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1. Introduction 

 

Finland is the most forested country in Europe (Fig. 1) with forest land covering 76% of the Finnish 

territory, corresponding to about 23 million ha (Finnish Forest Research Institute, 2011). Financial 

and spiritual development in Finland has been linked to forests for centuries, and forests are the most 

important natural resource in the country (Finnish Forest Research Institute, 2011). Moreover, Finland 

is financially more dependent on forests and the forest industry than any other country in the world 

(Finnish Forest Research Institute, 2011). In countries like Finland, forest-based bioeconomy has a 

key role in climate change mitigation efforts (Ministry of Employment and the Economy et al., 2014). 

Efficient mitigation requires increasing carbon sequestration and use of forest biomass to substitute 

for fossil-intensive fuels, materials and products (Kilpeläinen et al., 2016). This emphasizes the 

importance of understanding the risks affecting the forests under changing climatic conditions. 

Various abiotic and biotic agents cause damage in forests. Biotic factors are any living components 

that affect the environment, whereas abiotic factors are non-living parts of the environment that affect 

the functioning of ecosystems. According to the 10th National Forest Inventory conducted during 

2004–2008, about 25% of the forest land in Finland suffered from damage which reduced stand 

quality (Finnish Forest Research Institute, 2014). Forest damage is somewhat more common in 

northern than southern Finland. In particular, abiotic factors cause more damage in the northern parts 

of the country: 12.1% of the forest land in northern Finland reportedly suffered from damage of abiotic 

origin but only 3.4% in southern Finland. 

Abiotic stress factors affecting the Finnish forests include, for example, windstorms, snow, fire and 

floods. This work focuses on snow and fire damage, although wind is clearly the most important 

abiotic agent causing damage in Finnish forests. For instance, annual compensation paid by private 

insurance companies to forest owners in Finland due to snow damage is on average less than €1 

million, while the annual compensation paid due to wind damage has varied during the last 15 years 

between €1 million and €51 million (Finnish Forest Research Institute, 2014). The direct cost of forest 

fires in Finland is relatively small because the average annual burned area in the country is only 

slightly above 500 ha. However, when indirect costs including prevention and suppression of forest 

fires are also considered, it can be estimated that the total financial cost of forest fires is nearly €7000 

per burned hectare (Kosenius et al., 2014; Venäläinen et al., 2016). In a case of a potential widespread 

forest fire, the costs would thus be substantial. For example, the total cost of the conflagration that 

burned 14 000 ha of forest in Sweden in 2014 was approximately €100 million, or about €7000/ha 

(Västmanland County Administrative Board, 2015). 

During the forthcoming decades, the climate in northern Europe is projected to change considerably 

due to increasing greenhouse gas concentrations (e.g. Räisänen and Ylhäisi, 2015). This change may 

have multiple effects on boreal forests. Climate models unanimously project mean temperature to rise 

and annual precipitation is also likely to increase. These two forcing factors have an opposite effect 

on forest fire danger, with increasing temperature likely to increase the risk of fire and increased 

precipitation likely to reduce the risk of fire. The effect of these anticipated changes on the risk of 

snow damage is not straightforward. The projected change in the occurrence of strong winds is small 
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but the risk of wind damage is anyway expected to increase because soil frost supporting tree 

anchorage is projected to decrease drastically (Peltola et al., 2010; Gregow et al., 2011). 

In this work, the main objectives were to evaluate the effect of climate change on forest fire risk and 

the occurrence of snow damage in Finnish conditions by using state-of-the-art climate model data. To 

complement earlier work in this field, statistically downscaled and bias-corrected data from several 

newest generation climate models were used. Other recent studies related to the climate change impact 

on forest fire danger in Finland or nearby areas have mainly considered only multi-model mean 

change (e.g. Kilpeläinen et al., 2010a; Sherstyukov and Sherstyukov, 2014) or have been based only 

on scenarios derived from one climate model (e.g. Mäkelä et al., 2014; Yang et al., 2015). In order to 

study the risk of snow damage in climatological timescales, a crown snow load model developed at 

the Finnish Meteorological Institute (FMI) was applied. 

 

Figure 1. Forest cover map of Europe. Source: Päivinen et al. (2001), Schuck et al. (2002) and 

Kempeneers et al. (2011). 

 

  



11 

 

2. Forest fires in Finland 

 

Finland is part of the vast circumboreal vegetation zone. The extent of the boreal forests is exemplified 

by the fact that they contain more than 30% of all carbon present in the terrestrial biome (Kasischke, 

2000). A natural phenomenon maintaining biodiversity and an important factor in the process of forest 

regeneration in the circumboreal region is fire (e.g. Rowe and Scotter, 1973; Esseen et al., 1997). It 

is estimated that globally 5–15 million ha of boreal forests burn annually, primarily in Siberia, Alaska 

and Canada (Flannigan et al., 2005; Flannigan et al., 2009). 

The essential elements needed to cause a forest fire include an igniter, flammable fuels and suitable 

weather conditions. Lightning is the only natural source of ignition in boreal forests, but in Finland 

less than 15% of all forest fires are ignited by a lightning strike (Larjavaara et al., 2005). The rest of 

the fires are human-caused, resulting mostly from careless handling of fire. It is the weather that 

determines whether the conditions are favourable for the spreading of fires, but it is clear that fire 

activity is heavily affected by human influence. Consequently, actual fire activity is a complex 

phenomenon to model. 

During previous centuries, fire was intentionally used to clear forest for pasture and cultivation. 

