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Evaluating straddle carrier deployment policies:
a simulation study for the Piraeus
container terminal

ELENI HADJICONSTANTINOU*y and NANG LAIK MAz

yImperial College Business School, Imperial College London,
London, UK
zSchool of Information Systems, Singapore Management University,
Singapore

Most container terminals in the world today are operating up to their capacities.
In this paper, we have developed a decision support system to optimise yard
operations by considering all container flows (import, export and transshipment)
through the yard with the view to improving terminal performance and efficiency.
In another paper, we proposed an optimization model that determines optimal
container locations and straddle carrier (SC) movements with the objective
of minimizing the overall storage and handling cost of containers. In this paper,
a discrete event simulation tool for container terminal operations has been
developed with three objectives: (i) to validate the operational plan resulting from
the optimization model; (ii) to test the robustness of possible deployment policies
for straddle carriers; and (iii) to analyse yard resource requirements for future
terminal expansion. The model has been applied to the largest container terminal
in Greece—the Port of Piraeus—and computational results are reported for the
case study.

1. Introduction

Container terminal operations play a vital role in today’s world economy. Some of

the busiest terminals in the world today handle millions of twenty footer equivalent

units (TEUs) of container throughput annually. Terminal operations can be broadly
classified into three types: gate-, yard- and quay-side. As most of the container flows

occur in the yard-side, yard operations are the bottleneck for the container terminal
operations. The core functionality of the yard operations is container assignment

which involves the assignment of locations to all the containers coming to the

terminal. There are three kinds of containers flowing through the terminal:

. Export (EX) containers come to the terminal via the gate from the customers.

Customers need to book in advance to deliver their EX containers, which
normally can be stored in the container terminal free-of-charge for three to

seven days before they will be loaded onto the vessel for the next destination.
In this case, it is important for the yard planner to assign the containers evenly

to different yard blocks so as to facilitate the loading process.
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. Import (IM) containers are shipped by the vessel to the port where after being
discharged from the vessel, they are either stored in the container storage yard
for a period of time until they are collected by the external trucks (XTs) or
directly picked up by the customers without storage. In the latter case,
customers need to make advance booking arrangements with the terminal
operators.

. Transhipment (TS) containers are discharged from the ship, transported by
internal trucks (ITs) and stored in the yard before they are transshipped to
another vessel.

Containers in the yard are stored according to a storage policy. The assignment of
IM, EX and TS containers is a routine, daily operation decision problem for the yard
planners. In today’s market, finding ‘good’ locations for the containers so as to
shorten the vessels’ port stay and satisfy the service demand using minimal yard
resources is enormously important in remaining competitive.

Straddle carriers (SCs) are used for both transporting and stacking containers in
the yard because they are very flexible. They are usually man-driven and able to
stack three or four levels high. Clearly, if congestion occurs at the yard-side then
delays in vessel departure are possible as the trucks are unlikely to be at the quay-side
in time to transport all the containers for loading. This means that, during the
planning process, yard planners are required to take into consideration the
availability of SC capacity to ensure that these machines are neither under-utilized
nor overloaded. It is also important to estimate the optimal number of SCs needed to
service all the containers in the yard during a planning time horizon. A tradeoff
involves reducing the operational cost of SCs while at the same time trying to meet
the required service level. The container assignment and SC deployment problems are
closely inter-related and the quality of solution to both problems is fundamental to
improve the efficiency of the overall terminal operation. This is a challenging and
complex problem for which, due to large volume of container throughputs, the use of
personal experience and basic rule of thumb cannot provide the optimal solution.
On the other hand, the use of a decision support tool may considerably improve the
decision-making process of yard planners in daily operations and hence contribute
towards the competitiveness of the container terminal.

