
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2008

Event detection with common user interests
Meishan HU

Aixin SUN
Nanyang Technological University

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1145/1458502.1458504

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
HU, Meishan; SUN, Aixin; and LIM, Ee Peng. Event detection with common user interests. (2008). WIDM '08: Proceedings of the 10th
ACM workshop on Web information and data management. 1-8. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/331

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1458502.1458504
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Event Detection with Common User Interests

Meishan Hu, Aixin Sun
School of Computer Engineering
Nanyang Technological University

Singapore 639798
{hu0004an, axsun}@ntu.edu.sg

Ee-Peng Lim
School of Information Systems

Singapore Management University
Singapore 178902

eplim@smu.edu.sg

ABSTRACT
In this paper, we aim at detecting events of common user
interests from huge volume of user-generated content. The
degree of interest from common users in an event is evi-
denced by a significant surge of event-related queries issued
to search for documents (e.g., news articles, blog posts) rel-
evant to the event. Taking the stream of queries from users
and the stream of documents as input, our proposed frame-
work seamlessly integrates the two streams into a single
stream of query profiles. A query profile is a set of doc-
uments matching a query at a given time. With the single
stream of query profiles, the well-studied techniques in event
detection (e.g., incremental clustering) could be easily ap-
plied. In our experiments using real data collected from Blog
and News search engines respectively, the proposed tech-
nique achieved very high event detection accuracy.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering ;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering

General Terms
Experimentation, Design

Keywords
Event Detection, Query Profile, Popular Queries, Blog

1. INTRODUCTION
The user-generated content, such as queries, blog posts,

and comments, has become an ideal source for understand-
ing the interests of common users. Taking the common
user interests as one input, many Information Retrieval (IR)
tasks can potentially be more user-oriented by addressing
the information needs of a large number of users. Most ex-
isting IR tasks, however, have largely ignored such valuable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558-260-3/08/10 ...$5.00.

information sources. Event detection is one of them, which
has always been an important research topic in IR and has
many useful applications.

1.1 Motivation
In event detection, the objective is to detect events from a

temporally-ordered stream of documents (e.g., news articles)
and organize these documents according to the events they
describe [2]. Most existing solutions addressed the problem
using unsupervised learning approaches and no input from
common users was considered in the process. Two potential
problems exist for these solutions: (i) many documents that
receive no interest from common users are processed, re-
sulting in unnecessary computation overhead, and (ii) many
detected events are less useful to most users as the events
are not of their interests. Without knowing which docu-
ment deserves more interests from common users than oth-
ers, all documents are processed with equal importance. In
the news domain, Google News1 and Yahoo! News2 are cur-
rently tracking 4500 and 5000 sources respectively [11], and
it is computationally expensive to process every document
received from these sources. For blogs, an event detection
system would have to deal with millions of blogs as sources.
In reality, however, most users are only interested in a small
subset of news articles and blog posts. If we can determine
the user-interested documents and use only these documents
in event detection, we can significantly reduce the amount of
documents to be processed and also effectively detect events
that are of the interests of common users.

In this research, we determine common user interests man-
ifested at most news/blog sites as users often search for
news/blogs of their interests using keyword queries. Given
the nature of news/blogs, many of these keywords are event-
related [13, 16]. When a bursty event happens, a large num-
ber of queries related to the event is often issued by a large
number of users around the world, making them the popular
queries in that period. Figure 1 captures the popular queries
published by Technorati3 on 28 Dec 07, one day after the
Assassination of Benazir Bhutto4. The first 4 most pop-
ular queries are all related to this event. A sharp increment
in the number of blog posts mentioning Benazir Bhutto right
after the event’s happening was also observed. Such a surge
in the number of blog posts mentioning the keyword suggests

1http://news.google.com
2http://news.yahoo.com
3http://www.technorati.com/pop/
4http://en.wikipedia.org/wiki/Assassination_of_
Benazir_Bhutto

1

���������	
���

�������������������������	
����������
���������
����������
����������������������������

Figure 1: Top searches from Technorati.com

strong user interests in the event. Even for general-purpose
search engines, it was observed that when an event happens,
the number of related queries increases dramatically [25].

To summarize, information provided by common users,
e.g., queries, gives strong indications of the events they con-
cern or are interested in. With common user interests iden-
tified, an event detection process can be guided to process
only those documents that are more likely to receive atten-
tion from common users and produce events of common user
interests. At the same time, many documents that are lack
of interests from common users can be safely ignored in the
detection process, reducing the computational overhead.

1.2 Research Objectives and Contributions
In this paper, we focus on detecting events of com-

mon user interests. Given a stream of documents each
attached with its publication time, and a stream of popu-
lar queries representing common user interests, our task is
to group documents into events that are concerned by users.
An event of common user interests to be detected there-
fore consists of:

• A set of documents extracted from the document stream
that describes the event as defined in most existing
event detection tasks.

• A set of representative keywords describing the event
for easy browsing and searching. These keywords can
be derived from the popular queries, the documents
belonging to the event, or both.

• A time period within which common users are inter-
ested in the event. This time period maybe different
from the start and end time detected in most existing
event detections. In our setting, common users may
pay attention to an event even before its happening
(e.g., a release of a movie) for instance.

