
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2009

Localized Monitoring of kNN Queries in Wireless
Sensor Networks
Yuxia YAO
Nanyang Technological University, Singapore

Xueyan TANG
Nanyang Technological University

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1007/s00778-007-0089-3

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YAO, Yuxia; TANG, Xueyan; and LIM, Ee Peng. Localized Monitoring of kNN Queries in Wireless Sensor Networks. (2009). VLDB
Journal. 18, (1), 99-117. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/744

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s00778-007-0089-3
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

The VLDB Journal (2009) 18:99–117
DOI 10.1007/s00778-007-0089-3

REGULAR PAPER

Localized monitoring of kNN queries in wireless sensor networks

Yuxia Yao · Xueyan Tang · Ee-Peng Lim

Received: 12 March 2007 / Revised: 30 October 2007 / Accepted: 11 December 2007 / Published online: 10 January 2008
© Springer-Verlag 2008

Abstract Wireless sensor networks have been widely used
in civilian and military applications. Primarily designed for
monitoring purposes, many sensor applications require con-
tinuous collection and processing of sensed data. Due to the
limited power supply for sensor nodes, energy efficiency is
a major performance concern in query processing. In this
paper, we focus on continuous kNN query processing in
object tracking sensor networks. We propose a localized
scheme to monitor nearest neighbors to a query point. The
key idea is to establish a monitoring area for each query so
that only the updates relevant to the query are collected. The
monitoring area is set up when the kNN query is initially
evaluated and is expanded and shrunk on the fly upon object
movement. We analyze the optimal maintenance of the moni-
toring area and develop an adaptive algorithm to dynamically
decide when to shrink the monitoring area. Experimental
results show that establishing a monitoring area for continu-
ous kNN query processing greatly reduces energy consump-
tion and prolongs network lifetime.

1 Introduction

The development of wireless technology and sensors have
enabled wide use of sensor networks. In these networks, a
large number of low-powered sensor nodes are distributed
in an area of interest and wirelessly connected. The sensor

Y. Yao (B) · X. Tang · E.-P. Lim
School of Computer Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798, Singapore
e-mail: yaoyuxia@pmail.ntu.edu.sg

X. Tang
e-mail: asxytang@ntu.edu.sg

E.-P. Lim
e-mail: aseplim@ntu.edu.sg

nodes are equipped with computation and communication
capabilities [18]. Sensor networks are popular for a variety of
applications, e.g., habitat monitoring, pollution monitoring,
and object tracking [1,12]. They provide us with the means of
interacting with the physical world. Allowing users to make
queries to sensor networks is an important way to support
the interactions. Most existing work has focused on non-
spatial query processing in sensor networks [11,28]. To the
best of our knowledge, there has been little work on spatial
query processing [32,33]. In this paper, we consider monitor-
ing kNN queries in object tracking sensor networks. A kNN
query is characterized by a geographical location q called the
query point, and a number k of requested nearest objects. The
objective of a kNN query is to identify the k objects with the
shortest distances to the query point. Consider a motivating
example where a sensor network is deployed in the forest
to track animals. The scientists may be interested to know
the locations of the k animals nearest to a particular location
over a period of time. They can issue such kNN queries into
the sensor network and the continuous results are returned
periodically.

Energy efficiency is a critical design consideration of wire-
less sensor networks. The sensor nodes, usually with low bat-
tery power, have to be deployed unattended for a long time. To
prolong network lifetime, we need to reduce network-wide
energy consumption. In wireless sensor networks, energy is
mainly consumed in communication [18]. Thus, to reduce
energy consumption, we need to reduce the number of mes-
sage transmissions. A straightforward centralized scheme for
monitoring kNN queries is to continuously send all sam-
pled object locations to a base station. User queries are also
routed to the base station for initial and continuous evalua-
tions. However, the centralized scheme is likely to suffer from
unnecessary update messages. This is because kNN queries
are usually localized in that only the locations of the objects

123

Published in VLDB Journal, January 2009, Volume 18, Issue 1, pp 99–117
https://doi.org/10.1007/s00778-007-0089-3

100 Y. Yao et al.

close to the query points are needed for query processing and
the objects that are far away can be exempted from location
updates. To improve energy efficiency, it is desirable to store
the acquired data locally at the sensor nodes in a distrib-
uted manner and process the queries in-network [6,31,33].
Recent technology advances have substantially improved the
capacities and energy efficiency of local storage for sensor
networks [2].

Motivated by the localized property of kNN queries, in this
paper, we propose a localized scheme to continuously eval-
uate kNN queries in object tracking sensor networks. Our
key idea is to establish a monitoring area for each query so
that only the location updates relevant to the query are col-
lected. In this way, the network-wide energy consumption
is reduced. We first propose a two-phase search mechanism
to conduct the initial evaluation of a kNN query. A mon-
itoring area is established together with the initial evalua-
tion. Then, we develop methods to reevaluate the kNN query
during query lifetime. The location updates from the sensor
nodes in the monitoring area are collected for query reevalua-
tion. Due to object movement, the monitoring area may need
to be expanded and shrunk on the fly. We analyze the optimal
maintenance of the monitoring area and develop an adaptive
algorithm to dynamically decide when to shrink the monitor-
ing area. Experimental results show that establishing a mon-
itoring area for continuous kNN query processing greatly
reduces energy consumption and prolongs network lifetime.
It is also shown that the adaptive algorithm for maintaining
the monitoring area achieves close-to-optimal performance.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 introduces some pre-
liminaries and Sect. 4 presents the localized scheme to con-
tinuously monitor kNN queries. The maintenance strategies
of the monitoring area are presented in Sect. 5. Section 6
describes the experimental setup and discusses the experi-
mental results. Finally, Sect. 7 concludes the paper.

2 Related work

With the growing needs for location-based services, contin-
uous monitoring of kNN queries is becoming increasingly
popular in the context of spatial databases [3,13,14,19,30,
35]. Recently, some grid-based methods are explored in con-
tinuous monitoring of kNN queries. Yu et al. [35] proposed
a method called YPK-CNN, assuming a centralized reposi-
tory storing the locations of all objects which are indexed by
a grid structure. Location updates are continuously sent to
the centralized repository. kNN queries are reevaluated peri-
odically according to the new locations of the objects. YPK-
CNN achieves low computation time and memory usage. The
CPM scheme proposed by Mouratidis et al. [13] also uses a
grid structure for indexing. It further reduces the computation

time by optimizing the visiting order of the grid cells to
handle location updates more effectively.

Similar to YPK-CNN, the SEA-CNN scheme proposed
by Xiong et al. [30] also stores the object locations in a cen-
tralized repository and indexes them by a grid structure. Each
query is assigned a circle called the answer region centered
at the query point and with a radius equal to the distance
between the query point and the kth nearest object in the
kNN result. When location updates are collected, the query
is reevaluated only if the updates affect its answer region.
SEA-CNN achieves high scalability in terms of computation
time when there are multiple queries.

The above methods assume that there is a centralized
repository to store all object locations and all location updates
are simply reported to the centralized repository. However,
such centralized storage is costly for object tracking sensor
networks due to their energy constraints. Therefore, these
methods are not appropriate for kNN monitoring in sensor
networks.

Other relevant work on spatial query monitoring includes
the MobiEyes algorithm proposed by Gedik et al. [3] and a
threshold-based algorithm proposed by Mouratidis et al. [14].
Similar to YPK-CNN, SEA-CNN and CPM, these studies
also assume a centralized server in the system. But differ-
ently, the MobiEyes and threshold-based algorithms assume
smart objects that have some storing and processing capabil-
ities. When an object moves away from its current position,
the object can decide whether to send a location update to
the server or not. Both the MobiEyes and threshold-based
algorithms aim at reducing the communication cost between
the objects and the server by eliminating unnecessary loca-
tion updates. MobiEyes [3] focuses on monitoring range que-
ries by assigning a safe region to each query. The objects
within the safe region periodically check whether they are in
the query ranges. Only the objects within the query ranges
report their locations to the server. The threshold-based algo-
rithm [14] assigns a distance range to each object in the result
set of a kNN query. The distance range for the i th near-
est object is delineated by the midpoint between the i th and
(i − 1)th nearest objects and the midpoint between the i th
and (i +1)th nearest objects. Only when an object moves out
of its distance range is the location update of the object sent
to the server. The approaches of [3] and [14] are similar to
many studies on continuous monitoring in sensor networks
[22–24,28]. The general idea of these studies is to set some
constraints at the sensor nodes to prevent them from report-
ing all sensed data to the base station. Only when the con-
straint is violated should the sensor node report the updates
of sensed data. The detailed setting of the constraints at rel-
evant sensor nodes depends on specific query types. How-
ever, these studies have focused on monitoring stationary
phenomena (e.g., temperature and humidity). A stationary
phenomenon is always captured by the same sensor node over

123

Localized monitoring of kNN queries in wireless sensor networks 101

time. In object tracking sensor networks, however, the object
location is detected by different sensor nodes as the object
moves. In this paper, we make use of monitoring areas to
eliminate unnecessary updates from the sensor nodes.