A detailed review of the literature—see [1–4]—suggests that there is very little
research done towards addressing the complete container terminal operations
problem in a unified way and container assignment problems have been explored by
only a few researchers [e.g. 5–7]. The authors of [8, 9] examined the ‘unproductive
moves’ in the container yard using empirical studies and the resulting impact of these
moves on operations. Henesey [10] developed a multi-agent simulation model named
SIMPORT to test different operational policies for a major container port in India.
In this paper, we present a high-level decision support system to assist terminal
managers in making informed decisions relating to the core yard operations problem
of container assignment and SC deployment based on the use of a purpose-built
optimization model [11].

The rest of the paper is organized as follows. The optimization model is briefly
described in Section 2, summarizing key decision variables, constraints, and objective
and solution methodology. Two SC deployment policies are examined providing
both a lower and an upper bound on the number of SCs required in the terminal
within a given planning time horizon. In Section 3, we propose a simulation model
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for container terminal operations which is used to validate/verify the operational
plans resulting from the optimization model. Section 4 presents an application of the
simulation model to the largest port in Greece, the Port of Piraeus; the process of
generating input data for the model is discussed and preliminary computational
results are reported. Finally, conclusions are given in Section 5.

2. An overview of the optimization model

This section provides an overview of an optimization model used to solve the
problem of container assignment and SC deployment in a container terminal.

2.1. Decision variables
IM flow of containers: Vessel to customer

. # IM containers to be discharged from the vessel per time period

. # IM containers to be stored in a yard block

. # IM containers to be loaded directly to the XTs

. # SCs required during discharging of IM containers

. # SCs required to service the XTs during pick up of the IM containers.

EX flow of containers: Customer to vessel

. # EX containers to be loaded to the vessel per time period

. # EX containers to be stored in a yard block

. # EX containers to be loaded directly to the vessel (without storage) given that
these containers arrived at the gate after the vessel has arrived

. # SCs required in the yard to unload the EX containers from the XTs

. # SCs required during loading of EX containers.

TS flow of containers: Vessel to vessel

. # TS containers to be discharged from the vessel per time period

. # TS containers to be stored in a yard block

. # TS containers to be loaded directly onto the loading vessel given that the
latter has arrived before the discharging vessel

. # TS containers to be loaded to the vessel per time period

. # SCs required for the unloading of the TS containers

. # SCs required for the loading of the TS containers.

Mathematical model. We have formulated the container assignment and SC
deployment problem described in this paper as an integer programming (IP) model.
The objective of the model is to minimize the total operational cost (handling—SC
deployment and storage) associated with all container flows (IM, EX, TS) over
a given planning time horizon, while at the same time balancing the distribution
of workload among different yard blocks. The model output has to satisfy a number
of constraints, such as, supply and demand of containers between various Origin–
Destination (O–D) pairs, SC working capacity, space vacancy and flow conservation
at each yard block.

The above model has been implemented in Cþþ and a solution algorithm has
been developed using the commercial code CPLEX 10.1. For details regarding the
mathematical formulation and its computational implementation, see [11].
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Straddle carrier deployment policies. Due to various types of uncertainties occurring
in daily terminal operations, it would be very difficult for the yard manager to
determine the exact number of SCs required during the actual loading/unloading of
containers (especially for those containers coming via the gate). Although customers
book in advance for the delivery/pick up of their containers, trucks can actually
arrive at the gate anytime within a four-hour time window. In order to better plan SC
requirements in the terminal yard, the model developed in this paper considers two
SC deployment policies which enable the computation of both a lower and an upper
bound on the actual number of SCs required during operations over a given planning
horizon.

Policy I assumes that there is at most one SC deployed in a yard block during
a working shift (eight hours) which is not shared with other blocks. This, referred to
as the ‘‘No sharing of SCs’’ policy, is used to estimate the maximum number (upper
bound) of SCs required servicing all the containers in the yard within the planning
time horizon.

