower focus on

improving the command-line interface batch-processing capabilities of EEGLAB.

We have chosen to extend EEGLAB because it has received many contributions to the

core functionality, and is thus compatible with a good portion of the methods of EEG

processing from the literature. Some compatible tools from the creators of EEGLAB at the

Swartz Centre for Computational Neuroscience (SCCN) are detailed in (Delorme et al.,

2011), including tools for forward head modelling, estimating source connectivity and

online signal processing. Other key third-party preprocessing contributions to EEGLAB

include SASICA (Chaumon, Bishop & Busch, 2015), FASTER (Nolan, Whelan & Reilly,

2010) and ADJUST (Mognon et al., 2011), all semi-automated solutions for selection of

artefactual data.

In terms of similar tools Bigdely-Shamlo et al. (2015) released the PREP pipeline for

Matlab, which also uses the EEGLAB data structure. PREP introduces specific important

functionality for referencing the data, line noise removal and detecting bad channels.

PREP is aimed only at experiment-induced artefacts and not those deriving from subject-

activity such as, e.g. blinks, and is designed to be complementary to the various algorithm

toolboxes for artefact-removal by focusing on early-stage processing. In similar vein,

CTAP is intended to be complementary to existing toolboxes including PREP.

For example, methods from FASTER and ADJUSTare featured in CTAP as options for

detecting bad data. This integration of existing solutions illustrates one core principle

of CTAP: it aims to extend an existing rich ecosystem of EEG-specific methods, by

meeting a clear need within that ecosystem for a workflow management system. The

ready-made automation of batching and bookkeeping gives the user a distinct advantage

over the common approach of ‘EEGLAB + a few scripts’, which seems simple on its

face, but in practice is non-trivial as the number and complexity of operations grows.

As all algorithms added to CTAP will produce quality control outputs automatically, fast

performance comparison is possible between methods or method parameters, speeding

the discovery of (locally) optimal solutions. The system has potential to enable such

parameter optimisation by automated methods, although this is not yet implemented.

MATERIALS AND METHODS
The core activity of CTAP is preprocessing EEG data by cleaning artefacts, i.e. detection

and either correction or removal of data that is not likely to be attributable to neural

sources. CTAP is able to operate on three different temporal granularities: channel, epoch

and segment. Channel operations affect the entire time series at one spatial location.

Epoch operations are performed on one or several epochs produced by EEGLAB epoching

function. Finally, segments are fixed time-windows around specific events which can be

extracted from both channel and epoch levels, see Fig. 1. An example of a typical segment

2 Also NeuroPype, a commercial Python-

based graphical programming environ-

ment for physiological signal processing.

However, to the authors’ knowledge, it

has not been documented in a peer

reviewed publication.
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could be a blink artefact with a window wide enough to include the entire blink waveform.

Further functionality is provided for independent component analysis (ICA)-based

methods. Artefact-detection methods based on some flavour of ICA algorithm have been

shown to outperform temporal approaches (Delorme, Sejnowski & Makeig, 2007). It was

also shown that ICs are valid representations of neural sources (Delorme et al., 2012).

CTAP can thus help to combine the existing methods for EEG signal processing.

Outline of usage
Figure 2 shows the core components of CTAP. The coloured boxes represent entities that

the user has to specify in order to use CTAP. These are:

� What analysis functions to apply and in which order (analysis pipe)

� Analysis environment and parameters for the analysis functions (configuration)

� Which EEG measurements/files to process (measurement configuration)

Typically, the analysis is run by calling a single script that defines all of the above

and passes these on to the CTAP_pipeline_looper.m function, that performs all

requested analysis steps on all specified measurements. In the following, we describe in

more detail how the configurations are made, how the pipe is executed, what outputs it

provides and what options the user has to control the pipe. The complete details of all

these aspects of CTAP are provided in the wiki pages of the GitHub repository, which will

be referenced below as ‘the wiki’.3

Configuration
In CTAP a large analysis is broken down into a hierarchical set of smaller entities: steps,

step sets, pipes and branches. Several analysis steps form a step set and an ordered sequence

of step sets is called a pipe. Pipes can further be chained to form branches. The smallest

unit is the analysis step which might be e.g. a filtering or a bad channel detection

operation. A step is represented by a single call to a CTAP_�.m-function. Step sets and

pipes are used to chop the analysis down into smaller chunks that are easy to move around

if needed.

Intermediate saves are performed after each step set and therefore the organisation of

steps into step sets also affects the way the pipe shows up on disk. Intermediate saves

provide a possibility run the whole analysis in smaller chunks and to manually check the

mid-way results as often needed, e.g. while debugging. Further on, the ability to create

branches is important to help explore alternative ways of analysing the same data.