Detecting events of common user interests is challeng-
ing for two reasons. Firstly, not all popular queries from
users at a given time are event-related. The observation
that event-related queries increases dramatically after a ma-
jor event happens does not necessarily imply that all popu-
lar queries are event-related. Identifying only those event-
related queries is therefore a key challenge. Secondly, multi-
ple queries may be related to the same event, and the same
query issued at different times may be related to different

events. As illustrated by our example in Figure 1, all 4 top
queries refer to the same event. However, the query Pakistan
may refer to another event happens in Pakistan if searched
six months later.

We summarize our contributions in this work as follows:

1. We formally define the problem of event detection of
common user interests. To address the problem, we
propose a framework that nicely integrates a stream
of queries representing common user interests and a
stream of documents into a stream of query profiles.
The well studied techniques in event detection can then
be easily applied. In simple words, a query profile is
a set of documents matching a given query at a given
time.

2. We propose the notion of temporal query profile and
define four measures, namely, cohesiveness, time-span,
content-similarity, and novelty, to describe the proper-
ties of query profiles and their relationships. All these
measures can be derived with minimum computational
cost, making them ideal for online processing.

3. We conducted experiments using real data collected
from Technorati and Google News. Other than show-
ing events of common user interests can be effectively
detected, our experiments also indicate that the pro-
posed method can be easily integrated to any existing
search engine for news/blogs.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2

reviews the related work. Section 3 gives an overview of the
proposed framework. The temporal query profile and its
measures are described in Section 4, followed by the event
detection algorithm in Section 5. Our experiments are pre-
sented in Section 6. We conclude the paper in Section 7.

2. RELATED WORK
Most event detection works address tasks defined in Topic

Detection and Tracking (TDT), including new event detec-
tion, topic tracking and retrospective event detection [1, 2,
20]. The goal is to group documents (e.g., news articles)
received from one or more temporally-ordered stream(s) ac-
cording to the events that they describe. Our work is more
related to new event detection and topic tracking.

One common approach is to model event detection as an
online incremental clustering task [1, 2, 19, 20]. Documents
received from a stream are processed in the order of their
arrival. For each document, its similarities to the existing
events (clusters of documents) are computed, and the doc-
ument is assigned to either an existing event or a new event
based on predefined criteria. Methods in this approach vary
mainly in the way of computing the similarity between a
document to an existing event [2, 3, 11, 12, 21, 22, 23].

Another approach for event detection is to identify bursty
features from a document stream [7, 8, 10]. Features sharing
similar bursty patterns in similar time periods are grouped
together to describe events and also determine the periods of
the bursty events. The detected bursty events are therefore
described by a set of features, not a cluster of documents.

Event detection based on pre-given user queries is best
represented by [6, 9]. Fung et al proposed a retrospective
event detection by constructing an event hierarchy for a

2

����
������ ���������!���"��������
#����

$%�����

�&

��

�&

����
�������

��� ���

���
$%����

����"�����

��"������������

��

Figure 2: The proposed framework

given user query [6]. Bursty features related to the user
query are first identified from the document collection. Doc-
uments related to those bursty features are then extracted
from the collection and organized in an event hierarchy.
In [9], a user specifies an event (or a topic) of interest us-
ing several keywords as a query. Multiple textual streams
(e.g., news feed, emails) are monitored and the result to the
query is a combination of streams that (i) sufficiently corre-
lated, and (ii) collectively contain all query keywords within
a time period. Different from that in [6, 9], in our problem
setting, we aim to detect those events interest to many users
in real-time and the queries from users are not pre-given.

Our work is also related to the studies on query logs of
general search engines (e.g., MSN) [18, 24]. Event detec-
tion using click-through data proposed in [25] is based on
two observations: (i) when an event occurs, the number
of related queries increases dramatically, and (ii) there is
strong co-occurrence between this set of queries and a set
of webpages clicked. This work is similar to ours, as both
aim to detect events based on user queries. However, three
major differences exist. Firstly, in [25], only click-through
data is used for event detection but not the web page con-
tent. In our work, we consider the content of the documents
(news/blogs) without accessing the click-through data. Sec-
ondly, the query logs used in [25] are from a general search
engine, which are quite different from news/blog search en-
gines in nature and unavailable to the public. Thirdly, the
proposed method in [25] is for retrospective event detection
whereas ours is online event detection.

The notion of temporal query profile proposed in this pa-
per is quite related to those reported in [4] and [5]. In [5],
a temporal query profile is defined by the probability that
a query is generated at a particular time. Our definition
differs as we define a query profile to be the set of docu-
ments matching the query at a given time. Moreover, query
profiles in [5] are not used for event detection. Chieu and
Lee [4] also studied the problem of detecting events based
on queries. In their problem setting, important events are
those reported in a large number of news articles and each
event is constructed according to one single query and rep-
resented by an extracted set of sentences. In our problem
setting, we aim to detect events that are concerned with by
a large number of common users. More importantly, events
are formed online according to the affinity between queries
measured using their temporal profiles and represented by
the detected set of query profiles.