Policy II allows the ‘‘Sharing of SCs’’ and assumes that the SC can move around
different yard blocks without restriction. For example, it would be possible to move
an idle SC, originally assigned to yard block j1, to another block, say j2, where there
are jobs waiting for service assuming that (i) not all SC capacity has been utilized and
(ii) moving the SC among yard blocks is not prohibited due to space limit or one
directional road. If any of these restrictions arise during the actual operations, we
may require more SCs to service all the containers in the yard within the planning
horizon. Hence, the deployment of this policy results in the computation of the
minimum number (lower bound) of SCs actually required.

In actual operations, either of the two SC policies described above can be
deployed depending on the workload in the yard. If a yard block is busy, then the SC
will be serving all the containers in the same yard block throughout the planning
period. It is worth noting that the SCs are bulky equipment which can not move
around the yard as freely as it would be desirable. Therefore, even if the ‘‘Sharing of
SCs’’ policy is adopted, the SCs can only move once or twice among different yard
blocks within a shift.

For a practical application of the optimization model, we refer the reader to [12].

3. Container terminal simulation

Computer simulation is used when no closed form analytical solution for the system
of interest is possible; it is very popular in the business world today. We can find vast
applications in engineering systems, logistics and transportation, manufacturing,
military operations, business processes, etc. In an engineering system, simulation
may be useful in simulating the turbulent flow of liquids, investigating the effect of
earthquake on building structures or in the construction of a water dam. In logistics
and transportation, simulation may be useful in decision making to schedule and
route vehicles, evaluate new dispatching strategies to improve system performance or
determine the number of vehicles to deploy based on forecasted demand. In business,
we find applications of simulation in evaluating the impact of additional workload
on container terminal operations, designing of a new airport or runways or
evaluating the waiting time in queues at call centers. For more applications of
simulation, please refer to [13–16].
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Figure 1 illustrates graphically how the optimization model described in the
previous section relates to the simulation model presented in this paper. In the latter,
we are able to model all the actual activities taking place in a terminal, namely,
the dynamic arrival of containers, queuing at the gate, yard or quay, travelling
of trucks and routing of SCs, whereas, due to their complexity, the details of all
these operations could not be represented in the IP model. The output from the
optimization model (which determines optimal container locations and number of
SCs deployed) is used as input to run the simulation model with a view to evaluating
the operational performance of the resulting plan. Usually, a container terminal has
a Service Level Agreement (SLA) with shipping lines and trucking companies so that
vessels depart on-time and trucks coming to the terminal can leave the yard within
30 minutes. Using the simulation model, we can measure the terminal efficiency and
performance using various indicators, such as, the average total time that a truck
spends in the container terminal, average queuing time of the truck at the gate, yard
or quay-side or average SC utilization rate.

3.1. Conceptual model of container terminal operations
We model the key terminal processes in detail, namely: (a) gate/vessel arrival process;
(b) queues at gate/yard/quay; (c) container-location assignment; (d) travelling of
trucks/SCs; and (e) assignment of jobs to SCs. It is assumed that scheduling of quay
cranes (QCs) is already done and QCs are available for the loading and unloading of
containers at a constant rate. Containers which are discharged from the ship (IM/TS)
to store in the yard and EX containers coming to the terminal via the gate are
categorized as incoming assigned type (to the terminals). On the other hand, (EX/TS)
containers to be loaded on the ship and IM containers leaving the terminal are
classified as outgoing. Table 1 summarizes the sequence of events for the three types
of container flows (IM/EX/TS) and assigned types (incoming/outgoing).

3.2. Development of container terminal simulator
In this section we provide an outline of the main components that are essential to
building the container terminal simulation model.

(a) Simulation clock
One of the most important building components is the simulation clock
which gives the current value of the simulated time as opposed to the

Planning data 
Port configuration, container 
schedule & volume 

IP model 
Operational plan 
Container locations, SC 
requirements, loading/discharge 
time 

IP solution 
Simulation model 
(mimic real-terminal 
operations) 

Detailed container 
arrival & departure 
times 

Performance 
indicators 
Total queuing time, SC 
utilisation rate, total 
service time 

Figure 1. Relationship of optimization (IP) and simulation models.

