
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-1995

Multiclass Query Scheduling in Real-Time
Database Systems
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Michael J. CAREY
IBM Almaden Research Center

Miron LIVNY
University of Wisconsin-Madison

DOI: https://doi.org/10.1109/69.404028

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PANG, Hwee Hwa; CAREY, Michael J.; and LIVNY, Miron. Multiclass Query Scheduling in Real-Time Database Systems. (1995).
IEEE Transactions on Knowledge and Data Engineering. 7, (4), 533-551. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/110

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/69.404028
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1

Multiclass Query Scheduling in

Real-Time Database Systems
HweeHwa Pang, Michael J. Carey, Member, IEEE, and Miron Livny

Abstract-In recent years, a demand for real-time systems that
can manipulate large amounts of shared data has led to the emer
gence of real-time database systems (RTDBS) as a research area.
This paper focuses on the problem of scheduling queries in
RTDBSs. We introduce and evaluate a new algorithm called Pri
ority Adaptation Query Resource Scheduling (PAQRS) for han
dling both single class and multiclass query workloads. The per
formance objective of the algorithm is to minimize the number of
Inissed deadlines, while at the same time ensuring that any dead
line Inisses are scattered across the different classes accordin11: to
an adininistratively-defined miss distribution. This objective is
achieved by dynamically adapting the system's adinission, mem
ory allocation, and priority assignment policies according to its
current resource confi11:uration and workload characteristics. A
series of experiments confirms that PAQRS is very effective for
real-time query scheduling.

Index Terms-Query processing, real-time database systems,
memory management, priority scheduling.

I. INTRODUCTION

A
NUMBER of emerging database applications, including
aircraft control, stock trading, network management, and

factory automation, have to manipulate vast quantities of
shared data in a timely manner. More specifically, these appli
cations may generate transactions and queries that have to be
completed by certain deadlines for the results to be of full (or
perhaps even any) value [1], [26], [23]., The need for systems
that are able to support such timely management of substantial
amounts of data has sparked researchers' interest in the area of
real-time database systems (RTDBS) in both the database and
real-time computing communities. Most work in the RTDBS
area to date has focused on the issues of transaction manage
ment and low-level resource (CPU and I/0) scheduling.

Depending on the extent to which its applications can tol
erate violations of their time constraints, a real-time database
system can be characterized as being either hard, soft, or firm

[23]. In this study, we will focus on firm RTDBSs, where a job
is considered useless once its deadline has passed [12]. In or
der to meet the time constraints of its jobs, a firm RTDBS
must employ multiprogramming so that all of its resources can
be utilized productively. Moreover, it must regulate the

H.-H. Pang is with the Institute of Systems Science, National University of
Singapore, Heng Mui Keng Terrace, Kent Ridge, Singapore 0511, Republic
of Singapore; e-mail: hhpang@iss.nus.sg.

M.J. Carey is with IBM Almaden Research Center, 650 Harry Road,
K55-BI, San Jose, CA 95120-6099; e-mail: carey@almaden.ibm.com.

M. Llvny is with the Computer Sciences Department, University of
Wisconsin at Madison, 1210 West Dayton Street, Madison WI 53706, USA;
e-mail: miron@cs.wisc.edu.

completion time of individual jobs; to do so, it uses priority
scheduling to resolve any resource contention that stems from
multiprogramming.

The performance objective of a firm RTDBS becomes even
more demanding when its workload contains jobs that are
drawn from a number of distinct classes. For such workloads,
the RTDBS must also deal with the issue of how to distribute
any deadline misses across the different classes in the work
load. Since the desired distribution of misses may vary from
one environment to another, the RTDBS should be able to
tailor its resource scheduling policies based on a distribution
provided by the system administrator. Thus, the objective of an
RTDBS with a multiclass workload should be to minimize the
total number of missed deadlines subject to the constraint that
any misses be distributed as per the administrator's specifica
tion. In this paper, we will focus on the challenges associated
with meeting this objective for multiclass, query-oriented, firm
RTDBS workloads.

A. Real-Time Query Processing

The performance of queries can vary dramatically depend
ing upon the amount of memory that they are given to work
with. When given enough memory, most queries can simply
read their operand relations once and produce the desired re
sults directly. This amount is referred to as the queries' maxi
mum memory requirements. Given less memory, as long as the
amount given exceeds the queries' minimum memory require
ments, most queries can still run by writing out temporary files
and then reading them back in for further processing. For in
stance, a hash join can either execute with its maximum re
quired memory, which is slightly greater than its inner relation
size, or it can run in only one additional pass with as few
buffer pages as the square root of its inner relation size [25]. In
order to help all query classes attain their desired level of per
formance, it may be necessary for an RTDBS to increase con
currency by admitting some queries with less than their maxi
mum memory allocations, particularly when queries have large
memory requirements. If too many queries are admitted, how
ever, the resulting extra I/Os could lead to thrashing, making
high concurrency harmful instead of helpful. RTDBSs must
therefore carefully control query admissions into the system.

Having determined which queries to admit, the next issue
that an RTDBS faces is memory allocation. While the highest
priority query at a given CPU or disk will use that resource
exclusively, memory must be shared among all admitted que
ries. When the aggregate maximum memory requirement of
the admitted queries exceeds the available memory, the
RTDBS must decide on the amount of memory to give each

mailto:carey@almaden.ibm.com
mailto:miron@cs.wisc.edu

2

query. This decision needs to take into account both the

classes' performance requirements and the tightness of each
query's timing constraint. In addition, the effectiveness of
memory allocation in reducing individual queries' response
times should be considered so as to make the best use of the
available memory [8], [27]. Finally, since the relative priority
of an executing query may change over time as other queries
enter and leave the system, the memory allocation of a query is
likely to fluctuate. To facilitate efficient query processing in
the face of such memory fluctuations, RTDBSs
require query operators that can dynamically release memory

[8], [28] as well as accept more memory [20], [21], [9] while
they are executing. To date, the admission control and memory

allocation issues that arise in real-time query scheduling have

not been addressed.

B. Our Focus

This paper focuses on the problem of scheduling queries in

real-time database systems. We propose and evaluate an al
gorithm called Priority Adaptation Query Resource Schedul

ing (PAQRS, pronounced "packers") that is designed to
schedule both single- and multiclass query workloads. This

algorithm provides mechanisms to dynamically adapt the ad
mission control and memory allocation decisions of an
RTDBS to the system resource configuration and the charac
teristics of the workload. Moreover, PAQRS is equipped with
a class-sensitive bias control mechanism. When presented with
a heavy multiclass workload, this mechanism exercises explicit
control over the relative priority of the individual classes, thus
regulating their performance to conform to the administratively

defined miss distribution.
The remainder of this paper is organized as follows: Sec

tion II briefly discusses related work. Section III reviews an
algorithm, called PMM [22], that provides the basis for the
development of the PAQRS algorithm. PAQRS itself is pre
sented in Section IV. Section V describes a detailed simulator
of a firm RTDBS that will be used to study the performance of

the PAQRS algorithm. Section VI presents the results of a
series of experiments showing that, over a wide range of

workloads, PAQRS offers an effective solution to the query
scheduling problem in RTDBSs. Finally, our conclusions are

presented in Section VIL

II. RELATEDWORK

A significant body of work exists in the real-time database
system area [23], but almost all of this work has focused on
issues and algorithms related to either real-time transaction
scheduling (e.g., [l], [12), [14], [15]) or real-time disk
scheduling [2], [3], [7]. [15). To the best of our knowledge, the

problem of scheduling queries in an RTDBS has not been ad
dressed to date. As a result, the only studies that are closely

related to the work reported here are two studies that have ex
amined resource scheduling for multiclass query workloads in
the context of traditional (non-real-time) database systems.

In [8], [27), Cornell and Yu introduced the concepts of
memory consumption and return on consumption (ROC) as the

basis for memory management in a multiquery environment.
Using these concepts to characterize the effect of memory al
locations on query response times, a heuristic algorithm was
proposed to allocate memory among concurrently running

queries in a way that ensures a certain level of ROC. An im
portant result from this study is that giving some of the queries
their maximum required memory, while allocating the mini
mum possible memory to the rest, leads to near-optimal mem
ory usage. This result is directly incorporated in the memory
allocation strategies of PAQRS.

The problem of meeting predefined performance objectives
in a multiclass database system was recently studied in [6]. In

that study, Brown et al. explored the problem of automatically
adjusting the multiprogramming levels (MPL) and memory

allocations of a database management system to achieve per
class response time goals for multiclass workloads. An algo

rithm called M&M was introduced to find MPL and memory
settings for each class; these settings are determined dynami
cally by a feedback mechanism that is driven by a set of heu

ristics and estimation techniques. Simulation results showed
that M&M can successfully achieve response times that are
within a few percent of the goals. Despite its promise, M&M
cannot be directly used in the RTDBS context. This is be
cause, being priority-ignorant, M&M may choose MPL and
memory settings that conflict with the job priorities that are
used for concurrency control and the scheduling of the CPU
and disks. Thus, a complete solution, one that integrates prior
ity assignment, MPL control, and memory allocation, must be
sought.

III. BASIC REAL-TIME QUERY SCHEDULING

In a firm real-time database system, a query becomes
worthless if it fails to complete by its deadline. The primary
performance objective of an RTDBS is, if possible, to meet all
query deadlines. If this is not possible, and if all queries are of
equal importance, then the RTDBS will try to minimize the
number of missed deadlines. In [22], we presented a query
scheduling algorithm based on this performance objective. The

algorithm, called Priority Memory Management (PMM),
regulates memory usage for firm real-time query workloads.
Since PAQRS builds on this algorithm, we describe PMM in
detail in this section before introducing the PAQRS algorithm
in Section IV.

The PMM algorithm consists of an admission control com

ponent and a memory allocation component. Both components
employ the Earliest Deadline (ED) scheduling policy [16]. so
queries that are more urgent are given higher priority in ad
mission and memory allocation decisions than queries whose
deadlines are further away. (We adopt the ED policy here, as
opposed to policies that take into account query execution
times, because reasonable execution time predictions are not
usually available in multiuser database systems.) The admis
sion control component of PMM sets the target multipro
gramming level (MPL) by statistical projection from past miss
ratios and their associated MPL values. In cases where this
method fails, PMM falls back on a heuristic that chooses the

PANG, CAREY, AND LlVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 3

MPL based on desirable resource utilization levels. The mem
ory allocation component operates using one of two strategies
-a Max strategy that assigns to each query either its maxi
mum required memory or no memory at all, and a MinMax
strategy that allows some low-priority queries to run with their
minimum required memory while the high-priority ones get
their maximum. The current choice of memory allocation
strategy is based on statistics about the workload characteris
tics that PMM gathers. Since both the MPL setting and mem
ory allocation strategy choices have to be tailored to the char
acteristics of the workload, PMM constantly monitors the
workload for changes that may necessitate adjustments to its
decisions. The details of the algorithm are presented below.
The key parameters of PMM, which will be explained as they
appear in the fol\owing description, are summarized in Table I.

TABLE!

PMM ALGORITHM PARAMETERS

Parameter Meaning Default

Sample Size Reevaluation frequency (number 30

of query completions)
[Utiliow, Utilm,h] Range of "desirable" CPU/ disk [0.70, 0.85]

utilization levels
Adaplcon{Lew?l Conf. level of statistical tests for 95%

PMM adaptation
Changecm,tLml Conf. level of statistical tests for 99%

workload changes

A. Admission Control

The task of the admission control mechanism is to deter
mine the MPL based on current operating conditions. In order
to minimize the miss ratio, defined as the proportion of queries
that fail to complete by their deadlines, the MPL has to be high
enough so that the CPU and disk resources can be fully ex
ploited. However, the MPL should not be so high as to cause
the system to experience thrashing. The relationship between
MPL and miss ratio thus follows the shape of a concave curve.
PMM attempts to locate the optimal MPL, i.e., the MPL that
leads to the lowest miss ratio on this curve, through a combi
nation of miss ratio projection and a resource utilization heu
ristic, revising its MPL setting after every SampleSize queries
are served by the system. The two components of the MPL
determination method are presented below.

