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Multiclass Query Scheduling in 

Real-Time Database Systems 
HweeHwa Pang, Michael J. Carey, Member, IEEE, and Miron Livny 

Abstract-In recent years, a demand for real-time systems that 
can manipulate large amounts of shared data has led to the emer­
gence of real-time database systems (RTDBS) as a research area. 
This paper focuses on the problem of scheduling queries in 
RTDBSs. We introduce and evaluate a new algorithm called Pri­
ority Adaptation Query Resource Scheduling (PAQRS) for han­
dling both single class and multiclass query workloads. The per­
formance objective of the algorithm is to minimize the number of 
Inissed deadlines, while at the same time ensuring that any dead­
line Inisses are scattered across the different classes accordin11: to 
an adininistratively-defined miss distribution. This objective is 
achieved by dynamically adapting the system's adinission, mem­
ory allocation, and priority assignment policies according to its 
current resource confi11:uration and workload characteristics. A 
series of experiments confirms that PAQRS is very effective for 
real-time query scheduling. 

Index Terms-Query processing, real-time database systems, 
memory management, priority scheduling. 

I. INTRODUCTION

A 
NUMBER of emerging database applications, including
aircraft control, stock trading, network management, and 

factory automation, have to manipulate vast quantities of 
shared data in a timely manner. More specifically, these appli­
cations may generate transactions and queries that have to be 
completed by certain deadlines for the results to be of full (or 
perhaps even any) value [1], [26], [23]., The need for systems 
that are able to support such timely management of substantial 
amounts of data has sparked researchers' interest in the area of 
real-time database systems (RTDBS) in both the database and 
real-time computing communities. Most work in the RTDBS 
area to date has focused on the issues of transaction manage­
ment and low-level resource (CPU and I/0) scheduling. 

Depending on the extent to which its applications can tol­
erate violations of their time constraints, a real-time database 
system can be characterized as being either hard, soft, or firm 

[23]. In this study, we will focus on firm RTDBSs, where a job 
is considered useless once its deadline has passed [12]. In or­
der to meet the time constraints of its jobs, a firm RTDBS 
must employ multiprogramming so that all of its resources can 
be utilized productively. Moreover, it must regulate the 
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completion time of individual jobs; to do so, it uses priority 
scheduling to resolve any resource contention that stems from 
multiprogramming. 

The performance objective of a firm RTDBS becomes even 
more demanding when its workload contains jobs that are 
drawn from a number of distinct classes. For such workloads, 
the RTDBS must also deal with the issue of how to distribute 
any deadline misses across the different classes in the work­
load. Since the desired distribution of misses may vary from 
one environment to another, the RTDBS should be able to 
tailor its resource scheduling policies based on a distribution 
provided by the system administrator. Thus, the objective of an 
RTDBS with a multiclass workload should be to minimize the 
total number of missed deadlines subject to the constraint that 
any misses be distributed as per the administrator's specifica­
tion. In this paper, we will focus on the challenges associated 
with meeting this objective for multiclass, query-oriented, firm 
RTDBS workloads. 

A. Real-Time Query Processing

The performance of queries can vary dramatically depend­
ing upon the amount of memory that they are given to work 
with. When given enough memory, most queries can simply 
read their operand relations once and produce the desired re­
sults directly. This amount is referred to as the queries' maxi­
mum memory requirements. Given less memory, as long as the 
amount given exceeds the queries' minimum memory require­
ments, most queries can still run by writing out temporary files 
and then reading them back in for further processing. For in­
stance, a hash join can either execute with its maximum re­
quired memory, which is slightly greater than its inner relation 
size, or it can run in only one additional pass with as few 
buffer pages as the square root of its inner relation size [25]. In 
order to help all query classes attain their desired level of per­
formance, it may be necessary for an RTDBS to increase con­
currency by admitting some queries with less than their maxi­
mum memory allocations, particularly when queries have large 
memory requirements. If too many queries are admitted, how­
ever, the resulting extra I/Os could lead to thrashing, making 
high concurrency harmful instead of helpful. RTDBSs must 
therefore carefully control query admissions into the system. 

Having determined which queries to admit, the next issue 
that an RTDBS faces is memory allocation. While the highest­
priority query at a given CPU or disk will use that resource 
exclusively, memory must be shared among all admitted que­
ries. When the aggregate maximum memory requirement of 
the admitted queries exceeds the available memory, the 
RTDBS must decide on the amount of memory to give each 
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query. This decision needs to take into account both the 

classes' performance requirements and the tightness of each 
query's timing constraint. In addition, the effectiveness of 
memory allocation in reducing individual queries' response 
times should be considered so as to make the best use of the 
available memory [8], [27]. Finally, since the relative priority 
of an executing query may change over time as other queries 
enter and leave the system, the memory allocation of a query is 
likely to fluctuate. To facilitate efficient query processing in 
the face of such memory fluctuations, RTDBSs 
require query operators that can dynamically release memory 

[8], [28] as well as accept more memory [20], [21], [9] while 
they are executing. To date, the admission control and memory 

allocation issues that arise in real-time query scheduling have 

not been addressed. 

B. Our Focus

This paper focuses on the problem of scheduling queries in

real-time database systems. We propose and evaluate an al­
gorithm called Priority Adaptation Query Resource Schedul­

ing (PAQRS, pronounced "packers") that is designed to 
schedule both single- and multiclass query workloads. This 

algorithm provides mechanisms to dynamically adapt the ad­
mission control and memory allocation decisions of an 
RTDBS to the system resource configuration and the charac­
teristics of the workload. Moreover, PAQRS is equipped with 
a class-sensitive bias control mechanism. When presented with 
a heavy multiclass workload, this mechanism exercises explicit 
control over the relative priority of the individual classes, thus 
regulating their performance to conform to the administratively 

defined miss distribution. 
The remainder of this paper is organized as follows: Sec­

tion II briefly discusses related work. Section III reviews an 
algorithm, called PMM [22], that provides the basis for the 
development of the PAQRS algorithm. PAQRS itself is pre­
sented in Section IV. Section V describes a detailed simulator 
of a firm RTDBS that will be used to study the performance of 

the PAQRS algorithm. Section VI presents the results of a 
series of experiments showing that, over a wide range of 

workloads, PAQRS offers an effective solution to the query 
scheduling problem in RTDBSs. Finally, our conclusions are 

presented in Section VIL 

II. RELATEDWORK

A significant body of work exists in the real-time database 
system area [23], but almost all of this work has focused on 
issues and algorithms related to either real-time transaction 
scheduling (e.g., [l], [12), [14], [15]) or real-time disk 
scheduling [2], [3], [7]. [15). To the best of our knowledge, the 

problem of scheduling queries in an RTDBS has not been ad­
dressed to date. As a result, the only studies that are closely 

related to the work reported here are two studies that have ex­
amined resource scheduling for multiclass query workloads in 
the context of traditional (non-real-time) database systems. 

In [8], [27), Cornell and Yu introduced the concepts of 
memory consumption and return on consumption (ROC) as the 

basis for memory management in a multiquery environment. 
Using these concepts to characterize the effect of memory al­
locations on query response times, a heuristic algorithm was 
proposed to allocate memory among concurrently running 

queries in a way that ensures a certain level of ROC. An im­
portant result from this study is that giving some of the queries 
their maximum required memory, while allocating the mini­
mum possible memory to the rest, leads to near-optimal mem­
ory usage. This result is directly incorporated in the memory 
allocation strategies of PAQRS. 

The problem of meeting predefined performance objectives 
in a multiclass database system was recently studied in [6]. In 

that study, Brown et al. explored the problem of automatically 
adjusting the multiprogramming levels (MPL) and memory 

allocations of a database management system to achieve per­
class response time goals for multiclass workloads. An algo­

rithm called M&M was introduced to find MPL and memory 
settings for each class; these settings are determined dynami­
cally by a feedback mechanism that is driven by a set of heu­

ristics and estimation techniques. Simulation results showed 
that M&M can successfully achieve response times that are 
within a few percent of the goals. Despite its promise, M&M 
cannot be directly used in the RTDBS context. This is be­
cause, being priority-ignorant, M&M may choose MPL and 
memory settings that conflict with the job priorities that are 
used for concurrency control and the scheduling of the CPU 
and disks. Thus, a complete solution, one that integrates prior­
ity assignment, MPL control, and memory allocation, must be 
sought. 

III. BASIC REAL-TIME QUERY SCHEDULING

In a firm real-time database system, a query becomes 
worthless if it fails to complete by its deadline. The primary 
performance objective of an RTDBS is, if possible, to meet all 
query deadlines. If this is not possible, and if all queries are of 
equal importance, then the RTDBS will try to minimize the 
number of missed deadlines. In [22], we presented a query 
scheduling algorithm based on this performance objective. The 

algorithm, called Priority Memory Management (PMM), 
regulates memory usage for firm real-time query workloads. 
Since PAQRS builds on this algorithm, we describe PMM in 
detail in this section before introducing the PAQRS algorithm 
in Section IV. 

The PMM algorithm consists of an admission control com­

ponent and a memory allocation component. Both components 
employ the Earliest Deadline (ED) scheduling policy [16]. so 
queries that are more urgent are given higher priority in ad­
mission and memory allocation decisions than queries whose 
deadlines are further away. (We adopt the ED policy here, as 
opposed to policies that take into account query execution 
times, because reasonable execution time predictions are not 
usually available in multiuser database systems.) The admis­
sion control component of PMM sets the target multipro­
gramming level (MPL) by statistical projection from past miss 
ratios and their associated MPL values. In cases where this 
method fails, PMM falls back on a heuristic that chooses the 
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MPL based on desirable resource utilization levels. The mem­
ory allocation component operates using one of two strategies 
-a Max strategy that assigns to each query either its maxi­
mum required memory or no memory at all, and a MinMax
strategy that allows some low-priority queries to run with their
minimum required memory while the high-priority ones get
their maximum. The current choice of memory allocation
strategy is based on statistics about the workload characteris­
tics that PMM gathers. Since both the MPL setting and mem­
ory allocation strategy choices have to be tailored to the char­
acteristics of the workload, PMM constantly monitors the
workload for changes that may necessitate adjustments to its
decisions. The details of the algorithm are presented below.
The key parameters of PMM, which will be explained as they
appear in the fol\owing description, are summarized in Table I.

TABLE! 