Figure 1 Relationship of the time domain data constructs dealt with in CTAP.

3 https://github.com/bwrc/ctap/wiki.
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To specify the order of steps and sets within a pipe, we recommend to create a single

m-file for each intended pipe.4 This file will define both the step sets as well as all the

custom parameters to be used in the steps. Default parameters are provided, but it is

optimal to fine tune the behaviour by providing one’s own parameters. Both pipe and

parameter information is handled using data structures, rather than hard-coding. CTAP

then handles assignment of parameters to functions based on name matching.

Once the steps and their parameters are defined, the last requirement to run the pipe is

to define the input data. In CTAP the input data are specified using a table-like structure

called measurement config that lists all available measurements, the corresponding raw

EEG files, etc. This dedicated measurement config data structure allows for an easy

selection of what should be analysed and it also helps to document the project. It can

ctap_pipeline_looper()

* executes the pipe
* handles errors
* loads and stores data

EEGout = ctapeeg_some step(EEGin)

* actual implementation
* standaloneCTAP_some step()

* wrapper to enable pipe building

ctapeeg_some step()

CTAP_some step()

...

EEGout = any_analysis_step(EEGin)

* actual implementation
* standalone

any_analysis_step()

configuration
* set environment:
  - paths
  - files
  - electrode setup

* parameters for
   analysis steps

analysis pipe
* what steps are run?
* how are they
   organized into step
   sets?
* how does the
   analysis branch?

* documents raw data
* autogenerated or
   user defined
* used to select what
   to analyze

measurement
config (MC)

Figure 2 An overview of the core logic of CTAP. ‘Configuration’, ‘analysis pipe’ and ‘measurement

config’ illustrate the parts that a user must specify. White boxes represent Matlab functions, with the

function-name on top.

4 For an example, see the cfg_manu.m

in the repository.
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be created manually or auto-generated based on a list of files or a directory. The former

allows for full control and enforces project documentation whereas the latter is intended

for effortless one-off analyses. Both spreadsheet and SQLite formats are supported.

In the last required step before pipeline execution, the configuration struct and the

parameter struct are checked, finalised and integrated by cfg_ctap_functions.m.

Pipe execution
Once all prerequisites listed above have been specified, the core CTAP_pipeline_looper.m

function is called to run the pipe. This function takes care of loading the correct

(initial or intermediate) data set, applying the specified functions from each step set,

and intermediate saving of the data. The looper manages error handling such that it is

robust to crashing (unless in Debug mode), and will simply skip the remaining steps

for a crashed file. Other settings determine how to handle crashed files at later runs

of the pipe (see Documentation).

CTAP_pipeline_looper.m is designed to accept functions named CTAP_�.m, as
these are defined to have a fixed interface. They take two arguments: data (EEG) and

configuration struct (Cfg); and they return the same after any operations. Some CTAP_�.m
perform all operations (e.g. call EEGLAB functions) directly, while others call a

corresponding ctapeeg_�.m function that actually implements the task. Hence CTAP_�.m
functions can be regarded as wrappers that facilitate batch-processing by providing a

uniform interface. They also implement, e.g. the plotting of quality control figures. Since

CTAP_�.m functions are quite simple, new ones can easily be added by the user to include

new analysis steps, working from the provided CTAP_template_function.m. Users can

also call the ctapeeg_�.m functions directly as part of their own custom scripts, since these

are meant to be used like any EEGLAB analysis function.

Analysis results are saved separately for each pipe. A typical structure contains:

� Intermediate results as EEGLAB datasets, in one directory per step set; names are taken

from the step set IDs as defined by the user, prefixed by step number.

� export directory contains exported feature data (txt, csv or SQLite format).

� features directory: computed EEG features in Matlab format.

� logs directory: log files from each run.

� quality_control directory: quality control plots, reflecting the visualisations

of analysis steps chosen by the user.

Apart from running the complete pipe at once the user has many options to run

just a subset of the pipe, analyse only certain measurements or otherwise adjust usage.

Table 1 gives some examples.

Analytic methods
As presented, CTAP is primarily a framework for analysis management; however it

contains a number of analysis functions, functions for evaluation and data-management

functions including a way to generate synthetic datasets for testing (for details see function

documentation). The user is easily able to add their preferred functions, but may note
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the available functions as a quick way to start. All provided functions, for analysis,

evaluation or data-handling, have default parameters which may serve as a starting point.

Almost all EEG processing methods in CTAP are either novel or rewritten from original

source, usually because of the unintended side-effects of the original code, such as

graphical pop-ups. Thus the outputs are similar to those of original EEGLAB or other

toolbox methods, but the code base is refactored.