Spatial query processing is drawing more attention to
the sensor network community. J. Winter et al. [27] and
S.-H. Wu et al. [29] proposed schemes to search the k nearest
sensor nodes in sensor networks. The general idea is to visit
and collect information from the sensor nodes within an esti-
mated search space. In [27], the search space is divided into
several subspaces and the sensor nodes in each subspace are
organized into a minimum spanning tree. The information of
the sensor nodes is collected by the roots of the trees and then
gathered at the nearest node to the query point where the k
nearest nodes are computed. Recently, S.-H. Wu et al. [29]
designed an itinerary-based approach to search for k nearest
sensor nodes. Similar to the idea in [27], the search space
is divided into several subspaces to enable parallel search.
The sensor nodes in each subspace are visited sequentially
according to a well-defined itinerary. While the above work
aimed at locating the k nearest sensor nodes, we focus on
searching for the k nearest objects in object tracking sensor
networks.

Xu et al. [31] investigated ID-based one-shot queries in
object tracking sensor networks. Xu et al. [32] studied win-
dow query processing in sensor networks. In this approach,
a window query is propagated along the sensor nodes via a
well-designed itinerary. Data collected by the sensor nodes
are aggregated along with query propagation until all nodes
in the window have been visited. In an earlier work, we pro-
posed a grid-based scheme to process one-shot 1-NN queries
in sensor networks [33]. Similar to [32], a 1-NN query is eval-
uated by sequentially visiting the grid cells surrounding the
query point. However, these studies have focused on one-
shot query processing. In contrast, in this paper, we consider
continuous query processing. This paper substantially
extends a preliminary report of our work presented at a con-
ference [34].

3 Preliminaries

3.1 System model

We consider a sensor network with the sensor nodes distrib-
uted on a 2D place. The sensor nodes are aware of their loca-
tions through GPS [4] or other localization algorithms [16].
Each sensor node can communicate directly with the nodes
(called neighbors) within a radio range Rt . Through message
exchanges, each sensor node is aware of the geographical
locations of its neighbors. We assume the network is con-
nected, i.e., any sensor node can communicate with any other
node either directly or indirectly through a routing protocol.

q

Possible locations
 for the R-node of

cell G

2
tRG

1

2
tRα =

1

2
tRα =

Fig. 1 Grid structure

We assume a dense sensor network in which the geograph-
ical area of interest is fully covered by the sensing ranges of
the sensor nodes. At each sampling interval, the location of
each object is detected by a sensor node in the network.1

Suppose the sensing range of each sensor node is Rs . Then,
the detecting sensor node of an object must be located within
distance Rs to the object. Instead of sending all detected
object locations to a central repository, we propose to store
them locally at the detecting sensor nodes. kNN queries can
be made via sensor nodes from anywhere in the network
(e.g., through the hand-held devices by the users). Recall that
each kNN query specifies a query point q. The sensor node
receiving a query first forwards it towards q through GPSR
routing [8]. Given a destination location, GPSR routes the
message to the node closest to the destination location [20].
Thus, the node closest to the query point q would receive the
query. We shall refer to this node as the query sink. Our objec-
tive is to continuously collect the kNN result at the query sink
which in turn returns the result to the user.

3.2 One-shot kNN query processing

We first consider the processing of one-shot kNN queries,
which forms the basis of initial and continuous evaluations
of long running kNN queries. For each kNN query, we define
a grid structure to conceptually partition the sensor network
into a set of grid cells. As shown in Fig. 1, each grid cell is a
square of size α×α and the query point q is set as the centroid
of a grid cell. Each sensor node can autonomously compute
the grid cell in which it is located provided that it knows
the location (q.x, q.y) of query point q. The centroid of the
grid cell containing a sensor node located at (x, y) is given by(

q · x + � x−(q·x− α
2)

α
� · α, q · y + � y−(q·y− α

2)

α
� · α

)
. As shall

1 Although the sensor nodes may work collaboratively to determine
the location of an object in their vicinity [10], we assume that for each
object, only one sensor node (the sensing leader or cluster head) is
responsible for storing its location at each sampling interval [9,31,37].
For simplicity, the detecting sensor node in the rest of this paper refers
to this node.

123

102 Y. Yao et al.

be discussed later, the knowledge of q is made known to rel-
evant sensor nodes in query processing.

Starting from the query sink, the query message is passed
along the sensor nodes to search for nearby objects in the
neighboring grid cells. When a grid cell is visited, the object
locations detected by the sensor nodes in the cell are collected
by one sensor node called the R-node. To do so, the R-node
broadcasts a one-hop probe message to the sensor nodes in
the cell. To guarantee that all nodes within the cell can hear
the probe message, the diameter of the grid cell (i.e.,

√
2α)

should be less than the transmission range Rt . Therefore, we
set the cell size at α = 1√

2
· Rt . To cover the entire cell with

one-hop broadcast, the R-node of a grid cell must be located
within distance 1

2 Rt to the centroid of the cell (as shown in
Fig. 1).

The visit to a grid cell G is divided into two steps.

• In the first step, the query message is routed to the
R-node of G. To do so, the sensor node currently holding
the query message first checks whether any of its neigh-
bors is within distance 1

2 Rt to G’s centroid. If such a
neighbor exists, it is selected as the R-node of G and the
query message is sent to it in one hop. In case multiple
neighbors are within distance 1

2 Rt to G’s centroid, the
one closest to G’s centroid is selected as the R-node of
G. Otherwise, if no such neighbor exists, the query mes-
sage is routed towards G’s centroid by GPSR routing. In
this case, the sensor node closest to G’s centroid would
receive the query message [20]. If the receiving sensor
node is within distance 1

2 Rt to G’s centroid, it assumes
the role of G’s R-node. Otherwise, G must be an empty
grid cell without any sensor node in it, and hence no data
needs to be collected from G. The R-node of G would be
successfully selected in this step if G is non-empty.

• In the second step, the R-node broadcasts a probe mes-
sage to the sensor nodes in G. The probe message con-
tains the locations of the query point q and G’s centroid.
By including the query point in the probe message, each
sensor node receiving the probe message can compute the
centroid of the grid cell containing it. The node then com-
pares the centroid with G’s centroid to determine whether
it is in G. Only the nodes in G would reply to the R-node
with detected object locations if any. A number of sched-
uling methods exist to avoid the collisions between the
replies from different nodes in G [32].

The evaluation of a one-shot kNN query proceeds in two
phases: (i) preliminary search and (ii) expanded search. The
purpose of the preliminary search is to find a boundary object
and define the search space. In this step, the grid cells sur-
rounding the query sink are visited by message passing until
at least k objects are found. Among these objects, the kth
nearest object to the query point is selected as the boundary
object. A search space is then defined based on the location

Fig. 2 Circular approach

of the boundary object to guarantee the inclusion of all sensor
nodes possibly detecting an object closer to the query point
than the boundary object. During the expanded search, the
grid cells in the search space that are not yet visited in the
preliminary search are visited to locate the k nearest objects
to the query point. Finally, the query result is routed back to
the query sink. We now present the preliminary search and
the expanded search in detail.

3.3 Preliminary search

In the preliminary search, we need a rule to determine the
order of the grid cells visited by the query message. Since the
location of the boundary object determines the search space
for the expanded search, to reduce search cost, we would
like the boundary object to be as close to the query point q as
possible. Thus, it is intuitive to visit the grid cells based on
their distances to q. We propose a circular approach to deter-
mine the visiting order of grid cells. Specifically, the search
starts from the cell centered at q and is divided into rounds
as shown in Fig. 2. In each round i (i ≥ 1), the unvisited grid
cells whose minimum distances2 to q are shorter than i ·α are
visited in clockwise order. Figure 3 shows the visiting order
of grid cells in the preliminary search. Initially, the query
message contains the location of the query point q. When a
grid cell is visited, its R-node collects the object locations
detected by the sensor nodes in the cell and records them
in the query message. Given the location of q, the R-node

2 The minimum distance from a grid cell to the query point q refers to
the distance between q and the point on the cell’s perimeter closest to q.

123

Localized monitoring of kNN queries in wireless sensor networks 103

Fig. 3 Visiting order of grid cells in the preliminary search

autonomously determines the next cell to visit and routes the
query message to it as discussed in Sect. 3.2.

The preliminary search completes when the number of
objects recorded in the query message is no less than k.
Among these objects, the kth nearest object to the query
point q is chosen as the boundary object. Denote the bound-
ary object by ob and its distance to q by d(ob, q). The search
space is then defined as the set of grid cells whose minimum
distances to q are shorter than d(ob, q)+ Rs , where Rs is the
sensing range. Intuitively, if a grid cell is in the search space,
the sensor nodes in the grid cell are likely to detect objects
closer to the query point q than the boundary object.

3.4 Expanded search

We refer to the grid cells to be visited in the expanded search
as a search list. It consists of the set of grid cells in the search
space that are not yet visited in the preliminary search. Note
that these grid cells must be included in rounds i, i +1, . . . , j
of the circular visiting order, where i is the round where the
preliminary search ends and j = � d(ob,q)+Rs

α
�. All grid cells

in these rounds can be arranged in a sequence following their
visiting order in the circular approach. We shall use a bit
sequence of equal length to represent the search list, where
a bit ‘1’ means the corresponding grid cell is in the search
list and a bit ‘0’ means otherwise. To assist the mapping of
bits to grid cells, the round number i is also included in the
representation.