Evaluating straddle carrier deployment policies 357



real time. There is no relationship between the simulated time, real time and

running time of the simulation. In our simulation model, the time unit is

in minutes (min).
(b) Events list

A discrete-event simulation models a sequence of events for each entity in the

system; we need to maintain the events list to keep track of the system

behaviour. An event consists of the event time (when it happens), the event

performance (what happens when an event takes place) and a possible end

time (when it finishes). All event sequences are stored in the event�s list and

are always sorted in ascending order of event start time. Since during the

course of simulation, all new events are inserted into the events list, it is

important to maintain a manageable size of this list otherwise it will grow

exponentially. In our simulation program, we have deleted all the past events

from the events list to improve the performance of it. Thus the events list only

includes those events which are to take place in the future (future events list).

It is important to keep in mind that before we delete an event, we need to

store the event information in the system for statistical purposes.
(c) Random number generator

The simulation program needs to generate random variables to capture the

stochastic nature of the real system. This can be achieved by using

pseudorandom number generators (PRNG). We use the Linear Congruential

method, proposed by Lehmer [17] to produce a long sequence of integers

between 0 and m� 1 depending on the initial see X0; the resulting random

numbers then follow the recursive relationship Xiþ1 ¼ ðaXi þ cÞmod m,

i ¼ 0, 1, 2, . . . where a is a constant multiplier, c is the increment value and

m is the modulus.

Using the random numbers, we can generate different arrival patterns

which may follow an input distribution like Poisson process with inter-arrival

Table 1. Sequence of events for different container-assigned types.

Container and assigned type. Sequence of events

EX(incoming)/IM (outgoing) 1. XT arrives/queues at gate
2. XT leaves gate for yard (travelling time)
3. XT arrives/queues at yard
4. SC serves
5. XT leaves yard and exits

IM/TS (incoming) 1. IT arrives/queues at quay
2. QC serves
3. IT leaves quay for yard (travelling time)
4. IT arrives/queues at yard
5. SC serves
6. IT leaves yard and exits

TS/EX (outgoing) 1. IT arrives/queues at yard
2. SC serves
3. IT leaves yard for quay (travelling time)
4. IT arrives/queues at quay
5. QC serves
6. IT leaves quay and exits
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times 1/�, an exponential service time for SCs and time wasted on the road due

to traffic congestion.
(d) Initial and terminating conditions

The initial condition of our simulation program is to start at time 0. Prior to
initiating the simulation process, a list of random arrival times (in minutes) is

generated for each container (at gate or quay) based on given data relating
to vessel arrival times and customers’ booking times. The stopping criteria of

the simulation depend on the simulation designer or users; it can stop after
certain time or when the system has reached a steady state. In our simulation

program, the simulation stops when no more events exist in the future
events list.

(e) Collection of statistics
The simulation program keeps track of all the events which have occurred

during the simulation process; in the end we keep record of the interesting
results, such as, the total time or average time spent by each truck in the

terminal, average queuing time at the gate, yard or quay side, SC utilisation
rate. Table 2 explains the details of each performance indicator.

We use the object-oriented (OO) paradigm to develop our port simulation
program. C# is one of the most popular OO programming languages which can be
used to model many real-world applications, as opposed to the customised

simulation packages which are quite rigid. We also use Microsoft Access Database
as a storage media to store the data related to simulation events. At the start of the

simulation, the simulation clock is set to 0 but it will then advance to the first event
time in the list. The execution of the current event will trigger the generation of

a subsequent event depending on the current event and the assigned type of the given
container. As soon as a new event is inserted into the event list, the latter is sorted

again by ascending order of time. The current event which has been already
processed is deleted from the event list and the simulation clock will then advance to

the next event in the list. The same process is repeated until the future event list
becomes empty and all events are processed. It is worth noting that queues may

occur at the gate, yard and the quay which are being handled using the first-in-first-
out (FIFO) service principle. Once the first element in the queue is processed, it will
be deleted from the queue and the next available element in the queue is served.