3. EVENT DETECTION FRAMEWORK
Our proposed framework takes two streams as input: (i)

a stream of documents, and (ii) a stream of popular queries
representing common user interests, as shown in Figure 2.
Note that, in contrast, most existing event detection takes a

stream of documents as the only input. To avoid processing
documents that may not be interesting to common users,
our proposed framework is mainly driven by the stream of
popular queries. These queries can be obtained periodically
(e.g., every 3 hours in our data collection). For each query,
the subset of documents matching the query at that time is
then retrieved from the document stream through a search
engine, as shown in Figure 2. The retrieved subset of doc-
uments forms the query’s temporal profile. Based on its
properties, a query profile is either placed into the query
profile stream if the query is likely to be event-related, or
dropped otherwise. The query profile stream is then fed into
the event detection module. Note that, by integrating the
two streams into one stream of query profiles, our problem
fits well into existing event detection framework, offering us
the advantage of utilizing the well-studied techniques in de-
tecting events. In this paper, we therefore adopt the simple
online incremental clustering algorithm, commonly used in
the event detection community, for grouping query profiles
into events.

In summary, with the notion of query profile and the uti-
lization of a search engine, our framework integrates the
document stream and the popular query stream into one
query profile stream, in a seamless manner. During the in-
tegration, documents that do not match common user inter-
ests are naturally ignored since they are not included in the
search results of popular queries, leading to reduced compu-
tational cost. At the same time, the popular queries are now
attached with their query profiles where more semantics can
be derived to better facilitate event detection.

4. TEMPORAL QUERY PROFILE
In this section, we formally define temporal query profile,

and then discuss properties of temporal query profile.

Definition 1. Temporal Query Profile

Let S be a document stream where each document di ∈ S is
associated with its time-stamp ti. Let Dq,t be the set of doc-
uments matching query q from document stream S at time
t. The temporal query profile of query q issued at time
t over document stream S, denoted by Pq,t, is the set of (at
most) Np most recent documents from Dq,t that are created
on or before t; i.e., Pq,t ⊆ Dq,t, |Pq,t| ≤ Np, and ∀di ∈ Pq,t,
�dj ∈ (Dq,t − Pq,t) s.t. tj > ti.

In simple words, a query profile is a set of recently pub-
lished documents matching the given query. In the above
definition, |Pq,t| denotes the size of the temporal query pro-
file. Np is a predefined constant (Np=50 in this paper).
A query profile may be smaller than Np if there are fewer
documents matching q at a given time.

4.1 Query Profile Measures
We propose four measures to describe a query profile (i.e.,

cohesiveness and time-span) and the relationships between
query profiles (i.e., content-similarity and novelty).

• Cohesiveness is a measure of the intra-similarity among
the documents of a query profile, similar to that de-
fined for clustering analysis [17]. We define cohesive-
ness by the averaged similarity between each document
to the centroid of the query profile. Let vi be the term
vector derived from document di. The centroid C(Pq,t)

3

and cohesiveness H(Pq,t) of a query profile Pq,t are de-
fined by Equations 1 and 2 respectively, where cos(,)
denotes the cosine similarity metric.

C(Pq,t) =
1

|Pq,t|

∑

di∈Pq,t

vi (1)

H(Pq,t) =
1

|Pq,t|

∑

di∈Pq,t

cos (vi, C(Pq,t)) (2)

• Time-span refers to the length of the minimum time
period covering the time-stamps of all documents in a
query profile. Formally, the time-span TSpan(Pq,t) of
query profile Pq,t is given in Equation 3.

TSpan(Pq,t) = max
di∈Pq,t

(ti) − min
dj∈Pq,t

(tj) (3)

• Content Similarity between two query profiles is the
similarity based on the content of the documents in-
cluded in the query profiles. We use the cosine simi-
larity between the centroids of the two query profiles
Pq,t and P ′

q,t for its simplicity and efficiency, denoted
by CSim(Pq,t, P

′
q,t). A similar measure has been pro-

posed to compute the similarity between two short text
snippets [14].

CSim(Pq,t, P
′

q,t) = cos(C(Pq,t), C(P ′

q,t)) (4)

• Novelty of query profile Pq,t with respect to P ′
q,t mea-

sures the amount of information contained in Pq,t that
is not already known in P ′

q,t. In this paper, it is de-
fined by the ratio of the documents that are contained
in Pq,t but not in P ′

q,t (see Equation 5). Note that
novelty measure is asymmetric.

Novelty(Pq,t, P
′

q,t) =
|Pq,t − P ′

q,t|

|P ′
q,t|

(5)

With the two measures of content similarity and novelty, it
is relatively easy to tell the relationship between two profiles
Pq,t and P ′

q,t:

1. Pq,t is not relevant to P ′
q,t if CSim(Pq,t, P

′
q,t) is small;

2. Pq,t is relevant to P ′
q,t but contains no new information,

if CSim(Pq,t, P
′
q,t) is large but not Novelty(Pq,t, P

′
q,t);

3. Pq,t is relevant to P ′
q,t and contains new information to

P ′
q,t, if both CSim(Pq,t, P

′
q,t) and Novelty(Pq,t, P

′
q,t)

are large.

4.2 Query Profiles and Events
In this section, we state some observations on searching

document stream and then discuss our method using query
profiles and the proposed measures.

Observation 1. If a query q issued at time t is related to
some event, there is likely a large number of documents de-
scribing the event matching q published within a short period
before t.

Here, we assume that the document stream to be searched
contains enough documents. For instance, 4500 sources are
subscribed by Google News, even if each source reports the
event in one article, the number of articles matching a query
could be very large. Moreover, all the matching articles are

published within a short period of the event’s happening
given the nature of news reporting. Observation 1 suggests
a way to determine whether a user query q at time t is
event-related. Recall that, a query profile Pq,t is the set of
(at most) Np most recent documents matching q at t. The
query profile for an event-related query should demonstrate
(1) large cohesiveness, and (2) small time-span since the
maximum size of a query profile is fixed at Np.