A.I Miss Ratio Projection

The miss ratio projection method approximates the relation
ship between MPL and miss ratio by a concave quadratic
equation; this equation is used to set the system's target MPL.
A quadratic equation is used here because it stabilizes faster
than higher-order equations, while still capturing the general
shape of the concave curve. After every SampleSize query
completions, PMM measures the miss ratio, miss,, that the cur
rent MPL, mpl;, produces. Based on this pair of values, to
gether with past miss ratios and their associated MPL settings,
a new quadratic equation is calculated according to the least
squares method [II]. It is important to note that PMM does
not actually have to keep track of individual miss ratio read
ings, but only the values of k, unpl;, "£.mpli, Lmpl,3, "£.mpl/,
"£.miss;, "£.mpl; X miss;, and Lmpli x miss;, where k is the number
of times PMM is invoked. Therefore, the space overhead in-

curred by the projection method is very low. The computation
overhead is also minimal since the method requires only that
the above summations be updated after every query comple
tion, and deriving the quadratic equation entails only simple
arithmetic involving these summations. After approximating
the equation, a new MPL value is chosen according to the type
of curve obtained:

Type 1. The curve has a bowl shape. In this case, the curve
has a minimum. Therefore, the target MPL is set to the mini
mum of the curve. (This is the expected case after the algo
rithm has been operating for a while.)

Type 2. The curve is monotonically decreasing, i.e., higher
MPLs lead to lower miss ratios. This indicates that the optimal
MPL is beyond the highest MPL tried so far. Since the curve
may not be valid if extrapolated too far, the projection method
selects an MPL that is one above this largest attempted MPL.
Next, PMM applies the resource utilization heuristic
(described below) to see if an even higher MPL may be war
ranted. If so, the MPL suggested by that heuristic is adopted;
otherwise PMM maintains the MPL that the miss ratio projec
tion method picked.

Type 3. The curve is monotonically increasing. The MPL
computation procedure for this case is just the opposite of the
procedure for Type 2 curves. Here the projection method ten
tatively selects an MPL that is one unit below the smallest
MPL that has been tried so far. Next, a second MPL is ob
tained using the resource utilization heuristic. The two MPLs
are then compared, and the smaller of the two is adopted.

Type 4. The curve has a hill shape. Occasionally the fitted
curve takes on this shape due to randomness in the observed
miss ratios caused by inherent workload fluctuations. When
this happens, the projection method fails and PMM resorts to
the resource utilization heuristic.

An attractive feature of the miss ratio projection method is
that the MPL values that it picks improve over time: Initially,
the shape of the fitted curve is largely influenced by random
workload fluctuations. As time progresses and more miss ratio
readings are obtained, the fitted curve will gradually stabilize
and its optimum will close in on the optimal MPL. At this
point, the system can be expected to deliver good performance
so long as there are no significant changes in the workload
characteristics, (Workload changes will be addressed in Sec
tion III.C).

A.2 Resource Utilization Heuristic

The resource utilization (RU) heuristic attempts to help the
system achieve low query miss ratios by keeping the utilization
of the most heavily loaded resource among the CPUs and disks
within some "desirable" range, [UtilLow, UtilHigh], thus avoiding
situations where the bottleneck resource is either under
utilized or near saturation. The heuristic extrapolates from the
current MPL and utilization to predict a new MPL that is likely
to bring the utili:i,ation into the middle of the [UtilLow, UtilHigh]
range by applying the following formula:

Uti/Low + Util HiKh
MPLNew

= . X MPLcurrent
2 X U ti[Current

4

The linear dependency between MPL and utilization that this
formula assumes is based on the observation that the utiliza
tion of a resource increases approximately linearly with the
MPL until the resource is near saturation, at which point the
utilization levels off. Since neither the RU heuristic nor the
miss ratio projection method are likely to push the utilization
way above Utiln;gh to the saturation point, the above formula
should provide satisfactory MPL estimates most of the time.
Even in regions where the linear dependency assumption does
not hold, the RU heuristic is still useful in steering the MPL
setting in the direction of the optimal MPL since utilization
increases monotonically with MPL.

As described, a value that the RU heuristic uses to compute
the new MPL is the utilization of the most heavily loaded re
source at the current MPL. Due to random workload fluctua
tions, the utilization over the duration of the current batch of
SampleSize queries may not be indicative of the resource's
overall average utilization at that MPL. For this reason, the
heuristic actually averages the utilization values that have been
obtained so far instead of relying only on the most recent utili
zation reading. Conceptually, PMM computes the average
utilization at the current MPL, denoted as Utilcurrent in the for
mula above, by first obtaining a straight line from every pair
(util;, mpl;} of observed utilization values and their associated
MPLs by using the least squares method [11], again applying
the linearity assumption. The average utilization is then taken
from the fitted line as the rate that corresponds to the current
MPL. For the purposes of computing the straight line, PMM
records the values of k, Dnpl;, °Lmpl/, °Lutil;, and °Lmpl; x util;,
where k denotes the number of times PMM is invoked. As
discussed earlier, the space and computation overheads in
volved are minimal.

B. Memory Allocation

As described above, queries like hash joins and external
sorts each have a maximum and a minimum memory require
ment. Given its maximum required memory, such an operation
can read its operand relation(s) and generate results directly.
Given only its minimum required memory, which is typically
much lower than its maximum, the operation instead has to
process its operand relation(s), write out intermediate results to
temporary files, and then read these files back for further proc
essing before the final results can be produced. The maximum
memory requirement of an external sort is the size of its oper
and relation [25], whereas it can run with as few as three
memory pages by doing multiple merge passes. In the case of a
hash join, the maximum memory requirement and the
"minimum" memory demand (for two-pass operation) are f11RII

and � f11RII, respectively, where IIRII is the inner (building)
relation size and F is a fudge factor that reflects the overhead
of a hash table [25].

When the total maximum memory requirement of the admit
ted queries exceeds the available memory, the memory alloca
tion component is responsible for determining the amount of
memory to allot to each query. As mentioned previously, the
memory allocation decisions are based on the ED policy, so
queries that are more urgent are always given buffers ahead of

queries with looser deadlines. At any given time, PMM adopts
one of two memory allocation strategies: the Max strategy or
the MinMax policy. With the Max strategy, queries are either
allocated enough memory to satisfy their maximum demands
or else they are given no buffers at all. When operating in
MinMax mode, however, PMM is able to admit more queries
by meeting the maximum memory demands for only some of
the more urgent queries, allowing the rest of the queries to
execute with their minimum required memory. The reason for
doing MinMax allocation, as opposed to simply dividing the
available memory proportionally among the admitted queries,
is that MinMax leads to more effective use of memory than
proportional allocation (as was shown in [28], [27], [6] for
non-real-time database systems and in [22] for RTDBSs). A
possible concern about MinMax is that it may allow too many
queries to run with minimum memory allocations, thereby
overloading the disks. However, this situation does not arise
with PAQRS because the number of queries that are eligible
for memory allocation is regulated by the admission control
component of PAQRS.

The MinMax allocation process is conceptually carried out
in two passes. Starting from the highest-priority query, PMM
first gives each query just enough memory for it to begin exe
cution. If there are leftover buffers at the end of this pass,
PMM makes another pass through the list of admitted queries,
again beginning with the highest-priority query. In the second
pass, the allocation of each query in tum is topped up to its
maximum. The allocation process terminates when either all of
the available memory has been allocated or all of the queries
have received their maximum allocations. At the end of this
memory allocation process, one possible scenario is that some
of the higher-priority queries will have their minimum alloca
tions, while the lower-priorities are suspended due to a short
age of memory. Another scenario is that the higher-priority
queries will have their maximum allocations while the lower
priority queries just have their minimum. The only possible
exception is the query that gets the last few memory pages in
the second pass, which may receive an allocation somewhere
in between its minimum and maximum demands. In a running
system, of course, queries do not arrive all at once; rather, they
come and go over time. Since the ED policy assigns priorities
to queries according to their urgency, the memory allocation of
a query can therefore vary between maximum, minimum, or no
memory allocation as higher-priority queries enter and leave
the system, but over time it will settle on the maximum alloca
tion as the query's deadline draws close. In order to deal with
these fluctuations in the query's memory allocation, PMM has
to rely on adaptive query processing operators, e.g., adaptive
joins and sorts, to adjust the query's memory usage dynami
cally.

The Max strategy, by insisting on the maximum memory
allocation, eliminates the potential thrashing problem that can
result when additional (lower-priority) queries are admitted at
the expense of requiring some of the higher-priority queries to
run with less than their maximum memory allocations. Conse
quently, PMM does not need to explicitly limit the MPL when
it is in Max mode. Instead, PMM admits as many higher-

PANG, CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 5

priority queries-at their maximum allocations-as the avail
able memory permits. A possible pitfall of Max is that it may
severely restrict the MPL if every query requires a substantial
portion of the system memory in order to run at its maximum
allocation. In contrast to Max, MinMax assigns to some or all
of the admitted queries as little as their minimum memory de
mand, thus enabling the system to achieve the target MPL that
the admission control component sets. Whether Max or Min
Max performs better depends on the workload characteristics
and the system configuration-Max is preferable if memory is
abundant and the bottleneck resource type is CPU or disk,
whereas MinMax is more suitable for memory-constrained
situations.

The PMM algorithm uses a feedback mechanism to monitor
the state of the system, and it revises its choice of allocation
strategy as necessary. Initially, the Max mode is selected. After
serving every SampleSize queries, PMM checks the system
state and switches to the MinMax strategy if all of the follow
ing conditions are met: 1) one or more queries in this batch
missed their deadlines; 2) the utilizations of all CPUs and
disks are below Util1.ow, which indicates that none of these re
sources are likely to be a bottleneck; 3) there is a nonzero
admission waiting time, suggesting that there is memory con
tention; and 4) on the average, the execution time of a query is
shorter than its time constraint (the difference between its
deadline and its arrival time) so that the longer execution times
that will result from switching to the MinMax strategy are
likely to be feasible. In checking for condition 3), PMM car
ries out a large-sample test [10] for the mean waiting time at a
confidence level of Adaptcoriflml· Condition 4) is tested in a
similar fashion, except that here the test is performed on the
difference between the execution time and time constraint.
After switching to MinMax, PMM then monitors the target
MPL. If the target MPL setting drops to or falls below the av
erage MPL that was realized in Max mode, PMM reverts to
the Max strategy. This entire process is repeated continuously.

C. Dealing with Workload Changes

PMM attempts to minimize query miss ratios by tailoring its
MPL and memory settings to the system's workload and re
source configuration. Consequently, it is necessary for PMM
to discard the statistics that it has gathered and to re-adapt it
self when the workload undergoes a significant change. In or
der to detect workload changes, PMM constantly monitors the
following workload characteristics: 1) the average maximum
memory demand of queries; 2) the average number of I/Os that
each query issues to read its operand relation(s); 1 and 3) the
average normalized time constraint, defined as the ratio of the
time constraint to the number of I/Os needed to read the oper
and relation(s). After every SampleSize query completions,
PMM carries out a large-sample test with a confidence level of
Changeco,!fl..evel [10] on each monitored workload characteristic
to see if its present value differs significantly from its last
observed value. If so, PMM concludes that a workload change

I. The number of I/Os that are expended to write and read intermediate re
sults depends on memory allocation decisions, and thus is not an inherent
characteristic of the workload.

has taken place. Since every workload change prompts PMM
to restart itself, ChangeconJLevel is set to a high value (see Table
I) to reduce the chances of PMM wrongly reacting to inherent
workload fluctuations.

