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Abstract. In group pattern mining, we discover group patterns from
a given user movement database based on their spatio-temporal dis-
tances. When both the number of users and the logging duration are
large, group pattern mining algorithms become very inefficient. In this
paper, we therefore propose a spherical location summarization method
to reduce the overhead of mining valid 2-groups. In our experiments,
we show that our group mining algorithm using summarized data may
require much less execution time than that using non-summarized data.

1 Introduction

Mobile phones and other similar devices are fast becoming indispensable in our
modern society. According to a recent survey by Frank N. Magid Associates
and Upoc.com, 59 percent of Americans age 12 and over (about 140 millions of
them) own mobile phones, and that almost a quarter of non-owners plan to buy
a mobile phone in the near future [8]. The sales of mobile phones worldwide has
been predicted to reach 675 million in 2006 [6]. In tandem with this growth trend,
we also witness the emergence of many new applications and businesses that
exploit mobile phone technologies in different ways [9]. Mobile phones, unlike
computers connected to wired networks, are highly personalized. Also unlike
other personalized accessories such as watches, walkmans, etc., mobile phones
are trackable. They are trackable because they have to maintain regular contacts
with the mobile telecommunication networks in order to receive and make calls.
With these trackability and personalized features, one can conceive many unique
and interesting applications for mobile phone users.

In our research, we exploit the use of mobile phone’s trackability and person-
alized features to mine relationships among their owners. We are interested to
discover groupings of users such that users in the same group are geographically
close to one another for significant amount of time. Such user groupings are also
known as group patterns in our earlier paper [10]. Representing a new form
of knowledge that relates users together based on their spatial and temporal
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proximities, group patterns can be particularly useful to marketing and security
applications.

In [10], we proposed two algorithms to mine valid group patterns: Apriori-
like algorithm AGP and FP-growth-like algorithm VG-growth. Our experiments
have shown that the time taken by the two algorithms to compute valid group
patterns of size 2 dominates the total execution time as both algorithms require
large number of user pairs to be examined. To overcome this bottleneck, in
this paper, we propose a user movement data summarization method, known
as Spherical Location Summarization (SLS), which partitions the user
movement database into multiple time windows of equal size, and summarizes the
location information within a time window by a sphere. This reduces the number
of time points to be examined during the mining process. To further reduce the
mining overhead, SLS pre-computes the maximum possible weight counts and
durations of user pairs based on the summarized location spheres. Using both
the maximum possible weights and durations, one can prune the number of user
pairs to be examined when mining valid 2-group patterns. Based on SLS method,
we develop a new Spherical Location Summarization based algorithm
for mining Valid 2-Groups (SLSV2G). To evaluate algorithm SLSV2G, we
conduct a series of experiments on user movement databases generated using
IBM City Simulator [4]. The experiment results have shown that our proposed
SLSV2G algorithm is an order of magnitude faster than our previous algorithms
with respect to mining valid 2-groups.

The rest of the paper is organized as follows: In Section 2, we look at some
related work. In Section 3, we give the formal definitions of group pattern mining
problem. Section 4 describes two group pattern mining algorithms, AGP and VG-
growth. The data summarization method SLS and the corresponding SLSV2G
algorithm are introduced in Section 5. In Section 6, we present an experimental
study. Finally, we conclude in Section 7.

2 Related Work

In this research, we assume that the user movement data can be collected by
logging location data emitted from mobile devices. This assumption is technically
feasible since mobile devices are becoming more and more location-aware using
Global Positioning Systems (GPS) [11], which is becoming more affordable. GPS
can achieve positioning errors ranging from 10 to 20 metres and the Assisted-
GPS technology further reduces it to 1 to 10 meters [11]. To keep a focused
discussion, we shall keep the privacy and legal issues out the scope of this paper.

