
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-1999

Resource Scheduling in a High-Performance
Multimedia Server
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Bobby JOSE

M. S. KRISHNAN
Compaq Services, Singapore

DOI: https://doi.org/10.1109/69.761665

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PANG, Hwee Hwa; JOSE, Bobby; and KRISHNAN, M. S.. Resource Scheduling in a High-Performance Multimedia Server. (1999).
IEEE Transactions on Knowledge and Data Engineering. 11, (2), 303-320. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/112

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/69.761665
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


1

Resource Scheduling In A
High-Performance Multimedia Server

HweeHwa Pang, Bobby Jose, and M.S. Krishnan

Abstract—Supporting continuous media (CM) data£such as video and audio£imposes stringent demands on the retrieval
performance of a multimedia server. In this paper, we propose and evaluate a set of data-placement and retrieval algorithms to
exploit the full capacity of the disks in a multimedia server. The data-placement algorithm declusters every object over all of the
disks in the server£using a time-based declustering unit£with the aim of balancing the disk load. As for runtime retrieval, the
quintessence of the algorithm is to give each disk advance notification of the blocks that have to be fetched in the impending time
periods, so that the disk can optimize its service schedule accordingly. Moreover, in processing a block request for a replicated
object, the server will dynamically channel the retrieval operation to the most lightly loaded disk that holds a copy of the required
block. We have implemented a multimedia server based on these algorithms. Performance tests reveal that the server achieves
very high disk efficiency. Specifically, each disk is able to support up to 25 MPEG-1 streams. Moreover, experiments suggest that
the aggregate retrieval capacity of the server scales almost linearly with the number of disks.

Index Terms—Multimedia server, time-based storage scheme, declustering/striping, replication, look-ahead data retrieval.

——————————���F���——————————

1 INTRODUCTION

N recent years, demand for multimedia applications that
are capable of manipulating both continuous media

(CM) data, such as video and audio, and non-CM data (e.g.,
text and images), has been growing rapidly. Some examples
are interactive multimedia education [1] and news on de-
mand [28]. Such an application requires the underlying
multimedia server to organize and retrieve its data in a way
that would meet the performance objectives of the applica-
tion. For non-CM data, the performance objective is typi-
cally to minimize the response time, i.e., the elapsed time
between the issuance of a data request and the delivery of
the target data. In the case of CM data, in addition to mini-
mizing response time, there is also a constraint on the ac-
ceptable time interval between the delivery of successive
portions of the data. For example, successive frames of an
MPEG-1 [13] video may have to be retrieved within 1  sec-

contrast, a multimedia server needs to respect the temporal
relationship between the components of a CM stream. For
instance, it does not make sense to retrieve the frames of an
MPEG video randomly. A multimedia server, therefore,
needs to take into account this requirement for ordered re-
trieval in placing CM data on disk. In addition, the intra-
disk data-placement strategy should maximize the access
efficiency of individual disks, while the interdisk data-
placement policy should lead to a balanced load across all
of the disks in the system.

While good data-placement policies are crucial, the ulti-
mate performance determinant of a multimedia server is its
data-retrieval algorithm. This algorithm comprises a com-
ponent that decides when to request for each portion of an
object, and a disk scheduling component that governs the
way that the disks service their requests. Note that the need
for the first component is unique to multimedia servers
featuring CM data support; traditional systems that store
only non-CM data simply request for all of the blocks of an
object at once and let the disk scheduler figure out the best
way to fetch these blocks. A big challenge in designing the
data-retrieval algorithm is to optimize its handling of vari-
able bit rate streams, which could overload a disk during
some periods while leaving the disk lightly utilized at other
times. In order for the system to perform well under such
loads, the data-retrieval algorithm needs to be able to take
full advantage of lull periods to fetch data blocks that will
be needed shortly.

The multimedia server project at the Institute of Systems
Science was initiated in April 1994. The ultimate goal of the
project is to build a distributed server that is capable of
supporting both CM and non-CM data. As a first step to-
ward this goal, we have implemented a centralized CM serv-
er. The primary contribution of this paper is a set of data-
placement and retrieval algorithms that enable our server
to efficiently manage its disks, the bottleneck resources in

30

ond of each other in order to achieve jitter-free display.
These stringent performance objectives raise a number of
issues in the construction of multimedia servers.

The first issue in building a multimedia server is data
placement, both within individual disks and across multi-
ple disks. In traditional storage servers that support only
non-CM data, the order in which different portions of an
object are retrieved is usually immaterial; what matters is
the time that is needed to retrieve all of the portions. In

²²²²²²²²²²²²²²²²

�� H.H. Pang is with Kent Ridge Digital Laboratories, 21 Heng 
Mui Keng Terrace, Singapore 119613, Republic of Singapore.
E-mail: hhpang@krdl.org.sg.

�� B. Jose can be contacted at 8842 Winding Way, Suite 313,
Fair Oaks, CA 95628. E-mail: bobbyjose@yahoo.com.

�� M.S. Krishnan is with Compaq Services, Compaq Center Tampines Plaza,
5 Tampines Central 1 #05-01, Singapore 529541, Republic of Singapore.
E-mail: krishnan.ms@digital.com.

I



2

the server. We focus on how the algorithms handle inde-
pendent multimedia objects; the issue of scheduling multiple
dependent objects has been addressed elsewhere (e.g., [8]).
The data-placement algorithm declusters every object over
all of the disks, using a time-based declustering unit, with
the aim of balancing the disk load. Within each disk, objects
that are accessed more frequently are allotted pages in the
middle cylinders, whereas objects that are less popular re-
side in the outer and inner cylinders. As for runtime re-
trieval, the quintessence of the algorithm is to give each
disk advance notification of the blocks that have to be
fetched in the impending time periods, so that the disk can
optimize its service schedule accordingly. Moreover, in
processing a block request for a replicated object, the server
will dynamically channel the retrieval operation to the most
lightly loaded disk that holds a copy of the required block.
Extensive evaluations confirmed that the combination of
these algorithms results in a very efficient multimedia server.
Our implementation manages to achieve near jitter-free
retrieval for up to 25 concurrent MPEG-1 streams, each av-
eraging 1.2 Mbits/sec, out of a single Seagate Elite 9 drive
that is capable of reaching only a maximum sequential re-
trieval speed of around 6 Mbytes/sec. Moreover, experi-
ments suggest that the aggregate retrieval bandwidth of the
server scales almost linearly with the number of disks.

The remainder of this paper is organized as follows:
In Section 2, we present a framework for this study by
introducing a taxonomy of the design decisions, and
by classifying several related work according to this taxon-
omy. Section 3 presents an overview of our multimedia
server. Following that, the intradisk and interdisk data-
placement/retrieval algorithms are introduced in Sections 4
and 5, respectively. Section 6 describes the accompanying
memory management algorithm. Following that, Section 7
gives the results of a series of experiments that highlights
the performance of our implementation, while Section 8
uses a simulation model to show how the server might
scale up. Finally, our conclusions are presented in Section 9.

2 A TAXONOMY OF MULTIMEDIA SERVERS

A multimedia server comprises many components, among
which are storage space management, data-placement,
disk scheduling, and playback. As a result, a multimedia
server implementor faces a wide range of design deci-
sions. This section introduces a taxonomy of the design
options that encompasses the algorithms that are studied
in this paper, as well as other related algorithms proposed
in the literature.

There are many possible ways to slice the design space
for multimedia servers. The approach that we have taken is
to follow the sequence of events that are associated with the
data in a multimedia server, i.e., from compression, storage,
to retrieval. The levels of the taxonomy are described below.

1)�Object bit rate: The first decision facing an imple-
mentor is whether to design the server for constant
bit rate streams or variable bit rate streams. On one
hand, many compression standards, including the popu-
lar MPEG and JPEG, formats, produce variable bit
rate streams. Consequently, a server that supports

variable bit rate streams will be more versatile. On
the other hand, managing only constant bit rate
streams leads to a more predictable resource require-
ment. This greatly simplifies admission control and
resource scheduling, and is attractive from a quality
of service standpoint.

2)�Object partitioning: To facilitate storage space man-
agement and object retrieval, a server has to partition
a multimedia stream into a sequence of smaller units.
For a variable bit rate stream, there are two natural
ways to carry out the partitioning£fixed duration (FD)
vs. fixed-size (FS). In FD partitioning, the stream is di-
vided into blocks that each last the same playback du-
ration. This makes the arrival time of block requests at
playback more predictable, but introduces space
fragmentation problems. In contrast, FS partitioning
divides the stream into blocks of equal sizes, which
simplifies space management at the expense of un-
predictable block request arrival times. We will dis-
cuss in detail the trade-offs between FD vs. FS parti-
tioning in Section 4, when we present our design de-
cisions. Of course, there is no difference between the
two partitioning schemes in the case of constant bit
rate streams.

3)�Disk scheduling: At retrieval time, each disk usually has
to service multiple playback streams. The default disk
scheduling algorithms are SCAN and CSCAN [40].
Using these algorithms, a disk services the playback
streams as its read/write head sweeps across the
disk surface. This minimizes seek overheads, leading
to very efficient disk utilization. However, SCAN and
CSCAN are inadequate for variable bit rate streams
that are partitioned in a size-based manner. The rea-
son is that some blocks comprising these streams
may have to be retrieved much faster than others.
Consequently, a server that stores variable bit rate
streams in a size-based fashion has to adopt a priority-
cognizant disk scheduling algorithm, even at the ex-
pense of reduced disk efficiency.