Observation 2. If both queries q and q′ are related to
the same event at time t, there are likely a large number
of documents describing the event matching both q and q′

published close to t.

Referring to the real example given in Figure 1, users often
search documents relevant to the event using name variants
of the person involved in the event, and the location of the
event. As all these information are likely to be mentioned
together in every article reporting the event, all the four
queries in Figure 1 are likely to share similar set of doc-
uments. In other words, if two queries q and q′ are both
related to the same event at time t, the content similarity
between their query profiles, i.e., CSim(Pq,t, Pq′,t) is ex-
pected to be higher than that between queries not related
to the same event.

Observation 3. If a query q is related to an event that
lasts for some time, the documents matching q for two searches
at time t1 and t2, both within the period of the event, are
likely to describe the evolution of the event.

An event often lasts for some time, e.g., several days or
even weeks, and it is common for a user to search for the
updates about the event using the same query related to
the event at different time points. Searching the document
stream with the same query q at different time points t1
and t2 (t2 > t1) leads to two query profiles, i.e., Pq,t1 and
Pq,t2 respectively. CSim(Pq,t1 , Pq,t2) might be large if (i)
the time difference between t1 and t2 is relatively small, say
one or two hours; or (ii) the time difference between t1 and
t2 is relatively large, but the event evolves at very slow pace.
In both cases, Novelty(Pq,t2 , Pq,t1) might be low if not many
new documents relevant to the event were published between
t1 and t2. On the other hand, if time difference between t1
and t2 is relatively large and the event evolves very fast,
CSim(Pq,t1 , Pq,t2) could be small despite they are relevant
to the same event.

In summary, the three observations, with the proposed
measures, can be used for query profiles and our event de-
tection.

5. ONLINE EVENT DETECTION
With the measures defined on query profiles, we propose

an event detection process utilizing the simple online cluster-
ing algorithm. The process consists of three major modules,
namely, event-related query identification, event assignment,
and event archive.

5.1 Event-Related Query Identification
As event evolution takes time, it is unnecessary to evaluate

popular queries too frequently. We partition the time into
continuous and non-overlapping intervals Tσ (Tσ = 3 hours
in our experiments). At the end of each time interval, the

4

set of popular queries5 is examined and their profiles are
built.

Let tσ be the end time of the last time interval and Qσ be
the set of popular queries obtained. For each query q ∈ Qσ,
its query profile Pq,tσ is built through blogs/news search en-
gine(s) as these search engines match queries with both con-
tent similarity and recency [13]. Based on the observations
discussed in Section 4.2, we identify event-related queries
based on both the cohesiveness and the time-span of the
query profiles. Specifically, a query q at time tσ is expected
to be event-related if H(Pq,tσ) ≥ Hθ and TSpan(Pq,tσ) ≤
Tθ, where both Hθ and Tθ are pre-defined threshold. Val-
ues for Hθ and Tθ can be determined by analyzing the data
collected.

5.2 Event Detection Algorithm

5.2.1 Event Assignment
We adopt the simple online clustering algorithm to as-

sign query profiles to events. That is, an event is a subset
of query profiles. Given the stream of event-related query
profiles, the algorithm takes the first query profile to form
one event. For each new-coming query profile, Pq,t, its sim-
ilarities to all existing events are computed. Let Ek be the
nearest neighbor of Pq,t, and Sim(Pq,t, Ek) be their similar-
ity, Novelty(Pq,t, Ek) be the novelty of Pq,t with respect to
Ek. The query profile Pq,t is processed with the following
rules, where Sθ and Vθ are pre-defined thresholds.

• If Sim(Pq,t, Ek) < Sθ, a new event is created using
Pq,t.

• If Sim(Pq,t, Ek) ≥ Sθ and Novelty(Pq,t, Ek) < Vθ,
then query profile Pq,t is dropped, since inclusion of
Pq,t does not introduce new information to Ek.

• If Sim(Pq,t, Ek) ≥ Sθ and Novelty(Pq,t, Ek) ≥ Vθ,
then query profile Pq,t is assigned to Ek. The repre-
sentation of Ek is updated accordingly.

In the above discussion, Novelty(Pq,t, Ek) is defined by
the minimum novelty between Pq,t to any query profile con-
tained in Ek, shown in Equation 6.

Novelty(Pq,t, Ek) = min
P ′

q,t∈Ek

Novelty(Pq,t, P
′

q,t) (6)

5.2.2 Similarity Computation
To compute the similarity between a query profile and an

event, one simple option is to represent an event using the
centroid of all query profiles (or documents) contained in
the event. However, an event may last for a long time and
evolve at a fast pace, the new coming query profiles may not
be similar to some old query profiles contained in the same
event.

Among all the query profiles contained in event Ek, let Pk

be the set of query profiles that are created within W days
(W=10 in our experiments) with respect to the most recent
query profile in Ek. We represent Ek using the centroids of
query profiles in Pk, denoted by C(Ek), (see Equation 7).

5As we do not have access to query log of any commercial
search engine, in our experiments, we subscribed the popular
queries published by Technorati.com. The details on how to
obtain these popular queries can be found in [16].