Group pattern mining deals with time series of user location information
involving temporal and spatial dimensions. We observe that previous tempo-
ral and spatial data mining research mostly focus either on temporal or spatial
mining[5,7], not both. Although there has been some work on spatio-temporal
mining that considers both temporal and spatial aspects of information, they
mainly focus on the models and structures for indexing the moving objects [2].
More importantly, our work introduce a new way to apply data mining tech-
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Table 1. User Movement Database D

u1

t x y z
0 68 41 0
1 72 75 0
2 79 51 3
3 80 50 3
4 62 56 3
5 45 65 15
6 67 58 15
7 73 53 10
8 75 51 10
9 73 53 10

u2

t x y z
0 73 41 3
1 72 69 3
2 80 52 3
3 84 52 3
4 59 10 10
5 24 49 10
6 39 19 3
7 68 52 10
8 72 51 10
9 64 56 10

u3

t x y z
0 73 46 3
1 79 71 3
2 82 59 3
3 81 53 3
4 50 63 10
5 49 61 10
6 36 27 3
7 72 52 10
8 69 54 10
9 62 50 10

u4

t x y z
0 81 39 3
1 71 67 3
2 81 53 3
3 85 57 3
4 60 53 3
5 22 45 10
6 40 19 3
7 74 53 10
8 73 53 10
9 74 51 10

u5

t x y z
0 80 43 3
1 71 71 3
2 73 51 3
3 80 11 15
4 58 9 7
5 20 48 10
6 40 19 3
7 72 53 10
8 75 53 10
9 79 53 10

u6

t x y z
0 99 43 3
1 61 97 3
2 34 45 3
3 42 96 7
4 7 80 7
5 29 54 10
6 39 61 10
7 88 35 10
8 62 70 15
9 7 59 15

niques on mobile user information and this has not been studied by researchers
so far.

3 Problem Definition

The data source for group pattern mining is a user movement database defined by
D = (D1, D2, · · · , DM ), where Di is a time series containing tuples (t, (x, y, z))
denoting the x-, y- and z-coordinates respectively of user ui at time point t. For
simplicity, we denote the location of a user ui at time t by ui[t].p, and his/her
x-, y-, and z- values at time t by ui[t].x, ui[t].y and ui[t].z respectively. We also
assume that the all user locations are known at every time point, and the interval
between every t and t + 1 is fixed. A snippet of a user movement database is
shown in Table 1.

Definition 1. Given a set of users G, a maximum distance threshold max dis,
and a minimum time duration threshold min dur, a set of consecutive time points
[ta, tb] is called a valid segment of G, if

1. ∀ui, uj ∈ G, ∀t, ta ≤ t ≤ tb, d(ui[t].p, uj [t].p) ≤ max dis;
2. ta = 0 or ∃ui, uj ∈ G, d(ui[ta − 1].p, uj [ta − 1].p) > max dis;
3. tb = N − 1 or ∃ui, uj ∈ G, d(ui[tb + 1].p, uj [tb + 1].p) > max dis;
4. (tb − ta + 1) ≥ min dur.

The distance function, d(), is defined to return the Euclidean distance between
two points, i.e.,
d(ui[t].p, uj [t].p) =√

(ui[t].x − uj [t].x)2 + (ui[t].y − uj [t].y)2 + (ui[t].z − uj [t].z)2.
Consider the user movement database in Table 1. For min dur = 3 and

max dis = 10, [5, 8] is a valid segment of the set of users, {u2, u4}.

Definition 2. Given a database D, a group of users G, thresholds max dis and
min dur, we say that G, max dis and min dur form a group pattern, denoted
by P =< G, max dis, min dur >, if G has a valid segment.
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Input: D, max dis, min dur, and min wei
Output: all valid groups G

01 G = ∅;
02 G1 = the set of all distinct users;
03 for (k = 2; Gk−1 �= ∅; k++)
04 Ck = Generate Candidate Groups(Gk−1);
05 for (t = 0; t < N ; t + +)
06 for each candidate k-group ck ∈ Ck

07 if Is Close(ck, t, max dis) then
08 ck.cur seg + +;
09 else
10 if ck.cur seg ≥ min dur then
11 ck.weight+ = ck.cur seg;
12 ck.cur seg = 0;
13 Gk = {ck ∈ Ck | ck.weight � min wei × N};
14 G = G ∪ Gk;
15 return G;

Fig. 1. Algorithm AGP.