PMM ALGORITHM PARAMETERS 

Parameter Meaning Default 

Sample Size Reevaluation frequency (number 30 

of query completions) 
[ Utiliow, Utilm,h] Range of "desirable" CPU/ disk [0.70, 0.85] 

utilization levels 
Adaplcon{Lew?l Conf. level of statistical tests for 95% 

PMM adaptation 
Changecm,tLml Conf. level of statistical tests for 99% 

workload changes 

A. Admission Control

The task of the admission control mechanism is to deter­
mine the MPL based on current operating conditions. In order 
to minimize the miss ratio, defined as the proportion of queries 
that fail to complete by their deadlines, the MPL has to be high 
enough so that the CPU and disk resources can be fully ex­
ploited. However, the MPL should not be so high as to cause 
the system to experience thrashing. The relationship between 
MPL and miss ratio thus follows the shape of a concave curve. 
PMM attempts to locate the optimal MPL, i.e., the MPL that 
leads to the lowest miss ratio on this curve, through a combi­
nation of miss ratio projection and a resource utilization heu­
ristic, revising its MPL setting after every SampleSize queries 
are served by the system. The two components of the MPL 
determination method are presented below. 

A.I Miss Ratio Projection

The miss ratio projection method approximates the relation­
ship between MPL and miss ratio by a concave quadratic 
equation; this equation is used to set the system's target MPL. 
A quadratic equation is used here because it stabilizes faster 
than higher-order equations, while still capturing the general 
shape of the concave curve. After every SampleSize query 
completions, PMM measures the miss ratio, miss,, that the cur­
rent MPL, mpl;, produces. Based on this pair of values, to­
gether with past miss ratios and their associated MPL settings, 
a new quadratic equation is calculated according to the least 
squares method [II]. It is important to note that PMM does 
not actually have to keep track of individual miss ratio read­
ings, but only the values of k, unpl;, "£.mpli, Lmpl,3, "£.mpl/, 
"£.miss;, "£.mpl; X miss;, and Lmpli x miss;, where k is the number 
of times PMM is invoked. Therefore, the space overhead in-

curred by the projection method is very low. The computation 
overhead is also minimal since the method requires only that 
the above summations be updated after every query comple­
tion, and deriving the quadratic equation entails only simple 
arithmetic involving these summations. After approximating 
the equation, a new MPL value is chosen according to the type 
of curve obtained: 

Type 1. The curve has a bowl shape. In this case, the curve 
has a minimum. Therefore, the target MPL is set to the mini­
mum of the curve. (This is the expected case after the algo­
rithm has been operating for a while.) 

Type 2. The curve is monotonically decreasing, i.e., higher 
MPLs lead to lower miss ratios. This indicates that the optimal 
MPL is beyond the highest MPL tried so far. Since the curve 
may not be valid if extrapolated too far, the projection method 
selects an MPL that is one above this largest attempted MPL. 
Next, PMM applies the resource utilization heuristic 
(described below) to see if an even higher MPL may be war­
ranted. If so, the MPL suggested by that heuristic is adopted; 
otherwise PMM maintains the MPL that the miss ratio projec­
tion method picked. 

Type 3. The curve is monotonically increasing. The MPL 
computation procedure for this case is just the opposite of the 
procedure for Type 2 curves. Here the projection method ten­
tatively selects an MPL that is one unit below the smallest 
MPL that has been tried so far. Next, a second MPL is ob­
tained using the resource utilization heuristic. The two MPLs 
are then compared, and the smaller of the two is adopted. 

Type 4. The curve has a hill shape. Occasionally the fitted 
curve takes on this shape due to randomness in the observed 
miss ratios caused by inherent workload fluctuations. When 
this happens, the projection method fails and PMM resorts to 
the resource utilization heuristic. 

An attractive feature of the miss ratio projection method is 
that the MPL values that it picks improve over time: Initially, 
the shape of the fitted curve is largely influenced by random 
workload fluctuations. As time progresses and more miss ratio 
readings are obtained, the fitted curve will gradually stabilize 
and its optimum will close in on the optimal MPL. At this 
point, the system can be expected to deliver good performance 
so long as there are no significant changes in the workload 
characteristics, (Workload changes will be addressed in Sec­
tion III.C). 

A.2 Resource Utilization Heuristic

The resource utilization (RU) heuristic attempts to help the
system achieve low query miss ratios by keeping the utilization 
of the most heavily loaded resource among the CPUs and disks 
within some "desirable" range, [ UtilLow, UtilHigh], thus avoiding 
situations where the bottleneck resource is either under­
utilized or near saturation. The heuristic extrapolates from the 
current MPL and utilization to predict a new MPL that is likely 
to bring the utili:i,ation into the middle of the [UtilLow, UtilHigh] 
range by applying the following formula: 

Uti/Low + Util HiKh
MPLNew 

= . X MPLcurrent 
2 X U ti[ Current 
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The linear dependency between MPL and utilization that this 
formula assumes is based on the observation that the utiliza­
tion of a resource increases approximately linearly with the 
MPL until the resource is near saturation, at which point the 
utilization levels off. Since neither the RU heuristic nor the 
miss ratio projection method are likely to push the utilization 
way above Utiln;gh to the saturation point, the above formula 
should provide satisfactory MPL estimates most of the time. 
Even in regions where the linear dependency assumption does 
not hold, the RU heuristic is still useful in steering the MPL 
setting in the direction of the optimal MPL since utilization 
increases monotonically with MPL. 

As described, a value that the RU heuristic uses to compute 
the new MPL is the utilization of the most heavily loaded re­
source at the current MPL. Due to random workload fluctua­
tions, the utilization over the duration of the current batch of 
SampleSize queries may not be indicative of the resource's 
overall average utilization at that MPL. For this reason, the 
heuristic actually averages the utilization values that have been 
obtained so far instead of relying only on the most recent utili­
zation reading. Conceptually, PMM computes the average 
utilization at the current MPL, denoted as Utilcurrent in the for­
mula above, by first obtaining a straight line from every pair 
(util;, mpl;} of observed utilization values and their associated 
MPLs by using the least squares method [11], again applying 
the linearity assumption. The average utilization is then taken 
from the fitted line as the rate that corresponds to the current 
MPL. For the purposes of computing the straight line, PMM 
records the values of k, Dnpl;, °Lmpl/, °Lutil;, and °Lmpl; x util;, 
where k denotes the number of times PMM is invoked. As 
discussed earlier, the space and computation overheads in­
volved are minimal. 

B. Memory Allocation

As described above, queries like hash joins and external
sorts each have a maximum and a minimum memory require­
ment. Given its maximum required memory, such an operation 
can read its operand relation(s) and generate results directly. 
Given only its minimum required memory, which is typically 
much lower than its maximum, the operation instead has to 
process its operand relation(s), write out intermediate results to 
temporary files, and then read these files back for further proc­
essing before the final results can be produced. The maximum 
memory requirement of an external sort is the size of its oper­
and relation [25], whereas it can run with as few as three 
memory pages by doing multiple merge passes. In the case of a 
hash join, the maximum memory requirement and the 
"minimum" memory demand (for two-pass operation) are f11RII 

and � f11RII, respectively, where IIRII is the inner (building) 
relation size and F is a fudge factor that reflects the overhead 
of a hash table [25]. 

When the total maximum memory requirement of the admit­
ted queries exceeds the available memory, the memory alloca­
tion component is responsible for determining the amount of 
memory to allot to each query. As mentioned previously, the 
memory allocation decisions are based on the ED policy, so 
queries that are more urgent are always given buffers ahead of 

queries with looser deadlines. At any given time, PMM adopts 
one of two memory allocation strategies: the Max strategy or 
the MinMax policy. With the Max strategy, queries are either 
allocated enough memory to satisfy their maximum demands 
or else they are given no buffers at all. When operating in 
MinMax mode, however, PMM is able to admit more queries 
by meeting the maximum memory demands for only some of 
the more urgent queries, allowing the rest of the queries to 
execute with their minimum required memory. The reason for 
doing MinMax allocation, as opposed to simply dividing the 
available memory proportionally among the admitted queries, 
is that MinMax leads to more effective use of memory than 
proportional allocation (as was shown in [28], [27], [6] for 
non-real-time database systems and in [22] for RTDBSs). A 
possible concern about MinMax is that it may allow too many 
queries to run with minimum memory allocations, thereby 
overloading the disks. However, this situation does not arise 
with PAQRS because the number of queries that are eligible 
for memory allocation is regulated by the admission control 
component of PAQRS. 

The MinMax allocation process is conceptually carried out 
in two passes. Starting from the highest-priority query, PMM 
first gives each query just enough memory for it to begin exe­
cution. If there are leftover buffers at the end of this pass, 
PMM makes another pass through the list of admitted queries, 
again beginning with the highest-priority query. In the second 
pass, the allocation of each query in tum is topped up to its 
maximum. The allocation process terminates when either all of 
the available memory has been allocated or all of the queries 
have received their maximum allocations. At the end of this 
memory allocation process, one possible scenario is that some 
of the higher-priority queries will have their minimum alloca­
tions, while the lower-priorities are suspended due to a short­
age of memory. Another scenario is that the higher-priority 
queries will have their maximum allocations while the lower­
priority queries just have their minimum. The only possible 
exception is the query that gets the last few memory pages in 
the second pass, which may receive an allocation somewhere 
in between its minimum and maximum demands. In a running 
system, of course, queries do not arrive all at once; rather, they 
come and go over time. Since the ED policy assigns priorities 
to queries according to their urgency, the memory allocation of 
a query can therefore vary between maximum, minimum, or no 
memory allocation as higher-priority queries enter and leave 
the system, but over time it will settle on the maximum alloca­
tion as the query's deadline draws close. In order to deal with 
these fluctuations in the query's memory allocation, PMM has 
to rely on adaptive query processing operators, e.g., adaptive 
joins and sorts, to adjust the query's memory usage dynami­
cally. 

The Max strategy, by insisting on the maximum memory 
allocation, eliminates the potential thrashing problem that can 
result when additional (lower-priority) queries are admitted at 
the expense of requiring some of the higher-priority queries to 
run with less than their maximum memory allocations. Conse­
quently, PMM does not need to explicitly limit the MPL when 
it is in Max mode. Instead, PMM admits as many higher-
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priority queries-at their maximum allocations-as the avail­
able memory permits. A possible pitfall of Max is that it may 
severely restrict the MPL if every query requires a substantial 
portion of the system memory in order to run at its maximum 
allocation. In contrast to Max, MinMax assigns to some or all 
of the admitted queries as little as their minimum memory de­
mand, thus enabling the system to achieve the target MPL that 
the admission control component sets. Whether Max or Min­
Max performs better depends on the workload characteristics 
and the system configuration-Max is preferable if memory is 
abundant and the bottleneck resource type is CPU or disk, 
whereas MinMax is more suitable for memory-constrained 
situations. 