Accordingly, the number of forest fires increased in Finland in the late 17th century when more people 

moved into wilderness areas (Wallenius et al., 2004). Slash-and-burn cultivation practices were 

broadly continued until the late 19th century and the steep decline in forest fire activity at that time 

across Fennoscandia has been attributed to the cultural transition to modern agriculture and forestry 

(Wallenius, 2011). Back in the 19th century, large forest fires were common in Finland and, for 

example, in 1868, over 60 000 ha of state-owned forest was burned within a single year (Saari, 1923; 

Osara, 1949). The last real conflagration in Finland was the one in Tuntsa in eastern Lapland in 1960 

along the Russian border that burned 20 000 ha of forest on the Finnish side of the border and 

additionally some 100 000 ha on the Russian side (Vajda and Venäläinen, 2005). 

Within recent decades, large forest fires have become virtually non-existent in Finland, although there 

still occurs approximately 1000 forest fires annually (Fig. 2). The average size of forest fires in 

Finland is nowadays only about 0.5 ha, while it was over 50 ha in many years in the 19th century and 

early 20th century. Active fire suppression contributes to the small average size of fires. Fire survey 

flights conducted during periods of high forest fire danger aid the early detection of ignited fires, and 

due to a dense forest road network firefighters are able to easily reach most of the fires. In addition, 

the geographical heterogeneity of Finland, with its numerous lakes and swamps creates more natural 

obstacles for fires compared to many other parts of the boreal zone. However, there has not been any 

significant change in the climatological fire proneness of Finnish forests during the last century that 

could explain the decrease in burned area (Mäkelä et al., 2012). From a climatological point of view, 

large-scale fires are thus still possible in Finland and this was recently demonstrated when 14 000 ha 

of forest was burned in 2014 in central Sweden in climatological and environmental conditions similar 

to Finland. 
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Figure 2. Annual number of forest fires (black) and all wildland fires (grey) including also fires in 

peat bogs, clear cut sites, parks, grasslands etc. in Finland during 1996–2014 based on fire reports 

collected from the national Finnish Rescue Service database. 

 

3. Snow damage in forests 

 

Forest damage caused by snow loading on trees occurs frequently in boreal environments. At a 

European level, estimates of the amount of timber damaged by snow during a typical year vary 

between 1 million m3 and 4 million m3 (Nykänen et al., 1997; Schelhaas et al., 2003). In Finland, 

snow is one of the most important abiotic stress factors in forests after windstorms. Snow loads 

sufficient to break individual large tree stems occur in Finland approximately every 3 years to 17 

years depending on the location (Solantie, 1994). Snow-damaged trees occasionally seriously disrupt 

power transmission by bending over or leaning on power lines. For instance, in the beginning of 

November 2001, over 20 000 damaged trees fell over power lines due to the combined effect of a 

windstorm and heavy snow loading, and consequently 177 000 households were left without 

electricity (Hoppula, 2005). Furthermore, snow-damaged trees are susceptible to insect attacks and 

other kinds of consequential damage (e.g. Schroeder and Eidmann, 1993; Schlyter et al., 2006). 

Eventually, the reduction of timber quality due to indirect impacts of snow damage may be financially 

more important than that due to direct impacts. 

Suitable meteorological conditions are needed to cause snow damage in forests. The optimal 

temperature range for the accumulation of snow on tree branches and trunks is relatively narrow, 

approximately –3°C to +1°C (Solantie, 1994). Snow accretion is most efficient when temperature at 

the time of precipitation is just above 0°C and then falls below 0°C. In that case, heavy and slightly 
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wet snow attaches tightly to the branches when frozen. According to Solantie (1994), snowfalls of 

20–40 cm in temperatures near freezing point produce low to moderate risk of snow damage in forests, 

while snowfalls of about 60 cm produce very high risk. However, high wind speeds exceeding 9 ms−1 

are expected to dislodge most of the snow from tree crowns. On the other hand, frozen snow is less 

effectively dislodged by wind, and thus strong winds associated with heavy frozen snow loads may 

cause stem breakage (Valinger and Lundqvist, 1992). 

Topography has a significant effect on the risk of snow damage. In general, forests at high altitudes 

accumulate the heaviest snow loads (e.g. Jalkanen and Konôpka, 1998; Jalkanen and Mattila, 2000). 

This was noted much earlier in the study by Heikinheimo (1920) where he argued that in Finland, 

forests damaged by snow are mainly located at over 300 m above sea level. This is because the 

intensity of rime accumulation is strongly correlated with the height above sea level. Ahti (1978) 

studied rime accumulation in Finland and noted that in northern Finland riming occurs regularly at 

heights of over 200 m above sea level and that above 500 m the riming is very intense. Jalkanen and 

Konôpka (1998) studied the influence of altitude on snow packing in Lapland by felling a few 

average-sized Norway spruces (Picea abies) at different altitudes between 150 m and 350 m above 

sea level in March 1994 and then weighing the actual snow loads that the trees had been carrying. 