4)� Interdisk placement: Given the large amount of data
and the number of concurrent users that multimedia
applications typically need to support, the underly-
ing servers are likely to be equipped with an array
of disks. In storing its data, a multimedia server can
do clustering, synchronous declustering, or asynchronous
declustering. In the case of clustering, each object is
kept in one disk whenever space permits, whereas
declustering (or striping) entails a deliberate effort to
spread an object over multiple disks. With asynchro-
nous declustering (or coarse-grained striping), the
smallest unit of data deposited at a disk each time is
one block, whereas synchronous declustering (or fine-
grained striping) stripes each data block over the
disks. Compared to clustering, declustering leads to a
more balanced load distribution; the drawback is that
declustering increases the likelihood that an object be-
comes unavailable due to disk failures. Between the
two variants, asynchronous declustering incurs lower
disk latency overheads and is more scalable, whereas
disk scheduling is much simpler with synchronous
declustering [15].



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 3

5)� Intradisk placement: Having chosen an interdisk
placement scheme, the next decision is whether to
cluster or to interleave objects within each disk. Clus-
tering fragments of the same object together is more
straightforward to implement, whereas interleaving
fragments belonging to different objects may reduce
disk seeks if two or more object requests can be syn-
chronized according to their storage patterns.

6)�VCR operations: Another design decision concerns the
way in which VCR operations like fast-play and re-
verse-play are supported. Some servers are able to
vary the playback rate of a stream by reading data
blocks faster/slower from the disk, or by skipping
blocks periodically. These servers allow VCR opera-
tions on the same object that is used for normal play-
back. Other servers can only support a different play-
back rate by switching to a separate copy that was
previously encoded at that rate.

7)�Validation: Finally, a multimedia server implementor has
to decide on a way to validate his/her architecture
and algorithms. This could be done through analytical
modeling, simulation, or system implementation. Strictly
speaking, the validation approach is not a server de-
sign decision, but we included it in the taxonomy
nonetheless as a server design is not complete until it
has been validated.

Having described the design choices, we now present
Table 1. The table shows how several recent studies on
multimedia servers fit into the taxonomy, and how they
contrast with our own approach. We have encountered

some difficulty in the classification process, as a number of
studies do not address all of the choices in the design space.
However, we have tried our very best to be accurate. We
would also like to clarify that we have labeled some pro-
posed servers as “constant bit rate” because support for
variable bit rate streams were not explicitly addressed; this
does not mean that those servers cannot be generalized to
cater for variable bit rate streams. In the interest of space,
we shall not describe the related work in detail here.

3 SYSTEM OVERVIEW

The architecture of our multimedia server is depicted in
Fig. 1. As the figure shows, a user interacts with the server
via a terminal, which is connected by network to the server.
Each of the user’s request for an object is forwarded by the
network manager, and then the client manager to the directory
manager. The directory manager translates the object request
into physical block requests to the disk manager, which re-
trieves the data blocks into memory. Every block contains a
predetermined number of data frames, as we will explain in
the next section. Finally, the client manager periodically ex-
tracts data frames from the blocks and sends the frames
back to the user terminal via the network manager. This
section first describes the details of the various components,
before presenting the performance objectives of the server.

3.1 Directory Manager
The directory manager keeps track of the storage locations
of all of the objects. It maintains a root directory in the form
of a B+-tree. Each entry in the root directory points to a

TABLE  1
A TAXONOMY OF MULTIMEDIA SERVERS

Bit
Rate

Data
Unit

Disk
Service

Interdisk Intradisk VCR Op
Copy

Validate Example

Constant FS SCAN Cluster Cluster Separate Simulate [16], [24]

Interleave Separate Analyze [4], [6]

Simulate [35], [39]

Sync Cluster Same Analyze [29]

Implement [43]

Async Cluster Same Simulate [36], [10], [11], [3]

Implement [17], [18], [9]

Interleave Separate Analyze [31]

Variable FS Priority Async Cluster Same Implement [12]

SCAN Cluster Cluster Separate Implement [19]

FD Priority Sync Cluster Same Simulate [23]

SCAN Cluster Cluster Same Simulate [21]

Sync Cluster Same Simulate [22]

Implement [41]

Async Cluster Same Simulate [7]

Implement This work

Interleave Same Analyze [32]



4

subdirectory that records the physical block locations of an
object. The subdirectory is also implemented as a B+-tree.
Each record in the subdirectory corresponds to one data
block, and is 9 bytes in size£2 bytes for the block id, 1 byte
for the disk id, 4 bytes for the block’s starting address on
the disk, and 2 bytes for the number of disk pages that
make up the block. All of the directories are stored on the
system disk.

An object request includes two arguments: ObjectId and
BlockOffset. Upon receiving such a request, the directory
manager first identifies the subdirectory that corresponds
to the required object by looking up ObjectId in the root di-
rectory. Next, using the storage location recorded in the
subdirectory, a request for the BlockOffsetth data block is
generated and sent to the disk manager. After that, the di-
rectory manager periodically issues a request for the next
block of data until the end of the object is reached, or until
the user halts or terminates the retrieval. The length of a
time period is determined by the data-placement algorithm
to be described in Section 4.1. By suitably altering the block
request pattern, the server can effect VCR-like operations
other than just playback. For example, fast-forward is im-
plemented by skipping data blocks, and reverse-play by
decrementing BlockOffset.

3.2 Disk Manager
The disk manager controls the raw disks that hold the data
blocks of all the objects. Each disk has its own block request
queue, which is scheduled by the elevator algorithm [40]. In
servicing a block request, the disk manager first checks
whether the required block is in memory. If so, the request
can be satisfied from memory and the disk manager pro-
ceeds to the next request. If not, a disk I/O is initiated to
fetch the required data block into an I/O buffer that occu-
pies physically contiguous locations. After that, the disk

manager acquires memory from the memory manager and
transfers the data block to the acquired memory.

We adopt the above two-step approach because, due to
memory fragmentation, the memory manager may have to
allocate several smaller memory chunks, rather than a con-
tiguous chunk of memory, for a block request. When this
happens, the two-step approach is consistently faster than
the simpler approach of fetching data directly into disjoint
areas in memory. To further improve efficiency, each disk is
assigned two I/O buffers so that it can fetch data for the
next request into one I/O buffer even as the data block for
the previous request is being transferred from the other I/O
buffer to memory.

3.3 Memory Manager
The memory manager is responsible for allocating memory
to satisfy block requests, and for reclaiming used memory.
To limit fragmentation, the system memory is divided into
fixed-sized pages, and each block request is given the
minimum number of memory pages that will meet its re-
quirement. A memory page can either be “New” if it con-
tains fresh data, or “Used” if its data have been consumed
and it is eligible to be reclaimed. The memory manager de-
lays the reclamation process as long as possible, in the hope
that future block requests can be satisfied from memory,
thereby eliminating some disk I/Os.

3.4 Client Manager
As the description of the above components shows, an ob-
ject request from a user will cause a steady stream of data
blocks that make up the object to be fetched into main
memory. The task of the client manager is to periodically
send the data blocks of each object onto the network for
decoding and display at the user terminal. The client man-
ager also assists in memory management. Initially, all
memory pages that are assigned for a block request are
marked as “New.” The client manager is responsible for
changing the status of these memory pages to “Used” once
all of the embedded data frames have been extracted.

3.5 Performance Objectives
One performance objective of the multimedia server is to
minimize response time. For a non-CM object retrieval, this
is defined as the time that the system takes to return the
entire object. In the case of a CM object request, response
time is the elapsed time before the first data block of the
object is delivered. Another performance objective is to en-
sure the smooth delivery of CM objects. The server strives
to minimize response times for both continuous and non-
continuous media retrievals without jeopardizing the deliv-
ery of CM objects, i.e., smooth delivery of CM objects takes
precedence over response time considerations.

To maximize the number of retrieval streams that a
multimedia server can support while still meeting the
above performance objectives, it is necessary to streamline
the operation of the server, in particular, the bottleneck
resources in the system. We expect the system disk to be
relatively lightly loaded since the size of the directories
are very much smaller than the size of the data: At 8 Kbytes
per page and 9 bytes per directory entry, each directory
page is capable of holding the physical locations of about

Fig. 1. System architecture.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 5

600 blocks. This means that the directory manager only
fetches 1 page for every 600 data blocks, equivalent to 600
tracks since the average size of a block is chosen to be one
track as described below, that the disk manager has to re-
trieve. Clearly, the data disks are the performance bottle-
necks for which efficient data-placement and retrieval algo-
rithms need to be developed, hence the focus of this paper.

4 INTRADISK DATA-PLACEMENT AND RETRIEVAL

Having presented an overview of the multimedia server,
we now focus on how its components work in unison to
produce a highly efficient server. This section presents the
data-placement and retrieval algorithms for each individual
disk; interdisk data-placement and retrieval will be intro-
duced in the following section.