The PMM algorithm uses a feedback mechanism to monitor 
the state of the system, and it revises its choice of allocation 
strategy as necessary. Initially, the Max mode is selected. After 
serving every SampleSize queries, PMM checks the system 
state and switches to the MinMax strategy if all of the follow­
ing conditions are met: 1) one or more queries in this batch 
missed their deadlines; 2) the utilizations of all CPUs and 
disks are below Util1.ow, which indicates that none of these re­
sources are likely to be a bottleneck; 3) there is a nonzero 
admission waiting time, suggesting that there is memory con­
tention; and 4) on the average, the execution time of a query is 
shorter than its time constraint (the difference between its 
deadline and its arrival time) so that the longer execution times 
that will result from switching to the MinMax strategy are 
likely to be feasible. In checking for condition 3), PMM car­
ries out a large-sample test [10] for the mean waiting time at a 
confidence level of Adaptcoriflml· Condition 4) is tested in a 
similar fashion, except that here the test is performed on the 
difference between the execution time and time constraint. 
After switching to MinMax, PMM then monitors the target 
MPL. If the target MPL setting drops to or falls below the av­
erage MPL that was realized in Max mode, PMM reverts to 
the Max strategy. This entire process is repeated continuously. 

C. Dealing with Workload Changes

PMM attempts to minimize query miss ratios by tailoring its
MPL and memory settings to the system's workload and re­
source configuration. Consequently, it is necessary for PMM 
to discard the statistics that it has gathered and to re-adapt it­
self when the workload undergoes a significant change. In or­
der to detect workload changes, PMM constantly monitors the 
following workload characteristics: 1) the average maximum 
memory demand of queries; 2) the average number of I/Os that 
each query issues to read its operand relation(s); 1 and 3) the 
average normalized time constraint, defined as the ratio of the 
time constraint to the number of I/Os needed to read the oper­
and relation(s). After every SampleSize query completions, 
PMM carries out a large-sample test with a confidence level of 
Changeco,!fl..evel [10] on each monitored workload characteristic 
to see if its present value differs significantly from its last 
observed value. If so, PMM concludes that a workload change 

I. The number of I/Os that are expended to write and read intermediate re­
sults depends on memory allocation decisions, and thus is not an inherent 
characteristic of the workload. 

has taken place. Since every workload change prompts PMM 
to restart itself, ChangeconJLevel is set to a high value (see Table 
I) to reduce the chances of PMM wrongly reacting to inherent
workload fluctuations.

D. An Example

Having presented the PMM algorithm in detail, we now
finish by illustrating it with a simple example of the algo­
rithm's operation. Suppose that the first batch of SampleSize 
queries produces point a in Fig. la under the Max strategy, 
and suppose that PMM concludes that Max is inappropriate 
and decides to switch to MinMax. At this point, the RU heu­
ristic suggests a higher MPL, from which we derive point b 
after the next batch of query completions. Once more, the RU 
heuristic leads PMM to raise its MPL setting, which results in 
point c after the third batch of queries. Having collected three 
observations, PMM can now apply the miss ratio projection 
method. The quadratic equation that is computed from the 
three points is shown by the Type 2 curve (see Section III.A.I) 
in Fig. la. This curve causes PMM to experiment with an even 
higher MPL, the consequence of which is indicated by point d 
in Fig. lb. Applying the projection method again, PMM now 
obtains a Type 1 curve. Since the optimum of the curve is 
likely to be near the optimal point, PMM adopts the MPL 
value associated with this optimum for its next MPL setting. 
As this process continues and more observations are gathered, 
the fitted curve will gradually stabilize and lead PMM to the 
best MPL for the given workload. 

MPL 
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Fig. I. Admission control decision making. 
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IV. MULTICALSS REAL-TIME

QUERY SCHEDULING

As discussed earlier, it may be desirable in some environ­
ments to distribute missed deadlines proportionally among query 
classes according to administratively-defined workload objec­
tives. To address the need for such controlled performance, this 
section presents Priority Adaptation Query Resource Scheduling 
(PAQRS), an algorithm for scheduling multiclass firm real-time 
query workloads. Given such a workload, PAQRS allows a sys­
tem administrator to specify a list of values, 

RelMissRatio = {relMissRatio1: ... : relMissRatioNumClassrsl. 

that indicates the desired miss ratio distribution among the 
classes in the workload. For example, suppose that the work-
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load is made up of two classes. If RelMissRatio = {3:1), then 

the target miss ratio distribution would be of the form MissRa­

tio1 = 3x% and MissRatio2 = lxo/o for some x. The perform­
ance objective of PAQRS is to minimize the number of missed 

deadlines, subject to the constraint that miss ratios must be 
distributed among the classes in the manner specified by the 

system administrator. The PAQRS algorithm's multipro­
gramming level (MPL) control and memory allocation 
mechanisms are based on those of PMM. In addition, a bias 
control mechanism is provided to allow PAQRS to intervene 
on behalf of classes that require help in order to meet the per­

formance objective. The details of the algorithm are presented 

below. Its input parameters and variables, which will be ex­
plained as they appear in the following description, are sum­
marized in Table II. 

Parameter 

Re/Miss Ratio 
SampleSizec1as, 

SampleSizerotal 

ChangeconJLevel 

Variable 

RegQuota1 

MissRatio1 

Weight, 

Po 
Do 
R,, 

TABLE II 
NOTATION FOR PAQRS 

Meaning 

Target relative class miss ratios 
Reevaluation frequency 
(no. queries per class) 
Reevaluation frequency 
(total no. queries) 
Conf. level of statistical tests for 
workload chan2es 

Meanin2 

Class i's quota of regular queries 
Measured miss ratio of class i 
Weight of class i in weighted 
miss ratio 
Priority of query Q 
Deadline of query Q 
Random kev assigned to auerv 0 

A. Overview of the PAQRS Algorithm

Default 

{ I : .. , : 1} 
10 

30 

99% 

Default 
-

-

from 
RelMissRatio 

-

-

ro. 11 

Like PMM, PAQRS sets a system-wide target MPL and a

global memory allocation scheme (Max or MinMax). Unlike 
PMM, which strives only to minimize the overall number of 
missed deadlines, P AQRS chooses its MPL and memory allo­
cation strategy based on a class-sensitive performance meas­
ure. Moreover, class-sensitive triggers are used to determine 

when workload changes necessitate revisions to those choices. 
PAQRS is thus able to make admission and memory allocation 
decisions that complement its bias control mechanism in 
helping all classes achieve their desired level of performance. 

The bias control mechanism of PAQRS controls the per­
formance of individual classes by regulating the priority of 

their queries. Roughly speaking, PAQRS accomplishes this 

regulation using a multiclass variant of the Adaptive Earliest 
Deadline scheduling policy proposed in [13]. PAQRS divides 
all queries into two priority groups-a regular group and a 
reserve group-and a quota of regular queries is chosen for 
each class of query. Priority values are assigned to regular 

queries based on the Earliest Deadline policy [16], while re­
serve queries are assigned random priorities that are lower 
than those of any regular query; regular queries are always 
admitted and allotted resources ahead of reserve queries. By 
raising the quota of regular queries for classes that would natu­

rally miss more deadlines than desired, and by limiting the 

number of regular queries from classes that would otherwise 
tend to miss fewer deadlines, PAQRS is able to distribute 

missed deadlines among the query classes according to the 
specified workload objectives. 

B. Admission Control and Memory Allocation in PAQRS

As mentioned above, the PAQRS algorithm adapts PMM to
choose a system-wide target MPL and a global memory allo­
cation strategy that are conducive to meeting the workload's 

multiclass performance objective. PAQRS does this by basing 
its MPL selection decisions on a system-wide performance 

measure that better reflects the desired miss ratio distribution, 
and by picking its memory allocation strategy according to the 
level of memory contention experienced by individual classes. 

The primary mechanism that PAQRS relies on to pick its 
target MPL settings is a statistical projection method that pre­
dicts the MPL value that will lead to the lowest "average" miss 
ratio. Thus, we need an "average miss ratio" computation pro­
cedure that suitably reflects the desired influence of the indi­
vidual classes. Intuitively, if we want 

rel Miss Ratio;= c x rel Miss Ratioj 

for two classes i and j, then class i should exert c times as 
much influence as class j on the "average" miss ratio. This is 
achieved by first transforming the values in Rel Miss Ratio into 
class weights: 

W , h 
rel Miss Ratio, 

e1g f; = I 
L j rel ,Hiss Rati 

and then computing a weighted miss ratio for the projection 

method from the individual classes' miss ratios and their cor­
responding weights: 

Weighted Miss Ratio= l:. Weight; x Miss Ratio; 

To illustrate how this procedure works, let us again consider a 
two-class workload with Rel Miss Ratio = { 3: 1}. Applying the 
above procedure, the two classes would be assigned weights of 
0.25 and 0.75, respectively, making class 2 three times as in­
fluential as class 1. An important property of the class weights 
is that they add up to 1.0. This property ensures that the 
weighted sum of the class miss ratios, each of which ranges 
from 0% to 100%, remains within the interval 
[0%, 100%], 

Having adjusted the MPL selection mechanism, we now 

turn our attention to the way that P AQRS chooses its memory 
allocation strategy. To adapt better in a multiclass context, 
PAQRS needs to replace the system-wide performance meas­
ures that PMM uses with class-sensitive measures. PAQRS 
starts with the Max allocation strategy and then switches to 

MinMax mode if the utilization of all CPUs and disks are be­
low Util1.ow and some class i satisfies all of the following con­
ditions: 1) one or more queries from that class have missed 
their deadlines since PAQRS was last activated; 2) class i has a 
nonzero admission waiting time; and 3) on the average, the 
execution time of a query belonging to class i is significantly 
shorter than its time constraint (the difference between its 
deadline and its arrival time). In other words, PAQRS switches 
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to MinMax mode if some class appears to be missing dead­
lines unnecessarily because its queries are made to wait for 
memory. Since the above tests require performance statistics 
for all of the classes, PAQRS is invoked to revise its choices 
of MPL and memory allocation strategy only after the system 
has served at least SampleSizec1as, queries from every class, in
addition to the original requirement of SampleSizeroral total
query completions, subsequent to the PAQRS algorithm's last 
activation. 