They found that individual trees may carry a snow pack of more than three times the weight of the 

tree and that the weight of the snow loads on trees increases linearly with the terrain elevation. It has 

been furthermore argued that tree breakage under extreme snow loading is the major limiting factor 

at the timberline in northern Finland (Marchand, 1996). At high altitudes, rime accumulation is 

enhanced because clouds hit the ground more often, which enables in-cloud icing. Secondly, wind 

speeds are higher on hills than in valleys and the intensity of rime formation is positively correlated 

with wind speed (Ahti and Makkonen, 1982). Strictly speaking, in-cloud ice loads correlate much 

better with the elevation in relation to the mean level of surrounding terrain than with the elevation in 

relation to sea level (Makkonen and Ahti, 1995). Moreover, icing increases with elevation more 

rapidly on the windward than on the leeward side of hills (Lomilina, 1977). The dependence also 

varies with region. For instance, in New England ice accretion has been found to increase 

exponentially with elevation above 800 m (Ryerson, 1990), whereas in central Europe altitudes of 

500–900 m are associated with the highest incidence of snow damage and in northern Europe snow 

damage is already more common above just 100 m (Nykänen et al., 1997). In addition to enhanced 

rime formation, topography also affects snow loads due to orographic addition to precipitation under 

suitable conditions. Even in the region of Uusimaa in southern Finland with its relatively flat terrain, 

the orographic addition to precipitation can be as high as 40–60% during onshore winds (Solantie, 

1994). 

Typical forms of snow damage in forests include breakage and bending of stems as well as uprooting 

when the soil is unfrozen (Petty and Worrell, 1981; Nykänen et al., 1997). Tree and stand 

characteristics, e.g. crown type, stem taper, stem strength and stand density, control the resistance of 

trees to snow. For example, trees with asymmetrical crowns are particularly susceptible to snow 

damage (Nykänen et al., 1997). Hence, some tree species are more vulnerable to snow damage than 

others, and different tree species also suffer from different kinds of damage. In general, conifers are 

often considered to be more susceptible to snow damage than deciduous trees (Nykänen et al., 1997). 

Furthermore, Norway spruce is considered to be more resistant to snow damage than Scots pine (Pinus 

sylvestris) because of its more symmetrical crown and lower centre of gravity. Birches (Betula spp.) 
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are vulnerable to bending (Martiník and Mauer, 2012) and can thus easily cause electricity blackouts 

caused by trees bending over power lines. 

The risk of snow damage can be altered by different forest management options. In addition to the 

choice of species, these include, for example, choice of regeneration method, planting density and 

thinning policy (Nykänen et al., 1997). In planted stands it is also very important to use local or 

similarly resistant seed sources. Decreased planting density seems to generally decrease the 

occurrence of snow damage by stimulating diameter growth. Thinning temporarily increases the 

susceptibility of a stand to snow damage but promotes taper development. The first thinning should 

be done when the mean height is 10 m or less. The risk of snow damage can also be minimized by 

avoiding high-risk silvicultural treatments such as combined thinning and fertilization (Valinger et 

al., 1993; Nykänen et al., 1997). This is because fertilization promotes increased growth primarily 

within the tree crowns. 

 

4. Materials and methods 

 

4.1 Data sets 

 

Data sets used in Papers I–IV include climate model data, observational weather data, forest fire 

statistics (Paper II) and digital images of canopy snow cover from the Hyytiälä forestry field station 

(Paper III). In Paper III, North Atlantic Oscillation (NAO) index (Visbeck et al., 2001) values were 

also used. 

Climate models are the basic tools for investigating the response of the climate system to various 

forcings and for making projections of future climate (Flato et al., 2013). Climate models are derived 

from fundamental physical laws and their outputs can be used to estimate time and space dependent 

values for a wide set of meteorological and oceanographic variables. The model data collected within 

the Coupled Model Intercomparison Project (CMIP) can be accessed by the research community 

worldwide from data archives supported by the Program for Climate Model Diagnosis and 

Intercomparison (Meehl et al., 2000). In Paper I, the model data from CMIP Phase 3 (Meehl et al., 

2007) were used with three forcing scenarios from the Special Report on Emissions Scenarios (SRES) 

(Nakićenović et al., 2000). In Papers II and IV, model data from CMIP Phase 5 (Taylor et al., 2012) 

were used under two representative concentration pathway (RCP) scenarios (van Vuuren et al., 2011). 

The direct use of climate model results as such is usually not desirable because model results tend to 

be biased high or low in relation to the observed climate (e.g. Cattiaux et al., 2013). In addition, they 

are often presented in a relatively coarse grid. Two common approaches to account for model biases 

are delta-change and bias correction techniques (e.g. Teutschbein and Seibert, 2012; Räisänen and 

Räty, 2013). In the delta-change approach, future climate projections are constructed by perturbing 

the observational time series based on the differences between the simulated baseline and future 

climates. In this transformation, the daily variations and intervariable relationships of the 

observational data are retained in a qualitative sense. This approach was applied in Paper I. Bias 
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correction techniques are based on the idea of retaining daily variations of the modelled data by 

modifying the modelled time series based on the differences between the simulated and observed 

climate during the baseline period. On the other hand, bias correction alters spatio-temporal relations 

between different weather variables without satisfactory physical justification (Ehret et al., 2012). In 

recent studies, the most popular bias correction technique has been quantile mapping (e.g. 

Teutschbein and Seibert, 2012). In quantile mapping, the simulated values of weather variables are 

transformed so that the transformed values have the same cumulative distribution as the observed 

time series. The same transformation is then applied for projected future periods. In Papers II and IV, 

a gridded data set that was created by applying quantile mapping and downscaled onto a regular 0.1° 

× 0.2° (~10 km × 10 km) grid covering Finland was used in order to create projections covering the 

whole country. This data set consisted of daily data from five CMIP5 models over the period 1980–

2099 (Table 1). The models were chosen on the basis of their ability to simulate present-day average 

monthly temperature and precipitation climatology in northern Europe and the availability of all 

required variables on a daily timescale. 