D. An Example

Having presented the PMM algorithm in detail, we now
finish by illustrating it with a simple example of the algo
rithm's operation. Suppose that the first batch of SampleSize
queries produces point a in Fig. la under the Max strategy,
and suppose that PMM concludes that Max is inappropriate
and decides to switch to MinMax. At this point, the RU heu
ristic suggests a higher MPL, from which we derive point b
after the next batch of query completions. Once more, the RU
heuristic leads PMM to raise its MPL setting, which results in
point c after the third batch of queries. Having collected three
observations, PMM can now apply the miss ratio projection
method. The quadratic equation that is computed from the
three points is shown by the Type 2 curve (see Section III.A.I)
in Fig. la. This curve causes PMM to experiment with an even
higher MPL, the consequence of which is indicated by point d
in Fig. lb. Applying the projection method again, PMM now
obtains a Type 1 curve. Since the optimum of the curve is
likely to be near the optimal point, PMM adopts the MPL
value associated with this optimum for its next MPL setting.
As this process continues and more observations are gathered,
the fitted curve will gradually stabilize and lead PMM to the
best MPL for the given workload.

MPL

(a)

mpld

Fig. I. Admission control decision making.

\

�
C + I

(b)

MPL mple

IV. MULTICALSS REAL-TIME

QUERY SCHEDULING

As discussed earlier, it may be desirable in some environ
ments to distribute missed deadlines proportionally among query
classes according to administratively-defined workload objec
tives. To address the need for such controlled performance, this
section presents Priority Adaptation Query Resource Scheduling
(PAQRS), an algorithm for scheduling multiclass firm real-time
query workloads. Given such a workload, PAQRS allows a sys
tem administrator to specify a list of values,

RelMissRatio = {relMissRatio1: ... : relMissRatioNumClassrsl.

that indicates the desired miss ratio distribution among the
classes in the workload. For example, suppose that the work-

6

load is made up of two classes. If RelMissRatio = {3:1), then

the target miss ratio distribution would be of the form MissRa

tio1 = 3x% and MissRatio2 = lxo/o for some x. The perform
ance objective of PAQRS is to minimize the number of missed

deadlines, subject to the constraint that miss ratios must be
distributed among the classes in the manner specified by the

system administrator. The PAQRS algorithm's multipro
gramming level (MPL) control and memory allocation
mechanisms are based on those of PMM. In addition, a bias
control mechanism is provided to allow PAQRS to intervene
on behalf of classes that require help in order to meet the per

formance objective. The details of the algorithm are presented

below. Its input parameters and variables, which will be ex
plained as they appear in the following description, are sum
marized in Table II.

Parameter

Re/Miss Ratio
SampleSizec1as,

SampleSizerotal

ChangeconJLevel

Variable

RegQuota1

MissRatio1

Weight,

Po
Do
R,,

TABLE II
NOTATION FOR PAQRS

Meaning

Target relative class miss ratios
Reevaluation frequency
(no. queries per class)
Reevaluation frequency
(total no. queries)
Conf. level of statistical tests for
workload chan2es

Meanin2

Class i's quota of regular queries
Measured miss ratio of class i
Weight of class i in weighted
miss ratio
Priority of query Q
Deadline of query Q
Random kev assigned to auerv 0

A. Overview of the PAQRS Algorithm

Default

{ I : .. , : 1}
10

30

99%

Default
-

-

from
RelMissRatio

-

-

ro. 11

Like PMM, PAQRS sets a system-wide target MPL and a

global memory allocation scheme (Max or MinMax). Unlike
PMM, which strives only to minimize the overall number of
missed deadlines, P AQRS chooses its MPL and memory allo
cation strategy based on a class-sensitive performance meas
ure. Moreover, class-sensitive triggers are used to determine

when workload changes necessitate revisions to those choices.
PAQRS is thus able to make admission and memory allocation
decisions that complement its bias control mechanism in
helping all classes achieve their desired level of performance.

The bias control mechanism of PAQRS controls the per
formance of individual classes by regulating the priority of

their queries. Roughly speaking, PAQRS accomplishes this

regulation using a multiclass variant of the Adaptive Earliest
Deadline scheduling policy proposed in [13]. PAQRS divides
all queries into two priority groups-a regular group and a
reserve group-and a quota of regular queries is chosen for
each class of query. Priority values are assigned to regular

queries based on the Earliest Deadline policy [16], while re
serve queries are assigned random priorities that are lower
than those of any regular query; regular queries are always
admitted and allotted resources ahead of reserve queries. By
raising the quota of regular queries for classes that would natu

rally miss more deadlines than desired, and by limiting the

number of regular queries from classes that would otherwise
tend to miss fewer deadlines, PAQRS is able to distribute

missed deadlines among the query classes according to the
specified workload objectives.

B. Admission Control and Memory Allocation in PAQRS

As mentioned above, the PAQRS algorithm adapts PMM to
choose a system-wide target MPL and a global memory allo
cation strategy that are conducive to meeting the workload's

multiclass performance objective. PAQRS does this by basing
its MPL selection decisions on a system-wide performance

measure that better reflects the desired miss ratio distribution,
and by picking its memory allocation strategy according to the
level of memory contention experienced by individual classes.

The primary mechanism that PAQRS relies on to pick its
target MPL settings is a statistical projection method that pre
dicts the MPL value that will lead to the lowest "average" miss
ratio. Thus, we need an "average miss ratio" computation pro
cedure that suitably reflects the desired influence of the indi
vidual classes. Intuitively, if we want

rel Miss Ratio;= c x rel Miss Ratioj

for two classes i and j, then class i should exert c times as
much influence as class j on the "average" miss ratio. This is
achieved by first transforming the values in Rel Miss Ratio into
class weights:

W , h
rel Miss Ratio,

e1g f; = I
L j rel ,Hiss Rati

and then computing a weighted miss ratio for the projection

method from the individual classes' miss ratios and their cor
responding weights:

Weighted Miss Ratio= l:. Weight; x Miss Ratio;

To illustrate how this procedure works, let us again consider a
two-class workload with Rel Miss Ratio = { 3: 1}. Applying the
above procedure, the two classes would be assigned weights of
0.25 and 0.75, respectively, making class 2 three times as in
fluential as class 1. An important property of the class weights
is that they add up to 1.0. This property ensures that the
weighted sum of the class miss ratios, each of which ranges
from 0% to 100%, remains within the interval
[0%, 100%],

Having adjusted the MPL selection mechanism, we now

turn our attention to the way that P AQRS chooses its memory
allocation strategy. To adapt better in a multiclass context,
PAQRS needs to replace the system-wide performance meas
ures that PMM uses with class-sensitive measures. PAQRS
starts with the Max allocation strategy and then switches to

MinMax mode if the utilization of all CPUs and disks are be
low Util1.ow and some class i satisfies all of the following con
ditions: 1) one or more queries from that class have missed
their deadlines since PAQRS was last activated; 2) class i has a
nonzero admission waiting time; and 3) on the average, the
execution time of a query belonging to class i is significantly
shorter than its time constraint (the difference between its
deadline and its arrival time). In other words, PAQRS switches

PANG, CAREY, AND LJVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 7

to MinMax mode if some class appears to be missing dead
lines unnecessarily because its queries are made to wait for
memory. Since the above tests require performance statistics
for all of the classes, PAQRS is invoked to revise its choices
of MPL and memory allocation strategy only after the system
has served at least SampleSizec1as, queries from every class, in
addition to the original requirement of SampleSizeroral total
query completions, subsequent to the PAQRS algorithm's last
activation.

Finally, to ensure that its choices of MPL setting and mem
ory allocation strategy remain suitable for the workload,
PAQRS constantly monitors the following statistics for each
class: 1) the average maximum memory demand of queries in
that class; 2) the average number of I/Os that each query in
that class issues to read its operand relation(s); and 3) the av
erage normalized time constraint, defined as the ratio of the
time constraint to the number of I/Os needed to read the oper
and relation(s), for that class. Upon activation, PAQRS carries
out a t-test on each monitored class characteristic to see if its
present value is different from its last observed value at a con
fidence level of Changec,mJLevel [10]. If so, PAQRS reacts to
the workload change by discarding the statistics that it has
gathered and by readapting itself to the new workload com
position. The differences between PAQRS and PMM thus far
are summarized in Table III.

TABLE III

SUMMARY OF DIFFERENCES BE1WEEN PMM AND PAQRS

PMM PAQRS

Miss ratio A M. R . #lute queries WeightedMiss Ratio
projection

vg 1ss atw = � = :E Avg Miss Ratio,
x Weieht1

Memory Switch from Max to MinMax if Switch from Max to
a/location queries in workload experience MinMax if queries in

significant unnecessary memory some class experience
waiting time significant unnecessary

memory waiting time

Rt:activa- SampleSizerowl queries � SampleSizero,al
tion queries
frequency � SampleSizectas,

queries/class

Restart Changes in average workload Changes in the charac-
condition characteristics teristics of some class i

C. Bias Control in P AQRS

While PAQRS picks its MPL and memory allocation strat
egy according to the target miss ratio distribution, this alone
does not always suffice to ensure that the distribution is
achieved. In many cases, an RTDBS can produce biased be
haviors that do not conform to the requirements of its given
multiclass objective. To rectify such undesirable behavior,
PAQRS is equipped with a bias control mechanism that helps
classes that would otherwise miss more deadlines to attain
acceptable relative miss ratios by regulating the relative pri
orities of the classes.

As mentioned earlier, PAQRS divides queries into a regular
group and a reserve group. Each class i is given a quota of regu
lar queries, RegQuota;, that limits the maximum number of
regular queries that the class may have at any given time. Upon
arrival, a query belonging to class i is assigned to the regular

group if that class has not used up its quota of regular queries;
otherwise the query is relegated to the reserve group of the class.
Having determined the query's grouping, the following scheme
is used to compute a two-part priority for the query:

-{
l, 1 / D

Q
if Group = regular

PQ - O, R
Q

if Group = reserve

where PQ, DQ, and RQ denote, respectively, the query's prior
ity, deadline, and a randomly assigned value in the range
[O, 1]. This scheme defines a lexicographical priority order in
which higher P Q values reflect higher priorities. All regular
queries have higher precedence than queries in the reserve
group. Among queries in the regular group, priority rankings
are established according to the ED policy. Priority ordering
within the reserve group follows the Random Priority (RP)
policy, which is why the RQ values are selected randomly. The
reason that RP is chosen for the reserve group is because its
queries essentially "see" a heavily loaded system due to their
lower priorities, and RP (unlike ED) delivers good perform
ance under heavy loads [13].

PAQRS attempts to meet the target miss ratio distribution
by elevating the priority of classes that suffer from higher
than-desired miss ratios, thus helping their queries to gain
admission and compete for system resources. This is accom
plished by increasing the regular query quota, RegQuota;, of
those disadvantaged classes, and by reducing RegQuota; for
classes that are overachieving. At system start-up time, all
RegQuota;'s are first initialized to oo so that all queries are
assigned to the regular group. When PAQRS is next activated,
it first resets RegQuota; for each class to the highest number of
concurrent queries that the class experienced during the inter
vening period and then adjusts the RegQuota;'s according to
the relative performance of the classes. If the target miss ratio
distribution is achieved, all of the classes should bear an equal
share of the weighted miss ratio. For example, if the target
miss ratio distribution RelMissRatio = (3:1) for a two-class
workload is reached, the weighted miss ratio should be:

WeightedMissRatio = Weight1 x MissRatio1 + Weight2

x MissRatio2

= 0.25 x 3x% + 0.75 x xo/o
= 0.75x% + 0.75x%

In other words, Weight; x MissRatiu, should be equal to
WeightedMissRatio!NumClasses for all classes i. If the current
miss ratio distribution is different from the target, P AQRS
adjusts the RegQuota; of each class based on how its Weight,
x MissRatio; value compares to its share of WeightedMiss
Ratio!NumClasses, using the following formula:

new old Weight; X MissRatio;RegQuota; = RegQuota; x

WeightedMissRatio/NumC/asses

Returning to our Re/MissRatio = { 3: I} example, if currently
the miss ratio of classes 1 and 2 are 20% and 10%, respec
tively, PAQRS will reduce RegQuota1 by 20% and increase
RegQ1wta2 by 20% in an attempt to bring the class miss ratios
closer to the target distribution. After that, P AQRS continues

8

to monitor the relative performance of the classes, applying the
above formula to dynamically adapt the RegQuota;s as needed.