The valid segments of the group pattern P are therefore the valid segments of
its G component. We also call a group pattern with k users a k-group pattern.

In a user movement database, a group pattern may have multiple valid seg-
ments. The combined length of these valid segments is called the weight count of
the pattern. We quantify the significance of the pattern by comparing its weight
count with the overall time duration.

Definition 3. Let P be a group pattern with valid segments s1, · · · , sn, and N
denotes the number of time points in the database, the weight of P is defined
as:

weight(P ) =
∑n

i=1 |si|
N

(1)

If the weight of a group pattern exceeds a threshold min wei, we call it a valid
group pattern, and the corresponding group of users a valid group. For ex-
ample, considering the user movement database D in Table 1, if min wei = 50%,
the group pattern P =< {u2, u3, u4}, 10, 3 > is a valid group pattern, since it
has valid segments {[1, 3], [6, 8]} and its weight is 6/10 ≥ 0.5.

Definition 4. Given a database D, thresholds max dis, min dur, and min wei,
the problem of finding all the valid group patterns (or simply valid groups) is
known as valid group (pattern) mining.

4 Group Pattern Mining Algorithms

In [10], we proposed two algorithms for mining valid group patterns, known
as the Apriori-liked Group Pattern (AGP) mining algorithm and Valid
Group-Growth (VG-Growth) algorithm. The former explores the Apriori
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property of valid group patterns and extends the Apriori algorithm [1]. The
latter is developed based on the similar idea of the FP-growth association rule
mining algorithm [3]. We present the two algorithms briefly in this section.

Apriori property still holds for valid group patterns, i.e., the sub-group pat-
terns of a valid group pattern are also valid. The AGP algorithm, as shown in
Figure 11, starts from mining valid 2-groups and use the mined valid (k-1)-groups
to derive candidate groups of size k, denoted by Ck. We use Gk to denote the
set of valid k-groups.

AGP algorithm, inherited from the Apriori algorithm, incurs large overheads
in candidate k-group (k > 2) generation and database scans to check whether
the candidates are valid. In order to reduce such overheads, we further proposed
algorithm VG-growth in [10], using a novel data structure known as VG-graph.
VG-growth and VG-graph are designed based on the principle similar to that of
FP-growth and FP-tree [3] for association rule mining.

Definition 5. A valid group graph (or VG-graph) is a directed graph (V, E),
where V is a set of vertices representing users in the set of valid 2-groups, and E
is a set of edges each representing the pair of users in a valid 2-group. Each edge
is also associated with the valid segments list of the corresponding valid 2-group
pattern.

To construct a VG graph, a complete scan of D by the AGP algorithm is required
to compute the valid 2-groups and the corresponding valid segments. For easy
enumeration of all the edges in a VG-graph, the edge always origins from the
user with a smaller id.

Definition 6. If (u → v) is a directed edge in a VG-graph, u is called the
prefix-neighbor of v.

The whole mining process of VG-growth algorithm is in fact a traversing on the
VG-graph by examining all the prefix-neighbors of each vertex. The complete
VG-growth algorithm is given in Figure 2.

5 User Movement Data Summarization

Both AGP and VG-growth algorithms use the same method to compute valid
2-groups, i.e., scanning the database D to accumulate the weight count for each
possible user pair. Assume there are M distinct users and N time points in D.
Then, there are

(
M
2

)
candidate 2-groups. Hence, the time required to compute

valid 2-groups consists of scanning M ×N user location records, and determining
the distances between

(
M
2

)
pairs of users.

Our previous experiments have shown that the computation of valid 2-groups
dominates the time required to mine all valid groups [10]. In order to break this
bottleneck, we propose the following location summarization method.