C(Ek) =
1

|Pk|

∑

Pq,t∈Pk

C(Pq,t) (7)

The similarity between a query profile Pq,t and an event
Ek consists of two components: content similarity and query
similarity. The content similarity is defined by the cosine
similarity between the centroid of Pq,t and that of Ek. The
query similarity is applicable only if there exists a query
profile in Ek whose query q matches the query in Pq,t. Let
Pq,t′ be the latest created query profile in Ek matching the
query of Pq,t. Let Diff(t, t′) be the time difference between
t and t′ in number of days. The query similarity between
Pq,t and Ek is defined in Equation 8.

QSim(Pq,t, Ek) = exp
−

Diff(t,t′)
2 (8)

Note that QSim(Pq,t, Ek)=0 if there is no existing query
profile in Ek has the same query as Pq,t.

User may use the same query to search for what is going
on for an event. In the case that the event evolves very
fast, the content similarity may fail to decide whether a new
coming query profile should be assigned to that event. Query
similarity is therefore designed based on the heuristics that
the same query issued within a short period is likely related
to the same event.

Hence, the similarity between Pq,t and Ek is computed as
in Equation 9.

Sim(Pq,t, Ek) = cos(C(Pq,t), C(Ek))+QSim(Pq,t, Ek) (9)

5.2.3 Event Archive
Typically users are interested in an event for a finite pe-

riod of time. Hence, events that are relatively old can be
archived and removed from the main memory to speedup
the computation. In our experiments, if an event has not
received any new query profile for a certain number of days
(e.g., 10 days in our experiments), the event is recorded to
a database. This can significantly reduce the number of
events stored in main memory and hence reduce the cost in
computing the similarities for a new-coming query profile.

6. EXPERIMENTS

6.1 Data Collection
We collected the 15 most popular queries published by

Technorati every 3 hours from 2006-11-08 1AM to 2008-
03-31 10PM (17 months). Each of these popular queries
was submitted to Technorati (TR for short) and Google
News (GN for short) independently. The first 50 results
returned by each search engine were recorded for building
query profiles6. The title and snippet of each search result
are extracted as the content of each document. These docu-
ments were preprocessed by punctuation removal, stopword
removal and stemming using Lucene7 and KStem8. Note
that the query profiles built from GN and TR are used sep-
arately in the event detection process.

6.2 Dataset Analysis
We first report some statistics on the query profiles built

from each search engine. Note that all our discussions here-

6Only top 50 results were recorded due to API constraints.
7http://lucene.apache.org/
8http://ciir.cs.umass.edu/

5

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f q
ue

ry
 p

ro
fil

es

Query profile cohesiveness

TR
GN

(a) Profile cohesiveness distribution

 0
 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

Cohesiveness Timespan (days)

N
um

be
r o

f q
ue

rie
s

TR

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9105K
10K
15K
20K
25K
30K
35K
40K

(b) Technorati

 0
 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

Cohesiveness Timespan (days)

N
um

be
r o

f q
ue

rie
s

GN

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9105K
10K
15K
20K
25K
30K
35K
40K

(c) Google News

Figure 3: Cohesiveness and Query Profiles

Table 1: List of parameters used in event detection

Parameter Symbol Value for TR Value for GN
Cohesiveness Hθ 0.25 0.35
Time-span(hour) Tθ 60 48
Similarity Sθ 0.35 0.40
Novelty Vθ 0.5 0.5

after are based on query profiles having size of 50 (the pre-
defined query profile size Np).

Figure 3(a) plots the distribution of query profiles against
their cohesiveness, from TR and GN respectively. On av-
erage, cohesiveness of the query profiles built from GN is
higher than that from TR. The median of the query profile
cohesiveness from TR and GN is 0.27 and 0.36 respectively.
Given the nature of blogs being noisy and informal, the dis-
cussions in blogs are expected to be more diverse than that
in news articles.

Figures 3(b) and 3(c) plot the number of query profiles
with respect to cohesiveness and time-span filtering. Each
point on the plotted surface indicates the number of query
profiles that would be identified as event-related when cohe-
siveness threshold Hθ is set to its x-axis value and time-span
threshold Tθ set to its y-axis value. Both figures suggest that
the time-span is likely short for query profiles that have high
cohesiveness. On the other hand, for those with low cohe-
siveness, the time-span could be up to several days. Com-
pared to that of TR, query profiles built from GN are more
likely to have long time-span. This, however, might be at-
tributed to the ranking mechanism used by the two search
engines.

Values for all parameters in our experiments are listed in
Table 1. The cohesiveness and time-span thresholds, i.e.,
Hθ and Tθ, were set mainly based on the median/mean of
query profiles from TR and GN respectively. In strict online
setting, these values can be estimated when a large number
of query profiles have been processed. For the similarity
threshold Sθ, we experimented by varying Sθ for TR and
GN respectively. Our results showed that, within certain
range (i.e., [0.25, 0.45] for TR, and [0.30, 0.50] for GN),
different values for Sθ had no significantly different impact
on the duration of the detected events. Hence, we set 0.35
and 0.40 respectively for TR and GN.