The highlights of available CTAP_�.m functions include:

� Functions to load data (and extract non-EEG data, e.g. ECG), events (and modify

them) or channel locations (and edit them);

� Functions to filter, subset select (by data indices or by events), re-reference, epoch or

perform ICA on the data;

� Functions to detect artefactual data, in channels, epochs, segments or ICA components,

including:

– Variance (channels),

– Amplitude threshold (epochs, segments, ICA components),

– EEGLAB’s channel spectra method (channels, epochs),

– Metrics from the FASTER toolbox (channels, epochs, ICA components),

– Metrics from the ADJUST toolbox (ICA components),

– Additionally bad data can be marked by events where detection is performed by

some external method;

� Functions to reject bad data, normalise or interpolate;

� Functions to extract time and frequency domain features, and create visualisations of

data (as described below).

Table 1 Some advanced ways to use the pipe.

Usage options Possible reasons How

Subset step sets Investigate a bug; recompute only intermediate

results

Set run sets to subset index, e.g. Cfg.pipe.runSets = 3:5

Run test step set Test new feature before including in pipe Add step set with id ‘test’, then set Cfg.pipe.runSets = `test'

‘Rewire’ the pipe Test an alternative ordering of existing steps or

temporarily change the input of some step

Set the .srcID of a given step set equal to the id of another

Measurement

configuration filter

Run pipe for: subset of test subjects, or:

measurements classes with separate

configurations, e.g. pilots

Use function struct_filter.m

Run in debug mode Develop new method in CTAP Set CTAP_pipeline_looper parameter ‘debug’, true

Overwrite obsolete results Update part of pipe: write new step set

output over existing files

Set CTAP_pipeline_looper parameter ‘overwrite’, true

Write files from failed

step sets

Check partial outcome of step set Set CTAP_pipeline_looper.m parameter ‘trackfail’, true

Turn off intermediate

saves

Extract numerical/visual analytics without

producing updated files

Set stepSet(x).save = false; set

stepSet(x+1).srcID = stepSet(x-1).id
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Outputs
CTAP provides a number of novel outputs for evaluation and data management.

Visual evaluation: CTAP automatically produces plots that help the user to answer

questions such as: what has been done, what the data looks like and was an analysis step

successful or not. The following selected visualisations are illustrated in ‘Results’:

� Blinks: detection quality, blink ERP

� Bad segments: snippets of raw EEG showing detections

� EEG amplitudes: amplitude histograms, peeks

� Filtering: PSD comparison

� ICA: IC scalp-map contact sheets, zoom-ins of bad components

Quantitative evaluation: Every major pipe operation writes a record to the main log

file. Data rejections, including channels, epochs, ICs or segments, are summarised here

and also tabulated in a separate ‘rejections’ log. Values are given for how much data was

marked as bad, and what percentage of the total was bad. If more than 10% of data is

marked bad by a single detection, a warning is given in the main log. In addition, useful

statistics of each channel are logged at every call to CTAP_peek_data.m, based on the

output of the EEGLAB function signalstat.m. Data-points include trimmed and

untrimmed versions of mean, median, standard deviation as well as skewness, kurtosis

and normality testing. The set of statistics estimated for every data channel is saved in

Matlab table format and also aggregated to a log file.

Feature export: Extracted EEG features are stored internally as Matlab structs that fully

document all aspects of the data. These can be used to do statistical analysis inside Matlab.

However, often users like to do feature processing in some other environment such as

R or similar. For this, CTAP provides export functionality that transforms the EEG feature

mat files into txt/csv text files, and/or an SQLite database. For small projects (e.g. up to

10 subjects and 16 channels) txt/csv export is feasible but for larger datasets SQLite is

more practical.

System evaluation
To showcase what CTAP can do we present in this paper the output of an example analysis

using synthetic data. The example is part of the CTAP repository; methods are chosen to

illustrate the range of possibilities in CTAP, rather than for the qualities of each method

itself. Thus, for example, we include the CTAP-specific blink-correction method alongside

simple amplitude thresholding, to exemplify different ways to handle artefacts.

Toy data
CTAP provides a motivating example that can also be used as a starting point for one’s

own analysis pipe. The example is based on synthetically generated data with blink,

myogenic (EMG) and channel variance artefacts to demonstrate the usage and output of

CTAP. The example is part of the repository and the details of the synthetic data

generation process are documented in the wiki.5 Shortly, synthetic data is generated from
5 https://github.com/bwrc/ctap/wiki/

syndata-generation.
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seed data using generate_synthetic_data_manuscript.m, which first converts the

example dataset to EEGLAB-format and then adds artefacts to the data. Seed data

included in the repository is from the BCI competition IV dataset 16, recorded with

BrainAmp MR plus at 100 Hz on 59 channels. The generated 10 min dataset is sampled

at 100 Hz and has 128 EEG channels, two mastoid channels and four EOG channels.