4.1 Data Placement
Depending on its compression rate and duration, the stor-
age space requirement of a continuous media object may
range from a few megabytes to a few gigabytes. The huge
space requirement precludes a multimedia server from re-
trieving the object in its entirety all at once, as this is likely
to result in very high buffer demands and unacceptably
long waiting times for other retrieval requests. For this rea-
son, a continuous media object typically has to be manipu-
lated as a series of smaller-size blocks. There are two alter-
native formats for splitting the object: Fixed Size and Fixed

Duration. Fig. 2 gives an example showing how an MPEG
video object is split under the two formats, with the dotted
vertical lines in the figure indicating block boundaries.

The Fixed Size (FS) format splits a continuous media
object into data blocks that are equal in size. An obvious
advantage of this format is that the buffer requirement of
each retrieval stream is constant, thus simplifying memory
management. However, since the retrieval bandwidth re-
quirement of an object is likely to fluctuate over time, the
data contained in each block do not span the same time
duration, as the irregular intervals between the dotted lines
in Fig. 2 show. As a result, the time allowance for fetching a
block of an object is not fixed, but depends on when the
previous block gets consumed. This may require the disk
manager to give priority to urgent block requests. As shown
in [5], priority scheduling causes a disk to incur extra head
movements and degrades its throughput. Consequently, the
FS approach is conducive to efficient memory management
but is likely to hinder productive disk utilization.

Using the Fixed Duration (FD) format, the system time is
partitioned into equal time slices. Instead of insisting on a
constant block size, an object is stored as a sequence of
variable-size blocks that each contain enough data to span a
time slice, as the constant interval between the dotted lines
in Fig. 2 demonstrate. This fixes the time allowance for
fetching each data block of an object to one time slice after
its previous block’s retrieval deadline. By batching block
requests and by scheduling them together at the beginning

Fig. 2. Fixed size vs. fixed duration.



6

of each time slice, a disk is given an opportunity to opti-
mize its service schedule within the time slice, e.g., accord-
ing to the elevator algorithm [40]. The drawback of the FD
approach is that, since data blocks may vary in size, the
number of buffer pages that are needed to support a re-
trieval operation may fluctuate over time. These fluctua-
tions in buffer requirement impose extra demands on the
memory manager compared to the FS scheme.

We decided to base our multimedia server on the FD ap-
proach for two reasons. First, with current storage tech-
nologies, the disks, rather than CPU or memory, are the
performance bottlenecks. The second reason is that extra
buffers can be put to good use in other ways, e.g., for cach-
ing data that are frequently accessed, whereas inefficient
disk usage leads to unproductive overheads that limit over-
all system performance. For these reasons, we deemed it
important to adopt a scheme that utilizes the disks most
efficiently, hence our choice of the FD format.

Having selected the Fixed Duration format, we next
tackled the task of picking an appropriate time slice, which
is equivalent to selecting a “good” average data block size.
On one hand, we would like the time slice to be large so as
to reduce the relative amount of time that the disks spend
on seek and rotational delays, thereby improving disk ac-
cess efficiency. On the other hand, the time slice should not
be too large because the buffer demands of a retrieval op-
eration and the waiting times that it experiences are both
proportional to the length of the time slice. To strike a bal-
ance between disk access efficiency, buffer demand and
waiting time, we chose a time slice that translates to an av-
erage block size of one track, i.e.,

Time Slice =
Average Track Size

Average Object Retrieval Rate  .

Using this time slice, the multimedia server can proceed to
split each continuous media object into data blocks. Within
each disk, those data blocks belonging to objects that are
more frequently accessed are placed in the middle cylinders
of the disks, in order to minimize seek delays for those ob-
jects. Objects that are not as commonly requested for are
held in the outer and inner cylinders. All data blocks of the
same object are assigned to physically contiguous sectors as
far as possible. We chose to store objects in this manner,
rather than to interleave data blocks of different objects as
advocated in [35], [4], [31], for a number of reasons: First,
when a disk is handling variable bit rate multimedia objects
like MPEG videos, a contiguous placement allows the disk
to combine those block requests that are leftover from an
overloaded time slice with the block requests from a subse-
quent time slice. This would eliminate seek delays for the
leftover block requests, thus helping the disk to clear its
backlog of requests quickly after an overload. Second, we
wish to avoid the extended start-up times that interleaving
incurs as a new request waits in line for the region that
holds its first required block to come under the disk head.
A detailed comparison of the contiguous vs. interleaving
schemes can be found in [33].

4.2 Data Retrieval
The quintessence of the data-retrieval algorithm that drives
the server is to use any excess disk capacity in each time
slice to carry out advance data fetching, so as to avert
disk overloads during future time slices that involve heavy
data retrievals. To simplify the description of the algorithm,
in this section we will focus on a server with only one
data disk, although the algorithm is fully capable of driving
multiple disks.

The data-retrieval algorithm allows the disk manager to
look ahead at (most of) the block requests that need to
be satisfied in the next LookAhead + 1 time slices. There are
two methods to achieve this. The first method is for the
directory manager to request for the first LookAhead + 1
blocks all at once when a new CM stream is started. After
this, the directory manager settles into a routine of re-
questing for one block per time slice until the end of the
target object is reached, or until the retrieval operation gets
interrupted. The disk manager is given only one time slice
to deliver the first data block, and it has to follow up with
another block every subsequent time slice. This method
makes data available within one time slice after the start of
a new stream, but does not allow the disk manager to look
ahead at the initial block requests of any stream. Another
method is to have the directory manager issue one block
request per time slice right from the start of a new stream,
while giving the disk manager up to LookAhead + 1 time
slices to service its block requests. The second method has
the advantage of enabling the disk manager to look ahead
at all of its block requests, but incurs a LookAhead-time-slice
delay in start-up time. We shall call the first method the
Immediate variant, for immediate data delivery, and the sec-
ond method the Delay variant.

At each disk, block requests are queued by the time slice
when they are required for display, with requests belonging
to the most imminent time slice being serviced first. When-
ever the disk becomes free, the disk manager will send a
batch of requests at the front of the queue for processing.
The size of each batch varies, and is determined so that the
requests are estimated to complete by the end of the current
system time slice. The estimation is based on the disk
model proposed in [38]. The reason for scheduling requests
in batches is so that within each batch, requests can be
processed according to the SCAN/elevator algorithm [40].
This allows block requests that are more urgently needed to
be served ahead of other less critical requests, without re-
sorting to a pure deadline-based disk scheduling approach
that degrades throughput [5]. The batched SCAN approach
is similar to the group sweeping scheme proposed in [45].

Since the disk model cannot be expected to capture the
disk behavior perfectly, the disk could complete a batch of
requests before or after the current system time slice. Con-
sequently, the disk manager needs to compensate by in-
serting more or fewer requests in the next batch, so that
they will occupy the disk until the end of the following
time slice. In this way, the disk can be kept busy so long as
there are pending requests, thus smoothing out some of the
load fluctuations across time slices.

Fig. 3 illustrates how both variants might react to the in-
troduction of a stream A in the midst of retrieving stream B.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 7

In the figure, Ai and Bi denote the ith data block of streams
A and B, respectively. The schedule shows that, under the
Delay variant, the disk manager elected to skip stream B in
time slice i + 1 in order to service a large block A1. Also, for
time slice i + 4, the disk manager squeezes in one more re-
quest B23, as B22 and A3 are expected to complete early. In
such situations, the batched SCAN approach saves on disk
seek operations as consecutive blocks of the same video are
placed on contiguous disk sectors as explained previously.
Thus, the retrieval algorithm gives the disk manager sig-
nificant flexibility. Obviously, the higher LookAhead is set to,
the better the retrieval algorithm performs as the data
server has more leeway in scheduling its requests. In prac-
tice, though, the value of LookAhead is capped by response
time and buffer space considerations.

Note that our retrieval algorithm simply enables the disk
manager to look ahead at the block requests that it has to
service. The decision to fetch which particular blocks is
made dynamically during the lifetime of a retrieval opera-
tion, based on load conditions and the time slice when each
block is needed. For example, the data server may elect to
skip the block request of a stream in one time slice, and to
make up in a later time slice by fetching two blocks for the
stream, as happens to stream B in time slices i + 1 and i + 4
in Fig. 3. It, therefore, goes beyond prefetching algorithms,
such as those proposed in [30], which only require a pre-
determined number of blocks to be read into memory be-
fore a video playback begins. The algorithm is also more
flexible than the scheme in [12], which mechanically pre-
fetches data after reading every disk block.

5 INTERDISK DATA PLACEMENT AND RETRIEVAL

While the data-storage and retrieval algorithms described
in the previous section are designed to maximize the effi-
ciency of individual disks, they need to be complemented
by interdisk data-placement and retrieval algorithms that
ensure even load distribution among the disks. Our data-
placement algorithm is based on a time-based declustering
approach, while both the placement and retrieval algorithms
support an object replication mechanism for better system
reliability and performance. The details of the declustering
and object replication mechanisms are presented below.

5.1 Declustering
To deliver good system performance, the interdisk data-
placement algorithm must be designed to balance the load
on all of the disks. In addition, the data-placement algo-
rithm has to allow each disk to be utilized efficiently. This
necessitates a trade-off between fine-grain declustering,
which balances load by enabling parallel retrieval from
all disks but produces high disk seek and synchroniza-
tion overheads [34], and clustering, which leads to effi-
cient utilization of individual disks but subjects the sys-
tem to load imbalances as we will demonstrate later. A
compromise between these two extremes is coarse-grain
declustering. The aim of coarse-grain declustering is to
let all the disks take turns to service every retrieval re-
quest. This avoids saddling a few disks with a dispropor-
tionately large number of retrieval requests for extended
periods of time, and is expected to achieve statistically bal-
anced load distributions [14].