In general, the climate model simulations indicate that in northern Europe, including Finland, 

temperature and precipitation will increase both in winter and summer, although for precipitation the 

sign of the change is less certain in summer (e.g. IPCC, 2013; Lehtonen et al., 2014; Räisänen and 

Ylhäisi, 2015). Projected changes for wind speed and relative humidity are less pronounced but in 

winter humidity is likely to increase (Gregow et al., 2012; Ruosteenoja and Räisänen, 2013). 

Observational climate data sets used include both station and gridded data. Station data were used in 

Papers I and III. In Papers II and IV, a gridded observational data set was used in statistical 

downscaling of the model data. The gridded data had been produced by interpolating from the station 

observations made by the FMI by applying kriging with external drift (Aalto et al., 2013). 

Forest fire statistics used in Paper II consisted of fire reports collected from the national Finnish 

Rescue Service database from 1996 to 2014. The fire reports include information on date, time, 

location, burned area and ignition source of fires. They also contain information about the vegetation 

type of the fire sites. Prior to 2005, the locations of fires in the database were in most cases given only 

at municipality level, but thereafter, the exact coordinates were usually provided. The fire reports 

were used to build a relationship between fire activity and meteorological fire risk in Finland. 

 

Table 1. CMIP5 models used in Papers II and IV with information on the country of origin and 

resolution of the models (L refers to number of vertical levels). Adapted from Papers II and IV. 

Model Country of origin Resolution (long × lat), 

level 

Reference 

CanESM2 Canada 1.875° × 1.875°, L35 von Salzen et al. (2013) 

CNRM-CM5 France 1.4° × 1.4°, L31 Voldoire et al. (2013) 

GFDL-CM3 United States 2.5° × 2.0°, L48 Donner et al. (2011) 

HadGEM2-ES United Kingdom 1.25° × 1.875°, L38 Collins et al. (2011) 

MIROC5 Japan 1.4° × 1.4°, L40 Watanabe et al. (2010) 
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In Paper III daily digital images of canopy snow cover from the Hyytiälä forestry field station located 

in the region of Pirkanmaa were utilized. The images encompassed three consecutive winter seasons 

(2008/09–2010/11) and were visually classified into six classes by forest scientists based on the 

amount of snow and rime or hoar frost in the canopy (Kuusinen et al., 2012). This classification was 

then used in comparison with the snow load calculations. 

 

4.2 Forest fire risk assessment 

 

There exist various indices which can be used in the prediction of forest fire risk. In boreal conditions, 

probably the most widely used is the so-called Canadian Fire Weather Index (FWI) system (Van 

Wagner, 1987). In the FWI system, three moisture codes are calculated on a daily basis based on air 

temperature, relative humidity, wind speed and precipitation (Table 2). Then, affected by wind speed, 

these codes are converted into three fire behaviour indices (Fig. 3). Initial Spread Index (ISI) indicates 

the expected rate of fire spread and Build Up Index (BUI) the total amount of fuel available for 

combustion by a moving flame front (De Groot, 1987). The final FWI rating is a dimensionless 

quantity combining ISI and BUI and indicates the likely intensity of fire. The FWI system was applied 

in Papers I and II to assess the meteorological forest fire risk following Van Wagner and Pickett 

(1985). Additionally, in Paper I the results of experimental ignition studies of Tanskanen et al. (2005) 

were used to estimate the annual number of potential fire days in different forest stands with the help 

of the FWI system. 

 

Table 2. Fuel moisture codes in the FWI system (adapted from De Groot 1987). 

Item Fine fuel moisture 

code (FFMC) 

Duff moisture code 

(DMC) 

Drought code  

(DC) 

Fuel association Litter and other cured 

fine fuels 

Loosely-compacted 

organic layers of 

moderate depth 

Deep, compact organic 

layers 

Fire potential 

indicator 

Ease of ignition Probability of lightning 

fires; fuel consumption 

in moderate duff 

Mop-up difficulty; fuel 

consumption of deep 

organic material 

Depth 1–2 cm 5–10 cm 10–20 cm 

Timelag constant 16 hours 12 days 52 days 

Value range 0 (wet) to 99 (dry) 0 (wet) to infinity (dry) 0 (wet) to infinity (dry) 

Maximum 

probable value 

96 150 800 
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Figure 3. Schematic calculation structure of the Canadian Fire Weather Index (FWI). Adapted from 
Paper I. 

 

The FWI system was initially developed empirically for Canadian boreal conditions. However, the 
FWI indices have proved to be realistically linked to the moisture content of different forest fuels in 
many kinds of environments (Viegas et al., 2001) and the FWI system has become widely 
implemented in many countries around the world, including New Zealand (Pearce and Clifford, 
2008), Spain (Padilla and Vega-Garcia, 2011) and Greece (Dimitrakopoulos et al., 2011), for 
example. The FWI system has also been suggested as the basis for a global early warning system for 
wildland fires (De Groot et al., 2006). In Finland, forest fire warnings are issued based on the Finnish 
Forest Fire Index (FFI) model (Venäläinen and Heikinheimo, 2003), but comparison of FWI to FFI 
has revealed that in Finnish conditions the two indices have a similar performance (Vajda et al., 2014). 

 

4.3 Snow load risk assessment 
 

In assessing the risk of snow damage, a model developed at FMI to predict snow load amounts on 
tree crowns was used in Papers III and IV. The development of the FMI snow load model is based 
both on experimental work and empirical experience of several experts at FMI. The model has run 
operationally since 2006 and the parameters of the model have been tuned based on the experience of 
model performance in different weather situations. The model parameters are thus mainly empirical. 
The model assumes an idealized tree having a cone-shaped crown with a projected catchment area of 
1 m2 from above and from the side facing the wind. 
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Table 3. Threshold values of daily mean 2 m air temperature (Tmean), 2 m relative humidity (RHmean), 

10 m wind speed (Umean) and total precipitation (Pday) that were used to determine the risk days 

favourable for heavy snow loading and riming. Adapted from Paper III. 