The integration of the bias control and admission control
mechanisms of PAQRS is straightforward-the m highest
priority queries get admitted, where m is the target MPL.
However, the use of the two-tier priority scheme does intro
duce some difficulty in memory allocation. In particular, if
MinMax mode is selected, should reserve queries be given
their minimum required memory before the allocation of
regular queries are topped up to their maximum, or should the
memory manager start giving buffers to reserve queries only
after all of the regular queries have received their maximum
required memory? Since the purpose of the two-tier priority
scheme is to help disadvantaged classes compete for system
resources by relegating some queries from the advantaged
classes to the reserve group, we adopt the second alternative to
maximize the effectiveness of the scheme, i.e., reserve queries
are not allowed to compete for memory with regular queries.
To implement this alternative, we extend the MinMax alloca
tion procedure of PMM to a two-step procedure. In the first
step, the MinMax allocation procedure is applied to distribute
memory to the regular queries; reserve queries are not eligible
for allocation in this step. Step two, which uses MinMax to
assign memory to the reserve queries, is activated only if there
are leftover buffers at the end of step one (which only happens
when all regular queries have been given their maximum re
quired memory).

As noted earlier, the two-tier priority assignment scheme
adopted by PAQRS follows the same concept as the Adaptive
Earliest Deadline (AED) algorithm [13]. This algorithm was
proposed to stabilize the overload performance of the ED
scheduling policy. AED maintains a "hit" group and a "miss"
group, which correspond to the regular group and reserve
group in PAQRS, and AED controls "hit" group assignments
by a HitSize parameter. The distinction between the two algo
rithms lies in the goals that they hope to reach with the two-tier
scheme. In the case of AED, the single HitSize parameter
serves to keep down the number of transactions that are
scheduled according to the ED policy, whereas PAQRS uses
its vector of RegQuota; values to influence relative class pri
orities. Consequently, the procedures that the algorithms em
ploy to set their control parameters are quite different.

V. DATABASE SYSTEM SIMULATION MODEL

To aid in our study of real-time query scheduling issues, we
have constructed a simulation model of a centralized database
system. In subsequent sections, this simulation model will be
used to evaluate the performance of PAQRS. The model,
shown in Fig. 2, has five components: a Source that generates
the workload of the system and collects statistics on completed
queries; a Que,y Manager that models the execution details of
queries, including hash joins, external sorts and sort-merge
joins; a Memory Manager that implements an LRU replace
ment policy and the PMM and PAQRS algorithms; and a CPU
Manager and a Disk Manager that are responsible for manag
ing the system's CPU and disks, respectively. In this section,

we describe how the simulation model captures the details of
the database, workload, and various physical resources of a
database system. We also summarize the algorithms employed
by the Query Manager that enable executing queries to adapt
to fluctuations in their memory allocations. The simulator is
written in DeNet [17].

Source

new

query

Query
Manager

page / '"""-
request / page CPU

/// reply request

CPU Manager
I
Memory Manager page Disk Manager I request request

�

I • '---------::1:

---<

� � -�-ep��-6�
Fig. 2. Database system model.

A. Database and Workload Model

Table N summarizes the database and workload parameters
that are relevant to this study. Our objective for this study is to
simulate a stream of external sorts and/or hash joins on different
relations. To facilitate this, the database consists of NumGroups
groups of relations. Each group i has RelPerDisk; clustered rela
tions per disk. The size of the RelPerDisk; relations are chosen at
equal intervals from SizeRange;. For example, if RelPerDisk; = 5
and SizeRange; = [100, 200] pages. group i will have five rela
tions with sizes equal to 100, 125, 150, 175, and 200 pages, re
spectively, on every single disk. To minimize disk head move
ment, all relations assigned to the same disk are randomly placed
on its middle cylinders; temporary files are allotted either the
inner cylinders or the outer cylinders.

TABLE!\'

DATABASE AND WORKLOAD MODEL PARAMETERS

Database Meaning

NumGroups Number of relation groups in the database
Re/PerDisk; Number of relations per disk for group i
SizeRange, Range of relation sizes for group i
TupleSize Tuple size of relations in bytes

Workload Meanin�

NumClasses Number of classes in the workload
QueryTypej Type of class j queries

(hash join or external sort)
Re/Groupj Operand relation group(s) for class j queries

Arrival rate of class j queries
SR!nrerva/j Range of slack ratios for class j queries
F Fudge factor for hash joins

In this study, the workload comprises NumClasses classes
of queries. Each class j has the following characteristics: It
may be made up of external sorts, in which case Re!Groupi
specifies a group of database relations from which queries in
class j draw their operand relations. Alternatively, the class
may consist of hash joins. In the second case, every query
in the class randomly chooses two relations by taking one re
lation from each of the two relation groups listed in

PANG, CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 9

RelGroup1. The smaller of the two chosen relations is the inner
relation, R, of the join, while its outer relation, S, is the larger

relation. The type of queries that form the class (sort or hash
join) is indicated by the parameter QueryType1. Query sub
missions from the class follow a Poisson process with a mean
arrival rate of AJ- The Source module assigns a deadline to
each new query Q from class j in the following manner:

DeadlineQ = StandAloneQ x SlackRatioQ + ArrivalQ

where DeadlineQ, StandAloneQ, SlackRatioQ and ArrivalQ are
the deadline, standalone execution time, slack ratio and arrival

time of query Q, respectively. The standalone execution time
of a query is the time it would take to execute alone in the
system, i.e., without experiencing any contention from other
queries. The slack ratio, SlackRatioQ, varies uniformly in the
range specified by SR!nterva/1, and it controls the tightness of

the query's assigned deadline.

B. Physical Resource Model

The parameters that specify the physical resources of our
model, which consist of a CPU, disks and main memory, are

listed with their default values in Table V. An Earliest Dead
line (ED) scheduling discipline is used for the CPU. The MIPS
rating of the CPU is given by CPUSpeed. Table VI gives the
costs of the various CPU operations involved in the execution

of hash joins and external sorts.

TABLEV
PHYSICAL RESOURCE MODEL PARAMETERS

Parameter Meaninl! Default

CPUSpeed MIPS rating of CPU 40MIPS
NumDisks Number of disks 10

SeekFactor Seek factor of disk 0.000617

Rotation Time Time for one disk rotation 16.7 msec

NumCylinders Number of cylinders per disk 1,500

CylinderSize Number of pages per cylinder 90 pages

PageSize Number of bytes per page 8 kbytes

BlockSize Number of pages requested on each 6
sequential 1/0

M Total number of buffer pages 2,560 pages

TABLE VI
NUMBER OF CPU INSTRUCTIONS PER OPERATION

Operation # Instr Operation # Instr

Common Hash Joins-
Operations
Start an //0 op- 1,000 Hash tuple and insert into hash 100
eration table

Initiate a sort 40,000 Hash tuple and probe hash table 200
or join

Terminate a sort 10,000 Hash tuple and copy to output 100
or join buffer

External Sorts-

Copy a tuple to output buffer 64

Compare two keys 50

Turning to the disk model parameters in Table V, NumDisks
specifies the number of disks attached to the system. Every
disk manages its own queue by the ED scheduling policy; any
disk requests that ED assigns the same priority to are serviced
according to the elevator algorithm. Each disk has a 256-kbyte

cache for use in prefetching pages. To keep the per-page I/0
cost low, all queries capitalize on this facility, fetching Block
Size pages into the cache on each sequential I/0 that incurs a
disk cache miss (except during the merge phase of an external
sort). Moreover, whenever queries have enough buffers, they
spool their outputs so that pages are flushed to disk in blocks.
The access characteristics of the disks are also given in Table
V. Using the parameters in this table, the total time required to
complete a disk access is:

Disk Access Time = Seek Time + Rotational Delay
+ Transfer Time

As in [4], the time required to seek across n tracks is:

Seek Time (n) = Seek Factor xJ;

Finally, the system has a total buffer pool size of M pages.
A memory reservation mechanism allows query operators,
including sorts and joins, to reserve buffers for use as work
spaces. These reserved buffers are managed by the operators
themselves, while page replacement for nonreserved buffers is
handled according to the LRU policy.

C. Memory-Adaptive Query Primitives

In a priority scheduling environment such as an RTDBS,
large queries involving operations like hash joins and external
sorts face the prospect of having memory taken away and/or
allocated to them during their course of execution. For this
reason, the simulated Query Manager employs adaptive algo
rithms to help queries adjust efficiently to such memory fluc
tuations. While P AQRS is designed to work with any adaptive
query processing operator, we will use the adaptive hash join

and external sorting algorithms that we found to deliver the
best performance among a range of alternatives that we inves
tigated in a recent pair of studies [20], [21]. The two algo
rithms are briefly summarized here.

The hash join algorithm that the Query Manager employs
was introduced in [20] as Partially Preemptible Hash Join
(PPHJ) with late contraction, expansion, and priority spool
ing. PPHJ splits the pair of input relations into a set of parti
tions, as is done in traditional hash joins as well. At any one
time during join execution using PPHJ, some of these parti
tions may be expanded, i.e., held in hash tables in memory,
while others are contracted, i.e., resident on disk. When asked

by the memory manager to free up buffers, PPHJ can do so by
reducing the number of expanded partitions. Moreover, if extra

memory becomes available while the outer (probing) relation
is being split, PPHJ can expand contracted partitions so that
outer relation tuples that hash to these partitions can be joined
directly and then discarded, thus avoiding some I/Os.

The external sorting algorithm that is adopted in this study
begins by using replacement selection to split the operand re
lation into sorted runs; these sorted runs are then repeatedly
merged into longer runs until only a single run remains. These
are the usual phases of an external sorting algorithm. What
makes the algorithm adaptive is that, during the merging proc
ess, an executing merge step can be split into substeps that fit
within the remaining memory if memory reductions occur [21].
Conversely, existing merge steps can be combined into larger

10

steps (i.e., steps that merge more runs at once) to take advan
tage of any excess buffers that become available.

VI. EXPERIMENTS AND RES UL TS

This section presents the results of a series of experiments
designed to evaluate the performance of the Priority Adapta
tion Query Resource Scheduling (PAQRS) algorithm. For
comparison purposes, we shall also examine the original Pri
ority Memory Management (PMM) algorithm, which does not
distinguish between queries from different classes, i.e,, which
treats all queries like they belong to the same class. PMM is
included here to highlight the ability of PAQRS to achieve
targeted relative class performances, and also to reveal any
price (in terms of system-wide performance metrics) that
PAQRS may have to pay in the process.

We will begin our evaluation with an experiment where the
workload consists of only one query class. This experiment is
intended to give us an initial understanding of the admission
and memory allocation mechanisms of P AQRS before we
delve into the complexities introduced by multiple query
classes. Since there is only one class here, PAQRS behaves
exactly like PMM. We shall assess PAQRS by comparing it
with two static algorithms: Max and MinMax. These two al
gorithms employ the Max policy and the MinMax strategy,
respectively, in their memory allocation decisions. Next, we
present a baseline experiment that is used to study the PAQRS
algorithm's effectiveness in handling multiclass workloads.
Further P AQRS experiments are then carried out by varying a
few parameters each time. The primary performance metrics
for these experiments are the System Miss Ratio, defined as

SvstemMissRatio = __

N_u_m_b_e_r _c_Jf_La_te
----'

Q_u_e_r _ie_ s_
·

Number of Submitted Queries,

the Class Miss Ratio, computed as

Cl M
.