The coarse-grain declustering strategy that we adopt
divides an object into several data fragments. Each data
fragment, in turn, comprises DeclUnit � LookAhead + 1 data

Immediate Variant

Time
Period i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6 i + 7

Dir Mgr A1, A2, A3, A6, A7, A8, A9, A10, A11, A12,

Request A4, A5, B20 B21 B22 B23 B24 B25 B26 B27

Disk B19 A1 A2, A3, A5, A6, B21 B22, B23, A7, A8, A10, A11,

Service A4 B20 B24 A9 B25

Client A1 A2 A3 A4 A5 A6

Display B14 B15 B16 B17 B18 B19 B20 B21

Delay Variant

Time
Period i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6 i + 7

Dir Mgr A1, A2, A3, A4, A5, A6, A7, A8,

Request B20 B21 B22 B23 B24 B25 B26 B27

Disk B19 A1 A2, B21 B22, B23, A4, A5, B25, A7,

Service B20 A3 B24 A6 B26

Client A1 A2

Display B14 B15 B16 B17 B18 B19 B20 B21

Fig. 3. Example of data-retrieval schedule, LookAhead = 4 time slices.



8

blocks, where DeclUnit is a parameter of the interdisk data-
placement algorithm, LookAhead is a parameter of the intra-
disk data-retrieval algorithm, and each block contains
enough data to last one time slice. The first fragment is as-
signed to a disk i, and subsequent fragments are assigned to
disks i + 1, i + 2, ..., 1, 2, ..., i - 1, respectively. This assign-
ment pattern is repeated for all of the fragments. The reason
for choosing a declustering unit of DeclUnit � LookAhead + 1
blocks is to maximize the efficiency of look-ahead re-
trieval by allowing data blocks that are fetched in
the same retrieval cycle to reside in contiguous sectors of
the same disk.

One important characteristic of our declustering strategy
that distinguishes it from the schemes proposed in [17], [37]
is that our declustering unit has a fixed duration, rather
than a fixed size. This ensures that block requests are due
only by the end of a time slice. As mentioned previously,
this allows the disks to optimize their service schedules by
batching block requests, and by scheduling them together
at the beginning of each time slice. Our coarse-grain strat-
egy is also different from the streaming RAID of StarWorks
[41]. Although a time-based storage unit is used in stream-
ing RAID, its fine-grain declustering approach stripes each
data block across all of the disks. As explained above, we
avoid this approach because the resulting disk seek and
synchronization overheads can potentially make the ap-
proach counterproductive.

5.2 Object Replication
As mentioned earlier, our server offers an option to repli-
cate objects that are more frequently accessed, so that block
requests for a popular object can be channeled to a copy
that resides on a relatively lightly loaded disk. Given that,
in practice, a small number of objects (say, 20 percent of the
objects) account for most of the accesses in the system (say,
80 percent of the accesses) at any time [24], this option al-
lows a storage system to derive most of the load balancing
benefits of replicating every object without incurring the
same prohibitively large storage overheads.

When the object replication option is enabled, the server
keeps a replica for every popular object. Like the primary
copy, the replica is declustered across all of the disks. The
disk assignments for the primary copy and the replica of a
data fragment follow the chained declustering scheme pro-
posed by Hsiao and DeWitt [20], where the replica is al-
ways placed one disk ahead of the primary copy. In addi-
tion, we require the replica of an object’s data fragment to
physically adjoin the primary copy of the object’s subse-
quent data fragment. This requirement allows the retrieval
of data blocks from two consecutive fragments to be com-
bined by simply directing the block requests for the first
fragment to its replica. Fig. 4 illustrates how the data frag-
ments of a popular object are assigned to the disks. In the

figure, Fj and Fj
r  refer to the primary copy and the replica of

fragment j, respectively.
In order to take advantage of the replicas, the directory

manager described in Section 3.1 needs to be modified
slightly. As before, the directory manager issues block re-
quests on behalf of all active retrieval operations at the

beginning of each time slice. However, the directory man-
ager now has the added responsibility of deciding whether
a block request for a popular object is to be satisfied by the
disk that holds the primary copy, or by the disk with the
replica. In making this decision, an obvious choice is to se-
lect the disk that is currently more lightly loaded in order to
even out the load on the two disks. At the same time, how-
ever, the efficient operation of the disks should not be com-
promised. Specifically, the directory manager needs to
avoid switching repeatedly between the primary copy and
the replica for successive blocks in the same data fragment.
The reason is because this hampers the disks’ ability to
combine the retrieval of physically contiguous blocks to
lower overheads. Therefore, a retrieval operation is limited
to only one switch from the primary copy to the replica
within each data fragment. Once a switch is made, subse-
quent block requests will be directed to the replica until the
operation requires a block from a different data fragment.

The above data-retrieval mechanism is implemented as
follows: The directory manager keeps a running cumulative
page count of the block requests that have been directed to
each disk in the current time slice, and also LastDiski, the id
of the disk where each retrieval operation i’s last block re-
quest was directed to. Whenever there is a block request
with two alternative addresses, the directory manager
checks the address of the replica to see if it belongs to the
disk indicated by the issuing operation’s LastDiski. If it
does, there is a prior decision to supply the blocks in the
current data fragment from its replica, so the block request
is sent to disk LastDiski. If the replica’s address does not
belong to disk LastDiski, then the directory manager is free
to choose between the primary address and the replica ad-
dress. In this case, the directory manager simply channels
the request to the disk that has a lower cumulative page
count; if there is a tie, the primary address is chosen.

To illustrate the load balancing mechanism, let us trace
the retrieval of the object depicted in Fig. 4. The first re-
quest, targeted at the first block in fragment 1, can be serv-
iced by either disk 1 or disk 2. Assuming that the current
cumulative page count of the two disks are 50 and 60, re-
spectively, the block request is sent to disk 1. The second
request, issued one time slice later, again offers a choice of
disks. Suppose that the cumulative page counts stand at 45
and 30, the directory manager now sends the request to
disk 2 in an attempt to balance the disk loads. After another

Fig. 4. Data placement example.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 9

time slice, the directory manager issues a request for the
third data block to disk 2 regardless of the current cumula-
tive page count of disks 1 and 2, as there is a prior com-
mitment to retrieve the remaining blocks in fragment 1
from disk 2. Taking the example one step further, suppose
that the fourth block of the object is in fragment 2. The di-
rectory manager is again free to choose between the origi-
nal copy and the replica since the retrieval operation has
moved on to a different data fragment. The above process is
repeated until all of the data blocks have been fetched, or
until the retrieval operation gets interrupted.

Besides enhancing load balance, replicating frequently
accessed objects also has the benefit of improving system
robustness, one of our design goals (see Section 3): Since
every data fragment of a replicated object has a replica
that resides on a different data server from the primary
copy, the entire object remains accessible in the event of a
data-server crash or disk crash. Moreover, reconstruction of
a replicated object after a crash can be done on-the-fly by
copying the blocks constituting the object as they are re-
trieved to satisfy user requests. In view of the derivable
benefits, object replication appears to be attractive despite
the potentially large space overhead involved. This is espe-
cially so given the observation that most of the requests in a
system are usually directed at a small fraction of popular
objects. One of the objectives of this paper is to quantify the
load balancing effect arising from object replication and
dynamic copy selection.

6 MEMORY MANAGEMENT

While the data-storage and retrieval algorithms described
in the previous sections are designed to maximize the effi-
ciency of the disks, which are the system bottlenecks, the
memory manager also plays an important role in deter-
mining the performance of the server. The memory man-
ager has to strike a good compromise between two trade-
offs: On one hand, the memory manager should keep
enough free memory pages so it can satisfy the disk man-
ager immediately when the latter requests for memory for a
block request. On the other hand, the memory manager
should delay reclaiming memory pages as long as possible
in case those pages contain data that are needed by future
block requests. This section presents the memory manage-
ment algorithm in detail.

6.1 Memory Organization
The memory manager divides the system memory into
fixed-sized pages. Each memory page either belongs to
a free list, or it is part of a linked list of memory pages
that together hold a data block in the object cache. The
memory pages in the free list are assigned to hold new
data blocks after they have been fetched from disk into an
I/O buffer. The organization of the object cache is illus-
trated in Fig. 5. As the figure shows, the memory-resident
data blocks are grouped by objects. Furthermore, data blocks
belonging to the same object are chained in ascending or-
der by their BlockOffsets.

To keep track of the status of data blocks, the client
manager maintains an array of block pointers, one for each

active user terminal. Each block pointer leads to a data
block that is marked as “InUse.” It is from this block that
data are periodically extracted and sent to the correspond-
ing user terminal. Once all of the data have been extracted
from the “InUse” block, it will be marked as “Used,” and
the block pointer will advance to the next data block in the
chain. That block, which should have been previously
marked as “New” to indicate that it contains fresh data,
now becomes the “InUse” block. Since the directory man-
ager issues block requests LookAhead time slices in advance,
there could be up to LookAhead + 1 “New” blocks immedi-
ately trailing an “InUse” block.