Finally, to ensure that its choices of MPL setting and mem­
ory allocation strategy remain suitable for the workload, 
PAQRS constantly monitors the following statistics for each 
class: 1) the average maximum memory demand of queries in 
that class; 2) the average number of I/Os that each query in 
that class issues to read its operand relation(s); and 3) the av­
erage normalized time constraint, defined as the ratio of the 
time constraint to the number of I/Os needed to read the oper­
and relation(s), for that class. Upon activation, PAQRS carries 
out a t-test on each monitored class characteristic to see if its 
present value is different from its last observed value at a con­
fidence level of Changec,mJLevel [10]. If so, PAQRS reacts to
the workload change by discarding the statistics that it has 
gathered and by readapting itself to the new workload com­
position. The differences between PAQRS and PMM thus far 
are summarized in Table III. 

TABLE III 

SUMMARY OF DIFFERENCES BE1WEEN PMM AND PAQRS 

PMM PAQRS 

Miss ratio A M. R . #lute queries WeightedMiss Ratio 
projection 

vg 1ss atw = � = :E Avg Miss Ratio, 
x Weieht1 

Memory Switch from Max to MinMax if Switch from Max to 
a/location queries in workload experience MinMax if queries in 

significant unnecessary memory some class experience 
waiting time significant unnecessary 

memory waiting time 

Rt:activa- SampleSizerowl queries � SampleSizero,al 
tion queries 
frequency � SampleSizectas, 

queries/class 

Restart Changes in average workload Changes in the charac-
condition characteristics teristics of some class i 

C. Bias Control in P AQRS

While PAQRS picks its MPL and memory allocation strat­
egy according to the target miss ratio distribution, this alone 
does not always suffice to ensure that the distribution is 
achieved. In many cases, an RTDBS can produce biased be­
haviors that do not conform to the requirements of its given 
multiclass objective. To rectify such undesirable behavior, 
PAQRS is equipped with a bias control mechanism that helps 
classes that would otherwise miss more deadlines to attain 
acceptable relative miss ratios by regulating the relative pri­
orities of the classes. 

As mentioned earlier, PAQRS divides queries into a regular 
group and a reserve group. Each class i is given a quota of regu­
lar queries, RegQuota;, that limits the maximum number of 
regular queries that the class may have at any given time. Upon 
arrival, a query belonging to class i is assigned to the regular 

group if that class has not used up its quota of regular queries; 
otherwise the query is relegated to the reserve group of the class. 
Having determined the query's grouping, the following scheme 
is used to compute a two-part priority for the query: 

-{
l, 1 / D

Q 
if Group = regular 

PQ - O, R
Q 

if Group = reserve 

where PQ, DQ, and RQ denote, respectively, the query's prior­
ity, deadline, and a randomly assigned value in the range 
[O, 1 ]. This scheme defines a lexicographical priority order in 
which higher P Q values reflect higher priorities. All regular 
queries have higher precedence than queries in the reserve 
group. Among queries in the regular group, priority rankings 
are established according to the ED policy. Priority ordering 
within the reserve group follows the Random Priority (RP) 
policy, which is why the RQ values are selected randomly. The
reason that RP is chosen for the reserve group is because its 
queries essentially "see" a heavily loaded system due to their 
lower priorities, and RP (unlike ED) delivers good perform­
ance under heavy loads [13]. 

PAQRS attempts to meet the target miss ratio distribution 
by elevating the priority of classes that suffer from higher­
than-desired miss ratios, thus helping their queries to gain 
admission and compete for system resources. This is accom­
plished by increasing the regular query quota, RegQuota;, of
those disadvantaged classes, and by reducing RegQuota; for
classes that are overachieving. At system start-up time, all 
RegQuota;'s are first initialized to oo so that all queries are
assigned to the regular group. When PAQRS is next activated, 
it first resets RegQuota; for each class to the highest number of
concurrent queries that the class experienced during the inter­
vening period and then adjusts the RegQuota;'s according to
the relative performance of the classes. If the target miss ratio 
distribution is achieved, all of the classes should bear an equal 
share of the weighted miss ratio. For example, if the target 
miss ratio distribution RelMissRatio = (3:1) for a two-class
workload is reached, the weighted miss ratio should be: 

WeightedMissRatio = Weight1 x MissRatio1 + Weight2 

x MissRatio2 

= 0.25 x 3x% + 0.75 x xo/o 
= 0.75x% + 0.75x% 

In other words, Weight; x MissRatiu, should be equal to
WeightedMissRatio!NumClasses for all classes i. If the current
miss ratio distribution is different from the target, P AQRS 
adjusts the RegQuota; of each class based on how its Weight, 
x MissRatio; value compares to its share of WeightedMiss 
Ratio!NumClasses, using the following formula:

new old Weight; X MissRatio;RegQuota; = RegQuota; x 

WeightedMissRatio/NumC/asses 

Returning to our Re/MissRatio = { 3: I} example, if currently
the miss ratio of classes 1 and 2 are 20% and 10%, respec­
tively, PAQRS will reduce RegQuota1 by 20% and increase
RegQ1wta2 by 20% in an attempt to bring the class miss ratios
closer to the target distribution. After that, P AQRS continues 
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to monitor the relative performance of the classes, applying the 
above formula to dynamically adapt the RegQuota;s as needed. 

The integration of the bias control and admission control 
mechanisms of PAQRS is straightforward-the m highest­
priority queries get admitted, where m is the target MPL. 
However, the use of the two-tier priority scheme does intro­
duce some difficulty in memory allocation. In particular, if 
MinMax mode is selected, should reserve queries be given 
their minimum required memory before the allocation of 
regular queries are topped up to their maximum, or should the 
memory manager start giving buffers to reserve queries only 
after all of the regular queries have received their maximum 
required memory? Since the purpose of the two-tier priority 
scheme is to help disadvantaged classes compete for system 
resources by relegating some queries from the advantaged 
classes to the reserve group, we adopt the second alternative to 
maximize the effectiveness of the scheme, i.e., reserve queries 
are not allowed to compete for memory with regular queries. 
To implement this alternative, we extend the MinMax alloca­
tion procedure of PMM to a two-step procedure. In the first 
step, the MinMax allocation procedure is applied to distribute 
memory to the regular queries; reserve queries are not eligible 
for allocation in this step. Step two, which uses MinMax to 
assign memory to the reserve queries, is activated only if there 
are leftover buffers at the end of step one (which only happens 
when all regular queries have been given their maximum re­
quired memory). 

As noted earlier, the two-tier priority assignment scheme 
adopted by PAQRS follows the same concept as the Adaptive 
Earliest Deadline (AED) algorithm [13]. This algorithm was 
proposed to stabilize the overload performance of the ED 
scheduling policy. AED maintains a "hit" group and a "miss" 
group, which correspond to the regular group and reserve 
group in PAQRS, and AED controls "hit" group assignments 
by a HitSize parameter. The distinction between the two algo­
rithms lies in the goals that they hope to reach with the two-tier 
scheme. In the case of AED, the single HitSize parameter 
serves to keep down the number of transactions that are 
scheduled according to the ED policy, whereas PAQRS uses 
its vector of RegQuota; values to influence relative class pri­
orities. Consequently, the procedures that the algorithms em­
ploy to set their control parameters are quite different. 

V. DATABASE SYSTEM SIMULATION MODEL

To aid in our study of real-time query scheduling issues, we 
have constructed a simulation model of a centralized database 
system. In subsequent sections, this simulation model will be 
used to evaluate the performance of PAQRS. The model, 
shown in Fig. 2, has five components: a Source that generates 
the workload of the system and collects statistics on completed 
queries; a Que,y Manager that models the execution details of 
queries, including hash joins, external sorts and sort-merge 
joins; a Memory Manager that implements an LRU replace­
ment policy and the PMM and PAQRS algorithms; and a CPU 
Manager and a Disk Manager that are responsible for manag­
ing the system's CPU and disks, respectively. In this section, 

we describe how the simulation model captures the details of 
the database, workload, and various physical resources of a 
database system. We also summarize the algorithms employed 
by the Query Manager that enable executing queries to adapt 
to fluctuations in their memory allocations. The simulator is 
written in DeNet [ 17]. 

Source 

new 

query 

Query 
Manager 

page / '"""-
request / page CPU 

/// reply request 

CPU Manager 
I 
Memory Manager page Disk Manager I request request 
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Fig. 2. Database system model. 

A. Database and Workload Model

Table N summarizes the database and workload parameters
that are relevant to this study. Our objective for this study is to 
simulate a stream of external sorts and/or hash joins on different 
relations. To facilitate this, the database consists of NumGroups 
groups of relations. Each group i has RelPerDisk; clustered rela­
tions per disk. The size of the RelPerDisk; relations are chosen at 
equal intervals from SizeRange;. For example, if RelPerDisk; = 5 
and SizeRange; = [100, 200] pages. group i will have five rela­
tions with sizes equal to 100, 125, 150, 175, and 200 pages, re­
spectively, on every single disk. To minimize disk head move­
ment, all relations assigned to the same disk are randomly placed 
on its middle cylinders; temporary files are allotted either the 
inner cylinders or the outer cylinders. 

TABLE!\' 

DATABASE AND WORKLOAD MODEL PARAMETERS 

Database Meaning 

NumGroups Number of relation groups in the database 
Re/PerDisk; Number of relations per disk for group i 
SizeRange, Range of relation sizes for group i 
TupleSize Tuple size of relations in bytes 

Workload Meanin� 

NumClasses Number of classes in the workload 
QueryTypej Type of class j queries 

(hash join or external sort) 
Re/Groupj Operand relation group(s) for class j queries 

Arrival rate of class j queries 
SR!nrerva/j Range of slack ratios for class j queries 
F Fudge factor for hash joins 

In this study, the workload comprises NumClasses classes 
of queries. Each class j has the following characteristics: It 
may be made up of external sorts, in which case Re!Groupi 
specifies a group of database relations from which queries in 
class j draw their operand relations. Alternatively, the class 
may consist of hash joins. In the second case, every query 
in the class randomly chooses two relations by taking one re­
lation from each of the two relation groups listed in 
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RelGroup1. The smaller of the two chosen relations is the inner
relation, R, of the join, while its outer relation, S, is the larger 

relation. The type of queries that form the class (sort or hash 
join) is indicated by the parameter QueryType1. Query sub­
missions from the class follow a Poisson process with a mean 
arrival rate of AJ- The Source module assigns a deadline to
each new query Q from class j in the following manner:

DeadlineQ = StandAloneQ x SlackRatioQ + ArrivalQ 

where DeadlineQ, StandAloneQ, SlackRatioQ and ArrivalQ are
the deadline, standalone execution time, slack ratio and arrival 

time of query Q, respectively. The standalone execution time
of a query is the time it would take to execute alone in the 
system, i.e., without experiencing any contention from other 
queries. The slack ratio, SlackRatioQ, varies uniformly in the
range specified by SR!nterva/1, and it controls the tightness of

the query's assigned deadline. 