Snow loading Riming 

−3.42°C < Tmean < 1.05°C −5.19°C < Tmean < −0.16°C 

RHmean > 89.44% RHmean > 95.50% 

2.07 ms−1 < Umean < 5.63 ms−1 2.00 ms−1 < Umean < 4.54 ms−1 

Pday > 6.41 mm Pday < 1.11 mm 

 

Figure 4. Schematic structure of the FMI snow load model. 

 

The schematic structure of the FMI snow load model is presented in Fig. 4. The model has a time step 

of one hour and it uses temperature, relative humidity, precipitation rate, wind speed, cloudiness and 

solar radiation as input variables. Rime accretion in the model is also affected by terrain elevation. 

The snow load is classified into four types: rime, dry snow, wet snow and frozen snow. First, part of 

the existing snow load is transformed into a different type if needed and then the snow load is 

increased and decreased because of snow accretion and removal. Depending on air temperature, 

accumulated snowfall is treated as wet or dry snow and wet snow can be later frozen if temperature 

drops below 0°C. Decrease of the snow load is caused by dropping and melting due to wind and thaw. 

A detailed description of the applied model version is presented in the appendix of Paper III. 

The snow load amounts calculated with the FMI snow load model were also compared with a simpler 

snow load model presented by Gregow et al. (2008). Compared to the FMI model, there are two main 
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deficiencies in that model. Firstly, rime accumulation is not taken into account and secondly, the snow 

load is not classified into different types. 

In addition to the modelled snow load amounts, the snow-damage risk was evaluated based on daily 

average values of temperature, relative humidity, wind speed and precipitation. The thresholds 

(Table 3) for each variable were defined based on weather observations and modelled snow loads at 

four locations. These thresholds were used as a proxy for heavy snow loading and rime accumulation. 

 

5. Results 

 

5.1 Forest fire risk 

 

Climate change impact on forest fire risk in Finland during the 21st century was studied in Papers I 

and II. In Paper I, the focus was to study the differences in the risk between different greenhouse gas 

scenarios and between different forest stands. In Paper II, the main target was to inspect the inter-

model variability of the projected change of fire danger and also to pay special attention to large-scale 

fires.  

Three SRES scenarios (Nakićenović et al., 2000) were considered in Paper I, B1 representing low, 

A1B medium and A2 high greenhouse gas emissions. The forest fire risk was studied at four locations 

(Vantaa, Jokioinen, Jyväskylä and Sodankylä) across Finland (Fig. 1 in Paper I) during the baseline 

period 1980–2009 and during three future periods (2015–2044, 2035–2064 and 2085–2114). The 

annual number of days with high or extreme forest fire risk according to the FWI system varied greatly 
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Figure 5. Annual number of days with (a) a high or extreme, and (b) an extreme FWI value in the 

baseline period 1980–2009 and in the scenario periods as a response to the various greenhouse gas 

scenarios. The boxes indicate the central 50% range and the median of the distribution. The whiskers 

extend to the minimum and maximum values. Adapted from Paper I. 
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between different years within the baseline period (Fig. 4 in Paper I). Typically, there were about 20–

40 such days annually at southern locations (Vantaa and Jokioinen) and less than 20 at Jyväskylä in 

central and Sodankylä in northern Finland (Fig. 5). However, during the wettest years, the annual 

count of these forest fire risk days was less than 10 at each location and during the driest years it 

varied from approximately 50 at Sodankylä to over 80 at Vantaa.  

In the forthcoming decades, the annual number of forest fire risk days was projected to increase to 

some extent (Fig. 5). By the end of the current century, the increase in the annual number of days with 

high or extreme forest fire danger varied between 10% and 40%, depending on the greenhouse gas 

scenario. The smallest changes were projected under the low-emission B1 scenario, while the 

projected changes under the A1B and A2 scenarios were rather similar. When considering only days 

with extreme forest fire danger, the annual median number of such days was projected to more than 

double by 2100. However, when compared with the large interannual variability in the forest fire 

danger in Finland, the projected changes were not particularly substantial. 

 
(a) Over 10 ha forest fires (b) Over 5 ha forest fires

(c) Over 1 ha forest fires (d) All forest fires
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Figure 6. The relationship between daily severity rating and occurrence of forest fires of different size 

in Finland during 1996–2014, performed separately for the early (effective temperature sum below 

250°C days; grey squares) and late season (effective temperature sum above 250°C days; black 

squares). (a) Forest fires over 10 ha. (b) Forest fires over 5 ha. (c) Forest fires over 1 ha. (d) All forest 

fires. The number of fires in each class is shown in parentheses. Adapted from Paper II. 
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The number of fire risk days varied greatly between different types of forest stands (Fig. 6 in Paper 

I). In general, Scots pine stands showed much higher fire potential than Norway spruce stands. In 

addition, the number of potential fire days was two to three times greater at clear-cut sites compared 

to stands with a closed canopy. Future projections indicated a slight increase in the fire risk at different 

forest stands. However, even for the furthermost future period around the year 2100 under high-

emission A2 forcing, only 5–10 additional fire danger days were projected at most. 

To conclude the results of Paper I, it can be stated that assuming the high-emission A2 scenario to be 

realized, the current forest fire risk levels at Vantaa, Jokioinen and Jyväskylä would be transposed 

during the next 100 years northwards to Jokioinen, Jyväskylä and Sodankylä, respectively. 