It occupies ∼32 MB on disk.

Artefacts added to the data include 100 blinks (generated by adding an exponential

impulse of fixed duration, with amplitude that decreases linearly from front to rear of the

scalp-map); and 50 periods of EMG (generated by adding a burst of noise across an

arbitrary frequency band, at a high amplitude that decreases linearly away from a random

centre-point). Also six channels are ‘wrecked’ by randomly perturbing the variance, either

very high (simulating loose electrodes) or very low (simulating ‘dead’ electrodes).

Analysis steps
An example pipeline, described in the CTAP repository in the file cfg_manu.m, is run on

the synthetic data using runctap_manu.m. Here, we describe the non-trivial analysis steps

in order of application. For each step, we first describe the method; then the ‘Results’

section shows the generated outcomes in terms of data quality control statistics and

visualisations. The pipe below is shown to illustrate context of the steps, and is an

abridged version of the repository code.

stepSet(1).id = `1_LOAD';

stepSet(1).funH = {@CTAP_load_data,...

@CTAP_load_chanlocs,...

@CTAP_reref_data,...

@CTAP_peek_data,...

@CTAP_blink2event};

stepSet(2).id = `2_FILTER_ICA';

stepSet(2).funH = {@CTAP_fir_filter,...

@CTAP_run_ica};

stepSet(3).id = `3_ARTIFACT_CORRECTION';

stepSet(3).funH = {@CTAP_detect_bad_comps,...

@CTAP_filter_blink_ica,...

@CTAP_detect_bad_channels,...

@CTAP_reject_data,...

@CTAP_interp_chan, ...

@CTAP_detect_bad_segments,...

@CTAP_reject_data,...

@CTAP_run_ica,...

@CTAP_peek_data};

6 http://bbci.de/competition/iv/desc_1.

html.
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Before-and-after ‘Peeks’: The CTAP_peek_data.m function is called near the start

(after initial loading and re-referencing) and the end of the pipe. Visual inspection of

raw data is a fundamental step in EEG evaluation and quantitative inspection of

channel-wise statistics is also available. A logical approach is to compare raw data at same

time-points from before and after any correction operations. If ICA-based corrections

are made, the same approach can also be used on the raw IC data. CTAP_peek_data.m

expedites this work, and thus helps to regularise data inspection and facilitate comparison.

CTAP_peek_data.m will generate raw data plots and statistics of a set of time-points

(points are generated randomly by default or can be locked to existing events). These

‘peek-points’ are embedded as events which can then generate peeks at a later stage in the

pipe, allowing true before-and-after comparisons even if the data time course changes

(due to removal of segments). If no peek-point data remains at the after-stage, no

comparison can be made; however (especially if peek-points are randomly chosen), such

an outcome is itself a strong indication that the data is very bad, or the detection methods

are too strict.

CTAP_peek_data.m includes plotting routines for signal amplitude histograms as well

as for raw EEG data. Many EEG artefacts cause large changes in signal amplitudes, and

consequently several basic, yet effective, EEG artefact detection methods are based on

identifying samples exceeding a given amplitude threshold. On the other hand, even in

controlled measurement conditions, individual baseline variation can affect the amplitude

of the recorded signal. Hence, accurate knowledge of the average signal amplitude is often

important.

Blink detection: The function CTAP_blink2event.m is called early in the pipe to

mark blinks. It creates a set of new events with latencies and durations matched to the

detected blinks. The current blink detection implementation is based on a modified

version of the EOGERT algorithm by Toivanen, Pettersson & Lukander (2015).7

The algorithm finds all local peaks in the data, constructs a criterion measure and

classifies peaks into blinks and non-blinks based on this measure.

Filtering: CTAP filtering produces plots of filter output and tests of functionality as

standard. CTAP_fir_filter.m uses the firfilt-plug-in8 to do filtering, as it replaces the

deprecated function pop_eegfilt.m and provides more sensible defaults. Version 1.6.1

of firfilt ships with EEGLAB. Other CTAP-supported filtering options are described in

documentation.

Blink removal: Blinks can either be rejected or corrected. We showcase correction

using a method that combines blink-template matching and FIR high-pass filtering

of blink-related ICs following ideas presented by Lindsen & Bhattacharya (2010).

The method is not part of EEGLAB, but an add-on provided by CTAP.9

Bad ICA component detection is performed by first creating ICs with CTAP_run_ica.m10,

and then using one of several options from CTAP_detect_bad_comps.m to detect

artefactual ICs. The blink template option compares mean activity of detected blink events

to activations for each IC.