The query message in the expanded search contains the
search list, the k recorded object locations, and the query

Algorithm 1 Algorithm executed at R-nodes
1: if a query message p is received at a R-node i responsible for a grid

cell G then
2: Let X be the set of object locations recorded in message p;
3: Collect object locations by the sensor nodes in cell G, and let Y

be the set of object locations collected;
4: if |X | < k and |X ∪ Y| < k then
5: Replace X by X ∪ Y in message p;
6: Determine the next grid cell G ′ to visit according to the circular

approach;
7: Send out message p to G ′ to continue the preliminary search;
8: else if |X | < k and |X ∪ Y| ≥ k then
9: Replace X in message p by k object locations in X ∪ Y nearest

to the query point q and let ob be the kth nearest object to q in
X ∪ Y;

10: Initialize the search list based on the location of ob;
11: Record the search list in p;
12: Select cell G ′ from the search list closest to cell G;
13: Send out message p to G ′ to start the expanded search;
14: else if |X | = k then
15: Remove cell G from the search list in message p;
16: Let ob be the kth nearest object to the query point q in X ;
17: if ∃oi ∈ Y , d(oi , q) < d(ob, q) then
18: Replace X in message p by k object locations in X ∪Y nearest

to q;
19: end if
20: if the search list is not empty then
21: Select cell G ′ from the search list closest to cell G;
22: Send out message p to G ′ to continue the expanded search;
23: else
24: Send out a result message p′ including X to the query sink;
25: end if
26: end if
27: end if

point q. To visit a grid cell G in the search list, the query
message is again routed to the R-node of G. In the expanded
search, the R-node first removes G from the search list (by
setting the corresponding bit in the bit sequence to 0). After
the R-node collects the object locations detected by the sen-
sor nodes in G, one of the following three cases can occur:
(i) no object is detected by any node in G; (ii) all objects
detected are further away from the query point q than the
boundary object; (iii) at least one object detected is closer to
q than the boundary object. In cases (i) and (ii), the search
list and the object locations recorded in the message remain
unchanged. In case (iii), the detected object locations closer
to q are used to update the k object locations recorded in the
message. Meanwhile, the new kth nearest object is assigned
to be the boundary object ob and the search space is shrunk
accordingly. The search list is then updated by removing all
grid cells outside the new search space by setting their bits
to 0. After visiting grid cell G, the query message visits the
next cell on the search list that is closest to G.3 The expanded
search continues until the search list becomes empty. On

3 In case that there are two grid cells with the same distances to G, we
break the ties by choosing the grid cell closer to the query point as the
next grid cell to visit.

123

104 Y. Yao et al.

Cells visited in the
preliminary search

Initial search list derived at the
beginning of expanded search

q

A

B

Ox

Oy

C

D E

Rs

Rs

F

Fig. 4 Expanded search

completion of the expanded search, the message is routed to
the query sink and the k recorded object locations form the
kNN result.

Figure 4 shows an example of 1-NN query processing.
The dark grey grid cells are visited in the preliminary search.
Suppose a boundary object ox is found when cell A is visited.
A’s R-node determines the search space (defined based on
the solid circle in Fig. 4) and derives the search list (the light
grey grid cells in Fig. 4). In the expanded search, the query
message then starts visiting the grid cells on the search list.
Suppose that when cell B is visited, an object oy closer to
q than ox is found. Then, the search space is shrunk accord-
ingly. The new search space is defined based on the dashed
circle in Fig. 4. Cells C, D, E and F are now the only four
grid cells left in the updated search list. The expanded search
completes after visiting these cells.

Algorithm 1 summarizes the algorithm executed at each
R-node when a query message is received.

4 Localized scheme for continuous kNN queries

4.1 Overview

The set of kNNs and their locations may change over time
as the objects move. In this section, we propose a localized
scheme to continuously derive the kNN result at the query
sink. The basic idea is to collect only the relevant data from
the sensor nodes near the query point for kNN monitoring.
A straightforward strategy is to reevaluate the query from
scratch at each sampling interval using the one-shot kNN

query processing algorithm described in Sect. 3.2. However,
this may incur large number of query messages. In the fol-
lowing, we propose to set up a monitoring area for a contin-
uous kNN query in the sensor network. The sensor nodes in
the monitoring area proactively report the location updates
that may potentially affect the kNN result to the query sink.
There are two stages in the processing of a continuous kNN
query with a monitoring area setup. In the first stage, the
kNN query is initially evaluated at the first sampling inter-
val using the scheme described in Sect. 3.2. The monitoring
area is established along with the initial query evaluation as
will be discussed in Sect. 4.2. In the second stage, the query
sink continuously collects the location updates, reevaluates
the query results, and maintains the monitoring area at each
subsequent sampling interval. The query reevaluation will
be discussed in Sect. 4.3 and the maintenance of monitoring
area will be discussed in Sect. 4.4.

4.2 Monitoring area setup

A monitoring area is defined as the set of grid cells whose
minimum distances to q are shorter than d(ok, q)+Rs , where
d(ok, q) is the distance between the kth nearest object ok and
q, and Rs is the sensing range. The radius is set in this way to
guarantee that all sensor nodes possibly detecting the objects
closer to q than ok are included in the monitoring area. To
collect all object locations closer to q than ok , the sensor
nodes in the monitoring area may simply update all detected
object locations with the query sink at each sampling inter-
val. However, this may result in unnecessary location update
for objects that are further away from q than ok . To reduce
location updates, we divide the grid cells in the monitoring
area into two groups: all-report cells and partial-report cells.
The sensor nodes in the all-report cells update all detected
object locations with the query sink; the sensor nodes in the
partial-report cells keep a distance threshold and only update
with the query sink the detected object locations within the
distance threshold from q. To guarantee that all object loca-
tions closer to q than ok are reported, the distance thresholds
at the sensor nodes in the partial-report cells should be set
at no less than d(ok, q). Lastly, the sensor nodes in the grid
cells beyond the monitoring area do not update any detected
object location with the query sink.

We now show how to set up the monitoring area in the ini-
tial query evaluation. Recall that during the preliminary and
expanded searches, all grid cells whose minimum distances
to q are shorter than d(ok, q)+Rs are visited. When a grid cell
is visited, its R-node broadcasts a probe message to all nodes
in the cell. To establish the monitoring area, a new parame-
ter is included in the probe message to indicate whether the
grid cell is classified as an all-report cell or a partial-report
cell. All grid cells visited during the preliminary search are
classified as all-report cells. For each grid cell visited during

123

Localized monitoring of kNN queries in wireless sensor networks 105

the expanded search, if its minimum distance to the query
point q is shorter than the distance from the boundary object
recorded in the query message to q, the grid cell is classified
as an all-report cell. Otherwise, the grid cell is classified as
a partial-report cell and the distance thresholds at the sensor
nodes in the grid cell are set to the distance from the bound-
ary object to q. Note that the boundary object recorded in the
query message at any time in the expanded search cannot be
closer to q than the kth nearest object ok in the final kNN
result. Therefore, the distance thresholds set must be larger
than d(ok, q).

Figure 5 illustrates an example of monitoring area setup
following Fig. 4 in Sect. 3.2. The dark grey grid cells are
visited in the preliminary search and the light grey grid cells
G1 to G9 are visited in the expanded search. The dark grey
grid cells are classified as all-report cells. When grid cells G1

to G4 are visited, ox is the boundary object and G1 to G4 are
classified as all-report cells since their minimum distances
to q are all shorter than d(ox , q). At G5, a new boundary
object oy replaces ox in the query message. When G6 to G9

are visited, the boundary object recorded in the query mes-
sage is oy . As the minimum distances from G5 and G6 to
q are shorter than d(oy, q), G5 and G6 are classified as all-
report cells. On the other hand, G7 to G9 are classified as
partial-report cells because their minimum distances to q are
longer than d(oy, q). As a result, the distance thresholds at
the sensor nodes in G7 to G9 are set at d(oy, q).

d(oy,q)

d(ox,q)

q

Ox

Oy

G1
G2G3

G4

G5

G7

G6

G8

G9

Cells visited in the
preliminary search

Cells visited in the
expanded search

Fig. 5 Setup of monitoring area

4.3 Query reevaluation

After the initial query evaluation at the first sampling inter-
val, the monitoring area is set up accordingly. At subsequent
sampling intervals, the query sink continuously collects the
location updates from the sensor nodes in the monitoring area
and reevaluates the kNN result.