In Paper II, it was found that fire activity correlates reasonably well with meteorological fire danger 

in Finland (Fig. 6). Average size of forest fires moreover increases with increasing fire danger (Table 

4 in Paper II). Consistently with previous studies (Tanskanen and Venäläinen, 2008), it was also noted 

that there occur more forest fires with the same FWI index value in the beginning of the growing 

season before understorey vegetation is fully developed than later in summer. This difference 

appeared to be clearer the larger the fires that were inspected.  

The fire statistics moreover revealed interesting seasonality in the cause of forest fires. The peak in 

the occurrence of relatively large fires burning over 10 ha of forest in Finland is in the latter half of 

May and early June. These fires are almost entirely human-caused, mainly because of silvicultural 

slash burning of cured vegetation and rubbish. During this time of year, the correlation between fire 

danger and burned area was found to be weakest. Burned area can be best estimated on the basis of 

the FWI system in July when lightning is a more important cause of ignitions than in any other month. 

Forest fires in July are still mostly human-caused (Fig. 7), but the majority of fires larger than 10 ha 

in July were reportedly ignited by a lightning strike during 1996–2014 (Fig. 7c in Paper II). The 

annual occurrence of lightning-ignited forest fires was generally found to closely follow the annual 

cycle of lightning activity.  
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Figure 7. Monthly total 

number of all forest fires 

(grey) and forest fires that 

were reportedly ignited by a 

lightning strike (black) in 

Finland during 1996–2014 

based on fire reports 

collected from the national 

Finnish Rescue Service 

database.  
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The relationship between observed fire activity and fire danger during 1996–2014 was used to 

estimate the expected change in future fire activity as a response to projected climate change. The 

results indicated increasing fire danger towards the end of the present century (Fig. 8). On the other 

hand, there existed substantial inter-model variability in the projected change. Moreover, as a few 

large-scale fires can be responsible for a large majority of burned area, a rather small increase in the 

number of large fires may lead to a substantial increase in the burned area. The results of Paper II 

reflected that the uncertainties related to changes in temperature, precipitation, wind and humidity 

climates all add uncertainty to the estimation of forest fire danger. This was illustrated by the large 

differences in the future forest fire danger between the outputs of the selected climate models. 

However, none of the models indicated a decreasing trend in forest fire danger. Based on the results, 

the proportion of large-scale fires will most likely increase. This would further increase the pressure 

on fire management agencies to be able to suppress the fire efficiently.  

 

5.2 Heavy snow loads 

 

The risk of snow damage in forests was studied mainly based on the FMI snow load model. This 

model was presented in Paper III. The model performance was evaluated against the canopy snow 

classification from the Hyytiälä forestry field station and the performance was further demonstrated 
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with the help of two case studies. Based on comparison with the canopy snow classification, it was 

not obvious that the FMI snow load model would perform better than the simpler method (hereafter 

G08 method) presented by Gregow et al. (2008). The simulated snow loads by both methods 

increased, on average, with increasing canopy snow amounts. However, the modelled snow loads 

varied considerably within individual snow classes, especially when the tree canopies were partially 

snow-covered. When the canopies were fully covered by snow, the modelled snow loads also 

consistently tended to be rather heavy. Similarly, the modelled snow loads were relatively low when 

most of the canopies were snow-free. In the case that canopies were otherwise snow-free but covered 

by rime, the FMI snow load model clearly indicated heavier snow loads than the G08 method, which 

did not take riming into account. This was best demonstrated during early December 2009 when very 

favourable conditions for rime accumulation prevailed for several days. 

Spatial occurrence of heavy snow loads was studied in Paper III based on station observations from 

29 locations across Finland over the period 1961–2010. The snow loads calculated at each station 

were interpolated over the whole country by applying kriging interpolation with external drift (Aalto 

et al., 2013). In Paper IV, the snow loads were calculated directly from gridded weather data. The 

weather data covered observational data for the period 1981–2010 and downscaled model data for the 

years 1980–2099. The gridded weather data used in Paper IV had a temporal resolution of 24 hours, 

while the station observations used in Paper III were mainly available every 3 hours and daily values 

were used only for precipitation. 

The large-scale features of Finnish snow load climatology were similar based on the results of 

Papers III and IV. In general, the heaviest snow loads tend to occur in eastern parts of the country in 

the regions of North Karelia, Kainuu and Koillismaa as well as in eastern Lapland. The results of 

Paper IV also emphasized the area of north-western Lapland where rime loads were modelled to be 

particularly heavy. The weather stations used in Paper III probably did not well enough represent this 

area, which has much more complex topography than other parts of Finland. 

It appeared that the snow load amounts calculated by using the G08 method correlate best with the 

dry snow loads of the FMI snow load model (Table 4). Regarding the snow damage in forests, dry 

snow is, however, the least important snow load type because dry snow is light and easily blown away 

by wind. Thus, the heaviest dry snow loads are considerably lighter than wet and frozen snow loads 

or rime loads (Fig. 7 in Paper III and Fig. 4 in Paper IV). As the G08 method does not take riming 

into account, the snow loads the method produces are only weakly correlated with the rime loads 

calculated with the FMI snow load model (Table 4). 

 

Table 4. Correlation coefficients between daily values of different snow load types of the FMI snow 

load model and total snow loads calculated by using the G08 method at four locations in Finland over 

the period 1980–2009. 