B. Physical Resource Model

The parameters that specify the physical resources of our
model, which consist of a CPU, disks and main memory, are 

listed with their default values in Table V. An Earliest Dead­
line (ED) scheduling discipline is used for the CPU. The MIPS 
rating of the CPU is given by CPUSpeed. Table VI gives the
costs of the various CPU operations involved in the execution 

of hash joins and external sorts. 

TABLEV 
PHYSICAL RESOURCE MODEL PARAMETERS 

Parameter Meaninl! Default 

CPUSpeed MIPS rating of CPU 40MIPS 
NumDisks Number of disks 10 

SeekFactor Seek factor of disk 0.000617 

Rotation Time Time for one disk rotation 16.7 msec 

NumCylinders Number of cylinders per disk 1,500 

CylinderSize Number of pages per cylinder 90 pages 

PageSize Number of bytes per page 8 kbytes 

BlockSize Number of pages requested on each 6 
sequential 1/0 

M Total number of buffer pages 2,560 pages 

TABLE VI 
NUMBER OF CPU INSTRUCTIONS PER OPERATION 

Operation # Instr Operation # Instr 

Common Hash Joins-
Operations 
Start an //0 op- 1,000 Hash tuple and insert into hash 100 
eration table 

Initiate a sort 40,000 Hash tuple and probe hash table 200 
or join 

Terminate a sort 10,000 Hash tuple and copy to output 100 
or join buffer 

External Sorts-

Copy a tuple to output buffer 64 

Compare two keys 50 

Turning to the disk model parameters in Table V, NumDisks 
specifies the number of disks attached to the system. Every 
disk manages its own queue by the ED scheduling policy; any 
disk requests that ED assigns the same priority to are serviced 
according to the elevator algorithm. Each disk has a 256-kbyte 

cache for use in prefetching pages. To keep the per-page I/0 
cost low, all queries capitalize on this facility, fetching Block­
Size pages into the cache on each sequential I/0 that incurs a
disk cache miss (except during the merge phase of an external 
sort). Moreover, whenever queries have enough buffers, they 
spool their outputs so that pages are flushed to disk in blocks. 
The access characteristics of the disks are also given in Table 
V. Using the parameters in this table, the total time required to
complete a disk access is:

Disk Access Time = Seek Time + Rotational Delay 
+ Transfer Time

As in [4], the time required to seek across n tracks is:

Seek Time (n) = Seek Factor xJ; 

Finally, the system has a total buffer pool size of M pages. 
A memory reservation mechanism allows query operators, 
including sorts and joins, to reserve buffers for use as work­
spaces. These reserved buffers are managed by the operators 
themselves, while page replacement for nonreserved buffers is 
handled according to the LRU policy. 

C. Memory-Adaptive Query Primitives

In a priority scheduling environment such as an RTDBS,
large queries involving operations like hash joins and external 
sorts face the prospect of having memory taken away and/or 
allocated to them during their course of execution. For this 
reason, the simulated Query Manager employs adaptive algo­
rithms to help queries adjust efficiently to such memory fluc­
tuations. While P AQRS is designed to work with any adaptive 
query processing operator, we will use the adaptive hash join 

and external sorting algorithms that we found to deliver the 
best performance among a range of alternatives that we inves­
tigated in a recent pair of studies [20], [21]. The two algo­
rithms are briefly summarized here. 

The hash join algorithm that the Query Manager employs 
was introduced in [20] as Partially Preemptible Hash Join 
(PPHJ) with late contraction, expansion, and priority spool­
ing. PPHJ splits the pair of input relations into a set of parti­
tions, as is done in traditional hash joins as well. At any one 
time during join execution using PPHJ, some of these parti­
tions may be expanded, i.e., held in hash tables in memory,
while others are contracted, i.e., resident on disk. When asked

by the memory manager to free up buffers, PPHJ can do so by 
reducing the number of expanded partitions. Moreover, if extra 

memory becomes available while the outer (probing) relation 
is being split, PPHJ can expand contracted partitions so that 
outer relation tuples that hash to these partitions can be joined 
directly and then discarded, thus avoiding some I/Os. 

The external sorting algorithm that is adopted in this study 
begins by using replacement selection to split the operand re­
lation into sorted runs; these sorted runs are then repeatedly 
merged into longer runs until only a single run remains. These 
are the usual phases of an external sorting algorithm. What 
makes the algorithm adaptive is that, during the merging proc­
ess, an executing merge step can be split into substeps that fit 
within the remaining memory if memory reductions occur [21 ]. 
Conversely, existing merge steps can be combined into larger 
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steps (i.e., steps that merge more runs at once) to take advan­
tage of any excess buffers that become available. 

VI. EXPERIMENTS AND RES UL TS

This section presents the results of a series of experiments 
designed to evaluate the performance of the Priority Adapta­
tion Query Resource Scheduling (PAQRS) algorithm. For 
comparison purposes, we shall also examine the original Pri­
ority Memory Management (PMM) algorithm, which does not 
distinguish between queries from different classes, i.e,, which 
treats all queries like they belong to the same class. PMM is 
included here to highlight the ability of PAQRS to achieve 
targeted relative class performances, and also to reveal any 
price (in terms of system-wide performance metrics) that 
PAQRS may have to pay in the process. 

We will begin our evaluation with an experiment where the 
workload consists of only one query class. This experiment is 
intended to give us an initial understanding of the admission 
and memory allocation mechanisms of P AQRS before we 
delve into the complexities introduced by multiple query 
classes. Since there is only one class here, PAQRS behaves 
exactly like PMM. We shall assess PAQRS by comparing it 
with two static algorithms: Max and MinMax. These two al­
gorithms employ the Max policy and the MinMax strategy, 
respectively, in their memory allocation decisions. Next, we 
present a baseline experiment that is used to study the PAQRS 
algorithm's effectiveness in handling multiclass workloads. 
Further P AQRS experiments are then carried out by varying a 
few parameters each time. The primary performance metrics 
for these experiments are the System Miss Ratio, defined as 

SvstemMissRatio = __ 

N_u_m_b_e_r _c_Jf_La_te
----'

Q_u_e_r _ie_ s_
· 

Number of Submitted Queries, 

the Class Miss Ratio, computed as 

Cl M
. 

R 
. Number of Late Queries in Class i

ass tss atio; = ----'----::._ _____ _ 
Number of Class i Queries 

and the WeightedMissRatio. The weighted miss ratio combines 
the successes and failures of au classes into a single number 
that reflects how well the system performs as a whole, and is 
defined as 

WeightedMissRatio = L Weight; x ClassMissRatio;, 

where Weight; is a weight assigned to class i according to an 
administratively defined performance objective. The way in 
which class weights are derived from the performance objec­
tive is described in Section IV.A. Unless stated otherwise, 
each experiment was run for 10 hours of simulated time, allow­
ing a minimum of 2,000 completions per query class. We also 
verified that the size of the 90% confidence intervals for miss 
ratios (computed using the batch means approach [24]) was 
within a few percent of the mean in almost all cases. 

A. Single Query Class

As mentioned above, our first experiment uses a single-class
workload to study the MPL control and memory allocation 
mechanisms of PAQRS (and hence PMM). In order to bring 

out the importance of memory management, we simulate an 
environment where, except for occasional overloads, there are 
abundant CPU and disk capacities for the given workload; 
thus, memory is the bottleneck resource. This is achieved by 
letting CPUSpeed and NumDisks be 40 MIPS and 10, respec­
tively, and by setting M to 2,560 pages (20 Mbytes). The rest 
of the resource parameters are kept at their settings of Table V 
The workload consists of one class of hash join queries. Each 
join has two operand relations, R and S, where IIRII varies uni­
formly between 600 and 1,800 pages and IISII is selected from 
the range [3,000, 9,000] pages. Moreover, the slack ratio in­
terval of this class is set to [2.5, 7.5]. The database and work­
load parameters are summarized in Table VII. A more com­
prehensive evaluation of PAQRS (PMM) involving various 
single-class workloads can be found in [22]. 

TABLE VII 
DATABASE A'1D WORKLOAD PARAMETER SEITINGS FOR THE 

SINGLE QCERY CLASS EXPER1:\1ENT 

Database Meaning Setting 

NumGroups Number of relation groups in the datahase 2 
Re/PerDisk, Number of relations per disk for group! 3 

SizeRange1 Range of relation sizes for group I [600. 1800] 
pages 

Re/PerDisk2 Number of relations per disk for group 2 3 

SizeRange2 Range of relation sizes for group 2 [3000, 9000] 
pages 

Tuple Size Tuple size of relations in bytes 256 bytes 

Workload Meaning Setting 

NumC/usses Number of classes in the workload I 

QueryType, Type of class I queries Hash join 

Re/Group, Operand relation groups for class I queries I, 2 

A1 Arrival rate of class I queries varied (0.04 
ta 0.08) 

SR!nterva/1 Range of slack ratios far class I queries [2.5, 7.5] 

F Fudge factor for ha.sh joins I.I

Fig. 3 plots the miss ratios for Max, MinMax, and PAQRS 
as a function of the arrival rate. The figure shows that MinMax 
consistently delivers the lowest miss ratio for this experiment, 
followed very closely by PAQRS. Max performs satisfactorily 
initially, achieving a near 0% miss ratio at ?c = 0.04 
queries/sec. As the arrival rate increases, however, the 
performance of Max deteriorates rapidly until, at A = 0.08 
queries/sec, Max produces a hefty 55% miss ratio, which is 
almost four times that of MinMax and PAQRS. These obser­
vations clearly show that the choice of memory allocation al­
gorithm can have a very significant impact on the system miss 
ratio. To understand the behaviors of the three algorithms, we 
shall analyze each algorithm in turn with the aid of Figs. 4 and 
5, which give the disk utilizations and average observed MPLs 
(as opposed to the target MPL set by PAQRS, which serves to 
limit the maximum MPL in the system), respectively. 