R
. Number of Late Queries in Class i

ass tss atio; = ----'----::._ _____ _
Number of Class i Queries

and the WeightedMissRatio. The weighted miss ratio combines
the successes and failures of au classes into a single number
that reflects how well the system performs as a whole, and is
defined as

WeightedMissRatio = L Weight; x ClassMissRatio;,

where Weight; is a weight assigned to class i according to an
administratively defined performance objective. The way in
which class weights are derived from the performance objec
tive is described in Section IV.A. Unless stated otherwise,
each experiment was run for 10 hours of simulated time, allow
ing a minimum of 2,000 completions per query class. We also
verified that the size of the 90% confidence intervals for miss
ratios (computed using the batch means approach [24]) was
within a few percent of the mean in almost all cases.

A. Single Query Class

As mentioned above, our first experiment uses a single-class
workload to study the MPL control and memory allocation
mechanisms of PAQRS (and hence PMM). In order to bring

out the importance of memory management, we simulate an
environment where, except for occasional overloads, there are
abundant CPU and disk capacities for the given workload;
thus, memory is the bottleneck resource. This is achieved by
letting CPUSpeed and NumDisks be 40 MIPS and 10, respec
tively, and by setting M to 2,560 pages (20 Mbytes). The rest
of the resource parameters are kept at their settings of Table V
The workload consists of one class of hash join queries. Each
join has two operand relations, R and S, where IIRII varies uni
formly between 600 and 1,800 pages and IISII is selected from
the range [3,000, 9,000] pages. Moreover, the slack ratio in
terval of this class is set to [2.5, 7.5]. The database and work
load parameters are summarized in Table VII. A more com
prehensive evaluation of PAQRS (PMM) involving various
single-class workloads can be found in [22].

TABLE VII
DATABASE A'1D WORKLOAD PARAMETER SEITINGS FOR THE

SINGLE QCERY CLASS EXPER1:\1ENT

Database Meaning Setting

NumGroups Number of relation groups in the datahase 2
Re/PerDisk, Number of relations per disk for group! 3

SizeRange1 Range of relation sizes for group I [600. 1800]
pages

Re/PerDisk2 Number of relations per disk for group 2 3

SizeRange2 Range of relation sizes for group 2 [3000, 9000]
pages

Tuple Size Tuple size of relations in bytes 256 bytes

Workload Meaning Setting

NumC/usses Number of classes in the workload I

QueryType, Type of class I queries Hash join

Re/Group, Operand relation groups for class I queries I, 2

A1 Arrival rate of class I queries varied (0.04
ta 0.08)

SR!nterva/1 Range of slack ratios far class I queries [2.5, 7.5]

F Fudge factor for ha.sh joins I.I

Fig. 3 plots the miss ratios for Max, MinMax, and PAQRS
as a function of the arrival rate. The figure shows that MinMax
consistently delivers the lowest miss ratio for this experiment,
followed very closely by PAQRS. Max performs satisfactorily
initially, achieving a near 0% miss ratio at ?c = 0.04
queries/sec. As the arrival rate increases, however, the
performance of Max deteriorates rapidly until, at A = 0.08
queries/sec, Max produces a hefty 55% miss ratio, which is
almost four times that of MinMax and PAQRS. These obser
vations clearly show that the choice of memory allocation al
gorithm can have a very significant impact on the system miss
ratio. To understand the behaviors of the three algorithms, we
shall analyze each algorithm in turn with the aid of Figs. 4 and
5, which give the disk utilizations and average observed MPLs
(as opposed to the target MPL set by PAQRS, which serves to
limit the maximum MPL in the system), respectively.

Let us first examine the Max algorithm. This algorithm
admits queries only if they can be allotted enough buffers to
satisfy their maximum requirements. For the workload used
in this experiment, Max allows less than two queries to be
admitted at the same time (see Fig. 5) since each query re
quires an average of 1,321 buffers (F x 1,200 pages for R plus

PANG, CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS

one I/0 buffer). The tight MPL limit imposed by Max prevents
the RTDBS from exploiting its disk and CPU resources to
cope with the heavier load as the arrival rate increases from
0.04 to 0.08 queries/sec, which explains why, unlike the other
two algorithms, Max's disk utilization barely rises. This inef
fective resource usage leads to the observed sharp growth in
the miss ratio of Max.

In contrast to Max, MinMax attempts to reduce query miss
ratios by increasing the system's MPL. This is achieved at the
expense of running queries with memory allocations that are
less than their maximum, which increases the demands on the
CPU and the disks. By giving queries their minimum required
memory, MinMax could admit up to an average of 69 queries
at the same time (on the average. the minimum memory re-
quirement per query is � f11RII pages + I I/0 buffer = 37
pages), thus allowing much higher average MPLs as Fig. 5
shows. Moreover, the increased CPU and disk demands that
result have little harmful effect here, as the disk utilization
barely exceeds 45% even at an arrival rate of 0.08 queries/sec,
indicating that there are abundant CPU and disk capacities to
service all the admitted queries. The overall result is that
MinMax uses the system's resources in a much more effective
fashion than Max. Consequently, the higher execution times
that MinMax produces are more than compensated for by the
large reduction in admission waiting times, thus resulting in
total response times that are significantly lower than the re
sponse times of Max. This accounts for MinMax's superior
miss ratios in Fig. 3.

We now turn our attention to the PAQRS algorithm. In or
der to understand how P AQRS adapts itself to the workload,
we examine Fig. 6, which traces the target MPL settings nf
PAQRS over the initial 10 hours of operation at an arrival rate
of 0.075 queries/sec. PAQRS starts with Max. but it quickly
detects that this allocation strategy is not satisfactory because
it leads to a very limited MPL while leaving the CPU and disks
grossly underutilized. This causes PAQRS to switch to Min
Max mode to make a higher MPL possible. The target MPL is
first set to 25, following the suggestion of the Resource Utili
zation heuristic. Once PAQRS has gathered three miss ratio
observations, it invokes the miss ratio projection method,
which quickly steers the target MPL to the vicinity of IO where
it stabilizes. This MPL is sufficiently loose to admit all of the
queries into the system most of the time. Indeed, Fig. 5 shows
that PAQRS consistently achieves high MPL settings, thus
enabling it to behave like the MinMax algorithm. This is why
PAQRS manages to closely match the performance of Min
Max, which offers the best miss ratios for this experiment.

Besides this experiment, we have also carried out experi
ments where we varied the workload and resource parameter
settings [22]. In particular, we studied the performance of
PMM (i.e., single-class PAQRS) under higher disk contention
levels, workload fluctuations, and workloads that contained
external sorts. In all of these experiments, the algorithm was
able to consistently deliver low miss ratios by dynamically
reaching the right compromise between Max and MinMax, and
by setting an appropriate target MPL.

50

40

�
.g 30
i::!

� 20

-+-Max

----6----MinMa.x

---+-PAQRS (P:ill>l)

Arrival Rate (Queries/ Sec)

Fig. 3. Miss ratio (single-class).

50

- 40

:.@ 30
-�

� 20
..

Q

10

--+- Max
------t,- MinMax
---+- PAQRS (PMM)

0+---,----r----.---,

004 0.05 0 06 0.07 0 08
Arrival Rate (Queries/ Sec)

Fig. 4. Disk utilization (single-class).

-+-Max

-1r-MinMax

---+- PAQRS (PMM)

0 +---�--,-----,------,-

0.04 0.05 0.06 0.07 0.08
Arrival Rate (Queries/ Sec)

Fig. 5. MPL (single-class).

25

20

� 15

0-t-����������

0 lWJO 24000 36000

Time !Sec)

Fig. 6. PAQRS MPL, A= 0075 (single-class).

11

12

B. Baseline Multiclass Workload Experiment

Having gained some initial intuition regarding the behavior
of the MPL control and memory allocation mechanisms of
PAQRS, we now proceed to evaluate its ability to handle mul
ticlass workloads. Our baseline experiment uses a workload
that consists of two classes of hash joins, Small and Medium.
With the exception of the arrival rate, which is fixed at 0.065
queries/sec, the characteristics of the Medium class are the
same as those of the previous experiment. For the Small class,

IIRII ranges between 50 and 150 pages, while IISII ranges from
250 to 750 pages. The slack ratio interval for Small joins is
also set to [2.5, 7.5], and the arrival rate of this class, Asma/I,
ranges from O to 1.2 queries/sec. Table VIII summarizes the
detailed database and workload characteristics. The perform
ance objective for the baseline experiment is to balance the
miss ratio of the two classes, i.e., RelMissRatio :::: [1: I}. The
number of disks is raised to 12 to accommodate the heavier
load here, while the rest of the resource parameters remain at
their settings from the previous experiment.

TABLE VIII
DATABASE AND WORKLOAD PARAMETER SETTINGS

POR THE BASELINE EXPERIMENT

Database Meanin" Setting

NumGroups Number of relation groups in the datahase 4
Re/PerDi.<k, Number of relations per disk for group I 3

SizeRange1 Range of relation sizes for group I [600, 1800]
pages

RelPerDiskz Number of relations per disk for group 2 3

SizeRanxe2 Range of relation sizes for group 2 (3000, 9000]
pages

RelPerDisk3 Number of relations per disk for group 3 3

SizeRange3 Range of relation sizes for group 3 [50, 150]
pages

RelPerDisk, Number of relations per disk for group 4 3
SizeRange4 Range of relation sizes for group 4 (250,750]

pages
Tup/eSize Tuple size of relations in bytes 256 bytes

Workload MeaninQ Setting

NumClasses Number of classes in the workload 2

Query1'ype1 Type of class I queries Hash join
Re/Group, Operand relation groups for class I queries {I, 2)
it, Arrival rate of class I queries 0.065
SR!nterva/ 1 Range of slack ratios for class 1 queries (2.5, 7.5]
QueryTypez Type of class 2 queries Hash join
Re/Group2 Operand relation groups for class 2 queries (3, 4}
it, Arrival rate of class 2 queries varied from

0 to 1.2
SRlnterva/2 Range of slack ratios for class 2 queries (2.5, 7.5]
F Fudge factor for hash joins 1.1

Figs. 7 and 8 plot the class miss ratios and system miss ra
tios produced by PMM and PAQRS as a function of the arrival
rate of the Small class. In order to understand the behavior of
the various mechanisms of PAQRS, we also include in the
figures curves that are labeled PAQRS(NoBiasCtrl), which
shows how PAQRS would perform without its bias control
mechanism. The figures show that while PMM clearly delivers
the lowest system miss ratios, it is also extremely biased, pe
nalizing the Medium class as the load from the Small class

increases: as Asmall increases from O to 1.2 queries/sec, the miss
ratio of the Small class barely rises, but the miss ratio of the
Medium class increases dramatically, growing from a low of
near-zero misses to a high of 70%. In comparison, PAQRS
without bias control and the full PAQRS algorithm come much
closer to achieving balanced miss ratios, though at the expense
of higher system miss ratios. In fact, the full PAQRS algorithm
exhibits virtually no skewed behavior at al I. These results
clearly demonstrate that the choice of a query scheduling al
gorithm can have a very significant impact on class miss ratios.
To understand the behavior of the two algorithms, we shall
analyze each algorithm in turn with the aid of Figs. 9 to 14,
which give the weighted miss ratios, observed MPLs, disk
utilizations, waiting time ratios (the ratio of the waiting time to
the time constraint) and response time ratios (the ratio of the
total response time to the time constraint) for both the Small
and Medium classes, and the percentage of queries in each
class that are assigned to the P AQRS reserve group. In com
puting the average response time ratios, a late query is consid
ered to have a response time ratio of 100% since the query is
aborted only after its deadline expires. We shall henceforth
refer to waiting time ratios and response time ratios collec
tively as timing ratios.