Figure 2 shows the main structure of the simulation model.

Table 2. Description of performance indicators from simulation model.

Performance indicator Type of container Formula

Avg. total time spent
in the system

EX (Incoming)/IM
(outgoing)

Exit time (yard)—arrival time (gate)

IM/TS (incoming) Exit time (yard)—arrival time (quay)
EX/TS (outgoing) Exit time (quay)—arrival time (yard)

Avg.queuing time (gate) Exit time (gate)—arrival time (gate)
Avg.queuing time (yard) Time when served by SC—arrival

time (yard)
Avg. queuing time (quay) Time when served by QC—arrival

time (quay)
SC utilization Total job done/SC capacity

Evaluating straddle carrier deployment policies 359



In the next section, we present a practical application of the simulation model
proposed in this paper in the context of planning container terminal operations at the
Port of Piraeus. Computational results are reported.

4. Application of the simulation model—Port of Piraeus

Port of Piraeus is a major container port in Eastern Mediterranean, playing a leading
role as a transhipment centre with an annual throughput of 1.4 million TEUs.

4.1. Input data
The input planning requirements to run the model for the Port of Piraeus were
mainly generated using publicly available data collected from the relevant website

Simulation clock = 0

Initial event list
sorted by
event time

While event
list is not
empty?

Read the first
event in the list

Execute the
event

Generate new
event

Insert into
event list

Delete the
current event

Simulation time =
event time of first event

in the list

End

Start

Y

N

Figure 2. Flow chart for container terminal simulator.
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and the personal experience of the authors. Table 3 summarizes the yard
configuration data used by the model. The proportions of IM, EX and TS
containers for the given port are 2:2:6 and the same ratios are used to generate
container types carried by a vessel. For example, a vessel carrying a total of 1000
containers for the Port of Piraeus will discharge 200 IM and 600 TS containers; on
the other hand, 200 EX containers will be loaded on a vessel before departure.

During a 24-hour planning horizon, five vessels on average are expected to call
at Piraeus carrying a total of 2682 IM and TS containers, whereas within the
same period, a total of 1956 IM and EX containers are transported via the gate
resulting in a total of 4638 container moves; the latter figure is equivalent to an
annual throughput of 1.7million TEUs. Using the information described above,
we randomly generated 50 O–D pairs of containers such that the source containers
arrive at the terminal before the departure/pick up time at destination.

4.2. Optimal operational plan (results from optimization model)
This section reports the preliminary findings of applying the optimization model to
the Port of Piraeus container terminal. Consider a typical 24-hour planning horizon
which is further divided into three working shifts: t1 (between times 1–8 hours),
t2 (9–16 hours) and t3 (17–24 hours). Using data over the 24-hour time period, as
described in Section 4.1, and given the set of container flows between all generated
O–D pairs, we run the optimization model (section 0). CPLEX finds the optimal
solution within seconds: optimal yard locations for all types of containers flowing
through the yard and the minimum and maximum number of SCs that will be
required during each shift of the 24-hours planning horizon, using the two SC
deployment policies described in Section 0. Table 4 shows that, within the same
planning period, a total of 24 more SCs are required under the ‘‘No sharing of SCs’’

Table 3. Port configuration data.

User-defined input parameters Value

Planning time horizon 24 hours
% yard blocks reserved for IM containers 20%
% yard blocks reserved for EX containers 20%
% yard blocks reserved for TS containers 60%
Number of yard blocks 65
Number of slots per block 20
Number of rows per slot 7
Stacking height 4
SC working rate (containers/hour) 10
Total number of vessels calling at the port 5
Total number of containers (all types) to be loaded/discharged

on/from the vessels
2682

Total number of (IM/EX)containers transported via the gate 1956
Total number of container moves in the yard 4638
Number of O–D pairs for container flows (all types) 50
Speed of truck (km/h) 15m/h
Speed of SC (km/h) 10m/h
Service time of SC Exponential mean