1 Some functions are not shown to save space.
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Input: VG-graph, max dis, min dur, and min wei
Output: all valid groups
Method: call procedure VG-growth(VG-graph, null).
Procedure: VG-growth(Graph, α)
01 for each vertex u in Graph
02 β = {u} ∪ α;
03 Vβ = the set of prefix-neighbors of u;
04 if Vβ �= ∅ then
05 for each vertex v in Vβ

06 output a valid group: {v} ∪ β;
07 E(Vβ) = the set of directed edges on Vβ ;
08 if E(Vβ) �= ∅ then
09 for each directed edge (vi → vj) in E(Vβ)
10 s(vivj) = s(vivj) ∩ s(viu) ∩ s(vju);
11 if s(vivj) doesn’t satisfy min dur, min wei then
12 remove edge (vi → vj) from E(Vβ);
13 if E(Vβ) �= ∅ then
14 V G(β) = the conditional valid group graph of β;
15 VG-growth(V G(β), β);

Fig. 2. VG-growth Algorithm.
Input: original user movement database D, time window w;
Output: summarized database D′.
Method:
01 for (t′ = 0; t′ < N

w
; t′ + +)

02 for each user ui

03 u[t′].P = {u[t].p | t′ · w ≤ t < (t′ + 1) · w };
04 pc = (ui[t

′].xmin+ui[t
′].xmax

2 , ui[t
′].ymin+ui[t

′].ymax

2 , ui[t
′].zmin+ui[t

′].zmax

2 );
05 r = 0;
06 for each p ∈ ui[t′].P
07 if d(p, pc) > r then
08 r = d(p, pc);
09 add the tuple < t′, pc, r > to D′

i;
10 return D′;

Fig. 3. SLS Algorithm: Step 1.

5.1 Spherical Location Summarization

Our proposed user movement data summarization method is called Spherical
Location Summarization (SLS). The objective of SLS is to reduce both the
number of time points and the number of candidate user pairs to be examined
during mining. Accordingly, SLS algorithm consists of two steps.

In step 1, we first divide the movement data of each user into time windows
of equal length, denoted by w. Next, we summarize the locations of a user within
each time window by a sphere with center pc and radius r such that the user
locations within this time window lie on or inside the sphere. Let D′ denote the
summarized database, in which the number of time points in D is reduced to
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N ′ = �N
w �. For simplicity, we assume that N

w is a whole number2. Note that a
given time point in D′, say t′, corresponds to a time window [t′ · w, (t′ + 1) · w)
in the original database D. Let u[t′].P denote the set of location points of user u
at time points t′ · w, · · · , (t′ + 1) · w − 1 in D, i.e., u[t′].P = {u[t].p | t′ · w ≤ t <
(t′ +1) ·w }. From the w location values in u[t′].P , we compute the minimal and
maximal x-, y-, z- values, denoted by u[t′].xmin, u[t′].xmax, u[t′].ymin, u[t′].ymax,
u[t′].zmin, and u[t′].zmax. The center and radius of the sphere at time t′ are
defined as:

u[t′].pc =(
u[t′].xmin+u[t′].xmax

2
,
u[t′].ymin + u[t′].ymax

2
,
u[t′].zmin + u[t′].zmax

2
)

(2)
u[t′].r = max

p∈u[t′].P
d(p, pc) (3)

We call such a sphere Summarized Location Sphere (SLS) of u at t′,
denoted by u[t′].S. The summarized database D′ therefore consists of a series of
SLS’s for each user. Step 1 of SLS algorithm is shown in Figure 3.

In order to reduce the number of candidate user pairs, in Step 2 of SLS,
we pre-compute the upper bounds of weight count and valid segment’s length
for each user pair based on the summarized database. The pre-computation can
be done under the assumption that the upper bound of max dis, denoted by
max dis, is given.