Consider a sampling interval i . Suppose the monitoring
area at the beginning of interval i includes the set of grid cells
whose minimum distances to q are shorter than d(oi−1

k , q)+
Rs , where oi−1

k is the kth nearest object to q at interval
i − 1. At interval i , denote by k′ the number of object loca-
tions reported by the sensor nodes in the monitoring area. If
k′ < k (case A), the query sink needs to search for k − k′
more objects. Similar to the scheme described in Section 3.2,
the search involves two phases: the preliminary search and
the expanded search. The only difference is that the all-
report cells are exempted from the preliminary search. This
is because the sensor nodes in these grid cells have already
reported all detected object locations to the query sink. Note
that the grid cells whose minimum distances to q are shorter
than d(oi−1

k , q) must have been classified as all-report cells.
Thus, the query message, containing the k′ object locations
collected, is sent from the query sink to the first grid cell

in round � d(oi−1
k ,q)

α
� of the circular visiting order to start the

preliminary search.
If k′ ≥ k, a list of k object locations closest to q are

selected from the k′ object locations collected. Let ob be the
kth nearest object to q among these k objects. If d(ob, q) ≤
d(oi−1

k , q) (case B), the k objects selected are the new kNN
result since all object locations nearer to q than oi−1

k are
included in the k′ object locations collected. Neither the
preliminary search nor the expanded search is needed in
this case. Otherwise, if d(ob, q) > d(oi−1

k , q) (case C), the
expanded search is carried out to refine the new kNN result.
ob is set as the initial boundary object for the expanded search,
and the search list includes the grid cells whose minimum dis-
tances to q are shorter than d(ob, q) + Rs and longer than
d(oi−1

k , q) (note that all grid cells whose minimum distances
to q are shorter than d(oi−1

k , q) were all-report cells).

4.4 Maintenance of monitoring area

The monitoring area, initially set up at the first sampling
interval, may need to be updated later due to the change in
the kNN result upon query reevaluation. Let oi

k and oi−1
k be

the kth nearest objects to q at intervals i and i − 1 respec-
tively. Then, the monitoring area at the beginning of interval
i includes the grid cells whose minimum distances to q are
shorter than d(oi−1

k , q) + Rs . If d(oi
k, q) > d(oi−1

k , q), the
monitoring area should be expanded at interval i to include
all grid cells whose minimum distances to q are shorter than

123

106 Y. Yao et al.

d(oi
k, q) + Rs . Thus, a set of new grid cells should be added

to the monitoring area. The sensor nodes in these grid cells
need to be notified to update detected object locations with
the query sink starting from the next sampling interval. Note
that oi

k is further away from q than oi−1
k only in cases A and

C discussed in Sect. 4.3. In both cases, the preliminary search
and/or expanded search are needed to reevaluate the query.
The new grid cells to be added to the monitoring area would
be visited in these searches. Similar to the initial query eval-
uation, the sensor nodes in these cells are notified along with
the searches.

On the other hand, if d(oi
k, q) ≤ d(oi−1

k , q), the mon-
itoring area can be shrunk to reduce the number of sen-
sor nodes updating object locations with the query sink.
As shown in Fig. 6, the old monitoring area includes the
grid cells whose minimum distances to q are shorter than
rold = d(oi−1

k , q) + Rs . The new monitoring area includes
the set of grid cells whose minimum distances to q are shorter
than rnew = d(oi

k, q) + Rs . We divide the grid cells in the
old monitoring area into three categories:

(i) The grid cells whose minimum distances to q lie in
[rnew, rold] (shown by the dark grey grid cells in Fig. 6).
The sensor nodes in these grid cells need to be
informed to stop updating detected object locations
with the query sink;

(ii) The grid cells whose minimum distances to q lie in
[d(oi

k, q), rnew] (shown by the light grey grid cells in
Fig. 6). These grid cells would be classified as partial-
report cells in the new monitoring area. The sensor
nodes in these grid cells need to be informed about the
new distance threshold d(oi

k, q);
(iii) The grid cells whose minimum distances to q are

shorter than d(oi
k, q) (shown by the white grid cells

in Fig. 6). These grid cells are all-report cells in the
old monitoring area and would remain all-report cells
in the new monitoring area.

q

rold

rnew

Category (i)

Category (ii)

Category (iii)

(,)i
kd o q

Fig. 6 Shrinking of the monitoring area

To inform the sensor nodes in the grid cells of the first two
categories, a notification message is sent to them through
geocast [15]. To describe the target area of geocast, the noti-
fication message contains the location of the query point q,
and the new distance threshold d(oi

k, q) as well as the radius
of the old monitoring area rold. In the geocast, the notification
message is first sent to a sensor node in the target area by uni-
cast. Starting from this sensor node, the message is flooded
to all sensor nodes in the target area. For each node in a grid
cell whose minimum distance to q falls in [rnew, rold], it stops
reporting location updates to the query sink upon receiving
the notification message. For each node in a grid cell whose
minimum distance to q falls in [d(oi

k, q), rnew], it records the
distance threshold upon receiving the notification message.

Traditional geocast does not guarantee that all sensor
nodes in the target area would receive the notification mes-
sage. This is because some nodes in the target area may only
be reachable via the nodes outside the target area [26]. To
increase the delivery rate, in the unicast step of geocast, the
notification message can be sent to a number of m nodes in
the target area instead of one node only [26]. The flooding
then starts from these nodes concurrently. As shown in Fig. 7,
the target area in our case has a ring shape. We propose to
equally divide the ring into m sub-areas. A notification mes-
sage is sent to the center of each sub-area in the unicast step
of geocast. In the flooding step, each sensor node receiving
the notification message further rebroadcasts the message to
its neighbors, unless it has received the notification message
before or it is in a grid cell whose minimum distance to q is
longer than rold or shorter than d(oi

k, q). We shall study the
impact of m through simulation experiments (Sect. 6).

There is in fact a tradeoff between the overhead of shrink-
ing the monitoring area and the saving in location updates
sent by the sensor nodes in the monitoring area. If the moni-
toring area is shrunk whenever the kth nearest object moves

rold

(,)i
kd o q

Fig. 7 Example of geocast (m = 4)

123

Localized monitoring of kNN queries in wireless sensor networks 107

Algorithm 2 Algorithm executed at the query sink
1: At the first sampling interval, conduct the initial query evaluation by

sending out a query message p to the first grid cell G according to
the circular approach;

2: Wait for the result message p′;
3: Extract from p′ the k nearest object locations to the query point q

and let o1
k be the kth nearest object location;

4: for each subsequent sampling interval i before the query expires do
5: Record in U the location updates received from the sensor nodes

in the monitoring area;
6: if |U | < k then
7: Record U in a query message p;
8: Select the grid cell G to visit for the preliminary search;
9: Send out message p to G to start the preliminary search;
10: Wait for the result message p′;
11: Extract from p′ the k nearest object locations to the query point

q and let oi
k be the kth nearest object location;

12: else
13: Derive from U the k nearest object locations to q (called U ′)

and let ob be the kth nearest object location in U ′;
14: if d(ob, q) > d(oi−1

k , q) then
15: Initialize the search list for the expanded search;
16: Record U ′ and the search list in a query message p;
17: Select cell G from the search list which is nearest to the query

sink;
18: Send out message p to G to start the expanded search;
19: Wait for the result message p′;
20: Extract from p′ the k nearest object locations to the query

point q and let oi
k be the kth nearest object location;

21: else if d(ob, q) ≤ d(oi−1
k , q) then

22: The k nearest object locations to q are those in U ′ and let
oi

k = ob;
23: end if
24: end if
25: if the maintenance strategy determines to shrink the monitoring

area then
26: Send out the shrink message to a relevant ring-shaped area;
27: end if
28: end for

nearer to q (called the AggressiveShrink strategy), unnec-
essary location updates are aggressively eliminated. How-
ever, geocasting the notification message to shrink the mon-
itoring area incurs communication overhead. Moreover, if
the kth nearest object moves away from q later, the moni-
toring area would have to be expanded again. As a result,
the overhead of updating the monitoring area may exceed
the saving in location updates, thereby increasing the total
communication cost. On the other hand, if the monitoring
area is never shrunk (called the NoShrink strategy), a large
number of unnecessary location updates may be sent to the
query sink leading to high total communication cost. In our
preliminary work [34], we designed a simple maintenance
strategy that looks ahead to the location update saving and
the shrinking overhead in one subsequent sampling interval
only. In fact, shrinking, the monitoring area normally affects
the location update costs in a series of subsequent sampling
intervals. Thus, in the following section, we systematically
investigate the maintenance of the monitoring area. We first

analyze an offline optimal schedule to shrink the monitoring
area. Then, we propose an adaptive strategy that dynamically
decides when to shrink the monitoring area on the fly based
on the shrinking overhead relative to the saving in location
updates.

Algorithm 2 highlights the algorithm executed at the query
sink including the initial query evaluation at the first time
interval (steps 1–3), and query reevaluations at subsequent
sampling intervals (steps 4–28).

5 Scheduling strategy to shrink the monitoring area

5.1 Optimal schedule to shrink the monitoring area

Given all object locations and their detecting sensor nodes at
each sampling interval, we would like to compute the optimal
schedule to shrink the monitoring area, i.e., to find a set of
intervals such that the total message complexity is minimized
if the monitoring area is shrunk at these intervals. The total
message complexity includes those of shrinking the moni-
toring area, query reevaluation, and location updates at each
sampling interval.