6.3 Performance Evaluation
Evaluating the proposed technique is challenging, as there

is no ground truth labels for the detected events. In our ex-
periments, by referencing to a single information repository,

i.e., Wikipedia9, we manually examined the detected events,
where quality of the verification is ensured. Nevertheless, it
is well understood that not all events are worth recording in
Wikipedia. For each detected event whose duration is not
shorter than 1 day, we searched Wikipedia using the queries
describing the event and labeled the events with one of the
four labels:

• True event: If the event is recorded in a Wikipedia
article and the time of the recorded event is within a
short period of the detected duration10.

• Segment event: If the detected event is wrongly split
from a detected true event to which it should belong;

• Mixed event: If the detected event contains queries
and documents from two or more events recorded in
Wikipedia.

• Unknown event: If we cannot locate an entry recording
the event in Wikipedia. Most events mainly containing
non-English queries were also labeled as unknown due
to the lack of understanding about their meaning.

Due to the limited resource, we only labeled the events de-
tected using the parameter setting given in Table 1. From
our experimental results, we found that the proposed method
and the set of parameters used could detect events with high
accuracy.

Table 2 reports the number of labels in the detected events
using profiles built from TR and GN respectively. For each
row in the table, the numbers of events with different labels
are derived from all the events having the minimum dura-
tion specified in the left-most cell. Overall, the true-event
detection rate is fairly high, with 71% of TR and 61% of
GN for events with minimum duration of 1 day. For events
lasted for a long period, e.g. 4 weeks, many are mixed or un-
known events and the percentage of true events reduced to
63% and 49% respectively. Compared with that from GN,
the events detected from TR achieved higher accuracy. One
possible reason might be that the queries were collected from
blog search and some of the events may not be well covered
by news. We argue that the true event detection rate is
fairly high, as many events were labeled “unknown”, as not
all events are worth recording in Wikipedia. Nevertheless,
we believe the proposed technique would enjoy better accu-
racy if the detected events were evaluated by common users
during the detection process.
9http://en.wikipedia.org/

10There could be time delay from the event occurrence to its
attracting attention from common users.

6

In our labeling process, we observed that events having
high bursty rate were often accurately detected. We define
event bursty rate by the ratio of its size (i.e., the number
of query profiles it contains) against its duration. In an-
other words, bursty events are those attracted many popu-
lar queries in a short period. We hence report the top 20
events that have the highest bursty rates and lasted for at
least 10 days, shown in Tables 3 and 4 for TR and GN re-
spectively, ordered by bursty rate. For each event, we show
its related queries followed by its number of profiles. The
true, segment, mixed, and unknown events are indicated by
‘�’, ‘�’, ‘†’, and ‘?’ respectively (e.g., E2 is a segment of E4

in Table 4). The url of the Wikipedia entry11 is provided
for true events.

Among the top 20 events from TR in Table 3, 16 were
correctly detected. Given the nature of blog posts being
noisy and diverse, it is natural for bloggers to discuss sev-
eral related events in a single post. In such cases, our
method may therefore fail to separate events from one an-
other (e.g.,windows vista, iphone, wii in E16). Among the
20 events from GN in Table 4, 17 were correctly detected,
excluding the segment event E2. The events about which we
are not very clear are E9 and E10, consisting of queries pool
and none respectively. Comparing the events detected from
TR and GN, not surprisingly, we observed that the discus-
sions in blogs is much more informal than that in news and
may not be well supported by facts. For instance, wayne
chiang (who was wrongly identified as the shooter), was in-
cluded in the event Virginia Tech massacre detected from
TR but not in the same event detected from GN.

In summary, we evaluated the proposed event detection
approach using real world data, i.e., query stream collected
from blog search and document streams retrieved from two
search engines respectively (i.e., TR and GN). Our experi-
mental results showed very high accuracy in terms of true
event detected. In particular, events having high bursty rate
were often accurately detected probably attributed to strong
interests of common users.

7. CONCLUSION
In this paper, we studied the problem of detecting events

that are of interests of common users. An event attracted
much user interests is evidenced by a large number of queries
related to the event issued by users. Taking popular queries
as indication of common user interests, we proposed a frame-
work that seamlessly integrates the stream of documents
and the stream of popular queries with the utilization of a
search engine. For the integration, we proposed the notion
of temporal query profile and defined four measures on it.
With the stream of query profiles, our problem well fits into
existing event detection framework and a few well-studied
techniques can therefore be utilized to detect events. In spe-
cific, we employed online incremental clustering algorithm,
a commonly-used technique in event detection. Using real
data, our experimental results showed that the events could
be detected with very high accuracy, from both news arti-
cles and blog posts. More importantly, our proposed method
can be easily implemented on top of or integrated to existing
search engines for document stream without any modifica-
tion to their implementations.

11Only the part following http://en.wikipedia.org/ is
shown in the Tables.

8. REFERENCES
[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and

Y. Yang. Topic detection and tracking pilot study: Final
report. In Proc. DARPA Broadcast News Transcription and
Understanding Workshop, 1998.

[2] J. Allan, R. Papka, and V. Lavrenko. On-line new event
detection and tracking. In Proc. of SIGIR’98, pages 37–45,
Melbourne, Australia, 1998. ACM.

[3] T. Brants and F. Chen. A system for new event detection. In
Proc. of SIGIR’03, pages 330–337, Toronto, Canada, 2003.
ACM.

[4] H. L. Chieu and Y. K. Lee. Query based event extraction along
a timeline. In Proc. of SIGIR ’04, pages 425–432, Sheffield,
United Kingdom, 2004.