Definition 7. Given a user pair {ui, uj} and a time point t′ in the summarized
database D′, let ui[t′].S = (pci , ri) and uj [t′].S = (pcj , rj) be the summarized
location spheres of ui and uj at t′ respectively. Suppose max dis be the upper
bound on max dis (i.e., max dis ≥ max dis). We say that ui[t′].S and uj [t′].S
are close at t′ with respect to max dis, if:

d(pci , pcj ) − (ri + rj) ≤ max dis (4)

Definition 8. Given a summarized database D′, a user pair {ui, uj}, and
max dis, a set of consecutive time points [t′a, t′b] in D′ is called a close sphere
segment (CSS) of {ui, uj}, if:

1. ∀ t′ ∈ [t′a, t′b], ui[t′].S and uj [t′].S are close wrt max dis;
2. ui[t′a − 1].S and uj [t′a − 1].S are not close wrt max dis;
3. ui[t′b + 1].S and uj [t′b + 1].S are not close wrt max dis.

We use S({ui, uj}) to denote the set of CSS’s of {ui, uj}, i.e.,

S({ui, uj}) = { [t′a, t′b] | [t′a, t′b] ⊆ [0, N ′), [t′a, t′b] is a CSS of {ui, uj} } (5)

Property 1. Given a user pair {ui, uj}, let the set of valid segments of {ui, uj}
be {s1, s2, ..., sn}, ∀s ∈ {s1, s2, ..., sn}, ∃[t′a, t′b] ∈ S({ui, uj}) such that s ⊆ [t′a ·
w, (t′b + 1) · w).
2 If not, the residual part can be simply treated as one time window. We can summarize

the location values within it using the same method.
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This property says S({ui, uj}) consists of close sphere segments (in D′) that
cover all the valid segments of {ui, uj} in D. This property is the foundation of
the correctness and completeness of the summarization based algorithm.

Definition 9. Given a user pair {ui, uj}, the longest close sphere segment
length of {ui, uj} is defined as:

Q({ui, uj}) = w · max
CSS∈ S({ui,uj})

|CSS| (6)

where |CSS| is the number of summarized time points within it.

Property 2. Given a user pair {ui, uj}, let the set of valid segments of {ui, uj}
be {s1, s2, ..., sn}, ∀s ∈ {s1, s2, ..., sn}, Q({ui, uj}) ≥ |s|.

This property asserts that the longest close sphere segment length of a user
pair is the upper bound of the length of valid segments of this pair of users.

Definition 10. Given the summarized database D′, and a user pair {ui, uj},
the upper bound weight count of {ui, uj} is defined as:

R({ui, uj}) = w ·
∑

CSS∈ S({ui,uj})

|CSS| (7)

Property 3. Given a user pair {ui, uj}, R({ui, uj}) ≥ weight-count ({ui, uj}).

This property asserts that the upper bound weight count of a user pair is
indeed the upper bound on the weight count for this pair of users.

Therefore, each user pair c2 = {ui, uj} is associated with Q(c2) and R(c2).
Let P denote the set of all user pairs together with their Q and R values, i.e.,

P = {( {ui, uj}, Q({ui, uj}), R({ui, uj}) ) | 1 ≤ i < j ≤ M} (8)

where M is the number of distinct users. We use (Pk.c2, Pk.Q(c2), Pk.R(c2))
to denote the kth tuple in P. In addition, we sort P by Q({ui, uj}) value in
descending order in order to efficiently eliminate user pairs which are impossible
to form valid 2-groups. Step 2 of SLS algorithm is shown in Figure 4.

5.2 Algorithm SLSV2G

After the summarized database D′ and precomputed information P are obtained,
we store them in the main memory so as to speed up the mining of valid 2-groups.
With D′ and P, we can introduce a more efficient algorithm for mining valid
2-groups known as SLSV2G (Spherical Location Summarization based
algorithm for mining Valid 2-Groups). The SLSV2G algorithm is shown in
Figure 5.

Using the obtained information in P, we can first determine a smaller set
C2 of candidate 2-groups such that for each c2 ∈ C2, Q(c2) ≥ min dur and
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Input: D′, w, and max dis
Output: P.
Method:
01 for (t′ = 0; t′ < N

w
; t′ + +)

02 for each user pair {ui, uj}
03 let ui[t′].S be (pci , ri), and uj [t′].S be (pcj , rj);
04 if d(pci , pcj ) − (ri + rj) <= max dis then
05 R({ui, uj})+ = w;
06 sumij+ = w;
07 else
08 if sumij > Q({ui, uj}) then
09 Q({ui, uj}) = sumij ;
10 sumij = 0;
11 sort P by Q({ui, uj}) in decreasing order;
12 return P;

Fig. 4. SLS Algorithm: Step 2.