 Vantaa Jokioinen Jyväskylä Sodankylä 

Rime load 0.21 0.29 0.34 0.29 

Dry snow load 0.73 0.74 0.74 0.78 

Wet snow load 0.52 0.47 0.41 0.23 

Frozen snow load 0.55 0.61 0.56 0.45 
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It was found in Paper III that seasonal mean relative humidity has a positive correlation with all kinds 

of snow load types, while wind speed is negatively correlated with snow loads. The strongest positive 

correlation was found between relative humidity and rime loads and the strongest negative correlation 

between wind speed and dry snow loads (Paper III, Table 4). Also, precipitation and wet snow loads 

were clearly positively correlated. Temperature seemed to have in general only a rather weak 

influence on the snow load amounts. In southern Finland, heavy snow loads were more often 

associated with cold winters and a negative phase of the NAO, while in northern Finland mild winters 

with positive NAO index values posed a somewhat greater risk of heavy snow loads. There were 

furthermore some differences in the correlations with seasonal temperatures between different snow 

load types. Wet snow loads, and in northern Finland also frozen snow loads, tend to be heaviest during 

relatively mild winters, while the heaviest dry snow loads, and in the south also rime loads, were 

found to occur during cold winters. 

The number of risk days for heavy snow loading on the basis of daily mean values of different weather 

variables proved to predict well the number of days with modelled heavy snow load accretion (Fig. 9 

in Paper III). For the risk days for heavy rime accretion this held true for most of the inland stations. 

On the other hand, the maritime stations and particularly the stations in northern Finland located at 

high elevations exhibited clearly too few risk days for heavy rime accretion based on the threshold 

values used. 

The future snow load projections indicated that heavy snow loads will clearly decrease in southern 

and western Finland as a response to projected climate change (Fig. 9). On the contrary, in north-

eastern parts of the country, the snow loads were projected to become heavier indicating increasing 

risk of snow-induced forest damage over the area. There was some variability in the rate of projected 

change among the five climate models used in the study, but the large-scale picture of the change was 

similar according to all the model simulations. 

It is moreover noteworthy that the geographical pattern of projected change was fairly similar for 

heavy rime loads and heavy wet and frozen snow loads. Considering the multi-model mean change 

until the end of the present century under the high-emission RCP8.5 scenario, all of these snow load 

components were projected to increase in eastern and northern Finland including roughly the regions 

of North Karelia, Kainuu, Koillismaa and Lapland (Fig. 9). Elsewhere in Finland, they were projected 

to decrease. The heaviest dry snow loads were projected to change somewhat differently as they were 

projected to decrease across almost the whole of Finland. Only in Lapland were they projected to 

remain virtually unaltered. Moreover, the projected changes for dry snow loads resembled closely 

those for total snow loads calculated using the G08 method. 

The weather conditions favourable for rime accretion occur most commonly in early winter (Fig. 10 

in Paper III). In southern Finland, this period extends roughly from November to January but in the 

north the seasonal peak is earlier, in October and November. In a warmer climate, this peak is expected 

to be shifted slightly later in winter so that December and January would become the months 

expressing the highest risk of heavy rime accretion in central and northern parts of Finland (Fig. 7 in 

Paper IV). 



25 

 

Figure 9. The average annual maximum rime loads (a), dry snow loads (b), wet snow loads (c), frozen 

snow loads (d), total snow loads based on the FMI snow load model (e) and total snow loads based 

on the G08 method (f) for the period 2070–2099 under the RCP8.5 scenario as a multi-model mean. 

The average annual number of risk days for heavy snow loading (g) and heavy riming (h) are shown 

as well. Contours show the multi-model mean percentage change from 1980–2009 to 2070–2099. 

Adapted from Paper IV. 

 

Wet snow hazards occur more often both in early and late winter when the mean temperature is closer 

to the freezing point than in midwinter. In the future, their occurrence is expected to increase during 

the coldest part of winter but decrease in early and late winter. 

 

6. Discussion and conclusions 

 

This thesis contributes to the understanding of climate change impact on the occurrence of forest fires 

and heavy snow loads in Finland. These results can be utilized when considering climatically-driven 

abiotic risks in forest management. 

It was found that variations in forest fire activity in Finland have been closely related to weather 

variations within the last about 20 years. If a similar relationship between weather and fire activity 

holds for the next 100 years, it could lead to a considerable increase in the number of forest fires in 

Finland assuming the current climate projections are realized. However, the results also emphasized 
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the large uncertainty related to the forest fire projections originating from the variations between 

different climate model simulations. Moreover, as climate is only one factor affecting fire activity, 

other factors may be more important in the long term. This is illustrated by the dramatic decline in 

annual burned area in Finland after the 19th century (Wallenius, 2011) without any significant change 

in the climatological fire proneness of Finnish forests at the same time (Mäkelä et al., 2012). 

The results of climate change impact on forest fire risk are in accordance with previous studies in the 

field. Kilpeläinen et al. (2010a) estimated that the annual number of forest fires in Finland could 

increase by approximately 20% during the present century due to climate change. Mäkelä et al. (2014) 

similarly concluded that the number of fire danger days will most likely increase. As not only the fire 

frequency, but also the average size of forest fires tends to increase with increasing fire danger, the 

change in burned area is expected to be larger than the change in the number of fires. 

The projected increase in forest fire risk is evidently due to the projected increase in temperature 

leading to enhanced evaporation from and reduced moisture content of forest fuels. The fire season is 

moreover expected to start earlier in the future because of earlier snow melt. In addition to temperature 

increase, also slightly decreasing summertime relative humidity contributes to the projected increase 

in fire risk. For future wind speed changes, climate models do not have a uniform signal. Precipitation 

is mostly projected to increase in Finland throughout the year. However, in the south, the change is 

small in summer and might even be negative. 