Suppose that at an interval i , the monitoring area consists
of all grid cells whose minimum distances to q are shorter
than d(oi

k, q) + Rs , where oi
k is the kth nearest object at

interval i . We consider the message complexity at a sam-
pling interval v > i assuming that the monitoring area does
not shrink at intervals i + 1, i + 2, . . . , v − 1. At the begin-
ning of interval v, the monitoring area would include all
grid cells whose minimum distances to q are shorter than
max

i≤x<v
d(ox

k , q) + Rs , where ox
k is the kth nearest object at

interval x . We shall denote by cr (i, v) the message com-
plexity for the sensor nodes in the monitoring area to report
location updates to the query sink at interval v. Let ov

k be the
kth nearest object at interval v. If d(ov

k , q) > max
i≤x<v

d(ox
k , q),

the query reevaluation at the query sink involves prelimi-
nary search and/or expanded search. As a result, the mon-
itoring area must be expanded. Otherwise, if d(ov

k , q) ≤
max

i≤x<v
d(ox

k , q), the query reevaluation does not involve any

message transmission, and it is possible to shrink the moni-
toring area at interval v. In this case, we say that interval v is
shrinkable with respect to interval i . Given i , we shall denote
all intervals v > i that are shrinkable with respect to interval
i by a set S(i). Without loss of generality, for any v > i , we
define cq(i, v) as the message complexity for query reeval-
uation at interval v; for any v ∈ S(i), we define cs(i, v) as
the message complexity for shrinking the monitoring area at
interval v. The complexities cr (i, v), cq(i, v), cs(i, v) can be
derived from the object locations and their detecting sensor
nodes at the sampling intervals.

123

108 Y. Yao et al.

Assume that at a sampling interval I , the monitoring area
consists of all grid cells whose minimum distances to q are
shorter than d(oI

k , q) + Rs . We consider a period of sam-
pling intervals I + 1, I + 2, . . . , H . Suppose the monitoring
area is shrunk at intervals x1, x2, . . . , xm , where I < x1 <

x2 < · · · < xm ≤ H , xi ∈ S(xi−1) for each 1 < i ≤ m, and
x1 ∈ S(I). Then, the total message complexity over intervals
I + 1, I + 2, . . . , H is given by

cost (I, H : x1, x2, . . . , xm) = cs(I, x1)

+
x1∑

v=I+1

(
cr (I, v) + cq(I, v)

)

+
m−1∑
i=1

⎛
⎝cs(xi , xi+1) +

xi+1∑
v=xi +1

(
cr (xi , v) + cq(xi , v)

)
⎞
⎠

+
H∑

v=xm+1

(
cr (xm, v) + cq(xm, v)

)
. (1)

Given cr (i, v) and cq(i, v) for all I ≤ i < v ≤ H , and
cs(i, v) for any i and v where v ∈ S(i), the offline opti-
mal shrinking schedule problem is to find a set of intervals
I < x1 < x2 < · · · < xm ≤ H that minimize (1). For
convenience, we shall call it the (I, H)-optimization prob-
lem. We show that the problem can be solved by a dynamic

programming algorithm. This is because the optimal sched-
ule to the (I, H)-optimization problem contains optimal solu-
tions to some subproblems. Let (x1, x2, . . . , xm) be an
optimal shrinking schedule to the (I, H)-optimization prob-
lem. Then, (x2, x3, . . . , xm) must be an optimal shrinking
schedule to the (x1,H)-optimization problem. This is because
if there exists another shrinking schedule (y1, y2, . . . , yl)

(where x1 < y1 < y2 < · · · < yl ≤ H) that results in a
lower message complexity than (x2, x3, . . . , xm), i.e.,

cost (x1, H : y1, y2, . . . , yl) < cost

(x1, H : x2, x3, . . . , xm), (2)

it follows that

cost (I, H : x1, y1, y2, . . . , yl)

= cs(I, x1) +
x1∑

v=I+1

(
cr (I, v) + cq(I, v)

)

+ cost (x1, H : y1, y2, . . . , yl)

< cs(I, x1) +
x1∑

v=I+1

(
cr (I, v) + cq(I, v)

)

+ cost (x1, H : x2, x3, . . . , xm)

= cost (I, H : x1, x2, ..., xm),

which contradicts the optimality of (x1, x2, . . . , xm).
For any I ≤ j < H , let C[j] be the minimum achievable

message complexity in the (j, H)-optimization problem, and
B[j] be the first shrinking interval in the optimal schedule to
the (j, H)-optimization problem. Note that if the monitoring
area does not shrink at any interval, the message complex-
ity over intervals j + 1, j + 2, ..., H is

∑H
v= j+1

(
cr (j, v) +

cq(j, v)
)
. Hence, the recurrences for dynamic programming

are given by

C[j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cr (H − 1, H) + cq(H − 1, H) if j = H − 1,

min

⎛
⎝ min

j<x<H,x∈S(j)

⎛
⎝cs(j, x) +

x∑
v= j+1

(
cr (j, v) + cq(j, v)

) + C[x]
⎞
⎠ ,

∑H
v= j+1

(
cr (j, v) + cq(j, v)

)
⎞
⎠

if j < H − 1,

(3)

and

B[j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if j = H − 1,

arg min
j<x<H,x∈S(j)

⎛
⎝cs(j, x) +

x∑
v= j+1

(
cr (j, v) + cq(j, v)

) + C[x]
⎞
⎠

if j < H − 1 and C[j] = min
j<x<H,x∈S(j)

⎛
⎝cs(j, x) +

x∑
v= j+1

(
cr (j, v) + cq(j, v)

) + C[x]
⎞
⎠ ,

∅ if j < H − 1 and C[j] =
H∑

v= j+1

(
cr (j, v) + cq(j, v)

)
.

(4)

Starting from C[H − 1] and B[H − 1], we can compute
all C[j]’s and B[j]’s in decreasing order of j . On obtain-
ing all C[j]’s and B[j]’s, the optimal shrinking intervals
can be derived by tracing back the B-entries. Starting from
x1 = B[I], we can obtain the shrinking intervals in the
optimal schedule by setting xv+1 = B[xv] iteratively until
B[xv] = ∅.

123

Localized monitoring of kNN queries in wireless sensor networks 109

Now we analyze the time complexity of the dynamic pro-
gramming. Let P = H − I be the length of the period under
consideration. Given any w, the computation complexity of∑u

v=w+1

(
cr (w, v) + cq(w, v)

)
for all different u’s is O(P).

Hence,
∑u

v=w+1

(
cr (w, v) + cq(w, v)

)
for all pairs of u and

w can be computed in a pre-processing stage in O(P2) time.
Then, the time complexity to compute C[j] is given by O(P).
Thus, the time complexity to compute all C[j]’s is given by
O(P2). Therefore, the total time complexity of the dynamic
programming algorithm is O(P2). The computed optimal
schedule shall be referred to as the OptimalShrink strategy.

5.2 Adaptive schedule to shrink the monitoring area

The OptimalShrink strategy provides the minimal total cost
over a designated period. However, it is computed in an off-
line manner where object locations at all sampling intervals
are assumed known a priori. In practice, the object locations
are not known beforehand. Thus, in this section, we propose
an adaptive strategy (called AdaptiveShrink) to dynamically
decide when to shrink the monitoring area on the fly. The
general idea is to compare the saving in location updates
with the overhead of shrinking the monitoring area.

Consider a sampling interval i . Suppose prior to interval
i , the monitoring area was last updated at interval j < i (see
Fig. 8). It could be either shrunk by geocast or be expanded
due to query reevaluation. Then, the monitoring area at the
beginning of interval i includes the grid cells whose mini-
mum distances to q are shorter than rold = d(o j

k , q)+Rs . The
monitoring area can be shrunk at interval i only if d(oi

k, q) <

d(o j
k , q). If the monitoring area is shrunk at interval i , the new

monitoring area would include the grid cells whose mini-
mum distances to q are shorter than rnew = d(oi

k, q) + Rs .
We notice that, if the monitoring area is shrunk at interval
i , it saves not only the location updates at the next sampling
interval i+1, but also the location updates at subsequent sam-
pling intervals as long as the sizes of the monitoring areas
at these sampling intervals are less than rold. Let h > i be
the first interval at which the size of the monitoring area first
exceeds rold since interval i (i.e., d(oh

k , q) ≥ d(o j
k , q)). Then,

the shrinking of the monitoring area at interval i would save

j i hg Sampling interval x

rold

rnew
rnew

rold

Fig. 8 Adaptive strategy

the location updates at intervals i + 1, i + 2, . . . , h. Denote
the total saving of location updates by csaving. On the other
hand, the overhead of shrinking the monitoring area not only
includes the cost of shrinking the monitoring area at interval
i (denoted as cshrink), but also includes the cost of expanding
the monitoring area from size rnew to size rold due to query
reevaluation at later sampling intervals. Let g > i be the first
interval at which the size of the monitoring area exceeds rnew

[i.e., d(og
k , q) > d(oi

k, q)]. It follows that h ≥ g > i . Then,
the cost of expanding the monitoring area from size rnew to
rold is given by the total query reevaluation cost at intervals
g, g + 1, g + 2, . . . , h (denote by cquery). In our adaptive
strategy, the new monitoring area is kept unchanged at inter-
val i if csaving ≤ cshrink + cquery. Otherwise, if csaving >

cshrink + cquery, the monitoring area is shrunk. The problem
remains to predict csaving, cshrink and cquery at interval i .