Let us first examine the Max algorithm. This algorithm 
admits queries only if they can be allotted enough buffers to 
satisfy their maximum requirements. For the workload used 
in this experiment, Max allows less than two queries to be 
admitted at the same time (see Fig. 5) since each query re­
quires an average of 1,321 buffers (F x 1,200 pages for R plus 
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one I/0 buffer). The tight MPL limit imposed by Max prevents 
the RTDBS from exploiting its disk and CPU resources to 
cope with the heavier load as the arrival rate increases from 
0.04 to 0.08 queries/sec, which explains why, unlike the other 
two algorithms, Max's disk utilization barely rises. This inef­
fective resource usage leads to the observed sharp growth in 
the miss ratio of Max. 

In contrast to Max, MinMax attempts to reduce query miss 
ratios by increasing the system's MPL. This is achieved at the 
expense of running queries with memory allocations that are 
less than their maximum, which increases the demands on the 
CPU and the disks. By giving queries their minimum required 
memory, MinMax could admit up to an average of 69 queries 
at the same time (on the average. the minimum memory re-
quirement per query is � f11RII pages + I I/0 buffer = 37 
pages), thus allowing much higher average MPLs as Fig. 5 
shows. Moreover, the increased CPU and disk demands that 
result have little harmful effect here, as the disk utilization 
barely exceeds 45% even at an arrival rate of 0.08 queries/sec, 
indicating that there are abundant CPU and disk capacities to 
service all the admitted queries. The overall result is that 
MinMax uses the system's resources in a much more effective 
fashion than Max. Consequently, the higher execution times 
that MinMax produces are more than compensated for by the 
large reduction in admission waiting times, thus resulting in 
total response times that are significantly lower than the re­
sponse times of Max. This accounts for MinMax's superior 
miss ratios in Fig. 3. 

We now turn our attention to the PAQRS algorithm. In or­
der to understand how P AQRS adapts itself to the workload, 
we examine Fig. 6, which traces the target MPL settings nf 
PAQRS over the initial 10 hours of operation at an arrival rate 
of 0.075 queries/sec. PAQRS starts with Max. but it quickly 
detects that this allocation strategy is not satisfactory because 
it leads to a very limited MPL while leaving the CPU and disks 
grossly underutilized. This causes PAQRS to switch to Min­
Max mode to make a higher MPL possible. The target MPL is 
first set to 25, following the suggestion of the Resource Utili­
zation heuristic. Once PAQRS has gathered three miss ratio 
observations, it invokes the miss ratio projection method, 
which quickly steers the target MPL to the vicinity of IO where 
it stabilizes. This MPL is sufficiently loose to admit all of the 
queries into the system most of the time. Indeed, Fig. 5 shows 
that PAQRS consistently achieves high MPL settings, thus 
enabling it to behave like the MinMax algorithm. This is why 
PAQRS manages to closely match the performance of Min­
Max, which offers the best miss ratios for this experiment. 

Besides this experiment, we have also carried out experi­
ments where we varied the workload and resource parameter 
settings [22]. In particular, we studied the performance of 
PMM (i.e., single-class PAQRS) under higher disk contention 
levels, workload fluctuations, and workloads that contained 
external sorts. In all of these experiments, the algorithm was 
able to consistently deliver low miss ratios by dynamically 
reaching the right compromise between Max and MinMax, and 
by setting an appropriate target MPL. 
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B. Baseline Multiclass Workload Experiment

Having gained some initial intuition regarding the behavior
of the MPL control and memory allocation mechanisms of 
PAQRS, we now proceed to evaluate its ability to handle mul­
ticlass workloads. Our baseline experiment uses a workload 
that consists of two classes of hash joins, Small and Medium. 
With the exception of the arrival rate, which is fixed at 0.065 
queries/sec, the characteristics of the Medium class are the 
same as those of the previous experiment. For the Small class, 

IIRII ranges between 50 and 150 pages, while IISII ranges from
250 to 750 pages. The slack ratio interval for Small joins is 
also set to [2.5, 7.5], and the arrival rate of this class, Asma/I, 
ranges from O to 1.2 queries/sec. Table VIII summarizes the 
detailed database and workload characteristics. The perform­
ance objective for the baseline experiment is to balance the 
miss ratio of the two classes, i.e., RelMissRatio :::: [ 1: I}. The 
number of disks is raised to 12 to accommodate the heavier 
load here, while the rest of the resource parameters remain at 
their settings from the previous experiment. 

TABLE VIII 
DATABASE AND WORKLOAD PARAMETER SETTINGS 

POR THE BASELINE EXPERIMENT 

Database Meanin" Setting 

NumGroups Number of relation groups in the datahase 4 
Re/PerDi.<k, Number of relations per disk for group I 3 

SizeRange1 Range of relation sizes for group I [600, 1800] 
pages 

RelPerDiskz Number of relations per disk for group 2 3 

SizeRanxe2 Range of relation sizes for group 2 (3000, 9000] 
pages 

RelPerDisk3 Number of relations per disk for group 3 3 

SizeRange3 Range of relation sizes for group 3 [50, 150] 
pages 

RelPerDisk, Number of relations per disk for group 4 3 
SizeRange4 Range of relation sizes for group 4 (250,750] 

pages 
Tup/eSize Tuple size of relations in bytes 256 bytes 

Workload MeaninQ Setting 

NumClasses Number of classes in the workload 2 

Query1'ype1 Type of class I queries Hash join 
Re/Group, Operand relation groups for class I queries {I, 2) 
it, Arrival rate of class I queries 0.065 
SR!nterva/ 1 Range of slack ratios for class 1 queries (2.5, 7.5] 
QueryTypez Type of class 2 queries Hash join 
Re/Group2 Operand relation groups for class 2 queries (3, 4} 
it, Arrival rate of class 2 queries varied from 

0 to 1.2 
SRlnterva/2 Range of slack ratios for class 2 queries (2.5, 7.5] 
F Fudge factor for hash joins 1.1 

Figs. 7 and 8 plot the class miss ratios and system miss ra­
tios produced by PMM and PAQRS as a function of the arrival 
rate of the Small class. In order to understand the behavior of 
the various mechanisms of PAQRS, we also include in the 
figures curves that are labeled PAQRS(NoBiasCtrl), which 
shows how PAQRS would perform without its bias control 
mechanism. The figures show that while PMM clearly delivers 
the lowest system miss ratios, it is also extremely biased, pe­
nalizing the Medium class as the load from the Small class 

increases: as Asmall increases from O to 1.2 queries/sec, the miss 
ratio of the Small class barely rises, but the miss ratio of the 
Medium class increases dramatically, growing from a low of 
near-zero misses to a high of 70%. In comparison, PAQRS 
without bias control and the full PAQRS algorithm come much 
closer to achieving balanced miss ratios, though at the expense 
of higher system miss ratios. In fact, the full PAQRS algorithm 
exhibits virtually no skewed behavior at al I. These results 
clearly demonstrate that the choice of a query scheduling al­
gorithm can have a very significant impact on class miss ratios. 
To understand the behavior of the two algorithms, we shall 
analyze each algorithm in turn with the aid of Figs. 9 to 14, 
which give the weighted miss ratios, observed MPLs, disk 
utilizations, waiting time ratios (the ratio of the waiting time to 
the time constraint) and response time ratios (the ratio of the 
total response time to the time constraint) for both the Small 
and Medium classes, and the percentage of queries in each 
class that are assigned to the P AQRS reserve group. In com­
puting the average response time ratios, a late query is consid­
ered to have a response time ratio of 100% since the query is 
aborted only after its deadline expires. We shall henceforth 
refer to waiting time ratios and response time ratios collec­
tively as timing ratios. 

Let us first examine the PMM algorithm, which treats que­
ries as if they all belonged lo a single class. There are two rea­
sons why this leads to a biased treatment of classes. The first 
reason is that the Earliest Deadline policy used for resource 
scheduling is inherently biased [ 19]. When treated on par with 
the Small queries, Medium queries are assigned lower priori­
ties by ED most of the time because their deadlines are much 
further in the future. Consequently, Medium queries are not 
able to compete for resources early in their lifetimes; many of 
them only gain enough priority after their deadlines become 
infeasible, thus wasting the resources that they consume. 
Figs. 12 and 13 provide evidence of this bias in the ED policy. 
Even at a low load of A5.,,,,,1 = 0.2 queries/sec, Medium queries 
spend more than 10% of their deadlines waiting for admission 
and another 35% of their time constraints executing in the 
system (see Fig. 13). In contrast, Small queries have negligible 
admission waiting times and finish way ahead of their dead­
lines (Fig. 12). As the load mounts, the response times of Me­
dium queries rapidly approach their deadlines, while the re­
sponse times of Small queries rise much more slowly. For ex­
ample, at Asmau = 1.2 queries/sec, where about 70% of the 
Medium queries miss their deadlines, the average Small query 
still manages to complete before even 30% of its time con­
straint has elapsed. As a result, Small queries fare much better 
than their Medium counterparts. 

Another reason for PMM's biased behavior is that the Small 
class, by virtue of its higher arrival rate, exerts a dispropor­
tional influence on the various measurements that PMM relies 
upon when making its MPL and memory allocation choices, 
thus resulting in choices that favor Small queries. Since a 
Small join query requires an average of only 111 memory 
pages (FjlRII pages + I 1/0 buffer = 111 pages) to satisfy its 
maximum demand, memory contention becomes an issue for 
the Small class only when the number of queries in the system 
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exceeds 23 at a time (2,560 memory pages divide by 111 
pages per query). However, as the low observed MPLs in 
Fig. IO show, this is unlikely to happen. PMM therefore con­
cludes that memory contention is negligible and that Max is 
the preferred memory allocation strategy. This severely limits 
the MPL of the Medium class. In fact, on the average only two 
Medium queries get to execute concurrently, as each Medium 
join query's expected maximum memory requirement is 1,321 
pages. Consequently, Medium queries suffer Jong admission 
waiting times that cause many of them to miss their deadlines, 
despite the disks' having excess capacity as the lower PMM 
disk utilizations in Fig. 11 suggest. In contrast, the Small class 
benefits tremendously from the choice of the Max strategy. 
This is because the low concurrency of the Medium class 
leaves the Small queries with ample memory and virtually all 
of the CPU and disk capacity that they require. Therefore, 
Small queries are able to enjoy relatively short admission 
waiting and response times at the expense of the Medium class 
under PMM. This bias in MPL and memory allocation strategy 
choices, together with ED's inherent bias, accounts for the 
disparity in miss ratios between the two classes. 