Weather conditions favouring heavy snow loading and rime accretion on tree crowns were projected 

to become more frequent in northern Finland and in the regions of North Karelia and Kainuu near the 

Russian border. In contrast, in southern and western Finland, particularly in coastal areas, snow loads 

were projected to decrease. The areas experiencing increasing risk of heavy snow loads are mostly 

those where heaviest crown snow loads already occur in the present climate. An important reason for 

the heavy snow loads over these areas is that they are susceptible to rime accumulation because of 

relatively high terrain elevation. The projected changes in snow load amounts appeared to be linked 

to the climatological mean temperature as snow loads were projected to increase over the areas 

experiencing the coldest winters in Finland. Over these areas both heavy wet snow loads and rime 

loads were projected to increase. The results suggest that in the risk areas the possibility of snow 

damage should be taken into account in forest management when considering, for example, 

regeneration and thinning options. 

Projections for heavy snow loading contradicted the previous conclusion of Kilpeläinen et al. (2010b) 

that the risk of snow damage in forests would decrease virtually over the whole of Finland. This was 

because Kilpeläinen et al. (2010b) used the G08 method, which was shown to correspond mainly to 

the dry snow load component of the FMI snow load model. Gregow et al. (2008) had previously 

concluded that the risk of heavy snow loads would increase during the late 20th century. However, 

any significant trend in the heavy snow loads during the last 50 years could not be detected in Paper III 

when considering only the stations where observed wind speeds did not show a significant and 

presumably artificial trend. On the other hand, the snow load projections were in accordance with 

previous model studies considering heavy snowfalls. It has been shown that based on the climate 

models, maximum snowfall tends to increase with increasing temperature approximately over the 

areas where monthly mean temperature is below −8°C (de Vries et al., 2014; Räisänen, 2016). 
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There was in general less variability among model results in snow load projections compared to the 

forest fire risk projections. However, many sources of uncertainty still exist also in snow load 

projections. As snow accumulation on tree crowns is most effective in a narrow temperature range 

close to 0°C, the snow load calculations are sensitive to the weather conditions near freezing point. 

Furthermore, the snow load models are not perfect and they approximate the amount of snow on 

idealized tree crowns. The analyses were moreover restricted by the spatial and temporal resolution 

of climate model data. Better verification of the snow load model would be also beneficial, for 

example on the basis of detailed national forest inventory data. 

The results of this thesis provide support for estimating future occurrence probabilities of fire and 

snow hazards in Finnish forests. These risks can be reduced by proper forest management, although 

climate change is in any case predicted to foster forest growth in Finland (Kellomäki et al., 2008). For 

example, an uneven-aged management system makes forests more vulnerable to the spread of crown 

fires (Lindberg et al., 2011). In addition to the increasing fire risk, increased droughts may threaten 

the health of forests (e.g. Gao et al., 2016). In particular, Norway spruce is expected to suffer on less 

fertile sites (Kellomäki et al., 2008). Boreal forests are, moreover, susceptible to other abiotic and 

biotic risks than those considered in this thesis. Decreasing wintertime ground frost will make the 

forests more vulnerable to windstorms (Gregow et al., 2011) and, on the other hand, lack of ground 

frost may reduce the carrying capacity of soil for timber harvesting (Kellomäki et al., 2010). In 

summer, pest insects may benefit from increasing temperatures (e.g. Logan et al., 2003; Jönsson et 

al., 2009). 
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Summaries of the original publications 

The contents of Papers I–IV and the author’s contribution are summarized here. 

 

I Lehtonen, I., K. Ruosteenoja, A. Venäläinen and H. Gregow (2014). The projected 

21st century forest fire risk in Finland under different greenhouse gas scenarios. Boreal 

Environment Research, 19: 127–139. 

 Paper I examines the future forest fire risk at four locations in Finland under three 

alternative greenhouse gas scenarios and in different forest stands typical of the northern 

boreal zone. The author was responsible for the calculations and analyses of the results. 

The author was also mainly responsible for the writing. 

 

II Lehtonen, I., A. Venäläinen, M. Kämäräinen, H. Peltola and H. Gregow (2016). Risk of 

large-scale fires in boreal forests of Finland under changing climate. Natural Hazards 

and Earth System Sciences, 16: 239–253. 

 Paper II estimates the impact of projected climate change on the burned area and risk of 

relatively large-scale fires in the Finnish forests. The paper moreover studies the climate 

model based uncertainty in the forest fire risk projections. The climate change impact is 

estimated by studying the relationship between observed fire activity and weather 

conditions in the present climate and assuming a similar relationship to hold in the 

future. The future climate projections are based on statistically downscaled global 

climate model data. The author was responsible for the calculations, data analysis and 

writing, excluding most of the work concerning bias correction and downscaling of the 

climate model data. 

 

III Lehtonen, I., P. Hoppula, P. Pirinen and H. Gregow (2014). Modelling crown snow 

loads in Finland: a comparison of two methods. Silva Fennica, 48: 1120. 

 Paper III describes the FMI snow load model and presents the crown snow load 

climatology of Finland. The author was responsible for all the snow load calculations 

and writing. 

 

IV Lehtonen, I., M. Kämäräinen, H. Gregow, A. Venäläinen and H. Peltola (2016). Heavy 

snow loads in Finnish forests respond regionally asymmetrically to projected climate 

change. Natural Hazards and Earth System Sciences, 16: 2259–2271. 

 Paper IV presents the projections for future crown snow loads in Finland using the same 

statistically downscaled set of climate model data that was applied in Paper II. The 

author was responsible for the snow load calculations, data analysis and writing. 
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