We start by estimating intervals g and h. Note that g > i
is the first interval since i such that d(og

k , q) > d(oi
k, q). For

clarity of presentation, we shall replace g by g(i). We esti-
mate g(i) by computing g(i)− i based on the historical dura-
tions of g(v)−v for each interval v prior to i . That is, g(i)−
i = 1

i−1

∑i−1
v=1(g(v)− v), i.e., g(i) = i + 1

i−1

∑i−1
v=1(g(v)−

v). To do so, the query sink keeps the history of the kth near-
est object locations. For each v < i , g(v) can be computed
straightforwardly if max

v<u<i
d(ou

k , q) > d(ov
k , q). Otherwise,

if max
v<u<i

d(ou
k , q) ≤ d(ov

k , q), g(v) is simply set to i . To com-

pute h, we estimate h − g by i − j . Thus, given g and j , h
is computed as i − j + g.

After estimating the intervals g and h, we first compute
csaving, the saving in location updates. Let N be the number
of objects whose distances to the query point q are between
rold = d(o j

k , q) + Rs and rnew = d(oi
k, q) + Rs at inter-

val i . N can be derived at the query sink. For each sam-
pling interval from i + 1 to g, we estimate that N objects
would be exempted from location updates if the monitor-
ing area is shrunk at interval i . For the sampling intervals
from g + 1 to h, the monitoring area is gradually expanded
from size rnew to rold. We approximate that on average 1

2N
objects are exempted from location updates at each interval
from g + 1 to h. The message complexity to send one loca-
tion update of an object to the query sink is approximated
by � 1

2 (rold + rnew)/Rt�. Thus, the total saving in location
updates from interval i + 1 to h is estimated by

csaving =
(

g − i + 1

2
· (h − g)

)
· N · �1

2
(rold + rnew)/Rt�.

Next, we compute cshrink, the cost of shrinking the moni-
toring area at interval i . Following the two steps of geocast,
the cost of shrinking the monitoring area includes that of
sending the unicast messages to the target area and that of
flooding the messages within the target area. For simplicity,
we exclude the cost of sending the unicast messages in the

123

110 Y. Yao et al.

estimation of cshrink since it is usually much smaller than
the cost of flooding. The message complexity of flooding is
approximated by the number of sensor nodes in the target
area. The target area includes all grid cells whose minimum
distances to q lie between d(oi

k, q) and rold = d(o j
k , q)+ Rs .

According to the derivation in [33], given the size α of a grid
cell, the number of grid cells whose minimum distances to
q are shorter than r is given by a · r2 + b · r + c, where
a = π

α2 , b = 4.1178
α

, c = 2.3241. Thus, the number of grid
cells in the target area is given by
(

a · (d(o j
k , q) + Rs)

2 + b · (d(o j
k , q) + Rs) + c

)

−
(

a · d(oi
k, q)2 + b · d(oi

k, q) + c
)

.

Suppose f is the mean sensor node density. Then, on average,
each grid cell would contain f · α2 sensor nodes. Therefore,
the expected cost of shrinking the monitoring area at interval
i is estimated by

cshrink = f · α2 ·
(
(a · (d(o j

k , q) + Rs)
2 + b · (d(o j

k , q)

+Rs) + c) − (a · d(oi
k, q)2 + b · d(oi

k, q) + c)
)

.

Finally, we compute cquery, the cost of query reevaluations
from interval g to h. We first estimate the number of grid
cells visited during query reevaluation. Then, by estimating
the message complexity of visiting a grid cell, we can derive
the message complexity of query reevaluation. The grid cells
visited in query reevaluation include those whose minimum
distances to q lie between d(oi

k, q) and rold = d(o j
k , q)+ Rs .

As discussed above, the number of these grid cells is given by
(

a · (d(o j
k , q) + Rs)

2 + b · (d(o j
k , q) + Rs) + c

)

−
(

a · d(oi
k, q)2 + b · d(oi

k, q) + c
)

.

The messages involved in visiting grid cells include the query
messages transmitted between the R-nodes, the probe mes-
sages broadcast by the R-nodes, and the reply messages sent
by the sensor nodes detecting objects. The number of probe
messages is equivalent to the number of grid cells visited. The
complexity of query messages, on the other hand, depends on
the hop count between the R-nodes of two neighboring grid
cells. Since the maximum distance between two neighboring
grid cells is twice the transmission range, we approximate
that an average of two hops are needed to transmit a query
message between the R-nodes of two neighboring cells. The
number of reply messages is ignored since only a small por-
tion of sensor nodes would reply to the R-nodes. Hence, the
total message complexity of query reevaluation is estimated
by

cquery =3 ·
((

a · (d(o j
k , q) + Rs)

2+b · (d(o j
k , q)+Rs)+ c

)

−
(

a · d(oi
k, q)2 + b · d(oi

k, q)+c
))

.

6 Performance evaluation

6.1 Experimental setup

We simulated continuous kNN query processing in sensor
networks using a simulator called J-Sim [7,25]. We con-
ducted a wide range of experiments to evaluate the perfor-
mance of the localized scheme for monitoring kNN queries.

Table 1 summarizes the system parameters and their set-
tings. We simulated a sensor network covering a 360 m ×
360 m geographical area. A total of 2,500 sensor nodes were
randomly deployed in the sensor network, implying that on
average, there was one sensor node in an area of 50 m2.
Similar to other studies [5], the transmission range and the
sensing range for each sensor node were set at 12.5 m and
10 m respectively. Each sensor node has an average of nine
neighbors.

A given number of n objects were randomly distributed
and tracked in the sensing field. The object locations were
sampled by the sensor nodes at every 30 s. In our experiments,
we assumed that the detecting sensor node of an object is
the one closest to the object [36]. The objects were initially
placed at random in the network. We simulated two different
object mobility models: random waypoint and random walk.
In the random waypoint model (abbreviated as RWP), each
object repeatedly picks a random destination in the network
and moves to the destination at a speed randomly chosen
from a range (0, Vmax]. Vmax varies from 1 to 10 m/s in our
experiments. After reaching a destination, the object imme-
diately chooses the next destination and moves towards it.
In the random walk model (abbreviated as RW), each object
periodically changes its moving speed by randomly choosing
the velocity from a range (0, Vmax] and the moving direction
from a range [0, 2π]. The changing period in random walk
model was set at 30 s.

We simulated the processing of continuous kNN queries
in the network. The query points of the kNN queries were

Table 1 System parameters and settings

Parameters Description Value

N Number of sensor nodes 2,500

Rt Communication range 12.5 m

Rs Sensing range 10 m

f Sensor node density 1 node/50 m2

s × s Size of sensor network 360 m × 360 m

n Number of objects tracked [50, 100, 200, 400, 600]

T Sampling interval 30 s

Vmax Maximum object moving
velocity

[1, 5, 10 m/s]

k Number of NNs required
by a query

[1, 2, 4, 6, 8, 10]

123

Localized monitoring of kNN queries in wireless sensor networks 111

Table 2 Message types and contents

Category Type Content

Query-related Query Query point q + k + search list +
(0 to k) object locations

Query result k object locations

Probe Centroid of a grid cell + q + dis-
tance threshold

Probe reply Object location

Shrink Parameters of the target area + q

Location-update Location update Object location(s)

randomly generated in the sensing field. Each simulation
run was performed for 2,000 sampling intervals. When vis-
iting a grid cell, we used the contention-based scheduling
scheme [32] to avoid collisions between the probe reply mes-
sages from the sensor nodes detecting objects. The time for
each R-node to complete its data collection in the conten-
tion-based scheme was set at 0.018 s [29]. The performance
is evaluated by four metrics: energy consumption, message
complexity, query latency and query accuracy. Specifically,
energy consumption is the average amount of energy con-
sumed by all sensor nodes in the simulation. We focus on
the energy consumption of message exchanges.4 The power
for sending and receiving messages was set at 60 and 45 mW,
respectively [17]. Message complexity refers to the total num-
ber of messages transmitted in the network. There are six
types of messages in the proposed localized scheme for kNN
monitoring. As shown in Table 2, these messages can be
divided into two categories: query-related messages and loca-
tion-update messages. In our experiments, we assumed that
each integer data value takes up 4 bytes in the message and
each floating-point value takes up 8 bytes. Query latency
measures the average time duration between the time when
the query evaluation or reevaluation is initiated and the time
when the query results are returned. Also, due to the query
latency, the reported results may not be accurate because
some objects may have moved from their last tracked loca-
tion. Query accuracy is employed to measure the impact
of object mobility on the accuracy of the query result. It is
defined by |S∩S′|

k , where S is the kNN result set obtained by
the query sink, and S′ is the actual kNN set at the time when
the query results are returned.