Let us first examine the PMM algorithm, which treats que
ries as if they all belonged lo a single class. There are two rea
sons why this leads to a biased treatment of classes. The first
reason is that the Earliest Deadline policy used for resource
scheduling is inherently biased [19]. When treated on par with
the Small queries, Medium queries are assigned lower priori
ties by ED most of the time because their deadlines are much
further in the future. Consequently, Medium queries are not
able to compete for resources early in their lifetimes; many of
them only gain enough priority after their deadlines become
infeasible, thus wasting the resources that they consume.
Figs. 12 and 13 provide evidence of this bias in the ED policy.
Even at a low load of A5.,,,,,1 = 0.2 queries/sec, Medium queries
spend more than 10% of their deadlines waiting for admission
and another 35% of their time constraints executing in the
system (see Fig. 13). In contrast, Small queries have negligible
admission waiting times and finish way ahead of their dead
lines (Fig. 12). As the load mounts, the response times of Me
dium queries rapidly approach their deadlines, while the re
sponse times of Small queries rise much more slowly. For ex
ample, at Asmau = 1.2 queries/sec, where about 70% of the
Medium queries miss their deadlines, the average Small query
still manages to complete before even 30% of its time con
straint has elapsed. As a result, Small queries fare much better
than their Medium counterparts.

Another reason for PMM's biased behavior is that the Small
class, by virtue of its higher arrival rate, exerts a dispropor
tional influence on the various measurements that PMM relies
upon when making its MPL and memory allocation choices,
thus resulting in choices that favor Small queries. Since a
Small join query requires an average of only 111 memory
pages (FjlRII pages + I 1/0 buffer = 111 pages) to satisfy its
maximum demand, memory contention becomes an issue for
the Small class only when the number of queries in the system

PANG. CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS

60

-+- PMM, Medium
--+-· PMM, Small
,, PAQRS(NoBiasCtrl), Medium
-�- · PAQRS(NoBia.sCtrl), Small
__.__ PAQRS, Medium
--a-· PAQRS, Small

o�-.fu�:;:;]:;:;_;_*���
0.0 0.4 0.8 l.2

Small Arrivu.l Rate (Queries I Sec)

Fig. 7. Class miss ratio (baseline).

12
-+-PMM
--v- PAQkS(N0B1asC1rl)
__.__ PAQRS

04 0.8
Small Arrival Rate (Queries/ Sec)

Fig. 8. System miss ratio (haselinc).

32
-+-PMM

__,,_ PAQRS(NoBiasCtrl)
----PAQRS

1.2

o,.-=:;....-,-----,------,
0.0 D.4 0.8

Small Anirnl Rate (Que1·ies / Sec)

Fig. 9. Weighted miss ratio (baseline).

--i- P.�IM, Medium
- -+-· PMM, Small
--,,.-. PAQRS(NoBiasCtrl), Medium
-..,_ PAQRS(NoBiasCtrl), Small
__.__ PAQRS, Medium
- -a- PAQRS, Smull

1.2

0*''-�--,------r--�-,
0.0 0.4 0.8

Small Arrival Rate (Queries/ Sec)

Fig. 10. Observed MPL (baseline).

l.2

60

� 40
g

1j 20
Q

-+-PMM
__,,_ PAQRS(NoBiasClII)
-.-PAQRS

o+----,-�--,--------,
0.0 0.4 0.8 l.2

Small Arrival Rltte (Queries/ Sec)

Fig. 11. Disk utilization (baseline).

40

-+- PMM, Wait
---+----- PMM,Resp.
- -ti.-· PAQRS(NoBia.sCtrl), Wait.
,, PAQRS(NoBiasCtrl), Resp.
-.. - · PAQRS, Wait.
-.- PAQRS, Resp

-·-

�--- ·- - - -·==:��� -+ - --+ 0 +----.-""""'��,=------;
0.0 0.4 0.8

Small Arrival Rate (Queries I Sec)

Fig. 12. Small linling ratios (baseline).

� 90
u

:; 60

- +- PMM, Wait
-+-PMM, Resp.
--t.- PAQRS(NoBiasCtrl), Wait.
__,,_ PAQRS(NoBiasCtrl), Resp.
-.. _ PAQRS, Wait.
-.- PAQRS, Resp.

.-

1.2

0 +---=-------.-....... ,--.-

0.0 0.4 0.8
Small Arrival Rate (Queries/ Sec)

Fig. 13. Medium tinting ratios (baseline).

20

15

-+-Small

. Medium

1.2

o+--+-�r----"*--�--;
0.0 0.4 0.8 1.2

Small Arrival Rate (Queries/ Sec)

Fig. 14. PAQRS reserve group (baseline).

13

14

exceeds 23 at a time (2,560 memory pages divide by 111
pages per query). However, as the low observed MPLs in
Fig. IO show, this is unlikely to happen. PMM therefore con
cludes that memory contention is negligible and that Max is
the preferred memory allocation strategy. This severely limits
the MPL of the Medium class. In fact, on the average only two
Medium queries get to execute concurrently, as each Medium
join query's expected maximum memory requirement is 1,321
pages. Consequently, Medium queries suffer Jong admission
waiting times that cause many of them to miss their deadlines,
despite the disks' having excess capacity as the lower PMM
disk utilizations in Fig. 11 suggest. In contrast, the Small class
benefits tremendously from the choice of the Max strategy.
This is because the low concurrency of the Medium class
leaves the Small queries with ample memory and virtually all
of the CPU and disk capacity that they require. Therefore,
Small queries are able to enjoy relatively short admission
waiting and response times at the expense of the Medium class
under PMM. This bias in MPL and memory allocation strategy
choices, together with ED's inherent bias, accounts for the
disparity in miss ratios between the two classes.

Having understood the forces that cause PMM to be biased,
we now investigate the extent to which P AQRS is able to make
MPL and memory allocation strategy choices that are more
conducive to achieving balanced class miss ratios, which is the
workload objective for this experiment. The higher observed
MPLs for both Small and Medium queries produced by
PAQRS(NoBiasCtrl) in Fig. 10 show that PAQRS decides to
admit more queries and does not insist on maximum alloca
tions here. This virtually eliminates admission waiting time for
the Medium class, allowing its queries to enjoy CPU and disk
services early in their lifetimes. The heavier disk utilizations in
Fig. 11 suggest that the disks are utilized more productively
now. As a result, Medium queries are able to complete so
much earlier that their miss ratios plummet from PMM's high
of nearly 70% at Asmau = 1.2 queries/sec to just over 20% for
PAQRS without bias control. However, the improved per
formance of the Medium class is achieved at the expense of
somewhat higher miss ratios for Small queries, whose response
times are prolonged by the heightened resource contention.
This loss suffered by the Small class to the benefit of the Me
dium queries is the reason that PAQRS without bias control
delivers a more balanced miss ratio distribution and a much
lower weighted miss ratio than PMM does. The higher system
miss ratio that PAQRS without bias control produces can be
explained as follows: Since a Medium query consumes signifi
cantly more resources than a Small query, the system is likely
to have to sacrifice several Small queries in order to help a
Medium query meet its deadline, especially when the load is
heavy. This naturally results in higher system miss ratios be
cause every late query, regardless of its class, contributes
equally to the system miss ratio. Note that PAQRS would have
been discouraged from helping the Medium class had it not
adopted the weighted miss ratio to measure overall system
efficiency. Instead, being driven by the lower weighted miss
ratio measurements that result, PAQRS is able to arrive at the
right MPL and memory allocation strategy.

Finally, we turn our attention to the bias control mechanism
of the PAQRS algorithm. Fig. 14 shows that this mechanism
relegates more and more of the Small queries to the reserve
group as Asmau increases. This raises the average admission
waiting time of the Small class and leads to a decline in its
MPL, as reserve queries are granted admission only after the
regular queries from all classes have received their maximum
required memory. The higher fraction of reserve queries also
lowers the average priority of the Small class, which in turn
lengthens its average response time (over and above the delay
it already suffers from the Medium class' higher concurrency
under the MPL and memory allocation mechanisms of
PAQRS) and pushes up its miss ratio. However, as a result of
the Small class' lower average priority, Medium queries can
now run with more memory. This reduces the amount of tem
porary (hash bucket) data that Medium queries must write out,
which explains why the disk utilizations of the full PAQRS
algorithm are lower than those of PAQRS(NoBiasCtrl) in
Fig. 11. This also helps Medium queries to complete earlier,
bringing their miss ratios down further to match those of the
Small class. For example, at Asmau = 1.2 queries/sec, a Medium
query requires an average of just over 60% of its time con
straint to run when the full PAQRS algorithm is employed,
whereas it takes more than 70% of its deadline under P AQRS
without bias control. Consequently, the full PAQRS algorithm
is able to completely balance the class miss ratios. Interest
ingly, despite producing lower miss ratios for the Medium
class, the full P AQRS algorithm does not improve significantly
upon the weighted miss ratios of PAQRS(NoBiasCtrl). This is
because PAQRS without bias control already allows the sys
tem resources to be utilized productively, so the full PAQRS
algorithm has to achieve further reductions in the number of
late Medium queries by sacrificing (many more) Small queries
rather than by improving the efficiency of resource usage.

To summarize the results of this experiment, we can draw
the following conclusions: First, while PMM is very effective
in minimizing the system miss ratio, it is also biased in its
treatment of different classes. This will be unacceptable for
those applications that require controlled miss ratios. Second,
by setting the target MPL and memory allocation strategy ac
cording to administratively defined workload objectives,
PAQRS can come considerably closer to achieving balanced
class miss ratios than PMM. Finally, by also manipulating the
individual class quotas for regular queries, PAQRS is able to
influence their relative miss ratios enough to produce equitable
miss ratios.

C. Skewed Class Objectives

Having demonstrated in the previous experiment that
PAQRS can successfully achieve balanced class miss ratios,
we now explore its ability to meet skewed workload objec
tives. This is accomplished by varying the algorithm parameter
RelMissRatio. We first set it to favor the Small class; we then
reverse the setting so that Medium queries become more valu
able. All of the database and workload parameters remain as
they were in the baseline experiment.

PANG, CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 15

For the first part of the experiment, we set Re/MissRatio to
{ 2: 1}, so the target miss ratio distribution is of the form
MissRatioMedium = 2x% and MissRatiosmall = xo/o. Figs. 15 and
16 present the resulting class miss ratios and weighted miss
ratios, while Fig. 17 plots the ratio of MissRatiosmall to
MissRatioM,dium as a function of Asma/I· The figures show that
the behavior of both PMM and PAQRS(NoBiasCtrl) are vir
tually the same as those observed in the baseline experiment.
In the case of PMM, this is to be expected, as PMM is nol
designed to discern class distinctions or to meet multiclass
objectives; changes in the Re/MissRatio parameter naturally
have no effect on PMM's behavior. In the case of PAQRS
without bias control, its behavior remains essentially un
changed because, even for the { 2: 1} target miss ratio distribu
tion, it still misses more Medium queries than desired. Conse
quently, P AQRS without bias control is already using the MPL
setting and the memory allocation strategy that are most favor
able to the Medium class, as it was in the previous experiment.
Not surprisingly, the full PAQRS algorithm successfully
achieves the { 2: 1} target distribution; in fact, it is an easier
target than the objective of balanced miss ratios in the previous
experiment since it requires a smaller improvement in the miss
ratio of the Medium class.

For the second part of the experiment, we reverse the target
miss ratio distribution to the more challenging setting of
Re/MissRatio = { 1:2}. The resulting class miss ratios,
weighted miss ratios, and MissRatiosmau to MissRatioI>folium

ratios are presented in Figs. 18 to 20. These figures show that
while selecting the appropriate MPL and memory allocation
settings almost enabled PAQRS without bias control to meet
the target miss ratio distribution of Re/MissRatio = {2:1} ear
lier, PAQRS is not able to improve the relative miss ratio of
the Medium class any further without its bias control mecha
nism. Without this mechanism, PAQRS fails miserably here,
producing MissRatiosm"1JMissRatioM,dium values that are far
short of the target. In contrast, the full PAQRS algorithm again
attains the target distribution. Even at high Asma/I values, where
the workload consists predominantly of Small queries, and
where Medium queries are in a very disadvantaged position
due to heavy contention from Small queries that have nearer
deadlines, the full PAQRS algorithm still manages to bring the
miss ratios of the Medium class down to meet the demanding
workload objective. However, the full PAQRS algorithm pro
duces only slightly lower weighted miss ratios than
PAQRS(NoBiasCtrl) here (Fig. 19). As discussed in the base
line experiment, this is because the resource consumption of
Medium queries is much more than that of the Small queries,
so the system has to sacrifice many more Small queries to re
duce the number of late Medium queries.