CTAP_filter_blink_ica.m is used to filter blink-related IC data, and reconstruct

the EEG using the cleaned components. The success of the blink correction is evaluated

7 See code repository at https://github.

com/bwrc/eogert.

8 https://github.com/widmann/firfilt.

9 Including all parts described above, this

particular blink-correction method is

unique to CTAP.

10 Default algorithm is FastICA, requiring

the associated toolbox on the user’s

Matlab path.
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using blink evoked response potentials (ERPs) which are simply ERPs computed for blink

events (see e.g. Frank & Frishkoff, 2007 for details).

Detect raw-data artefacts: Bad channels were detected based on channel variance, with

the function vari_bad_chans.m. Log relative variance � was computed for all channels

using the formula � ¼ logð channel variance
medianðchannel varianceÞÞ. Values of � more than three median

absolute deviations away from median (�)were interpreted as deviant and labelled as bad.

For bad segments, i.e. short segments of bad data over multiple channels, a common

approach (in e.g., EEGLAB) is analysis of fixed length epochs, which is good for ERP

experiments. Alternatively for working with continuous data, CTAP also provides the option

of amplitude histogram thresholding. Many types of large artefacts can be easily found using

simple histogram-based thresholding: a predefined proportion of most extreme amplitude

values are marked as artefacts and segments are expanded around these. This can improve,

e.g. ICA analysis of low density EEG by freeing ICs to capture neural source signals.

For all CTAP_detect_bad_�.m functions, for whichever detection method option is

used (user-defined options are also straightforward to add), a field is created in the EEG

struct to store the results. Another field collects pointers to all results detected before a

rejection. This logic allows the user to call one or many detection functions, possibly

pooling the results of several approaches to bad data detection, and then pass the

aggregate results to the CTAP_reject_data.m function.

Rejection: CTAP usage logic suggests that one or more detect operations for a given

data type, e.g. channels, or epochs, or components, should be followed by a reject

operation. It is bad practice to detect bad data across modalities, e.g. channels and

epochs, before rejecting any of it, because artefacts of one type may affect the other.

CTAP_reject_data.m checks the detect field to determine which data type is due for

rejection, unless explicitly instructed otherwise. Based on the data labelled by prior calls

to detection functions, CTAP_reject_data.m will call an EEGLAB function such as

pop_select.m to remove the bad data. Upon rejection, visualisation tools described are

used to produce plots that characterise the rejected components.

Note that data rejection is only necessary if there exists no method to correct the data,

e.g. as is provided for the CTAP blink removal method. In that case the call to the

CTAP_detect_bad_�.m function is not followed by a call to CTAP_reject_data.m,

because the method corrects the artefactual ICs rather than simply deleting them.

After peek: Finally, the CTAP_peek_data.m function is called again, providing

comparator data at the same points as the initial peek call. A useful approach is to call

CTAP_run_ica.m again after all artefact correction steps. The resulting set of raw IC

activations can be plotted by calling CTAP_peek_data.m, and a careful examination should

reveal the presence or absence of any remaining sufficiently large artefacts. This is a convenient

way to, for example, determine whether the blink detection has identified all blink ICs.

RESULTS
In this section, we show the output of CTAP as applied to the synthetic dataset, based

on the analysis-pipe steps shown above. The pipe outputs ∼30 MB of EEG data after each

step set, thus after debugging all steps can be expressed as one set, and data will occupy
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∼62 MB (before and after processing). Additionally, the quality control outputs of this

pipe occupy ∼70 MB of space, mostly in the many images of the peek-data and reject-data

functions.

Before-and-after ‘Peeks’
Raw data: Figure 3 shows raw data before and after preprocessing.

EEG amplitudes: The signal amplitude histograms of a sample of good and bad

channels from the synthetic data set are shown in Fig. 4. This can be useful for finding

a suitable threshold for bad segment detection, or e.g. to detect loose electrodes. The

post-processing plots show the improvement in channel normality.

Statistical comparison: Some of the first-order statistics calculated for before-and-

after comparisons are plotted in Fig. 5, averaged over all channels. This method allows

inspection of global change in the signal, which overall can be expected to become less

broad (smaller range) and less variable (smaller SD) after cleaning of artefacts.

A. B.

Figure 3 Raw EEG data centred around a synthetic blink (A) before preprocessing and (B) after

preprocessing. The blinks have been largely removed and the EEG activity around blinks has

remained intact. Note that the y-axis scales differ slightly.
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Blink detection
The EOGERT blink detection process visualises the classification result for quality control

purposes, as shown in Fig. 6. Such figures make it easy to spot possible misclassifications.