We studied the localized scheme in depth by simulating
five different strategies: No-Monitoring-Area, Optimal-

4 Since this paper focuses on query processing, we do not include the
energy consumed in tracking objects. As is the practice in other stud-
ies [21,32], we do not measure the routing protocol load placed by
GPSR since GPSR generates a constant volume of routing protocol
traffic (beacon messages) that is independent of the query processing
scheme and is usually of lower order than the application data traffic.

Shrink, AdaptiveShrink, NoShrink and AggressiveShrink. In
the No-Monitoring-Area strategy, no monitoring area is
established in the network. Hence, no location update is
sent to the query sink. The object locations are all stored
locally at the detecting sensor nodes. At each sampling inter-
val, the query is reevaluated from scratch using the two-
phase method as described in Sects. 3.2–3.4. On the other
hand, in the OptimalShrink, AdaptiveShrink, NoShrink and
AggressiveShrink strategies, a monitoring area is established
in the network. These four strategies use the same meth-
ods of query evaluation, monitoring area setup and query
reevaluation as described in Sect. 4. The difference lies in the
maintenance of monitoring area. The OptimalShrink strategy
derives the optimal shrinking schedule in an offline manner as
described in Sect. 5.1. The AdaptiveShrink strategy dynam-
ically determines when to shrink the monitoring area on the
fly as described in Sect. 5.2. The NoShrink strategy only
expands the monitoring area at query reevaluation and never
shrinks the monitoring area. The AggressiveShrink strategy,
on the other hand, shrinks the monitoring area whenever the
kth nearest object computed in the current sampling interval
is closer to the query point than the kth nearest object in the
previous sampling interval.

6.2 Impact of m in shrinking the monitoring area

Recall that in the first step of geocast, the notification message
is sent to a number of m sensor nodes in the target area. The
flooding then starts from these nodes. In this section, we
investigate the impact of m on the delivery rate of geocast,
where delivery rate is defined as the number of sensor nodes
successfully receiving the message over the total number of
nodes in the target area. We tested a wide range of target
areas that are rings centered at the query point with inner
and outer radius set at i · Rs and (i + 1) · Rs respectively
(1 ≤ i ≤ � s

2α
�). The width of the target area was set at Rs

since it is the narrowest possible width of target areas (rep-
resenting the worst-case delivery rate in our application).
Figure 9 shows the average delivery rate as a function of m.
As can be seen, the delivery rate generally increases with m.
It becomes rather steady when m increases beyond 4. Hence,
the default value of m was set at four in our experiments.

6.3 Performance comparison of five strategies

In this section, we compare the performance of the
five strategies OptimalShrink, AdaptiveShrink, NoShrink,
AggressiveShrink and No-Monitoring-Area under different
mobility models. We first simulated the processing of a sin-
gle continuous kNN query. In this set of experiments, the
number of objects was set at 200 and k was set at 8. The
maximum moving speed for the objects was set at 5 m/s.
For the OptimalShrink strategy, we first ran a set of separate

123

112 Y. Yao et al.

 1

 0.8

 0.6

 0.4

 0.2

 0
 10 9 8 7 6 5 4 3 2 1

D
el

iv
er

y
R

at
e

Fig. 9 Delivery rate versus number of unicast messages

simulations to compute the costs cr (i, v), cq(i, v) and cs(i, v)

for all pairs of i and v. These costs were then used to derive
the optimal shrinking schedule as described in Sect. 5.1.
Figure 10a shows the average energy consumption of the five
strategies. It is seen that: (1) the energy consumption in the
No-Monitoring-Area strategy is much higher than those strat-
egies establishing a monitoring area in the network; (2) the
NoShrink and AggressiveShrink strategies consume much
more energy than the AdaptiveShrink strategy; (3) the aver-
age energy consumption of the AdaptiveShrink strategy is
close to the OptimalShrink strategy.

To better understand these observations, we present the
message breakdown for the five strategies in Fig. 10b. We
observe that the No-Monitoring-Area strategy has the highest
number of query-related messages and involves no location-
update message. This is because in the No-Monitoring-Area
strategy, no monitoring area is established to monitor the
location updates. Hence, the query has to be reevaluated from
scratch at each interval. For the other four strategies, a mon-
itoring area is set up to monitor the location updates that
contribute to query reevaluation. Thus, the number of query-
related messages is greatly reduced.

Among the four strategies establishing monitoring areas,
the AggressiveShrink strategy has the lowest number of loca-
tion-update messages but the highest number of query-related
messages. This is because the monitoring area in Aggressive-
Shrink is always shrunk to a minimum circle covering the k
nearest objects and their detecting sensor nodes. In this way,
the location updates are kept at minimum. However, aggres-
sive shrinking of monitoring area may lead to frequent query
reevaluation when the objects move away from the query
point. Thus, the AggressiveShrink strategy has the highest
number of query-related messages among the four strategies.
In contrast, the NoShrink strategy has the lowest number of
query-related messages. This is because the monitoring area
is never shrunk in NoShrink. Thus, the possibility of carry-
ing out preliminary and expanded searches in query reevalu-
ation is low. However, the NoShrink strategy leads to a large
number of unnecessary location updates. Hence, it has the
highest number of location-update messages among the four
strategies. The AdaptiveShrink strategy makes a good bal-
ance between query-related and location-update messages
by considering the tradeoff between the shrinking overhead
and the saving in location updates. It shrinks the monitor-
ing area only when it is beneficial. As a result, the Adap-
tiveShrink strategy achieves lower total message complexity
than AggressiveShrink and NoShrink. Figure 10 shows that
its performance is close to the offline OptimalShrink strategy.

Figure 11 shows the distribution of energy consumption
among all sensor nodes in the network for processing a single
continuous kNN query. A point (x, y) on the curve means that
a fraction x of all sensor nodes consume more than y J energy
each. The energy consumption for the top 10% nodes in the
No-Monitoring-Area strategy is much higher than the top
10% nodes in the other strategies. This is because many nodes
are involved in transmitting query-related messages at each
interval. Compared to the AggressiveShrink, OptimalShrink
and AdaptiveShrink strategies, the energy consumption in
the NoShrink strategy is highly unbalanced. This is due to
the large number of location updates sent to the query sink.
The sensor nodes surrounding the query sink have to relay

Fig. 10 Performance of
localized scheme (single query)

 0.35

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

 0
RWRWP

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Mobility Model

OptimalShrink
AdaptiveShrink

NoShrink
AggressiveShrink

No-Monitoring-Area
RW

RWP

2 1 0 4321

M
ob

ili
ty

 M
od

el

Number of Messages (× 106)

location-update query-related

OptimalShrink
AdaptiveShrink

NoShrink
AggressiveShrink

No-Monitoring-Area

(a) (b)Average Energy Consumption Message Breakdown

123

Localized monitoring of kNN queries in wireless sensor networks 113

Fig. 11 Distribution of energy
consumption of localized
scheme with single continuous
query

 10

 8

 6

 4

 2

 0
 1 0.1 0.01 0.001

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)
Node Distribution (logscale)

Random Way Point Model Random Walk Model

OptimalShrink
AdaptiveShrink

Noshrink
AggressiveShrink

No-Monitoring-Area

 10

 8

 6

 4

 2

 0
 1 0.1 0.01 0.001

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Node Distribution (logscale)

OptimalShrink
AdaptiveShrink

Noshrink
AggressiveShrink

No-Monitoring-Area

(a) (b)

Fig. 12 Performance of
localized scheme (multiple
queries)

 7

 6

 5

 4

 3

 2

 1

 0
RWRWP

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Mobility Model

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

(a)

RW

RWP

20 10 0 40302010

M
ob

ili
ty

 M
od

el

Number of Messages (× 106)

location-update query-related

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

(b)Average Energy Consumption Message Breakdown

Fig. 13 Impact of k (random
waypoint model)

 7

 6

 5

 4

 3

 2

 1

 0
1086421A

vg
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Number of Nearest Objects Monitored (

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

10

8

6

4

2

1

10 0 40302010N
um

be
r

of
 N

ea
re

st
 O

bj
ec

ts
 M

on
ito

re
d

(
)

Number of Messages (× 106)

location-update query-related

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

)

(a) (b)Average Energy Consumption Message Breakdown

many location updates. Similar to the No-Monitoring-Area
strategy, the energy consumption for the AggressiveShrink
strategy is also high among the top 10% sensor nodes. This
is because query reevaluation and shrinking the monitoring
area both increase the workload of all sensor nodes close to
the query sink. The AdaptiveShrink strategy achieves a sim-
ilar energy distribution to the OptimalShrink strategy. The
energy consumption is lower and more balanced in these
two strategies than in the AggressiveShrink and NoShrink
strategies.

We also simulated the scenario where 20 kNN
queries were monitored concurrently. Figure 12 shows the

performance results of the four strategies AdaptiveShrink,
Noshrink, AggressiveShrink and No-Monitoring-Area. It is
seen that the performance trends of the four strategies are
similar to those of monitoring a single kNN query in the
network (Fig. 10).