R(c2) ≥ min wei × N . Next, we compute the weight count for each c2 ∈ C2 by
scanning the summarized database D′ to obtain the c2’s summarized location
spheres (SLS’s). We classify the closeness of two SLS’s for each summarized
time point into three cases based on their radii and the distance between their
centers: (1) all location points inside the two SLS are no more than max dis
apart (see lines 06-07 in Figure 5); (2) all location points inside the two SLS are
more than max dis apart (see lines 09-12 in Figure 5); (3) otherwise, i.e., only
some location points inside the two SLS are less than max dis (see line 14 in
Figure 5). Should case 3 arise, the corresponding time window in the original user
movement database D will be examined to determine the exact weight count.

6 Experimental Results

In this section, we evaluate the performance of our proposed SLSV2G algorithm.
We generate three synthetic user movement datasets DBI, DBII, and DBIII

by using City Simulator [4] developed by IBM, which is a three-dimensional
user movement database generator and is designed to generate realistic data for
experiments that requires dynamic location data. Both DBI and DBII contain
1000 users. DBI contains 1000 time points while DBII contains 10,000 time
points. DBIII contains 7000 users and 7000 time points.

Two series of experiments are conducted. In Series-I, VG-growth is chosen
as the baseline. We measure and compare the execution times for mining valid
2-groups, denoted by T2, of VG-growth and SLSV2G on the three datasets3

for different min wei thresholds (from 1% to 10%). The thresholds max dis
and min dur are assigned 30 and 4 respectively. As for the SLSV2G algorithm,
3 As for dataset DBIII, we only run SLSV2G algorithm, since VG-growth can not

work because the size of the original database and the number of user pairs are too
large to be loaded in main memory.
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Input: D, D′, max dis, min dur, min wei, P, and w;
Output: all valid 2-groups, G2.
Method:
01 G2 = ∅;
02 C2 =GetCandidate2Groups(P, min dur, min wei);
03 for (t′ = 0; t′ < N

w
; t′ + +)

04 for each candidate 2-group c2 ∈ C2, c2 = {ui, uj}
05 let ui[t′].S be (pci , ri), and uj [t′].S be (pcj , rj);
06 if d(pci , pcj ) + (ri + rj) � max dis then // ui and uj must be close

07 c2.cur seg+ = w;
08 else
09 if d(pci , pcj ) − (ri + rj) > max dis then // ui and uj must be far apart

10 if c2.cur seg � min dur then
11 c2.weight+ = c2.cur seg;
12 c2.cur seg = 0;
13 else // otherwise

14 CheckOriginalDB(D, t′, w, c2);
15 G2 = {c2 ∈ C2 | c2.weight � min wei × N};
16 return G2;
procedure GetCandidate2Groups (P, min dur, min wei)

01 for (i = 0; i < |P|; i + +)
02 if Pi.Q(c2) � min dur then
03 if Pi.R(c2) � min wei × N then
04 add Pi.c2 into C2;
05 else
06 break;
07 return C2;
procedure CheckOriginalDB(D, t′, w, c2)

01 for (t = t′ · w; t < (t′ + 1) · w; t + +)
02 if d(ui[t].p, uj [t].p) � max dis then
03 c2.cur seg + +;
04 else
05 if c2.cur seg � min dur then
06 c2.weight+ = c2.cur seg;
07 c2.cur seg = 0;

Fig. 5. Algorithm SLSV2G.

the time window is set as w = 4. Note that, VG-growth is implemented under
the assumption that the entire user movement database can be loaded into the
main memory. This gives VG-growth some additional performance boost. The
SLSV2G algorithm requires the summarized database D′ and P memory resident,
while the original database D is disk resident.