[5] F. Diaz and R. Jones. Using temporal profiles of queries for
precision prediction. In Proc. of SIGIR ’04, pages 18–24,
Sheffield, United Kingdom, 2004.

[6] G. P. C. Fung, J. X. Yu, H. Liu, and P. S. Yu. Time-dependent
event hierarchy construction. In Proc. KDD’07, pages
300–309, San Jose, California, USA, 2007. ACM.

[7] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free
bursty events detection in text streams. In Proc. VLDB’05,
pages 181–192, Trondheim, Norway, 2005. VLDB Endowment.

[8] Q. He, K. Chang, and E.-P. Lim. Analyzing feature trajectories
for event detection. In Proc. SIGIR’07, pages 207–214,
Amsterdam, The Netherlands, 2007. ACM.

[9] V. Hristidis, O. Valdivia, M. Vlachos, and P. S. Yu. Continuous
keyword search on multiple text streams. In Proc. CIKM’06,
pages 802–803, Arlington, Virginia, USA, 2006. ACM.

[10] J. Kleinberg. Bursty and hierarchical structure in streams.
Data Mining Knowledge Discovery, 7(4):373–397, 2003.

[11] G. Luo, C. Tang, and P. S. Yu. Resource-adaptive real-time
new event detection. In Proc. of SIGMOD’07, pages 497–508,
Beijing, China, 2007. ACM.

[12] J. Makkonen, H. Ahonen-Myka, and M. Salmenkivi. Simple
semantics in topic detection and tracking. Information
Retrieval, 7(3-4):347–368, 2004.

[13] G. Mishne and M. de Rijke. A study of blog search. In Proc. of
ECIR’06, pages 289–301, London, UK, 2006.

[14] M. Sahami and T. D. Heilman. A web-based kernel function
for measuring the similarity of short text snippets. In Proc. of

WWW’06, pages 377–386, Edinburgh, Scotland, 2006. ACM.

[15] I. Soboroff and D. Harman. Novelty detection: the trec
experience. In Proc. of HLT’05, pages 105–112, Vancouver,
British Columbia, Canada, 2005. ACL.

[16] A. Sun, M. Hu, and E.-P. Lim. Searching blogs and news: A
study on popular queries. In Proc. of SIGIR, Singapore, July
2008. ACM.

[17] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data

Mining. Addison Wesley, June 2006.

[18] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos.
Identifying similarities, periodicities and bursts for online
search queries. In Proc. SIGMOD’04, pages 131–142, Paris,
France, 2004. ACM.

[19] Y. Yang, J. G. Carbonell, R. D. Brown, T. Pierce, B. T.
Archibald, and X. Liu. Learning approaches for detecting and
tracking news events. IEEE Intelligent Systems, 14(4):32–43,
1999.

[20] Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective
and on-line event detection. In Proc. SIGIR’98, pages 28–36,
Melbourne, Australia, 1998. ACM.

[21] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned
novelty detection. In Proc. KDD’02, pages 688–693,
Edmonton, Alberta, Canada, 2002. ACM.

[22] K. Zhang, J. Z. Li, and G. Wu. New event detection based on
indexing-tree and named entity. In Proc. SIGIR’07, pages
215–222, Amsterdam, The Netherlands, 2007. ACM.

[23] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy
detection in adaptive filtering. In Proc. SIGIR’02, pages
81–88, Tampere, Finland, 2002. ACM.

[24] Q. Zhao, S. C. H. Hoi, T.-Y. Liu, S. S. Bhowmick, M. R. Lyu,
and W.-Y. Ma. Time-dependent semantic similarity measure of
queries using historical click-through data. In Proc. of
WWW’06, pages 543–552, Edinburgh, Scotland, 2006. ACM.

[25] Q. Zhao, T.-Y. Liu, S. S. Bhowmick, and W.-Y. Ma. Event
detection from evolution of click-through data. In Proc. of

KDD’06, pages 484–493, Philadelphia, PA, USA, 2006. ACM.

7

Table 2: Distribution of the labeled events from TR and GN
Events detected from TR Events detected from GN

Duration True Segment Mixed Unknown Total True Segment Mixed Unknown Total
1 day 371 (71%) 1 23 129 524 441 (61%) 5 15 265 726
2 days 279 (69%) 1 20 104 404 338 (58%) 4 12 228 582
3 days 229 (69%) 1 17 83 330 275 (57%) 3 11 193 482
1 week 135 (66%) 1 15 54 205 170 (54%) 2 9 134 315
2 weeks 67 (64%) 1 12 24 104 92 (53%) 1 4 76 173
3 weeks 37 (64%) 0 6 15 58 57 (52%) 0 3 50 110
4 weeks 26 (63%) 0 4 11 41 39 (49%) 0 3 38 80

Table 3: Top 20 events based on event burst rate detected from TR
Id Label Start, end dates Size Queries
E1. � 2007-04-17 2007-04-27 136 cho seung hui(52), virginia tech(47), ismail ax(23), blacksburg(11), wayne chiang(3)

[Virginia_Tech_massacre]
E2. � 2006-12-30 2007-01-15 213 saddam execution video(40), saddam execution(39), saddam hanging(33), saddam(32),

saddam video(32), saddam hussein(23), saddam hanging video(11), hussein(2), saddam
hussein execution(1) [Execution_of_Saddam_Hussein]