The above memory organization is designed to facilitate
quick identification of memory-resident data blocks that
can satisfy block requests without necessitating disk I/Os.
In serving a block request for a user terminal, the memory
manager first scans through the chain of data blocks in the
object cache that belong to the required object. If the re-
quired block is found in the object cache, the block request
is satisfied immediately by changing the status of the block
to “New.” A disk I/O is initiated for the block request only
if the required data block is not in the object cache.

6.2 Memory Reclamation
While leaving “Used” data blocks in the object cache can
improve the performance of the server by eliminating some
disk I/Os, the free list will eventually become empty unless
the memory pages occupied by “Used” data blocks are re-
claimed. To reclaim memory, the memory manager first
scans through every chain of data blocks in the object cache,
recording every subchain of “Used” data blocks as it en-
counters them. Fig. 6, with the chains of “Used” data blocks
shaded, illustrates this step.

Once this step is completed, memory reclamation begins.
Starting with the longest chain, the memory manager snips
off chain after chain of “Used” blocks from the object cache,
returning the memory pages occupied by the “Used” data
blocks to the free list. The reason for reclaiming the longer
chains first is that these blocks are accessed less recently,
hence they are likely to belong to a less frequently used
object than those blocks in the shorter chains. For example,
in Fig. 6 the shaded chain of object 11 is longer than any
of the two shaded chains of object 74, suggesting that object
11 is retrieved less frequently, and that the benefit of keep-
ing it in the object cache is lower. This reclamation process

Fig. 5. Object cache.



10

continues until the free list has been replenished to a prede-
termined level, or until all of the “Used” data blocks have
been reclaimed. If the reclamation process can be halted
by recovering only the memory occupied by part of a chain,
then the memory manager frees up the data blocks on the
right side of the chain. Here the rationale is that data
blocks that are near the start of an object are likely to be
needed by a subsequent request for the same object before
those data blocks toward the end. To illustrate this, consider
the shaded chain comprising blocks 12 to 25 of object 74
in Fig. 6. Since block 12 will be required by terminal 1 be-
fore block 25, the reclamation process should start with
block 25 and work toward block 12. Fig. 7 shows the status
of the object cache after a memory reclamation.

The condition that triggers the memory reclamation pro-
cess, and the condition that halts the process once it is
started, are determined by two tunable parameters, LoThres
and HiThres, respectively: Once the fraction of memory
pages that remain in the free list falls below LoThres, the
memory manager will begin to reclaim memory from the
object cache, until the fraction of memory pages in the free
list rises above HiThres. The LoThres parameter should not
be set too high, which would deprive the object cache of
memory and thus reduce its effectiveness, neither should
it be set so low that the free list are allowed to become
empty, thereby forcing the disks to come to a halt while
the memory manager recovers memory for the data in the
I/O buffers. As for the HiThres parameter, its value should

be high enough so that memory reclamation is not required
too frequently, but not so high as to cause data blocks to
be removed from the object cache unnecessarily. In our im-
plementation, we have set LoThres and HiThres to 10 percent
and 40 percent, respectively, and found these settings to
work satisfactorily.

7 SERVER PERFORMANCE

In the previous sections, we have introduced the data-
placement and retrieval algorithms that our multimedia
server employs to manage individual disks, as well as an
array of disks. We now present the implementation plat-
form and the performance of the server.

7.1 Experiment Set-Up
We have implemented our multimedia server on a Sparc 20
workstation according to the system architecture depicted
in Fig. 1. The Sparc 20, which runs Solaris 2.4, is equipped
with a Seagate ST31200W system disk that we use to store
the directories. Two external Seagate Elite 9 disks serve as
data disks. These disks have an average seek time of 11
msec and a transfer rate of 6 Mbytes/sec. The Sparc 20 has
a total of 96 Mbytes of memory, though the memory man-
ager allocates only 1.25 Mbytes/terminal for the experi-
ments reported in this paper.

As for the workload model for the experiments, each
of the TerminalsPerDisk user terminals attached to the serv-
er repeatedly goes through a cycle comprising a thinking
phase and an object retrieval phase. The thinking time,
which models the time spent on picking a multimedia
object, follows an exponential distribution with a mean of
ThinkTime sec. AccessSkew% of the time, the chosen object
is one of the popular objects that make up HotSize% of
the total object population. The various experiment param-
eters, together with their default values, are summarized
in Table 2.

Since variable bit rate video objects pose the toughest
challenge to the multimedia server, we populate the two
data disks with copies of the five MPEG-1 video clips de-
scribed in Table 3. Different copies of the same clip are
treated as distinct objects. Using the average bandwidths of
the five videos and the formula in Section 4.1, the “ideal”
time slice is 0.51 sec; we use a time slice of 0.5 sec in this
study to simplify our discussion.

As the focus of this paper is on the multimedia server
and not on the interconnection network between the server
and the user terminals, we assume that there is a sufficiently
fast network, together with an appropriate set of commun-
ication protocols. This network infrastructure would enable
a user terminal to experience the same interframe waiting
times as those observed by the client manager of the server.
For this reason, we will measure the server performance at
the client manager, rather than at the user terminals.

7.2 Performance Metrics
The primary performance metrics are the % Late Frames and
the Latency. % late frames is defined as the percentage of data
frames that are retrieved late, thereby causing jitters in the
delivery of the video streams. Latency measures the aver-
age amount of time that a frame is late by, or the average

Fig. 6. Reclaimable memory.

Fig. 7. After memory reclamation.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 11

duration of a jitter. Each experiment was run for 3 hours,
allowing a minimum of 2,000 object retrievals. We also
verified that the size of the 90 percent confidence inter-
vals for % late frames, computed using the batch means
approach [2], was within a few percent of the mean in al-
most all cases.

7.3 Baseline
The objective of the baseline experiment is to profile the
performance of the intradisk data-placement and retrieval
algorithms. For this experiment, we use only one of the
data disks; the other data disk is left idle. As for the work-
load, TerminalsPerDisk ranges from 20 to 28, and ThinkTime
is set to 0. Furthermore, 80 percent of the retrieval re-
quests are for 20 percent of the objects, i.e., AccessSkew%
and HotSize% are set to 80 percent and 20 percent, respec-
tively. Finally, the LookAhead parameter of the data-retrieval
algorithm is set to 4. The % late frames and latency val-
ues produced by the Immediate and Delay variants of the
retrieval algorithm are plotted in Figs. 8 and 9. For compari-
son purposes, we also include in these figures the curves
representing the system performance without look-ahead
retrieval, i.e., with LookAhead = 0, which we label as
“NoLookAhead.”

We first analyze the performance of the Immediate vari-
ant. Figs. 8 and 9 show that Immediate consistently pro-
duces lower % late frames and latency than NoLookAhead.
The reason is that, with the exception of the initial few
blocks of each object, all of the block requests arrive at the
disk 4 time slices earlier. This allows the disk to cut seek
costs by combining the retrievals of up to 5 consecutive
blocks each time. Moreover, the look-ahead period allows
the data disk to start servicing the next round of requests

right after the most immediate round of requests have been
processed, thus averting potential overloads in the near
future or at least reducing their impact.

Having examined Immediate, we now proceed to evalu-
ate the Delay variant of the retrieval algorithm. The curves
in Figs. 8 and 9 show that Delay performs better than
NoLookAhead and Immediate. In fact, with Delay, the
disk manages to limit the average duration of jitters to
within one frame (indicated by the dotted line in Fig. 9)
until the number of terminals exceeds 25. There are two
reasons for Delay’s superior performance. The first rea-
son is that every retrieval stream is given a 4-time-slice
headstart. This headstart gives the retrieval streams a
cushion against temporary overloads. Another reason is
that every block request arrives early here. This contrasts
with Immediate which demands that the first few blocks
of each data stream be scheduled for fetching immedi-
ately upon arrival, thus hindering the disk’s ability to do
look-ahead fetching whenever a new retrieval stream
enters the system.

The results of this experiment show that the look-ahead
feature of the intradisk retrieval algorithm can help to re-
duce disk access costs and to avert temporary overloads. In
particular, if a 4-time-slice start-up delay can be tolerated,
the Delay variant of the algorithm is very effective in en-
suring smooth data delivery at the maximum number of
concurrent streams.

7.4 Sensitivity of LookAhead Parameter
In the previous experiment, we have set the LookAhead
parameter of the intradisk retrieval algorithm to 4. We
now vary this parameter to study its performance im-
pact. We will focus only on the Delay variant here since

TABLE  2
EXPERIMENT PARAMETERS

Parameter Meaning Default

LookAhead Number of time slices to look ahead 4

DeclUnit Declustering unit = (DeclUnit � LookAhead + 1)
time slices

1

TerminalsPerDisk Number of terminals or retrieval streams per data disk £

ThinkTime Average thinking time 0 sec

AccessSkew% Percentage of requests for popular objects 80%

HotSize% Percentage of objects that are popular 20%

TABLE  3
CHARACTERISTICS OF VIDEO CLIPS

Trace Duration # Frames Frame Size (Bytes) Rate (Kbps)
(sec) Avg. Min. Max. Avg. Peak

1 64.7 1,940 1,503    132   8,743   45 1,679

2 68.8 2,065 6,502 2,501 18,233 181 3,501

3 44.8 1,344 3,845 1,556   7,814 116 1,498

4 66.4 1,992 3,656 1,149 12,546 110 2,409

5 22.2    667 9,945 3,646 16,982 298 3,261

Average 53.4 150



12

it outperforms the Immediate variant, as demonstrated in
the base-line experiment.