In our example, all 100 blinks inserted into the synthetic data were detected.

Figure 4 EEG amplitude histograms for four channels (A) before preprocessing and (B) after preprocessing. Fitted normal probability density

function (PDF) is shown as red solid curve. Upper and lower 2.5% quantiles are vertical black solid lines; data inside these limits was used to

estimate the trimmed standard deviation (SD) and normal PDF fitted using trimmed SD is shown as black solid curve. Distribution mean is vertical

dashed blue line. Channel D15 has clearly been detected as bad, removed and interpolated.

Figure 5 Changes in channel statistics for range (A) and standard deviation (SD) (B). Mean over

channels is indicated using a dot and the range spans from 5th to 95th percentile.
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Filtering
Figure 7 shows one of the outputs of the FIR filtering. This figure can be used to check that

the filter has the desired effect on power spectrum and that its response to a unit step

function is reasonable.

Figure 6 Scatter plot of the criterion used to detect blinks. Horizontal-axis shows the criterion value

while vertical-axis is random data to avoid over-plotting. The classification is done by fitting two

Gaussian distributions using the EM algorithm and assigning labels based on likelihoods.

Figure 7 A visual of filtering effects. (A) The effects of filtering on power spectrum, (B) the filter’s unit

step response which can be used to assess, e.g. the filter’s effect on ERP timings.
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Blink removal
Bad ICA component detection: An example of a plot for ICA rejection is given in Fig. 8,

showing some basic properties of a blink-related IC.

Filter blink IC data: The ERP-evaluated success of the blink correction is shown in

Fig. 9. The correction method clearly removes most of the blink activity. As blink related

ICs are corrected instead of rejected, effects on the underlying EEG are smaller. The result

may have some remainder artefact (e.g. visible in Fig. 3 as small spikes after 5 s in channels

C17, C18), which may motivate the complete removal of blink-related ICs instead of

filtering.

Detect and reject raw-data artefacts
Bad channels: In total 10 bad channels were found which included all six ‘wrecked’

channels—this shows the algorithm is slightly greedy, which is probably preferable in the

case of a high-resolution electrode set with over 100 channels. Bad channels are rejected

and interpolated before proceeding (not plotted as it is a straightforward operation).

Bad segments: An example of bad segment detection, using simple histogram-based

amplitude thresholding, is shown in Fig. 10. In this case, the bad data is high amplitude

EMG but in a general setting, e.g. motion artefacts often exhibit extreme amplitudes.

Using these figures the user can quickly check what kind of activity exceeds the amplitude

threshold in the dataset.

Of the 50 EMG artefacts inserted in the synthetic data, 37 still existed at least partially,

at the end of pipe. The low rejection percentage is due to the fact that EMG is more of a

Figure 8 Independent component information plot for a blink-related ICA component found using

blink template matching. Shown are (A) component scalp map, (B) power spectrum and (C) a stacked

plot of the time series (using erpimage.m). (C) Shows only 200 first 300 ms segments of the data. The

synthetic blinks start at full seconds by design.
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change in frequency spectrum than in amplitude, yet the pipe looked for deviant

amplitudes only.

After peek
The data comparisons after various artefact removal operations, Figs. 3 and 4, illustrate

the success or failure of the pipe. Of course there are a large number of permutations

for how this can be done—it is the CTAP philosophy to facilitate free choice among

these options, with the least implementation overhead. Additionally, the final plots of

raw IC activations should show if there remains any artefacts in the data. For example,

Fig. 11 shows a segment of raw data for the first 1/3 of ICs for the synthetic dataset,

with clear indications of issues remaining in the data.

DISCUSSION
We have presented CTAP, an EEG preprocessing workflow-management system that

provides extensive functionality for quickly building configurable, comparative,

exploratory analysis pipes. Already by shifting the researcher’s focus from scripting

to analysis, CTAP can help reduce human effort, subjectivity and consequent error.

Figure 9 An example of the blink ERP. (A) The blink-centred ERP before correction with a clearly

visible blink signal. (B) The same plot after correction. The blink is clearly removed but the underlying

EEG remains largely unaffected because the correction was done in IC base. Channel C17 shows highest

blink amplitudes in the synthetic dataset.
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Specifically, the system can reduce the work load of the user by streamlining analysis

specification away from function coding. It can improve reliability and objectivity of the

analysis by helping users treat each file in a dataset in a uniform, regular manner. CTAP

output can also be more easily reproduced because manual processing steps have been

minimised. This enables the user to perform multiple comparative analyses for testing the

robustness of the results against different preprocessing methods.

Philosophy, benefits and issues
CTAP provides many default parameters, and streamlines many features into a handful of

wrapper functions. This is in order to facilitate rapid build and testing of analysis pipes.