To summarize, this experiment confirms that PMM is inca
pable of achieving the target miss ratio distribution of multi
class workloads. In contrast, the MPL, memory allocation, and
bias control mechanisms of PAQRS are able to work in unison
to consistently meet multiclass performance objectives,
whether balanced or skewed.

D. Identical Classes

In the first two experiments, we saw that the bias control
mechanism of PAQRS is very effective in regulating per-class
performance to achieve a desired target miss ratio distribution,
even despite the classes' very different characteristics. How
ever, this mechanism could impose a cost, as it may be overly
conservative in setting its regular query quotas; this would
cause too many queries to be assigned to the reserve group,
resulting in unnecessary deadline misses. To explore this po
tential drawback, we now replace the Small class in the base
line experiment with another class that is identical to the Me
dium class, and we equate the mean arrival rates of the two
classes. The rest of the parameters are set as in the baseline
experiment. Finally, Re!MissRatio is set to { 1: 1} i.e., the target
is to balance the miss ratios of the classes.

Fig. 21 plots the system miss ratios produced by PMM and
PAQRS as a function of Asma/I· This figure shows that PAQRS
produces slightly higher system miss ratios than PMM, indicat
ing that the bias control mechanism of PAQRS indeed be
comes a slight liability here. This occurs because the two
classes only experience similar average miss ratios. At any
particular instant, workload fluctuations will inevitably cause
the two class miss ratios to deviate from each other; in reaction
to these deviations, PAQRS will relegate some queries from
the class that appears to be overachieving to the reserve group.
While only a small percentage of the queries are affected, there
is nonetheless some overhead involved. Fortunately, PAQRS
suffers only a slight performance deterioration as a result. For
example, at arrival rates of 0.06 queries/sec, where both
classes are missing as many as 29% of their queries under
PMM, PAQRS misses just about 30% of the queries. Conse
quently, while PAQRS can lead to some small overhead, its
benefit of achieving the target miss ratio distribution more than
justifies its use.

E. Workload Changes

The preceding experiments lead us to the conclusion that
PAQRS is very effective for relatively stable real-time work
loads. The objective of this next experiment is to find out how
well PAQRS reacts to dynamic workload changes. This is
done by subjecting the various query scheduling algorithms to
a workload whose composition changes every X simulated
hours, where X varies randomly (and uniformly) between two
and five. At any given time, the workload contains two of the
following three query classes-Small, Medium, and Sort. The
Small and Medium classes are the same as in the baseline ex
periment. Each query in the Sort class sorts a single relation R,
where IIRII ranges from 600 to 1,800 pages. Table IX summa
rizes the database and workload parameters (except arrival
rates). The class arrival rates vary from one workload mix to
another. To highlight the performance tradeoffs between the
algorithms, they are chosen so that the average miss ratios
produced by the best algorithm(s) in each case are in the
neighborhood of 5 to 10%. The chosen arrival rates are listed
in Table X, while the resource parameters are the same as in

16

60
--+- PMM, Medium - -<- · PMM, Small _,._ PAQRS(NoBiasCtrl), Medium - .. - PAQRS(NoBiasCtrl), Small --+- PAQRS, Medium - .. - PAQRS, Small

Small Arrival Rate (Queries/ Sec)

Fig. 15. Class miss ratio (I :2).

25 -+-PMM _,._ PAQRS(NoBiasCtrl) -----PAQRS

Small Arrival Rate (Queries/ Sec)

Fig. 16. Weighted miss ratio (1 :2).

0.5 ---�

� 0.4

0.3

� ,G

� 0.2 - ,._·Target
';i

-+-PMM
5 _,,__ PAQRS(NoBiasCtrl) 0.1 --+-PAQRS

0.0 0.0 0.4 0.8 1.2

Small Arrival Rate (Queries/ Sec)

Fig. 17. Class miss ratio dist. (1:2).

60

--+- P11M, Medium - +- · PMM, Small _,,__ PAQRS(NoBiasCtrl), Medium - .,,_ · PAQRS(NoBiasCtrl), Small --- PAQRS, Medium - •- PAQRS, Small

Small Arrival Rate (Queries/ Sec)
Fig. 18. Class miss ratio (2: 1)

50 -+-PMM _,,_ PAQRS(NoBiasCtrl) --+-PAQRS

o..-""'=------�---�

0.0 0.4 0.8 1.2 Small Arrival Rate (Queries/ Se<>)
Fig. 19. Weighted miss ratio (2:1).

2.0
---�

- .. --Target ->-PMM _,._ PAQRS(NoBiasCtrl) --+-PAQRS

o.oL---==========._
0.0 0.4 0.8 1.2

Small Arrhral Rate (Queries/ Sec)

Fig. 20. Class miss ratio dist. (2:1).

30 ->-PMM --+-PAQRS
�
,§ 20 � � �
�
! JO

"'

o•==--------�--

o.oz 0.03 0.04 0.05 0.06
Cla.i.s Arrival Rate (Queries/ Sec)

Fig. 21. System miss ratio (identical).

80 PMM, Medium
... ,',J, - +- PMM, Small . , . PMM, Sort ;< • ---<>- PAQRS, Medium -+- PAQRS, Small -o-- PAQRS, Sort

,,,',.
,
,,,'"

,/ •'

;<' ,,.

o-"'='--�----�--�-�

00 0.2 0.4 0.6 0.8 1.0

Small Arrh:al Ratt" (Querie.i; / Sec)

Fig. 22. Class miss ratio (three classes).

PANG, CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 17

the baseline experiment To ensure that all of the workload
mixes are tried in a relatively short simulated time period of 45

hours, the workload repeatedly cycles through the three possi

ble mixtures, i.e., it starts with mixture #1, goes on to mixture

#2, which is followed by mixture #3, then returns to mixture

#1, and so on. Our target is to balance the miss ratios of the

two classes within each workload mix.

TABLE IX
DATABASE AND WORKLOAD PARAMETER SETTINGS (WORKLOAD CHANGES)

Database Value Workload Value

NumGroups 4 QueryTypeM,dium Hash join
Re/PerDisk1 3 Re/GroupM..iium {I, 2}
SizeRange1 [600, 1800] pp. SR!ntervalM,dium [2.5, 7.5]

Re/PerDisk2 3 QueryTypes.,,,11 Hash join

SizeRange2 [3000,9000]pp. Re/Groups..,,11 (3, 4)
Re/PerDisk3 3 SR/ntervals,..11 [2.5, 7.5]

SizeRange3 [50, 150] pp. QueryTypes.r1 External sort

Re/PerDisk.i 3 Re/Group Sort {I)

SizeRange4 [250, 750] pp. SR!ntervalsorr [2.5, 7.5]

TABLEX
CLASS ARRIVAL RATES IN QUERIES/sec (WORKLOAD CHANGES)

Workload Mix Small Medium Sort

1 1.0 0.065 -

2 1.0 - 0.08
3 - 0.045 0.06

Table XI summarizes the performance of the three classes in
the form of average class miss ratios. We shall examine these

results according to workload mixes. Although workload mix

ture #1 has exactly the same composition as the workload used

in the baseline experiment, both PMM and P AQRS produce

higher miss ratios here than they did previously. This is due to

the introduction of workload changes, which cause each of the
algorithms to reset themselves. Consequently, the algorithms

need to adapt to the workload repeatedly, and inefficient re
source usage during the adjustment periods pushes up the miss

ratios. Other than the higher miss ratios, the qualitative tradeoffs

between the two algorithms remain the same. In particular,

PAQRS still achieves the target miss ratio distribution.

Turning our attention to workload mixture #2, we first note
that PMM again discriminates against the queries that have

larger memory demands. In fact, the Sort queries in this work

load mix perform significantly worse than the Medium queries in

workload mixture #1. This is because while the memory de

mands of the Sort queries and Medium queries are about the

same, the load that the Sort queries place on the disks and the

CPU is considerably lighter; on the average, each Sort query
only has to sort one 120-page relation, whereas the average

Medium query has to join a 120-page relation with a 600-page

relation. Consequently, memory is a much more critical resource

for workload mixture #2, thus amplifying the biased behavior of

the Max strategy that PMM chooses. In contrast, PAQRS again

manages to balance the class miss ratios.

Finally, for workload mixture #3, PMM adopts the MinMax

mode and high MPL settings to service the two memory

intensive classes. Its slightly skewed miss ratios are a result of
ED favoring the Sort queries, which are somewhat shorter than

the Medium hash join queries. This biased behavior is rectified
by the bias control mechanism of PAQRS. This experiment

shows that PAQRS not only performs well under stable work

loads, but is also capable of adapting to workload changes.

TABLE XI
AVERAGE CLASS MISS RATIOS (WORKLOAD CHANGES)

PMM PAQRS

Mixture Small Medium Sort Small Medium Sort

I 1.6% 44.3% - 9.1% 9.6% -

2 1.3% - 79.0% 7.4% - 7.3%
3 - 10.1% 11.4% - 10.9% 10.8%

F. A Three-Class Workload

Up to this point, we have examined the performance of

PAQRS using workloads that consisted of only two classes in
order to simplify our discussions. However, PAQRS is in

tended to be a general multiclass query scheduling algorithm,

and is not limited to handling only simple workloads. To dem

onstrate that PAQRS is capable of managing more complex

workloads well, we conclude this section by repeating the

baseline experiment using a workload that is made up of three

different classes. We use the same three classes that we used in

the previous experiment; instead of choosing only two out of

three classes at a time, however, we activate all three classes

concurrently. The arrival rate of the Sort and Medium classes

are both set to 0.045 queries/sec, while the arrival rate of the

Small class is varied.

The class miss ratios of the three query scheduling algo

rithms for this workload are shown in Fig. 22. The perform

ance trends in these figures reveal no surprises: PMM still

affords the Small class favored treatment at the expense of the

two memory-intensive classes. Among these two classes, the

more resource-demanding Medium class suffers a higher miss

ratio because of the inherent bias of the Earliest Deadline

scheduling policy. Again, we see that PAQRS is able to ma
nipulate the priority of the classes appropriately to achieve the

target miss ratio distribution.

G. Scalability of Results

In order to limit simulation costs, we intentionally chose to
use small relation and memory sizes in our experiments. This

raises questions about the scalability of our results to larger

systems: How would larger memory and relation sizes affect

the performance of the various algorithms? Would PAQRS

still be able to perform as well as it did? To verify the scal

ability of our results, we carried out two different sets of ex
periments-a set of medium-scale experiments, reported in

this paper, and a set of small-scale experiments that involved

database and memory sizes that were 10 times smaller. The

two sets of experiments produced essentially the same qualita

tive algorithm behavior; in other words, our results scaled up

from small database and memory sizes to medium sizes. We

therefore expect our results to scale up to even larger memory
and relation sizes; PAQRS should be just as effective for

larger systems as it was for the workloads and configurations
that we have experimented with here.