Figs. 10 and 11 plot the % late frames and latency as a
function of the number of terminals. As expected, a higher
LookAhead value enables the system to achieve lower % late
frames and latency

1)�by providing a larger cushion against temporary
overloads,

2)�by combining the retrievals of a larger number of
contiguous blocks to lower seek costs, and

3)�by servicing block requests from future, overloaded
time slices even earlier to prevent the overloads from
taking place.

We observe that the two figures show a marked perform-
ance improvement from NoLookAhead to LookAhead = 2.
The gain from LookAhead = 2 to LookAhead = 4 is smaller,
but still sizeable. Beyond LookAhead = 4, further increases
in the LookAhead parameter lead only to marginal reduc-
tions in % late frames and latency. We repeated this set of
experiments with the Immediate variant (results not shown),
and derived the same observations. In practice, the number

Fig. 10. Jitter ratio.

Fig. 11. Latency.

Fig. 8. Jitter ratio.

Fig. 9. Latency.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 13

of time slices that a system should look ahead at is deter-
mined by the maximum tolerable response time and the
amount of available memory, which in the Delay variant of
the retrieval algorithm is proportional to LookAhead. The
appropriate LookAhead setting also depends on the stability
of the retrieval streams£a large LookAhead setting may ac-
tually be detrimental to performance if a substantial num-
ber of retrieval streams get terminated prematurely, ren-
dering the prefetched data blocks useless.

7.5 Clustering vs. Declustering
The objective of the next experiment is to assess the relative
merits of clustering vs. declustering in interdisk data
placement and retrieval. To do this, we activate both data
disks, and we set the LookAhead parameter of the intradisk
retrieval algorithm to 4. As the previous experiment shows,
this setting allows the multimedia server to reap most of
the benefits of look ahead retrieval without delaying re-
sponse time too much. Finally, the object replication option
is disabled for this experiment.

Figs. 12 and 13 plot the % late frames and latency val-
ues for four DeclUnit settings£0, 1, 2, and �. The behav-
ior of these settings are denoted by Decluster0, Decluster1,
Decluster2, and Cluster (since an infinite declustering unit
leads to clustering) in the two figures. With LookAhead set
to 4 and declustering unit = DeclUnit � LookAhead + 1 (see
Section 5.1 for the rationale), the actual declustering units
are 1, 5, 9, and � data blocks, respectively. The figures show
that Decluster1 consistently delivers the lowest % late
frames and latency values for this experiment, followed by
Decluster2. Decluster0 performs satisfactorily initially. As the
number of terminals per disk increases beyond 23, how-
ever, the performance of Decluster0 deteriorates very rap-
idly. In fact, at 28 terminals/disk, Decluster0 results in more
than 2.5 times as many frames being delivered late, and 1.5
times as long an average latency compared to Decluster1.
The last data-placement policy, Cluster, is also unsatisfac-
tory. These observations clearly show that the choice of
data-placement policies can have a very significant impact
on the number of concurrent retrieval streams that a mul-
timedia server is capable of supporting. We shall now ana-
lyze each placement policy in turn.

Let us first examine the Decluster0 policy. With this pol-
icy, every retrieval operation fetches just one block from a
disk, then moves on to another disk in the next time slice.
Load imbalance situations where one disk is substantially
more heavily loaded than others are, therefore, relatively
rare and short lived. However, the balanced load is
achieved at the expense of requiring each disk to incur a
seek for every block request. This high-seek overhead
quickly overwhelms the disks, causing Decluster0 to pro-
duce the worst % late frames and latency across the entire
range of TerminalsPerDisk settings.

In contrast to Decluster0, which spreads out the data
blocks of an object over many disks, Cluster keeps all of the
blocks within the same disk. This restricts each retrieval
stream to being serviced by one disk throughout its life-
time. Such a situation causes load imbalance situations to
arise readily. Moreover, the duration of these load imbal-
ances are proportional to the length of the multimedia

objects that are being retrieved. For these reasons, the disk
utilizations that Cluster produces are the most skewed.
However, Cluster does have the virtue of enabling the disks
to exploit the physical contiguity between successive data
blocks of the same retrieval stream to service a number of
its requests at the same time. This eliminates disk seeks for
some requests. As a result, Cluster is able to keep its % late
frames and latency below those of Decluster0.

Turning our attention to Decluster1, we first note that it
places LookAhead + 1 consecutive blocks of an object on each
disk. This allows the disks to fetch all of the blocks in every
look-ahead retrieval cycle very efficiently. Moreover, each

Fig. 12. Jitter ratio.

Fig. 13. Latency.



14

request stream moves on to another disk after one retrieval
cycle, so the stream does not remain stationary at a disk for
any extended period of time. As a result, Decluster1 is able
to outperform Cluster, especially at light to moderate loads.
Even at heavy loads, Decluster1 is no worse than Cluster.

Finally, we examine the behavior of the Decluster2 policy.
Compared to Decluster1, this policy should offer better re-
trieval efficiency at the individual disks as they have more
leeway to combine requests from the same retrieval stream
to reduce disk head movements. However, Decluster2 also al-
lows retrieval streams to remain longer at each disk, thus pro-
longing any load imbalances. The net effect is that Decluster2
performs worse than Decluster1. Further experiments show
that performance continues to deteriorate toward that of
Cluster as we increase the declustering unit. We, therefore,
do not present those results here.

To summarize the results of this experiment, we can
derive the following conclusions about data placement
across multiple disks: On one hand, clustering all the data
blocks of each object on one disk leads to very efficient
utilization of individual disks, but subjects the system to
prolonged load imbalances. On the other hand, Decluster0
forces retrieval streams to move to different disks after each
time slice, resulting in very even load distributions. Unfor-
tunately, the small decluster unit of Decluster0 also degrades
retrieval efficiency, causing Decluster0 to perform much worse
than Cluster. This finding agrees with Ghandeharizadeh
and Ramos’ conclusion in [16] that declustering can harm
system performance more than clustering. However, our
results also demonstrate that, with appropriately large de-
clustering units, declustering can outperform clustering. In
particular, Decluster1 strikes a good compromise between
efficient disk utilization and balanced load distribution,
enabling a server to support the highest number of re-
trieval streams among the clustering and declustering poli-
cies that we tested.

7.6 Two Disks
Our last experiment is designed to study how well the
number of supportable streams scales up with multiple
disks. We will compare the system performance for 1 disk,
as well as the performance for two disks with and without
object replication. The DeclUnit parameter of the interdisk
data-placement algorithm is set to 1, as Decluster1 has been
shown to produce the best performance. The rest of the ex-
periment parameters remain at their settings in the last ex-
periment. The results are plotted in Figs. 14 and 15.

Figs. 14 and 15 indicate that, up to 25 terminals/disk,
declustering data over the disks alone is good enough
to ensure that the server performs close to the single-
disk configuration. The service degradation for the 2-disk
configuration should not be noticeable, as the average
latency is less than the duration of a frame (indi-
cated by the dotted line in Fig. 15). However, beyond 25
terminals/disk, the % late frames and latency for two
disks deteriorate significantly more rapidly than those for
a single disk. This is because the disks become over-
loaded at more than 25 terminals/disk, so the effect of
the reduced retrieval efficiency due to declustering, no
matter how slight, tends to get magnified.

Turning our attention to the curves representing de-
clustering with object replication, we note that the data-
retrieval algorithm is very effective in exploiting object
replicas to balance the disk load distribution. In fact, the %
late frames and latency produced here are nearly the same
as those for the single-disk configuration up to around
25 terminals/disk. Beyond this point, the influence of disk
access efficiency again dominates over that of load balanc-
ing, so replication does not help to improve performance.

In summary, this experiment suggests that the coarse-
grain declustering and object replication mechanisms of

Fig. 14. Jitter ratio.

Fig. 15. Latency.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 15

our proposed data-placement and retrieval algorithms are
very effective. In the next section, we shall study how the
performance of the algorithms scale up to a larger num-
ber of disks.

8 SCALABILITY: A SIMULATION STUDY

The last section shows that the server achieves good effi-
ciency, and that the number of supportable streams scales
linearly up to two disks. Unfortunately, due to resource
availability we are not able to physically experiment with a
larger number of disks. We shall, therefore, employ simula-
tion to study the scalability of our server.

8.1 Simulation Model
In writing the simulator, we have taken great care to mod-
el the server implementation as accurately as possible, so
that the simulator can be verified against the server. The
simulator closely follows the system architecture depicted
in Fig. 1, with operations accurately modeled down to
the page level. The database and workload are exactly the
same as described in Section 7.1. However, we cannot use
a Sparc 20 workstation for the scaled up experiments as we
did for the previous experiments. This is because the Sparc
20 has only four SBus slots, which means it can accom-
modate a maximum of three Fast SCSI-2 adaptors1 after
allocating one slot for the ATM adaptor. Since each Fast
SCSI-2 adaptor has enough bandwidth for only one disk,2

we will not be able to scale beyond three disks. For this

1. We could have increased the number of disk per SBus slot by us-
ing Fast Wide SCSI-2 adaptors, but we decided against that as it ne-
cessitates changes to the disks, the most critical resources in determining
the server’s performance.