E3. � 2007-09-24 2007-10-06 105 burma(53), myanmar(27), free burma(25) [2007_Burmese_anti-government_protests]
E4. � 2007-07-10 2007-08-07 236 harry potter(152), harry potter spoiler(50), deathly hallows(29), harry potter spoilers(3),

harry potter ending(2) [Harry_Potter_and_the_Deathly_Hallows]
E5. � 2007-04-30 2007-05-10 79 silverlight(58), mix07(21) [Microsoft_Silverlight]
E6. � 2007-04-09 2007-04-19 71 imus(68), don imus(3) [Don_Imus]
E7. � 2007-08-28 2007-09-05 53 larry craig(53) [Larry_Craig]
E8. � 2007-02-09 2007-02-26 108 anna nicole smith(108) [Anna_nicole_smith]
E9. � 2007-06-05 2007-06-15 61 sopranos(46), sopranos finale(15) [The_Sopranos]
E10. � 2007-05-05 2008-03-06 1862 ron paul(1862) [Ron_Paul_presidential_campaign_2008]
E11. � 2007-07-03 2007-07-11 48 transformers(48) [Tranformers_(film)]
E12. � 2006-11-21 2006-12-03 71 michael richards(53), kramer(18) [Michael_richards]
E13. † 2008-03-11 2008-03-21 57 spitzer(23), ashley alexandra dupre(15), ashley dupre(10), dupre(4), eliot spitzer(3),

myspace(1), kristen(1)
E14. � 2007-03-04 2007-03-12 45 ann coulter(35), matt sanchez(10) [Matt_Sanchez]
E15. ? 2007-05-25 2008-03-31 1734 youtube(804), naruto(274), yahoo(134), rss(101), seo(62), skype(51), ipod(40), ipod

touch(38), wii(28), google(18)
E16. † 2006-11-08 2007-04-04 811 zune(225), youtube(209), windows vista(171), iphone(33), wii(32), apple tv(32), mac-

world(31), google(12), vista(12), emi(9)
E17. † 2007-02-22 2007-06-01 519 sanjaya(174), american idol(169), antonella barba(158), melinda doolittle(17), barba(1)
E18. � 2008-01-14 2008-01-24 51 macbook air(19), macworld(17), macworld 2008(5), apple(4), steve jobs(3), ipod

touch(2), engadget(1) [Macbook_air]
E19. � 2007-05-20 2007-06-01 61 starcraft 2(61) [StarCraft_II]
E20. � 2006-12-01 2006-12-12 55 james kim(55) [James_kim]

Table 4: Top 20 events based on event burst rate detected from GN
Id Label Start, end date Size Queries
E1. � 2007-04-17 2007-04-27 133 virginia tech(69), cho seung hui(53), blacksburg(11) [Virginia_Tech_massacre]
E2. � 2006-12-30 2007-01-10 133 saddam video(59), saddam execution video(41), saddam hussein video(14), saddam hang-

ing video(10), video(9) [Execution_of_Saddam_Hussein]
E3. � 2007-09-24 2007-10-05 102 burma(61), myanmar(27), free burma(14) [2007_Burmese_anti-government_protests]]
E4. � 2006-12-30 2007-01-29 269 saddam(176), saddam execution(37), saddam hanging(33), saddam hussein(12), hus-

sein(7), saddam hussein execution(4)[Execution_of_Saddam_Hussein]
E5. � 2007-04-09 2007-04-19 85 imus(76), don imus(9) [Don_Imus]
E6. � 2007-08-28 2007-09-05 59 larry craig(59)[Larry_Craig]
E7. � 2007-07-10 2007-08-07 197 harry potter(153), deathly hallows(28), harry potter spoiler(12), harry potter spoilers(3),

harry potter ending(1) [Harry_Potter_and_the_Deathly_Hallows]
E8. � 2007-03-25 2007-04-09 105 iran(105) [Nuclear_program_of_Iran]
E9. ? 2006-11-13 2006-11-26 86 pool(86)
E10. ? 2007-12-05 2007-12-19 90 none(90)
E11. � 2007-02-09 2007-02-26 109 anna nicole smith(109) [Anna_nicole_smith]
E12. � 2008-01-25 2008-02-05 67 jerome kerviel(62), societe generale(5) [Jerome_kerviel]
E13. � 2006-11-21 2006-12-03 70 michael richards(46), kramer(24) [Michael_richards]
E14. � 2007-07-03 2007-07-11 42 transformers(42) [Transformers_(film)]
E15. � 2007-03-01 2007-04-08 196 dell(196) [Dell]
E16. � 2007-06-05 2007-06-15 51 sopranos(39), sopranos finale(12) [The_Sopranos]
E17. � 2007-01-08 2007-03-01 261 iphone(175), apple(36), macworld(33), apple tv(15), apple phone(1), ipod(1) [Iphone]
E18. � 2007-09-09 2007-09-17 39 madeleine mccann(36), mccann(3) [Madeleine_Mccann]
E19. � 2006-11-08 2007-01-08 291 britney spears(146), britney(133), spears(8), britney spears crotch(2), britney spear(2)

[Britney_Spears]
E20. � 2007-01-17 2007-03-07 216 obama(167), hillary clinton(40), barack obama(9) [2008_U.S._presidential_election]

8

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2008

	Event detection with common user interests
	Meishan HU
	Aixin SUN
	Ee Peng LIM
	Citation

	widm16-hu(1).pdf