Having understood the forces that cause PMM to be biased, 
we now investigate the extent to which P AQRS is able to make 
MPL and memory allocation strategy choices that are more 
conducive to achieving balanced class miss ratios, which is the 
workload objective for this experiment. The higher observed 
MPLs for both Small and Medium queries produced by 
PAQRS(NoBiasCtrl) in Fig. 10 show that PAQRS decides to 
admit more queries and does not insist on maximum alloca­
tions here. This virtually eliminates admission waiting time for 
the Medium class, allowing its queries to enjoy CPU and disk 
services early in their lifetimes. The heavier disk utilizations in 
Fig. 11 suggest that the disks are utilized more productively 
now. As a result, Medium queries are able to complete so 
much earlier that their miss ratios plummet from PMM's high 
of nearly 70% at Asmau = 1.2 queries/sec to just over 20% for 
PAQRS without bias control. However, the improved per­
formance of the Medium class is achieved at the expense of 
somewhat higher miss ratios for Small queries, whose response 
times are prolonged by the heightened resource contention. 
This loss suffered by the Small class to the benefit of the Me­
dium queries is the reason that PAQRS without bias control 
delivers a more balanced miss ratio distribution and a much 
lower weighted miss ratio than PMM does. The higher system 
miss ratio that PAQRS without bias control produces can be 
explained as follows: Since a Medium query consumes signifi­
cantly more resources than a Small query, the system is likely 
to have to sacrifice several Small queries in order to help a 
Medium query meet its deadline, especially when the load is 
heavy. This naturally results in higher system miss ratios be­
cause every late query, regardless of its class, contributes 
equally to the system miss ratio. Note that PAQRS would have 
been discouraged from helping the Medium class had it not 
adopted the weighted miss ratio to measure overall system 
efficiency. Instead, being driven by the lower weighted miss 
ratio measurements that result, PAQRS is able to arrive at the 
right MPL and memory allocation strategy. 

Finally, we turn our attention to the bias control mechanism 
of the PAQRS algorithm. Fig. 14 shows that this mechanism 
relegates more and more of the Small queries to the reserve 
group as Asmau increases. This raises the average admission 
waiting time of the Small class and leads to a decline in its 
MPL, as reserve queries are granted admission only after the 
regular queries from all classes have received their maximum 
required memory. The higher fraction of reserve queries also 
lowers the average priority of the Small class, which in turn 
lengthens its average response time (over and above the delay 
it already suffers from the Medium class' higher concurrency 
under the MPL and memory allocation mechanisms of 
PAQRS) and pushes up its miss ratio. However, as a result of 
the Small class' lower average priority, Medium queries can 
now run with more memory. This reduces the amount of tem­
porary (hash bucket) data that Medium queries must write out, 
which explains why the disk utilizations of the full PAQRS 
algorithm are lower than those of PAQRS(NoBiasCtrl) in 
Fig. 11. This also helps Medium queries to complete earlier, 
bringing their miss ratios down further to match those of the 
Small class. For example, at Asmau = 1.2 queries/sec, a Medium 
query requires an average of just over 60% of its time con­
straint to run when the full PAQRS algorithm is employed, 
whereas it takes more than 70% of its deadline under P AQRS 
without bias control. Consequently, the full PAQRS algorithm 
is able to completely balance the class miss ratios. Interest­
ingly, despite producing lower miss ratios for the Medium 
class, the full P AQRS algorithm does not improve significantly 
upon the weighted miss ratios of PAQRS(NoBiasCtrl). This is 
because PAQRS without bias control already allows the sys­
tem resources to be utilized productively, so the full PAQRS 
algorithm has to achieve further reductions in the number of 
late Medium queries by sacrificing (many more) Small queries 
rather than by improving the efficiency of resource usage. 

To summarize the results of this experiment, we can draw 
the following conclusions: First, while PMM is very effective 
in minimizing the system miss ratio, it is also biased in its 
treatment of different classes. This will be unacceptable for 
those applications that require controlled miss ratios. Second, 
by setting the target MPL and memory allocation strategy ac­
cording to administratively defined workload objectives, 
PAQRS can come considerably closer to achieving balanced 
class miss ratios than PMM. Finally, by also manipulating the 
individual class quotas for regular queries, PAQRS is able to 
influence their relative miss ratios enough to produce equitable 
miss ratios. 

C. Skewed Class Objectives

Having demonstrated in the previous experiment that
PAQRS can successfully achieve balanced class miss ratios, 
we now explore its ability to meet skewed workload objec­
tives. This is accomplished by varying the algorithm parameter 
RelMissRatio. We first set it to favor the Small class; we then 
reverse the setting so that Medium queries become more valu­
able. All of the database and workload parameters remain as 
they were in the baseline experiment. 
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For the first part of the experiment, we set Re/MissRatio to 
{ 2: 1}, so the target miss ratio distribution is of the form 
MissRatioMedium = 2x% and MissRatiosmall = xo/o. Figs. 15 and 
16 present the resulting class miss ratios and weighted miss 
ratios, while Fig. 17 plots the ratio of MissRatiosmall to 
MissRatioM,dium as a function of Asma/I· The figures show that 
the behavior of both PMM and PAQRS(NoBiasCtrl) are vir­
tually the same as those observed in the baseline experiment. 
In the case of PMM, this is to be expected, as PMM is nol 
designed to discern class distinctions or to meet multiclass 
objectives; changes in the Re/MissRatio parameter naturally 
have no effect on PMM's behavior. In the case of PAQRS 
without bias control, its behavior remains essentially un­
changed because, even for the { 2: 1} target miss ratio distribu­
tion, it still misses more Medium queries than desired. Conse­
quently, P AQRS without bias control is already using the MPL 
setting and the memory allocation strategy that are most favor­
able to the Medium class, as it was in the previous experiment. 
Not surprisingly, the full PAQRS algorithm successfully 
achieves the { 2: 1} target distribution; in fact, it is an easier 
target than the objective of balanced miss ratios in the previous 
experiment since it requires a smaller improvement in the miss 
ratio of the Medium class. 

For the second part of the experiment, we reverse the target 
miss ratio distribution to the more challenging setting of 
Re/MissRatio = { 1:2}. The resulting class miss ratios, 
weighted miss ratios, and MissRatiosmau to MissRatioI>folium 

ratios are presented in Figs. 18 to 20. These figures show that 
while selecting the appropriate MPL and memory allocation 
settings almost enabled PAQRS without bias control to meet 
the target miss ratio distribution of Re/MissRatio = {2:1} ear­
lier, PAQRS is not able to improve the relative miss ratio of 
the Medium class any further without its bias control mecha­
nism. Without this mechanism, PAQRS fails miserably here, 
producing MissRatiosm"1JMissRatioM,dium values that are far 
short of the target. In contrast, the full PAQRS algorithm again 
attains the target distribution. Even at high Asma/I values, where 
the workload consists predominantly of Small queries, and 
where Medium queries are in a very disadvantaged position 
due to heavy contention from Small queries that have nearer 
deadlines, the full PAQRS algorithm still manages to bring the 
miss ratios of the Medium class down to meet the demanding 
workload objective. However, the full PAQRS algorithm pro­
duces only slightly lower weighted miss ratios than 
PAQRS(NoBiasCtrl) here (Fig. 19). As discussed in the base­
line experiment, this is because the resource consumption of 
Medium queries is much more than that of the Small queries, 
so the system has to sacrifice many more Small queries to re­
duce the number of late Medium queries. 

To summarize, this experiment confirms that PMM is inca­
pable of achieving the target miss ratio distribution of multi­
class workloads. In contrast, the MPL, memory allocation, and 
bias control mechanisms of PAQRS are able to work in unison 
to consistently meet multiclass performance objectives, 
whether balanced or skewed. 

D. Identical Classes

In the first two experiments, we saw that the bias control
mechanism of PAQRS is very effective in regulating per-class 
performance to achieve a desired target miss ratio distribution, 
even despite the classes' very different characteristics. How­
ever, this mechanism could impose a cost, as it may be overly 
conservative in setting its regular query quotas; this would 
cause too many queries to be assigned to the reserve group, 
resulting in unnecessary deadline misses. To explore this po­
tential drawback, we now replace the Small class in the base­
line experiment with another class that is identical to the Me­
dium class, and we equate the mean arrival rates of the two 
classes. The rest of the parameters are set as in the baseline 
experiment. Finally, Re!MissRatio is set to { 1: 1} i.e., the target 
is to balance the miss ratios of the classes. 

Fig. 21 plots the system miss ratios produced by PMM and 
PAQRS as a function of Asma/I· This figure shows that PAQRS 
produces slightly higher system miss ratios than PMM, indicat­
ing that the bias control mechanism of PAQRS indeed be­
comes a slight liability here. This occurs because the two 
classes only experience similar average miss ratios. At any 
particular instant, workload fluctuations will inevitably cause 
the two class miss ratios to deviate from each other; in reaction 
to these deviations, PAQRS will relegate some queries from 
the class that appears to be overachieving to the reserve group. 
While only a small percentage of the queries are affected, there 
is nonetheless some overhead involved. Fortunately, PAQRS 
suffers only a slight performance deterioration as a result. For 
example, at arrival rates of 0.06 queries/sec, where both 
classes are missing as many as 29% of their queries under 
PMM, PAQRS misses just about 30% of the queries. Conse­
quently, while PAQRS can lead to some small overhead, its 
benefit of achieving the target miss ratio distribution more than 
justifies its use. 

E. Workload Changes

The preceding experiments lead us to the conclusion that
PAQRS is very effective for relatively stable real-time work­
loads. The objective of this next experiment is to find out how 
well PAQRS reacts to dynamic workload changes. This is 
done by subjecting the various query scheduling algorithms to 
a workload whose composition changes every X simulated 
hours, where X varies randomly (and uniformly) between two 
and five. At any given time, the workload contains two of the 
following three query classes-Small, Medium, and Sort. The 
Small and Medium classes are the same as in the baseline ex­
periment. Each query in the Sort class sorts a single relation R, 
where IIRII ranges from 600 to 1,800 pages. Table IX summa­
rizes the database and workload parameters (except arrival 
rates). The class arrival rates vary from one workload mix to 
another. To highlight the performance tradeoffs between the 
algorithms, they are chosen so that the average miss ratios 
produced by the best algorithm(s) in each case are in the 
neighborhood of 5 to 10%. The chosen arrival rates are listed 
in Table X, while the resource parameters are the same as in 
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the baseline experiment To ensure that all of the workload 
mixes are tried in a relatively short simulated time period of 45 

hours, the workload repeatedly cycles through the three possi­

ble mixtures, i.e., it starts with mixture #1, goes on to mixture 

#2, which is followed by mixture #3, then returns to mixture 

#1, and so on. Our target is to balance the miss ratios of the 

two classes within each workload mix. 