2. While each Fast SCSI-2 adaptor can handle up to seven disks, its 10
Mbytes/sec bandwidth ceiling would prevent the number of support-
able streams from scaling up. In fact, experiments with our imple-
mented server showed a performance dip as soon as we attached more
than one disk.

reason, the physical resources of the simulator are modeled
after a SPARCcenter 2000E.

The parameters of the simulation model for the SPARC-
center 2000E are summarized in Table 4. The SPARCcenter
2000E holds up to NumBoards system boards, which are inter-
faced by 2 XDBus system buses with an aggregate band-
width of XDBusSpeed. Each system board provides CpuPer-
Board processors with a speed of CpuSpeed, MemoryPer-
Board memory, and NumSBusSlots SBus slots. The SBus slots
are occupied by AtmPerBoard ATM adaptors and ScsiPer-
Board Fast SCSI 2 adaptors. Finally, we attach DiskPerScsi
disks to each SCSI adaptor.

8.2 Model Verification
To verify the accuracy of the simulation model, we carry
out an experiment using the same workload as the ex-
periment in Section 7.6. The parameters for the physical
resource model are set at their default values, except for
the number of hard disks which we vary from one to
two. The simulator’s predictions for the “object replication”
case are shown in Figs. 16 and 17. For comparison pur-
poses, the figures also include the curves obtained from
the server implementation.

Figs. 16 and 17 show that the simulator successfully
captures the qualitative behavior of the server. However, the
quantitative results are not entirely accurate. Specifically,
the performance of the simulator degrades later, exceeding
our threshold of 33-msec average latency per jitter only af-
ter 28 terminals/disk, whereas the server crossed the
threshold after 25 terminals/disk. We suspect that the
simulator’s more optimistic predictions are primarily due
to its not capturing delays introduced by the mechanical
components of the disks, e.g., thermal recalibration. Another
factor could be that the SPARCcenter 2000E modeled by
the simulator has more CPU power than the SPARC 20
workstation that was used to run the server, though we ex-
pect the effect of this factor to be relatively insignificant

TABLE  4
PHYSICAL RESOURCE MODEL

Parameter Description Default

NumBoards Number of system boards 10
PageSize Number of bytes per page 8 Kbytes
XDBusSpeed Bandwidth of XDBus 625 Mbytes/sec
SBusSpeed Bandwidth of SBus 66 Mbytes/sec
CpuPerBoard Number of CPUs per system board 2
CpuSpeed MIPS rating of the CPU 135.5 MIPS
MemoryPerBoard Amount of memory on each system board 64 Mbytes
NumSBusSlots Number of SBus slots per system board 4
AtmPerBoard Number of ATM adaptors per system board 1
AtmSpeed Bandwidth of ATM adaptor 155 Mbps
ScsiPerBoard Number of SCSI adaptors per system board 3
ScsiSpeed Bandwidth of Fast SCSI 2 adaptor 10 Mbytes/sec
DiskPerScsi Number of disks per Fast SCSI 2 adaptor 1
RotationTime Time for one disk rotation 11.1 msec
TransferTime Rate of data transfer from disk 6.8 Mbytes/sec
DiskSize Storage capacity per disk 9 GBytes
NumCylinders Number of cylinders per disk 4,920
DiskCache Size of disk cache 1 Mbyte



16

as the CPU utilizations on the SPARC 20 workstation
were well below 20 percent.

Besides this experiment, we also repeated all of the ex-
periments presented previously. In addition, we ran several
more experiments with the server and the simulator. In one
experiment, we varied the ThinkTime parameter and found
that both the observed and predicted performance de-
graded later as ThinkTime increased, though there were no
qualitative changes. In another experiment, we modified
the setting of AccessSkew% and HotSize%. There, we ob-
served that raising AccessSkew% and/or decreasing HotSize%

increased the number of supportable streams as disk re-
trievals became more localized, while lowering AccessS-
kew% and/or increasing HotSize% led to fewer supportable
streams. In all of these experiments, we observed that the
simulator consistently captured the qualitative behavior of
the server. We will, therefore, use the simulator to study the
scalability of the server.

8.3 Experiment
For the scale-up experiment, we retain all the workload
and physical resource settings of the previous experiment,
except for the total number of disks which we vary from
1 to 30. As for the server experiments, we ran each simula-
tion experiment long enough to allow for 2,000 object re-
trievals. We also verified that the size of the 90 percent con-
fidence intervals for the jitter ratio, computed using the
batch means approach [2], were within a few percent of
the mean in almost all cases.

The simulation results, presented in Figs. 18 and 19, show
that the number of supportable terminals scales almost
linearly with the number of disks, up to 28 terminals/disk.
Beyond that, the disks get overloaded, and the effect of re-
duced retrieval efficiency due to declustering overwhelms
that of load balancing. This causes performance to degrade
rapidly as explained in Section 7.6. Due to quality of service
considerations, in practice a multimedia server is not likely
to be configured to operate in the overload region. The al-
gorithms presented in this paper should, therefore, enable
our server to scale up satisfactorily.

9 CONCLUSIONS

In this paper, we focus on the problem of implementing a
multimedia server that supports continuous media (CM)
data including video and audio. Our primary contribution
in this work is a set of intra- and interdisk data-placement
and retrieval algorithms that are designed to exploit the full
capacity of the disks in a server, in order to maximize the
number of retrieval streams that can be supported. The
data-placement algorithm declusters every object over all of
the disks, using a time-based declustering unit, with the
aim of balancing the disk load distribution. Within each
disk, objects that are accessed more frequently are allotted
pages in the middle cylinders to minimize seek delays,
whereas objects that are less popular reside in the outer and
inner cylinders. As for runtime retrieval, the quintessence
of the algorithm is to give each disk advance notification of
the blocks that have to be fetched in the impending time
periods, so that the disk can optimize its service schedule
accordingly. Moreover, in processing a block request for a
replicated object, the server will dynamically channel the
retrieval operation to the most lightly loaded disk that
holds a copy of the required block.

We have implemented a multimedia server based on
the above algorithms. Performance tests on our implementa-
tion confirm that these algorithms lead to very efficient
disk utilization, thus enabling the multimedia server to sup-
port a large number of concurrent users. We managed to
achieve near jitter-free retrieval for up to 25 concurrent
MPEG-1 streams, each averaging 1.2 Mbits/sec, out of

Fig. 16. Jitter ratio.

Fig. 17. Latency.



PANG ET AL.: RESOURCE SCHEDULING IN A HIGH-PERFORMANCE MULTIMEDIA SERVER 17

a single Seagate Elite 9 drive that is capable of reaching
only a maximum sequential retrieval speed of around 6
Mbytes/sec. Moreover, experiments suggest that the total
retrieval capacity of the server scales up almost linearly
with the number of disks. Therefore, the server has a ca-
pacity equal to 30 Mbits/sec times the number of data
disks, and new requests are admitted on a first-come-
first-serve basis up to this capacity.

We are extending this work in several ways. Currently,
we are in the process of adapting our implementation to a
distributed system architecture. We are also partnering a

number of companies to deploy our servers to support
multimedia-on-demand applications. Finally, we hope to
extend the server into a full-fledged multimedia DBMS.

ACKNOWLEDGMENTS

The authors thank Desai Narasimhalu for his support and
advice. We also thank Pingli Pang for contributing to the
system implementation.

REFERENCES

[1]� J.A. Adam, “Interactive Multimedia: Applications, Implications,”
IEEE Spectrum, vol. 30, no. 3, pp. 24-31, Mar. 1993.

[2]� J. Banks and J.S. Carson II, Discrete-Event System Simulation.
Prentice Hall, 1984.

[3]� S.A. Barnett and G.J. Anido, “An Efficient Non-Hierarchical
Storage System for Video Servers,” Proc. Multimedia Japan Conf.,
pp. 376-385, Mar. 1996.

[4]� P. Bocheck, H. Meadows, and S.-F. Chang, “Disk Partitioning
Technique for Reducing Multimedia Access Delay,” Proc. IASTED/
ISMM Int’l Conf. Distributed Multimedia Systems and Applications,
pp. 27-30, Aug. 1994.

[5]� M.J. Carey, R. Jauhari, and M. Livny, “Priority in DBMS Resource
Scheduling,” Proc. 15th Int’l Conf. Very Large Data Bases, pp. 397-
410, Aug. 1989.

[6]� C.K. Chang, C.C. Shih, T. Nguyen, and P. Mongkolwat, “A
Popularity-Based Data Allocation Scheme for a Cluster-Based
VOD Server,” Proc. COMPSAC, pp. 62-67, Aug. 1996.

[7]� E. Chang, “Storage and Retrieval of Compressed Video,” PhD
thesis, Univ. of California at Berkeley, 1996.

[8]� S. Chaudhuri, S. Ghandeharizadeh, and C. Shahabi, “Avoiding
Retrieval Contention for Composite Multimedia Objects,” Proc.
21th Int’l Conf. Very Large Data Bases, pp. 287-298, Sept. 1995.

[9]� M.S. Chen, D.D. Kandlur, and P.S. Yu, “Storage and Retrieval
Methods to Support Fully Interactive Playout in a Disk-Array-
Based Video Server,” ACM Multimedia Systems J., vol. 3, no. 3,
pp. 126-135, July 1995.