The experiment results of Series-I are shown in Figure 6. Note that, the Y-
axes has logarithmic scales. We can find that T2 of SLSV2G is much less than
that of VG-growth. In fact, T2 of SLSV2G is only 5% − 8% of T2 of VG-growth.
This illustrates the improvement by using location summarization method to
find valid 2-groups. Notice that SLSV2G algorithm can run on dataset DBIII,
which is too large for VG-growth. In fact, SLSV2G algorithm can apply on very
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large movement database as long as we choose a proper time window which is
large enough to allow the summarized database D′ to be stored in main memory.

Figure 7 shows the number of candidate 2-groups, |C2|, for DBI and DBII.
Note that, the VG-growth algorithm always generates a constant number of
candidate 2-groups, i.e.,

(1000
2

)
= 499500. Therefore, the two lines for “DBI: VG-

growth” and “DBII: VG-growth” coincide with each other. On the other hand,
SLSV2G generates different sets of candidate 2-groups for different min wei
values. These candidate 2-group sets are much smaller than those of VG-growth.
In fact, the ratio of |C2| /

(
M
2

)
for SLSV2G is in the range of 1% − 7%.

It is important to note that VG-growth runs in main memory, while SLSV2G
needs to access the disk-resident original database D. Even so, SLSV2G can still
outperform VG-growth significantly. On the whole, SLSV2G algorithm is an
order of magnitude faster than VG-growth wrt T2. From the experiment Series-
I, we conclude that our proposed summarization method reduces the overheads
of mining valid 2-groups significantly.
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In the second series of experiments, we study the scale-up features of
SLSV2G algorithm against different time windows (w), different numbers of
users (M), and different numbers of time points (N). In particular, we first run
SLSV2G algorithm on DBII for different min wei values varying time window
w = 4, 10, 20, 40 and 50, and measure T2 to show how different w can affect
T2. Next, we generate another two sets of datasets with different M(N) values
from 1000 to 10000, fixing N(M) to be 1000. We then run SLSV2G algorithm on
them with time window w = 4 and min wei = 10%. To give a complete picture,
we also run VG-growth on these datasets.

Figure 8 shows T2 of SLSV2G on DBII for different time window w. Note
that SLSV2G algorithm does not scale up linearly with w. It is observed that
T2 value decreases as w changes from 4 to 10, and then T2 value increases as
w becomes larger than 10. T2 is smallest around w = 10. This implies the time
window should be chosen carefully to achieve an optimal T2. To explain the
phenomena in Figure 8, we further study the factors affecting T2: N ′, |C2|, and
numD × w, as shown in Figure 9, where numD is the number of times calling
procedure CheckOriginalDB. When w increases, (1) the number of summarized
time points N ′ in D′ decreases; (2) the radius of the summarized location sphere
will become larger, which results in larger Q (the upper bound of the valid
segment length) and R (the upper bound on weight count) values, thus, the
number of candidate 2-groups (|C2|) actually increases, adding more overhead
to T2; and (3) the time cost for calling procedure CheckOriginalDB (see Figure
5) increases due to the larger number of time points within the time window.
The increase is significant due to the need to read disk-resident user movement
database. This illustrates the trade-off of choosing w.

Finally, Figure 10 and Figure 11 show the scale-up features4 of VG-growth
and SLSV2G algorithms against the number of users M and the number of time
points N respectively. In Figure 10, we can see that SLSV2G is much more
scalable than VG-growth with respect to M . As the number of users grows up,
the gap between the two algorithms becomes larger and larger. In Figure 11, we
find that both VG-growth and SLSV2G scales linearly against N , while SLSV2G
is much faster.

7 Conclusion

In this paper, we proposed a location summarization method SLS to reduce the
overhead for mining valid 2-groups. The experiment results have shown that
our proposed SLSV2G algorithm is about an order of magnitude faster than our
previous algorithms with respect to mining valid 2-groups. Other summarization
shapes will be investigated in our future work.

4 We only draw the curve for min wei = 10%, since the curves for other min wei have
the similar trend.
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