The philosophy is to prevent users becoming stuck in a single approach to the data

because they have invested time in building the preprocessing code for it from scratch;

or worse, because they have completed a laborious manual processing task and cannot

afford to repeat it.

Computational testing for automated preprocessing structures pipes in function,

argument specification files. This approach, instead of only making scripts that call the

Figure 10 A bad data segment detected by histogram-based amplitude thresholding (CTAP_detect_bad_segments.m). The 32-channel subset

closest to the forehead is shown (C1–C32). The red lines mark the area of the bad segment.
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required set of functions directly, has several benefits. Function names and parameters

become objects available for later processing, so one can operate on them, e.g. to record

what was done to logs and to swap functions/parameters on the fly or to check the

specification of the pipe. By specifying new approaches in new pipe files, and saving

already-tried pipe files, one can treat the files as a record of attempted preprocesses.

This record corresponds to the user’s perspective, and thus complements the additional

history structure saved to the EEG file, which records all parameters for each operation

not only those specified by the user. Finally, the user should not usually rely on

defaults (as given by CTAP, EEGLAB or other toolboxes), because the optimal choice

often depends on the data. This is also one reason to separately define pipeline and

parameters. Separating these as objects is convenient for e.g. testing multiple parameter

configurations. A single script file per analysis approach is incompatible with parameter

Figure 11 Plot of raw IC activations after all processing steps. IC14 shows clear evidence of EMG

noise remaining; while IC36 may indicate a drifting channel.
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optimisation, because the number of different possible combinations begins to require

a layer of code to manage the scripts—this is exactly what CTAP provides.

As different analysis strategies and methods can vary greatly, CTAP was implemented

as a modular system. Each analysis can be constructed from discrete steps which can be

implemented as stand-alone functions. As CTAP is meant to be extended with custom

analysis functions the interface between core CTAP features and external scripts is well

defined in the documentation. The only requirement is to suppress any pop-ups or

GUI-elements, which would prevent the automatic execution of the analysis pipe.11

It is also up to the user to call the functions in the right order.

The system supports branching. This means that the analysis can from a tree-like

structure, where some stage is used as input for multiple subsequent workflows. To allow

this, any pipe can act as a starting point for another pipe. The CTAP repository provides a

simple example get the user going. For branches to appear, a bare minimum is a collection

of three pipes of which one is run first. The other two both act on this output but in

different ways. Currently the user is responsible for calling the pipes of a branched setting

in a meaningful order. However, this is straightforward to implement and having the

analysis logic exposed in the main batch file makes it, e.g. easy to run only a subset of the

branches.

Although CTAP works as a batch-processing pipeline, it supports seamless integration

of manual operations. This works such that the user can define a pipeline of operations,

insert save points at appropriate steps and work manually on that data before passing

it back to the pipe. The main extra benefit that CTAP brings is to handle bookkeeping

for all pipeline operations, such that manual operations become exceptional events that

can be easily tracked, rather than one more in a large number of operations to manage.

Computational testing for automatedpreprocessingneveroverrides theuser’s configuration

options, even when these might break the pipe. For example, CTAP_reject_data.m

contains code to auto-detect the data to reject. However, the user can set this option

explicitly, and can do sowithout having first called any corresponding detection function,

which will cause preprocessing on that file to fail. Allowing this failure to happen is

the most straightforward approach, and ultimately more robust. Combined with an

informative error message the user gets immediate feedback on what is wrong with

the pipe.

On the other hand, CTAP does provide several features to handle failure gracefully.

As noted, the pipe will not crash if a single file has an unrecoverable error, although that

file will not be processed further. This allows a batch to run unsupervised. Then, because

no existing outputs are overwritten automatically, one can easily mop-up the files that

failed without redoing all those that succeeded, if the fault is identified. Because pipes

can be divided into step sets, tricky processes that are prone to failure can be isolated

to reduce the overall time spent on crash recovery. CTAP saves crashed files at the point of

failure (by setting the parameter ‘trackfail’ in CTAP_pipeline_looper.m), permitting

closer analysis of the problematic data.

In contrast to many analysis plug-ins built on top of EEGLAB, no GUI was included

in CTAP. While GUIs have their advantages (more intuitive data exploration, easier

11 As noted above, for this reason much

original code has been refactored to

avoid runtime-visible or focus-grabbing

outputs. The ultimate aim is for CTAP

to interface directly to Matlab functions

to remove dependency on EEGLAB

releases, while retaining compatibility

with the EEGLAB data structure.
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for novice users, etc.) there is a very poor return on investment for adding one to a

complex batch-processing system like CTAP. A GUI also sets limits to configurability and

can constrain automation if CTAP is executed on a hardware without graphical

capabilities. The absence of GUI also makes the development of extensions easier as there

are fewer dependencies to handle.