6 minutes
Average service time at gate Average 2 minutes
Average service time of QC Average 2 minutes
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policy compared with the ‘‘Sharing of SCs’’ policy; in fact, the number of SCs
proposed by our model falls within the range of (18, 39) during any one shift. It is
interesting to note that the Port of Piraeus posses about 64 SCs and, in actual
terminal operations, either of the two SCs policies described above can be deployed
depending on the workload in the yard. If a yard block is busy, then the SC will be
serving all the containers in the same yard block throughout the planning period. It is
worth noting that the SCs are bulky equipment which can not move around the yard
as freely as it would be desirable. Therefore, even if the ‘‘sharing of SCs policy’’
is adopted, the SCs can only move once or twice among different yard blocks within
a shift.

4.3. Performance indicators (results from simulation model)
It is well-known that, the use of analytical or optimization models to capture the
complexity and dynamic nature of real operations has obvious limitations. We used
the container terminal simulator described in Section 0 in order to validate the
‘‘goodness’’ of the operational plan produced by the optimization model described
above. Using the port configuration data (Table 3), the optimal number of SCs
(Table 4) and the optimal container locations determined by the optimization model
(Section 2), we run the simulation model in order to computationally evaluate SC
deployment policies I and II. As it can be seen from the results shown in Table 5, the
average SC utilization rates for the two policies are 69% and 96.62%, respectively.
The SCs deployed under the ‘‘Sharing of SCs’’ policy are almost performing up to
their capacity and the average waiting time in the system is 46 minutes; in fact, this is
not a desirable SC performance during operations.

Table 4. Optimal SC requirements over a 24-hour period.

Optimal
solution CPLEX solver # of SCs required per time period

SC deployment
policy

Status Run time
(seconds)

Shift
1(1–8)

Shift
2(9–16)

Shift
3(17–24)

Total
(1–24)

‘‘No sharing’’
policy

Optimal 15 sec 26 28 39 84

‘‘Sharing’’
policy

Optimal 9 sec 18 21 21 60

Table 5. Simulation output using Policies I & II.

Simulation output (minutes)
Policy I:

‘‘No sharing of SC’’
Policy II:

‘‘Sharing of SCs’’

Avg. total time spent in system 21.85 58.86
Avg. SC utilization rate 69.0% 96.63%
Avg. waiting time at gate 0.39 0.68
Avg. waiting time at yard 10.3 46.0
Avg. waiting time at quay 0.0 0.08
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From the simulation results, it is clear that, using Policy II for SC deployment,

a lower system performance was achieved as the SC has wasted significant time

travelling among different yard blocks without carrying any containers. This suggests
that it is worth considering an alternative SC deployment policy whereby the SC

movement is limited to two yard blocks only so that empty travelling time is

minimized. We refer to this policy as ‘‘Sharing of SCs among two blocks’’ – Policy III.
Under Policy III, if the number of jobs in a yard block is high, then the SC will

stay in the same yard block throughout the shift. However, if there is still some SC

capacity left, then the SC can move to another yard block to service the containers.

If no SC is available or the capacity is full, then a new SC will have to be deployed.

Using simulation, we find that, under Policy III, the total number of SCs required
is 70 (that is, 14 SCs less than the corresponding number under Policy I of

‘‘No Sharing’’). The corresponding values of performance indicators for Policy III

are given in Table 6 showing that this is a ‘‘good’’ policy to be used in practice.
In order to collect sample performance indicators mimicking system dynamics at

the container terminal, we run 50 iterations. Each independent simulation run uses

a different initial random seed and statistical sample is collected. By doing so, we are

reasonably confident that, from the collected statistical sample, we produce a reliable
and valid assessment of the ‘‘goodness’’ of our operational plan. These guarantees

are useful in an attempt to persuade terminal managers of the robustness and

applicability of the proposed optimal policies under different operational scenarios.