TABLE IX 
DATABASE AND WORKLOAD PARAMETER SETTINGS (WORKLOAD CHANGES) 

Database Value Workload Value 

NumGroups 4 QueryTypeM,dium Hash join 
Re/PerDisk1 3 Re/GroupM..iium {I, 2} 
SizeRange1 [600, 1800] pp. SR!ntervalM,dium [2.5, 7.5] 

Re/PerDisk2 3 QueryTypes.,,,11 Hash join 

SizeRange2 [3000,9000]pp. Re/Groups..,,11 (3, 4) 
Re/PerDisk3 3 SR/ntervals,..11 [2.5, 7.5] 

SizeRange3 [50, 150] pp. QueryTypes.r1 External sort 

Re/PerDisk.i 3 Re/Group Sort {I) 

SizeRange4 [250, 750] pp. SR!ntervalsorr [2.5, 7.5] 

TABLEX 
CLASS ARRIVAL RATES IN QUERIES/sec (WORKLOAD CHANGES) 

Workload Mix Small Medium Sort 

1 1.0 0.065 -

2 1.0 - 0.08 
3 - 0.045 0.06 

Table XI summarizes the performance of the three classes in 
the form of average class miss ratios. We shall examine these 

results according to workload mixes. Although workload mix­

ture #1 has exactly the same composition as the workload used 

in the baseline experiment, both PMM and P AQRS produce 

higher miss ratios here than they did previously. This is due to 

the introduction of workload changes, which cause each of the 
algorithms to reset themselves. Consequently, the algorithms 

need to adapt to the workload repeatedly, and inefficient re­
source usage during the adjustment periods pushes up the miss 

ratios. Other than the higher miss ratios, the qualitative tradeoffs 

between the two algorithms remain the same. In particular, 

PAQRS still achieves the target miss ratio distribution. 

Turning our attention to workload mixture #2, we first note 
that PMM again discriminates against the queries that have 

larger memory demands. In fact, the Sort queries in this work­

load mix perform significantly worse than the Medium queries in 

workload mixture #1. This is because while the memory de­

mands of the Sort queries and Medium queries are about the 

same, the load that the Sort queries place on the disks and the 

CPU is considerably lighter; on the average, each Sort query 
only has to sort one 120-page relation, whereas the average 

Medium query has to join a 120-page relation with a 600-page 

relation. Consequently, memory is a much more critical resource 

for workload mixture #2, thus amplifying the biased behavior of 

the Max strategy that PMM chooses. In contrast, PAQRS again 

manages to balance the class miss ratios. 

Finally, for workload mixture #3, PMM adopts the MinMax 

mode and high MPL settings to service the two memory­

intensive classes. Its slightly skewed miss ratios are a result of 
ED favoring the Sort queries, which are somewhat shorter than 

the Medium hash join queries. This biased behavior is rectified 
by the bias control mechanism of PAQRS. This experiment 

shows that PAQRS not only performs well under stable work­

loads, but is also capable of adapting to workload changes. 

TABLE XI 
AVERAGE CLASS MISS RATIOS (WORKLOAD CHANGES) 

PMM PAQRS 

Mixture Small Medium Sort Small Medium Sort 

I 1.6% 44.3% - 9.1% 9.6% -

2 1.3% - 79.0% 7.4% - 7.3% 
3 - 10.1% 11.4% - 10.9% 10.8% 

F. A Three-Class Workload

Up to this point, we have examined the performance of

PAQRS using workloads that consisted of only two classes in 
order to simplify our discussions. However, PAQRS is in­

tended to be a general multiclass query scheduling algorithm, 

and is not limited to handling only simple workloads. To dem­

onstrate that PAQRS is capable of managing more complex 

workloads well, we conclude this section by repeating the 

baseline experiment using a workload that is made up of three 

different classes. We use the same three classes that we used in 

the previous experiment; instead of choosing only two out of 

three classes at a time, however, we activate all three classes 

concurrently. The arrival rate of the Sort and Medium classes 

are both set to 0.045 queries/sec, while the arrival rate of the 

Small class is varied. 

The class miss ratios of the three query scheduling algo­

rithms for this workload are shown in Fig. 22. The perform­

ance trends in these figures reveal no surprises: PMM still 

affords the Small class favored treatment at the expense of the 

two memory-intensive classes. Among these two classes, the 

more resource-demanding Medium class suffers a higher miss 

ratio because of the inherent bias of the Earliest Deadline 

scheduling policy. Again, we see that PAQRS is able to ma­
nipulate the priority of the classes appropriately to achieve the 

target miss ratio distribution. 

G. Scalability of Results

In order to limit simulation costs, we intentionally chose to
use small relation and memory sizes in our experiments. This 

raises questions about the scalability of our results to larger 

systems: How would larger memory and relation sizes affect 

the performance of the various algorithms? Would PAQRS 

still be able to perform as well as it did? To verify the scal­

ability of our results, we carried out two different sets of ex­
periments-a set of medium-scale experiments, reported in 

this paper, and a set of small-scale experiments that involved 

database and memory sizes that were 10 times smaller. The 

two sets of experiments produced essentially the same qualita­

tive algorithm behavior; in other words, our results scaled up 

from small database and memory sizes to medium sizes. We 

therefore expect our results to scale up to even larger memory 
and relation sizes; PAQRS should be just as effective for 

larger systems as it was for the workloads and configurations 
that we have experimented with here. 
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VII. CONCLUSION

In this paper, we have continued and extended our previous 
study on the problem of scheduling queries in firm real-time 
database systems (RTDBS), which we reported in [22). In that 
study, we proposed a Priority Memory Management (PMM) 
algorithm that aims to minimize the number of missed dead­
lines by adapting both the multiprogramming level (MPL) and 
the memory allocation strategy of an RTDBS according to 
feedback on system behavior. This eliminates the need for any 
advance knowledge of workload characteristics or query exe­
cution times. Instead, the setting of the MPL is determined 
primarily by a statistical projection method, called miss ratio 
projection, which is supplemented by a resource utilization 
heuristic when the statistical method fails. PMM incorporates 
two memory allocation strategies-a Max strategy under 
which each query receives either its maximum required mem­
ory or no memory at all, and a MinMax strategy that allows 
some queries to run with their minimum required memory 
while others get their maximum. Both strategies employ the 
Earliest Deadline (ED) policy so that queries whose deadlines 
are more imminent are given memory ahead of queries that are 
less urgent. The choice of memory allocation strategy is based 
on statistics about the workload characteristics that PMM 
gathers. In order to ensure that its MPL setting and memory 
allocation strategy choices remain appropriate, PMM con­
stantly monitors the workload for changes that may necessitate 
adjustments to those decisions. Experimental results obtained 
with a detailed RTDBS simulation model, which appeared in 

[22] and which we summarized briefly here, indicate that the
admission control and memory allocation mechanisms of
PMM are very effective in helping an RTDBS achieve low
deadline misses. However, when presented with a multiclass
workload, PMM can produce skewed class miss ratios that
may be unacceptable for some applications.

In order to better meet multiclass performance objectives, as 
expressed in the form of target miss ratio distributions, this 
paper has extended PMM to create a new algorithm called 
Priority Adaptation Query Resource Scheduling (PAQRS). 

PAQRS modifies the MPL and memory allocation strategy 
selection mechanisms of PMM to pick a global MPL setting 
and a system-wide memory allocation strategy that are condu­
cive to achieving the given target distribution. It then regulates 
the MPL and memory allocation of individual classes indi­
rectly by controlling the priority of their queries. This regula­
tion is accomplished by dividing the queries in an RTDBS into 
two priority groups-a regular group and a reserve group­
and by setting a quota of regular queries for each class. 
All regular queries are assigned higher priorities than any re­
serve query, so PAQRS manipulates the relative priority of 
individual classes simply by adjusting their regular query 
quotas. By appropriately setting these quotas, PAQRS is able 
to influence the miss ratios of the classes to conform to the 

target distribution. 
Through a series of simulation experiments, we demon­

strated that the modified MPL and memory allocation strategy 
selection mechanisms of P AQRS enable it to utilize the system 
resources efficiently to reduce the overall number of deadline 

misses. However, these mechanisms alone are inadequate for 
regulating the distribution of deadline misses among multiple 
query classes. This inadequacy is overcome by the PAQRS 
algorithm's bias control mechanism. Hence, all three mecha­
nisms are important in helping PAQRS achieve its given per­
formance objective. Finally, PAQRS was shown to be able to 
adapt to the offered workload quickly enough so that it can 
work well even when workload changes sometimes occur; of 

course, were the workload to fluctuate too rapidly, PAQRS' 
performance would likely deteriorate with increased workload 
fluctuations. While we only experimented with queries that 
perform either external sorting or hash join operations, 

PAQRS is designed to schedule general query workloads ef­
fectively by balancing their demands on the system's memory, 
CPU, and disks. In particular, PAQRS can be extended to 
handle complex database queries that use external sorting and 
hash joins as building blocks, such as queries with aggregates, 
group-by clauses, and/or order-by clauses. Therefore, we con­
clude that P AQRS should be very useful for scheduling com­
plex query workloads in an RTDBS. 

A number of open issues remain in the area of real-time 
query scheduling. We have considered only workloads involv­
ing mixes of queries in this paper; RTDBS workloads are 
likely to contain transactions as well as queries. Thus, it would 
be useful to combine PAQRS with long-term data buffering 
techniques, such as those proposed in [5], in order to provide a 
truly complete memory manager for RTDBSs. The concurrent 
execution of long-running queries and short transactions also 
raises concurrency control issues that need to be resolved. 
Another avenue for future work is to explore ways to shorten 
the adjustment time of PAQRS by incorporating more sophis­
ticated MPL control and memory allocation heuristics. This 
would help to improve PAQRS' ability to adapt to workload 
changes. Finally, we would like to apply the techniques that we 
developed for PAQRS to nonreal-time environments such as 
the goal-oriented database system environment studied in [6]. 
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