18

VII. CONCLUSION

In this paper, we have continued and extended our previous
study on the problem of scheduling queries in firm real-time
database systems (RTDBS), which we reported in [22). In that
study, we proposed a Priority Memory Management (PMM)
algorithm that aims to minimize the number of missed dead
lines by adapting both the multiprogramming level (MPL) and
the memory allocation strategy of an RTDBS according to
feedback on system behavior. This eliminates the need for any
advance knowledge of workload characteristics or query exe
cution times. Instead, the setting of the MPL is determined
primarily by a statistical projection method, called miss ratio
projection, which is supplemented by a resource utilization
heuristic when the statistical method fails. PMM incorporates
two memory allocation strategies-a Max strategy under
which each query receives either its maximum required mem
ory or no memory at all, and a MinMax strategy that allows
some queries to run with their minimum required memory
while others get their maximum. Both strategies employ the
Earliest Deadline (ED) policy so that queries whose deadlines
are more imminent are given memory ahead of queries that are
less urgent. The choice of memory allocation strategy is based
on statistics about the workload characteristics that PMM
gathers. In order to ensure that its MPL setting and memory
allocation strategy choices remain appropriate, PMM con
stantly monitors the workload for changes that may necessitate
adjustments to those decisions. Experimental results obtained
with a detailed RTDBS simulation model, which appeared in

[22] and which we summarized briefly here, indicate that the
admission control and memory allocation mechanisms of
PMM are very effective in helping an RTDBS achieve low
deadline misses. However, when presented with a multiclass
workload, PMM can produce skewed class miss ratios that
may be unacceptable for some applications.

In order to better meet multiclass performance objectives, as
expressed in the form of target miss ratio distributions, this
paper has extended PMM to create a new algorithm called
Priority Adaptation Query Resource Scheduling (PAQRS).

PAQRS modifies the MPL and memory allocation strategy
selection mechanisms of PMM to pick a global MPL setting
and a system-wide memory allocation strategy that are condu
cive to achieving the given target distribution. It then regulates
the MPL and memory allocation of individual classes indi
rectly by controlling the priority of their queries. This regula
tion is accomplished by dividing the queries in an RTDBS into
two priority groups-a regular group and a reserve group
and by setting a quota of regular queries for each class.
All regular queries are assigned higher priorities than any re
serve query, so PAQRS manipulates the relative priority of
individual classes simply by adjusting their regular query
quotas. By appropriately setting these quotas, PAQRS is able
to influence the miss ratios of the classes to conform to the

target distribution.
Through a series of simulation experiments, we demon

strated that the modified MPL and memory allocation strategy
selection mechanisms of P AQRS enable it to utilize the system
resources efficiently to reduce the overall number of deadline

misses. However, these mechanisms alone are inadequate for
regulating the distribution of deadline misses among multiple
query classes. This inadequacy is overcome by the PAQRS
algorithm's bias control mechanism. Hence, all three mecha
nisms are important in helping PAQRS achieve its given per
formance objective. Finally, PAQRS was shown to be able to
adapt to the offered workload quickly enough so that it can
work well even when workload changes sometimes occur; of

course, were the workload to fluctuate too rapidly, PAQRS'
performance would likely deteriorate with increased workload
fluctuations. While we only experimented with queries that
perform either external sorting or hash join operations,

PAQRS is designed to schedule general query workloads ef
fectively by balancing their demands on the system's memory,
CPU, and disks. In particular, PAQRS can be extended to
handle complex database queries that use external sorting and
hash joins as building blocks, such as queries with aggregates,
group-by clauses, and/or order-by clauses. Therefore, we con
clude that P AQRS should be very useful for scheduling com
plex query workloads in an RTDBS.

A number of open issues remain in the area of real-time
query scheduling. We have considered only workloads involv
ing mixes of queries in this paper; RTDBS workloads are
likely to contain transactions as well as queries. Thus, it would
be useful to combine PAQRS with long-term data buffering
techniques, such as those proposed in [5], in order to provide a
truly complete memory manager for RTDBSs. The concurrent
execution of long-running queries and short transactions also
raises concurrency control issues that need to be resolved.
Another avenue for future work is to explore ways to shorten
the adjustment time of PAQRS by incorporating more sophis
ticated MPL control and memory allocation heuristics. This
would help to improve PAQRS' ability to adapt to workload
changes. Finally, we would like to apply the techniques that we
developed for PAQRS to nonreal-time environments such as
the goal-oriented database system environment studied in [6].

ACKNOWLEDGMENT

This work was carried out as part of HweeHwa Pang's PhD
research at the University of Wisconsin at Madison.

REFERENCES

[I] R. Abbott and H. Garcia-Molina, "Scheduling real-time transactions: A

performance evaluation," Proc. 14th Int'/ Conf Very Large Data Bases,

Aug. 1988.

[2) R. Abbott and H. Garcia-Molina. "Scheduling real-time transactions
with disk resident data," Proc. 15th lnt'l Conf Very Large Data Bases,

Aug. 1989.
[3] R. Abbott and H. Garcia-Molina. "Scheduling 1/0 requests with dead

lines: A performance evaluation," Proc. 11th IEEE Real-Time Systems

Symp. (RTSS), Dec. 1990.
[4) D. Bitton and J. Gray, "Disk Shadowing." Proc. 14th Int'/ Conj. Very

Large Data Bases, Aug. 1989.

(5] K.P. Brown, M.J. Carey, and M. Livny, "Managing memory to meet
multiclass workload response time goals," Proc. 19th Int'/. Conf. Very

Large Data Bases, Aug. 1993.

[6) K.P. Brown, M. Mehta, M.J. Carey, and M. Livny, "Towards automated

performance tuning for complex workloads," Proc. 20th Int' I Conf

Very Large Data Bases, Sept. 1994.

PANG, CAREY, AND LIVNY: MULTICLASS QUERY SCHEDULING IN REAL-TIME DATABASE SYSTEMS 19

[7] S. Chen, J.A. Stankovic, J.F. Kurose, and D. Towsley, "Perfonnance

evaluation of two new disk scheduling algorithms for real-time sys

tems," J. Real-Time Systems, vol. 3, no. 3, Sept. 1991.

(8] D. Cornell and P. Yu, "Integration of buffer management and query
optimization in a relational database environment," Proc. 15th Int' I

Conf Very Large Data Bases, Aug. 1989.

[9] D.L. Davison and G. Graefe, "Memory-contention responsive hash
joins," Proc. 20th Int' l Conf Very Large Data Bases, Sept. 1994.

[10] J.L. Devore, Probability and Statistics for Engineering and the Sci

ences. Brooks/Cole Publishing Co., pp. 283-301, 326-335, 1991.
[11] N.R. Draper and H. Smith, Applied Regression Analysis. John Wiley &

Sons, pp. 70-136, 1981,.

[12] J.R. Haritsa, M.J. Carey, and M. Livny, "On being optimistic about real
time constraints," Proc. 1990 ACM PODS Symp., Apr. 1990.

[13] J.R. Haritsa, M. Livny, and M.J. Carey, "Earliest deadline scheduling
for real-time database systems," Proc. 12th IEEE Real-Time Systems

Symposium (RTSS), Dec. 1991.

[14] J. Huang, J.A. Stankovic, D. Towsley, and K. Ramamritham,

"Experimental evaluation of real-time transaction processing," Proc.

10th IEEE Real-Time Systems Symp. (RTSS), Dec. 1989.

(15] W. Kim and J. Srivastava, "Enhancing real-time DBMS perfonnance
with multiversion data and priority based disk scheduling," Proc. 12th

IEEE Real-Time Systems Symp. (RTSS), Dec. 1991.

[16] C. Liu and J. Layland, "Scheduling algorithms for multiprogramming in

a hard real-time environment," J. ACM, Jan. 1973.

[17] M. Livny, "DeNet User's Guide, Version 1.5," Computer Sciences
Dept., Univ. of Wisconsin, Madison, 1990.

[18] M. Nakayama, M. Kitsuregawa, and M. Takagi, "Hash-partitioned join
method using dynamic destaging strategy," Proc. 14th Int'/ Conf. Very

Large Data Bases, Aug. 1988.

(19] H. Pang, M. Livny, and M.J. Carey, "Transaction scheduling in multi
class real-time database systems," Proc. 13th IEEE Real-Time Systems

Symp. (RTSS), Dec. 1992.

(20] H. Pang, M.J. Carey, and M. Livny, "Partially preemptible hash joins,"
Proc. ACM S/GMOD Conf, May 1993.

(21] H. Pang, M.J. Carey, and M. Livny, "Memory-adaptive external sort
ing," Proc. 19th Int'/ Conf Very Large Data Bases, Aug. 1993.

[22] H. Pang, M.J. Carey, and M. Livny, "Managing memory for real-time
queries," Proc. ACM S!GMOD Conj, May 1994.

[23] K. Ramamritham, "Real-time databases," Distributed and Parallel

Databases, vol. I, no. 2, Apr. 1993.

[24] R. Sargent, "Statistical analysis of simulation output data," Proc.

Fourth Ann. Symp. Simulation Computer Systems, Aug. 1976.

[25] L.D. Shapiro, "Join processing in database systems with large main
memories," ACM Trans. Database Systems, vol. 11, no. 3, Sept. 1986.

[26] J.A. Stankovic and W. Zhao, "On real-time transactions," ACM

SIGMOD Record, vol. 17, no. I, Mar. 1988.
[27] P.S. Yu and D.W. Cornell, "Buffer management based on return on

consumption in a multiquery environment," VLDB J .. vol. 2, no. I,

Jan. 1993.
[28] H. Zeller and J. Gray, "An adaptive hash join algorithm for multiuser

environments," Proc. 16th Int'/ Conf Very Large Data Bases,

Aug. 1990.

HweeHwa Pang received the BS-with first class
honors-and MS degrees from the National Univer
sity of Singapore in 1989 and 1991, respectively,
and the PhD degree from the University of Wiscon
sin at Madison in 1994, all in computer science. His
PhD research focus was on adaptive query process
ing and resource scheduling in database manage
ment systems, in particular real-time database sys
tems. He is currently a member of the associate
research staff at the Institute of Systems Science,
National University of Singapore, where he is
building a multimedia storage server. His research

interests include database management systems, multimedia systems, and
real-time systems.

Michael J. Carey received the BS degree in electri
cal engineering and mathematics and the MS degree
in electrical engineering (computer engineering)
from Carnegie Mellon University in 1979 and 1981,
respectively. He received the PhD degree in com
puter science from the University of California at
Berkeley in 1983. He then became a faculty member
in the Computer Science Department of the Uni
versity of Wisconsin at Madison. Dr. Carey spent
the summer of 1989 and the 1993-1994 academic
year as a visiting scientist at the IBM Almaden
Research Center, where he is now on the staff.

Dr. Carey's research interests include object-oriented database systems,
parallel and distributed databases, database systems perfonnance, and data
base applications that involve user-specified performance objectives. He was
a co-principal investigator of the EXODUS extensible DBMS project. He is
now involved in SHORE, a successor to the EXODUS project that has the
goal of replacing the Unix file system with a persistent object repository that
can work effectively across a wide variety of hardware platforms and applica
tion programming languages. During his first visit to IBM, he worked on the
Starburst extensible DBMS project. During his second visit, he helped to start
the Garlic project, a new research effon in the area of multimedia infonnation
system.

Dr. Carey received an IBM Faculty Development award in 1984, an In
centives for Excellence award from Digital Equipment Corporation in 1986,
and a National Science Foundation Presidential Young Investigator award in
1987. He is a member of the IEEE and the ACM, an associate editor of ACM
Transactions on Database Systems, and the secretary/treasurer of the ACM
SIGMOD group.

Miron Livny received the BS degree in physics and
mathematics in 1975 from the Hebrew University,
Israel, and the MSc and PhD degrees in computer
science from the Weizmann Institute of Science,
Israel, in 1978 and 1984, respectively. Since 1983
he has been on the faculty of the Computer Science
Department of the University of Wisconsin at Madi
son, where he is currently a professor.

Dr. Livny's research focuses on scheduling poli
cies for processing and data mangagement systems
and on tools that can be used to evaluate such poli
cies. His recent work includes real-time DBMSs,

client server systems, batch processing, and tools for experiment manage
ment.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-1995

	Multiclass Query Scheduling in Real-Time Database Systems
	Hwee Hwa PANG
	Michael J. CAREY
	Miron LIVNY
	Citation

	Multiclass query scheduling in real-time database systems - Knowledge and Data Engineering, IEEE Transactions on