Let � be the average total time spent by each truck in the terminal.
Since we have a large sample size, m¼ 50, we can use the Central Limit Theorem

and Z-table to compute 100ð1� �Þ % confidence interval (CI) for �:

�̂� z�=2 � ŝ, where �̂, ŝ are sample mean and standard deviation;

for 95% CI, z�=2 ¼ 1:96

Table 7 gives an illustrative example of the statistical results obtained from

the simulation model. It is shown with 95% confidence that, the two policies of

‘‘No sharing of SCs’’ and ‘‘Sharing of SCs among two blocks’’ are feasible to use in
practice with an average total time spent by a truck in the system being in the range

of (18.11, 24.42) and (26.55, 35.33), respectively. However, the ‘‘Sharing of SCs’’

policy is found to be less useful in the real-operations as the SC has wasted much
time in travelling with an average total time spent between 49.06 and 64.73 minutes.

This outcome may have a negative impact on customer service level performance,

suggesting that this policy may be impractical.

Table 6. Simulation output using Policy III.

Simulation output (minutes)
Policy III: ‘‘Sharing of SC

among two blocks’’

Avg. total time spent in system 26.77
Avg. SC utilization rate 82.82%
Avg. waiting time at gate 0.68
Avg. waiting time at yard 10.3
Avg. waiting time at quay 0.02
Total SCs required 70
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4.4. Capacity planning using simulation
The world container volume has been increasing gradually and it is estimated that
an average increase of 10% in annual container throughput is expected for most of
the container terminals in the world. Capacity planning is normally carried out at
strategic level; to this end, we have used the proposed simulation model to predict the
number of SCs required during terminal operations based on forecasted future
demand. Anticipating an increase of 10%, 20%, 30% and 50% in the volume of
throughput, we run the simulation mimicking the actual terminal operations in the
risk-free environment. We have implemented the ‘‘Sharing of SCs among two
blocks’’ deployment policy for this study. The simulation model is used to analyse
and predict the system behaviour and results are reported in Figure 3 and Table 8.
From the diagram and using statistical analysis, we can conclude that there is
a positive correlation (i.e. correlation coefficient of 0.996) between volume increase
and number of required SCs. Using the simulated data available, we are interested
to find an analytical formula that can express the relationship between container
volume and SCs requirements. Let x and y denote the percentage increase (%)
in volume and the number of SCs required, respectively. From Figure 3, we assume
that x and y have a linear relationship y ¼ mxþ b where m is the gradient and
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Figure 3. (%) increase in container throughput and number of SCs required.

Table 7. Sample of statistics from multiple simulation runs.

Avg. total time spent by truck in
the system (minutes) Policy I Policy III Policy II

Sample mean 21.26 30.94 56.90
Sample standard deviation 1.62 2.24 4.0
95% Confidence interval (18.11, 24.42) (26.55, 35.33) (49.06, 64.73)
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b is the y-intercept. We enter the data and plot the graph in Excel, we obtain a
relationship given by: y ¼ 11xþ 69. Using this formula, we can then easily compute
the number of SCs required analytically for a given percentage increase in volume.
We also find that the average relative error (%) between the simulated and analytical
result is less than 2% providing us with a ‘‘good’’ estimate of what is thought to be a
complex and sophisticated process.

5. Conclusions

A detailed literature review of container terminal operations has revealed that
most of the researchers in the field only focus on a particular area of the decision-
making process resulting in the lack of an integrated approach to improve terminal
performance.

In this paper, we have proposed a simulation model for complete terminal
operations; the application of this model in the practical context of real operations
at the Port of Piraeus container terminal has demonstrated that it can be a valuable
tool for yard managers in making informed decisions and better utilizing expensive
terminal resources such as SCs. The simulation model was used to validate a yard
operational plan of assigning containers and deploying SCs resulting from an
optimization model. Furthermore, the ‘‘robustness of the plan’’ was evaluating using
simulation and the performance of alternative SC deployment policies was evaluated.
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