In contrast to many other broad-focus physiological data analysis tools, CTAP is

designed to meet a very focused goal with a specific approach. This does however create

some drawbacks. Compared to scripting one’s own pipeline from scratch, there are usage

constraints imposed by the heavy use of struct-passing interfaces. Some non-obvious

features may take time to master, and it can be difficult (albeit unnecessary) to understand

the more complex underlying processes.

Computational testing for automated preprocessing is also built to enable easy further

development by third parties, by using standardised interfaces and structures. This was a

feature of original EEGLAB code, but contrasts with many of the EEGLAB-compatible

tools released since, whose functionality was often built-in an ad hoc manner. The main

requirement for development is to understand the content and purpose of the EEG.CTAP

field (which is extensively documented in the wiki), and the general logic of CTAP.

Developers can easily extend the toolbox by using (or emulating) the existing

ctapeeg\_�.m functions, especially the ctapeeg_detect_�.m functions, which are

simply interfaces to external tools for detecting artefacts. Existing CTAP_�.m functions can
be relatively more complex to understand, but the existing template provides a guideline

for development with the correct interface.

Future work
Computational testing for automated preprocessing is far from finalised, and development

will continue after the initial release of the software. The main aim of future work

is to evolve CTAP from workflow management towards better automation, with

computational comparative testing of analysis methods, to discover optimal parameters

and help evaluate competing approaches.

As stated above, the potential to fully automate EEG processing is constrained by the

indeterminacy of EEG: known as the inverse problem, this means that it is not possible to

precisely determine a ground-truth for the signal, i.e. a unique relationship to neural

sources. The signal can also be highly variable between individuals, and even between

intra-individual recording sessions (Dandekar et al., 2007). These factors imply that there

cannot be a general algorithmic solution to extract neurally generated electrical field

information from EEG, thus always requiring some human intervention. By contrast, for

example in MEG certain physical properties of the system permit inference of sources even

from very noisy data (Taulu & Hari, 2009) (although recording of clean data is always

preferable, it is not always possible, e.g. with deep brain stimulation patients

(Airaksinen et al., 2011)).

While many publications have described methods for processing EEG for different

purposes, such as removing artefacts, estimating signal sources, analysing ERPs and

so on. However, despite the wealth of methodological work done, there is a lack of
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benchmarking or tools for comparison of such methods. The outcome is that the

most reliable way to assess each method is to learn how it works, apply it and test the

outcome on one’s own data: this is a highly time-consuming process which is hardly

competitive with simply performing the bulk of preprocessing in a manual way, as

seems to remain the gold standard. The effect of each method on the data is also not

commonly characterised, such that methods to correct artefacts can often introduce

noise to the data, especially where there was no artefact (false positives).

Thus, we also aim to enable testing and comparison of automated methods for

preprocessing. This is still work in progress, as we are building an extension for CTAP that

improves testing and comparison of preprocessing methods by repeated analyses on

synthetic data. This extension, tentatively titled Handler for sYnthetic Data and Repeated

Analyses (HYDRA), will use synthetic data to generate ground-truth controlled tests of

preprocessing methods. It will have capability to generate new synthetic data matching the

parameters of the lab’s own data, and compare outcomes of methods applied to this data

in a principled computational manner. This will allow experimenters to find good

methods for their data, or developers to flexibly test and benchmark their novel methods.

Another desirable, though non-vital, future task is to expand the quality control

output, to include functionality such as statistical testing of detected bad data, for the

experimenter to make a more informed decision. Although statistical testing is already

implied in many methods of bad data detection, it is not visible to users. This will take the

form of automated tools to compare output from two (or more) peeks, to help visualise

changes in both baseline level and local wave forms.

Such aims naturally complement the work of others in the field, and it is hoped that

opportunities arise to pool resources and develop better solutions by collaboration.

CONCLUSION
The ultimate goal of CTAP is to improve on typical ways of preprocessing high-

dimensional EEG data through a structured framework for automation.

We will meet this goal via the following three steps: (a) facilitate processing of large

quantities of EEG data; (b) improve reliability and objectivity of such processing;

(c) support development of smart algorithms to tune the thresholds of statistical selection

methods (for bad channels, epochs, segments or components) to provide results which are

robust enough to minimise manual intervention.

We have now addressed aim (a), partly also (b) and laid the groundwork to

continue developing solutions for (c). Thus, the work described here provides the solid

foundation needed to complete CTAP, and thereby help to minimise human effort,

subjectivity and error in EEG analysis; and facilitate easy, reliable batch-processing for

experts and novices alike.
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