[10]� A. Dan, M. Kienzle, and D. Sitaram, “A Dynamic Policy of Seg-
ment Replication for Load-Balancing in Video-On-Demand
Servers,” ACM Multimedia Systems J., vol. 3, no. 3, pp. 93-103,
July 1995.

[11]� A. Dan and D. Sitaram, “An Online Video Placement Policy Based
on Bandwidth to Space Ratio (BSR),” Proc. ACM SIGMOD Conf.,
pp. 376-385, May 1995.

[12]� C.S. Freedman and D.J. DeWitt, “The SPIFFI Scalable Video-
On-Demand System,” Proc. ACM SIGMOD Conf., pp. 352-363,
May 1995.

[13]� D. Gall, “MPEG: A Video Compression Standard for Multimedia
Applications,” Comm. ACM, vol. 34, no. 4, pp. 46-58, Apr. 1991.

[14]� G.R. Ganger, B.L. Worthington, R.Y. Hou, and Y.N. Patt, “Disk
Subsystem Load Balancing: Disk Striping vs. Conventional Data
Placement,” Proc. 26th Hawaii Int’l Conf. System Sciences, pp. 40-49,
Jan. 1993.

[15]� M.N. Garofalakis, B. Ozden, and A. Silberschatz, “Resource
Scheduling in Enhanced Pay-Per-View Continuous Media Data-
bases,” Proc. VLDB Conf., pp. 516-525, Aug. 1997.

[16]� S. Ghandeharizadeh and L. Ramos, “Continuous Retrieval of Mul-
timedia Data Using Parallelism,” IEEE Trans. Knowledge and Data
Eng., vol. 5, no. 4, pp. 658-669, Aug. 1993.

[17]� R.L. Haskin and F.L. Stein, “A System for the Delivery of Interac-
tive Television Programming,” Proc. IEEE COMPCON, pp. 209-215,
Mar. 1995.

[18]� R.L. Haskin, personal communication, Mar. 1995.
[19]� A. Heybey, M. Sullivan, and P. England, “Calliope: A Distributed,

Scalable Multimedia Server,” Proc. Usenix Technical Conf., pp. 75-
86, Jan. 1996.

[20]� H. Hsiao and D. DeWitt, “Chained Declustering: A New Avail-
ability Strategy for Multiprocessor Database Machines,” Proc.
Sixth Int’l Conf. Data Eng., pp. 456-465, Feb. 1990.

[21]� D.R. Kanchammana-Hosekote and J. Srivastava, “I/O Scheduling
for Digital Continuous Media,” ACM Multimedia Systems J., vol. 5,
no. 4, pp. 213-237, July 1997.

Fig. 18. Jitter ratio.

Fig. 19. Latency.



18 

[22]� K. Keeton and R.H. Katz, “Evaluating Video Layout Strategies for
a High-Performance Storage Server,” ACM Multimedia Systems J.,
vol. 3, no. 2, pp. 43-52, May 1995.

[23]� T.G. Kwon, Y. Choi, and S. Lee, “Disk Placement for Arbitrary-
Rate Playback in an Interactive Video Server,” ACM Multimedia
Systems J., vol. 5, no. 4, pp. 271-281, July 1997.

[24]� T.D.C. Little and D. Venkatesh, “Popularity-Based Assignment of
Movies to Storage Devices in a Video-On-Demand System,” Proc.
Fourth Int’l Workshop Network and Operating System Support for
Digital Audio and Video, pp. 213-224, Nov. 1993.

[25]� C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

[26]� M. Livny, S. Khoshafian, and H. Boral, “Multi-Disk Management
Algorithms,” Proc. ACM SIGMetrics Conf., pp. 69-77, May 1987.

[27]� M. Mehta and D.J. DeWitt, “Data Placement in Shared-Nothing
Parallel Database Systems,” technical report, Computer Sciences
Dept., Univ. of Wisconsin£Madison, 1994.

[28]� G. Miller, G. Baber, and M. Gilliland, “News On Demand for
Multimedia Networks,” Proc. ACM Multimedia Conf., pp. 383-392,
Aug. 1993.

[29]� A.N. Mourad, “Issues in the Design of a Storage Server for Video-
On-Demand,” ACM Multimedia Systems J., vol. 4, no. 2, pp. 70-86,
Apr. 1996.

[30]� R.T. Ng and J. Yang, “Maximizing Buffer and Disk Utilization for
News On-Demand,” Proc. 20th Int’l Conf. Very Large Data Bases,
pp. 451-462, Sept. 1994.

[31]� Y.-J. Oyang, M.-H. Lee, C.-H. Wen, and C.-Y. Cheng, “Design of Mul-
timedia Storage Systems for On-Demand Playback,” Proc. 11th
Int’l Conf. Data Eng., pp. 457-465, Mar. 1995.

[32]� B. Ozden, R. Rastogi, and A. Silberschatz, “On the Design of a
Low-Cost Video-On-Demand Storage System,” ACM Multimedia
Systems J., vol. 4, no. 1, pp. 40-54, Feb. 1996.

[33]� H. Pang, “Data Placement and Retrieval in a Disk-Based Multi-
media Storage System,” ISS Technical Report, 1995.

[34]� E. Rahm, “Parallel Query Processing in Shared-Disk Database
System,” SIGMOD Record, vol. 22, no. 4, pp. 32-37, Dec. 1993.

[35]� P.V. Rangan, H.M. Vin, and S. Ramanathan, “Designing an On-
Demand Multimedia Service,” IEEE Comm., vol. 30, no. 7, pp. 56-
64, July 1992.

[36]� A.L.N. Reddy and J.C. Wyllie, “I/O Issues in a Multimedia Sys-
tem,” Computer, vol. 27, no. 3, pp. 69-74, Mar. 1994.

[37]� A.L.N. Reddy, “Scheduling and Data Distribution in a Multiproc-
essor Video Server,” Proc. Int’l Conf. Multimedia Computing and Sys-
tems, pp. 256-263, May 1995.

[38]� C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Mod-
eling,” Computer, vol. 27, no. 3, pp. 17-28, Mar. 1994.

[39]� A. Srivastava, A. Kumar, and A. Singru, “Design and Analysis of
a Video-On-Demand Server,” ACM Multimedia Systems J., vol. 5,
no. 4, pp. 238-254, July 1997.

[40]� A.S. Tanenbaum, Modern Operating Systems. Prentice Hall, 1992.
[41]� F.A. Tobagi, J. Pang, R. Baird, and M. Gang, “Streaming RAID£A

Disk Array Management System for Video Files,” Proc. ACM Mul-
timedia Conf., pp. 393-400, Aug. 1993.

[42]� H.M. Vin and P.V. Rangan, “Designing a Multi-User HDTV Stor-
age Server,” IEEE J. Selected Areas in Comm., vol. 11, no. 1, pp. 153-
164, Jan. 1993.

[43]� Y. Wang, J.C.L. Liu, D.H.C. Du, and J. Hsieh, “Video File Alloca-
tion Over Disk Arrays for Video-On-Demand,” Computer Science
Technical Report TR95-067, Univ. of Minnesota, 1995.

[44]� J.L. Wolf, P.S. Yu, and H. Shachnai, “DASD Dancing: A Disk Load
Balancing Optimization Scheme for Video-On-Demand Computer
Systems,” Proc. ACM SIGMetrics Conf., pp. 157-166, May 1995.

[45]� P. Yu, M.S. Chen, and D.D. Kandlur, “Design and Analysis of a
Grouped Sweeping Scheme for Multimedia Storage Manage-
ment,” Proc. Third Int’l Workshop Network and Operating System
Support for Digital Audio and Video, pp. 38-49, Nov. 1992.

HweeHwa Pang received the BSc degree (with
first-class honors) and the MS degree from the
National University of Singapore in 1989 and
1991, respectively; and the PhD degree from the
University of Wisconsin at Madison in 1994£all
in computer science. He is now a research staff
member at Kent Ridge Digital Laboratories (for-
merly the Institute of Systems Science) in Singa-
pore. He heads a mobile computing project to
develop software infrastructure and utilities to
facilitate information access and computing from

mobile devices. His research interests include database management
systems, multimedia servers, and real-time systems.

Bobby Jose received an ME degree in electrical
engineering (with distinction) from the Indian
Institute of Science in 1995. His thesis focused
on issues in distributed collaborative systems.
He joined the Kent Ridge Digital Labs in Singa-
pore in 1995, and participated in the design and
development of a distributed multimedia server
and various applications. He also led a project to
develop a key frame index stream-based re-
trieval scheme for networked video. He is cur-
rently developing the network architecture and

services for the Wireless ATM Research Project at the Ubiquity Lab.
He functions as technical lead for MPEG and transport-related issues,
and investigation into applying open signaling concepts to location
management and LANE services. His research interests include multi-
media networking, wireless broadband networking, and application of
open signaling concepts to build ATM-based mobile network architec-
tures and services.

M.S. Krishnan received a bachelor of engineer-
ing degree in computer science from the R.V.
College of Engineering at Bangalore University
in 1990. He joined the Institute of Systems Sci-
ence in Singapore in 1994, and participated in
designing and developing a multimedia server.
He is now with Compaq Services, Compaq Com-
puter Asia Pte. Ltd., in Singapore.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-1999

	Resource Scheduling in a High-Performance Multimedia Server
	Hwee Hwa PANG
	Bobby JOSE
	M. S. KRISHNAN
	Citation


	Microsoft Word - 303.doc