6.4 Impact of the number of nearest objects monitored

Figures 13 and 14 show the average energy consumption
and the message breakdown for different numbers of near-
est objects monitored. In this set of experiments, the number
of objects was set at 200 and Vmax was set at 5 m/s. A total

123

114 Y. Yao et al.

Fig. 14 Impact of k (random
walk model) 8

 7

 6

 5

 4

 3

 2

 1

 0
1086421

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

)
Number of Nearest Objects Monitored ()

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

10

8

6

4

2

1

10 0 5040302010

N
um

be
r

of
 N

ea
re

st
 O

bj
ec

ts
 M

on
ito

re
d

(
)

Number of Messages (× 106)

location-update query-related

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

(a) (b)Average Energy Consumption Message Breakdown

Fig. 15 Query latency of
adaptive shrink strategy

 3

 2

 1

 0
1086421

Q
ue

ry
 L

at
en

cy
 (

s)

Number of Nearest Objects Monitored ()

Initial Query Evaluation
Query Reevaluation

Random Way Point Model Random Walk Model

 3

 2

 1

 0
1086421

Q
ue

ry
 L

at
en

cy
 (

s)

Number of Nearest Objects Monitored ()

Initial Query Evaluation
Query Reevaluation

(a) (b)

number of 20 kNN queries were concurrently monitored in
the network. It is seen from Figs. 13a and 14a that the aver-
age energy consumption increases with k for all four strate-
gies. This is because when the requested number of nearest
objects increases, more sensor nodes are visited in query
evaluation and reevaluation. Thus, as shown in Figs. 13b
and 14b, the number of query-related messages increases
with k. Moreover, for the AdaptiveShrink, NoShrink and
AggressiveShrink strategies, a larger monitoring area is
established when more nearest objects are requested. As a
result, more location updates are sent to the query sink at
each sampling interval. Figs. 13b and 14b show that the num-
ber of location-update messages in these four strategies also
increases with k. As k increases, the energy consumption
of NoShrink grows rapidly due to large number of location
updates. Similarly, with increasing k, the energy consump-
tion of AggressiveShrink rises quickly due to high cost of
query reevaluation. The AdaptiveShrink strategy balances
the costs in query reevaluation and location updates. Hence,
its energy consumption increases mildly when k becomes
larger.

Figure 15 shows the latency of initial query evaluation
and query reevaluation for the AdaptiveShrink strategy as a
function of different numbers of nearest objects monitored.

It is shown that the query latency increases when more
nearest objects are monitored in the network. This is because
more grid cells are visited to derive the k nearest objects.
As shown in Fig. 15, the latency of initial query evaluation
in this set of experiments is less than 3 s and the latency of
query reevaluation is lower than 0.15 s. The query reeval-
uation is much faster than initial query evaluation because
the location updates received from the sensor nodes in the
monitoring area are used to reevaluate the query. Hence,
the visit to the grid cells in the monitoring area are
exempted.

Figure 16 shows the query accuracy of the AdaptiveShrink
strategy for different numbers of nearest objects monitored
as a function of Vmax. As expected, query accuracy generally
decreases when the objects move faster. This is because the
object moves a longer distance during the query evaluation or
reevaluation. It is also seen from Fig. 16 that under the same
object moving speed, query accuracy improves when more
nearest objects are monitored. This is because query accu-
racy is normalized by the size of the kNN result set. When the
number of nearest objects monitored is large, an error in the
kNN result set has less impact on query accuracy. Figure 16
shows that under both mobility models, the AdaptiveShrink
strategy achieves higher than 90% query accuracy.

123

Localized monitoring of kNN queries in wireless sensor networks 115

Fig. 16 Query accuracy of
adaptive shrink strategy

 1

 0.98

 0.96

 0.94

 0.92

 0.9

 0.88

 0.86
 10 5 1

Q
ue

ry
 A

cc
ur

ac
y

Maximum Speed (m/s)

k=1
k=2
k=4
k=6
k=8

k=10

Random WayPoint Model(a) (b) Random Walk Model

 1

 0.98

 0.96

 0.94

 0.92

 0.9

 0.88

 0.86
 10 5 1

Q
ue

ry
 A

cc
ur

ac
y

Maximum Speed (m/s)

k=1
k=2
k=4
k=6
k=8

k=10

Fig. 17 Impact of number of
objects (random waypoint
model)

 7

 6

 5

 4

 3

 2

 1

 0
60040020010050

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Number of Objects Tracked ()

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

Average Energy Consumption

600

400

200

100

50

10 0 605040302010

N
um

be
r

of
 O

bj
ec

ts
 T

ra
ck

ed
 (

)

Number of Messages (× 106)

location-update query-related

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

Message Breakdown(a) (b)

Fig. 18 Impact of Number of
Objects (random walk model)

 8

 7

 6

 5

 4

 3

 2

 1

 0
60040020010050

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Number of Objects Tracked ()

Average Energy Consumption(a) (b)

600

400

200

100

50

10 0 80604020

N
um

be
r

of
 O

bj
ec

ts
 T

ra
ck

ed
 (

)

Number of Messages (× 106)

location-update query-related

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

AdaptiveShrink
NoShrink

AggressiveShrink
No-Monitoring-Area

Message Breakdown

6.5 Impact of number of objects tracked

Figures 17 and 18 show the average energy consumption
and the message breakdown for different numbers of objects
tracked in the network. In this set of experiments, Vmax was
set at 5 m/s and k was set at 8. Again, a total number of 20 kNN
queries were concurrently monitored in the network. It is
observed that the average energy consumption decreases with
increasing number of objects in the network. This is because
when there are more objects in the network, the kth nearest
object becomes closer to the query point. Hence, the message
complexity of query reevaluation decreases (see Figs. 17b,
18b). The size of the monitoring area in the AdaptiveShrink,

NoShrink and AggressiveShrink strategies also reduces with
increasing number of objects tracked. The relative perfor-
mance of the four strategies remains similar over a wide range
of object numbers. Under both mobility models, the Adap-
tiveShrink strategy outperforms the AggressiveShrink and
NoShrink strategies.

Figure 19 shows the latency of initial query evaluation
and query reevaluation for the AdaptiveShrink strategy as a
function of the number of objects tracked in the network. It
is shown that the query latency decreases when more objects
are tracked in the network. This is because fewer grid cells are
visited to derive the k nearest objects. As shown in Fig. 19, the
latency of initial query evaluation in this set of experiments

123

116 Y. Yao et al.

Fig. 19 Query latency of
adaptive shrink strategy

 8

 6

 4

 2

 0
60040020010050

Q
ue

ry
 L

at
en

cy
 (

s)
Number of Objects Tracked ()

Initial Query Evaluation
Query Reevaluation

Random WayPoint Model

 8

 6

 4

 2

 0
60040020010050

Q
ue

ry
 L

at
en

cy
 (

s)

Number of Objects Tracked ()

Initial Query Evaluation
Query Reevaluation

Random Walk Model(a) (b)

Fig. 20 Query accuracy of
adaptive shrink strategy

 1

 0.98

 0.96

 0.94

 0.92

 0.9

 0.88

 0.86
 10 5 1

Q
ue

ry
 A

cc
ur

ac
y

Maximum Speed (m/s)

50
100
200
400
600

Random WayPoint Model

 1

 0.98

 0.96

 0.94

 0.92

 0.9

 0.88

 0.86
 10 5 1

Q
ue

ry
 A

cc
ur

ac
y

Maximum Speed (m/s)

50
100
200
400
600

Random Walk Model(a) (b)

is less than 8 s and the latency of query reevaluation is lower
than 0.2 s.

Figure 20 shows the query accuracy of the AdaptiveShrink
strategy for different numbers of objects tracked as a func-
tion of Vmax. Similar to Figs. 16 and 20 shows that query
accuracy decreases when the objects move faster. It is also
seen that under the same object moving speed, query accu-
racy decreases with increasing the number of objects tracked.
This is because when more objects are tracked in the sensing
field, a change in the object location has a greater impact on
the kNN result. Under both mobility models, the Adaptive-
Shrink strategy achieves higher than 90% query accuracy.

7 Conclusion

In this paper, we have proposed a localized scheme for con-
tinuous kNN query processing in object tracking sensor net-
works. In the localized scheme, the object locations are stored
locally at the detecting sensor nodes. A monitoring area is
set up when the kNN query is initially evaluated. Only the
location updates from sensor nodes in the monitoring area
are collected to reevaluate the query. The monitoring area
is expanded and shrunk on the fly upon object movement.
Experimental results show that the cost of query reevaluation
is greatly reduced by establishing the monitoring area in the
localized scheme. We have further studied the maintenance of

the monitoring area. We analyze the optimal maintenance and
develop an adaptive algorithm to dynamically decide when to
shrink the monitoring area. Experimental results show that
the AdaptiveShrink strategy achieves close-to-optimal per-
formance and significantly outperforms the naive NoShrink
and AggressiveShrink strategies in terms of energy consump-
tion and message complexity. The AdaptiveShrink strategy
also yields a good performance in query latency and query
accuracy under various experimental settings.

References

1. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G.,
Rus, D.: Tracking a moving object with a binary sensor network.
In: Proceedings of Sensys (2003)

2. Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.: Rethinking data
management for storage-centric sensor networks. In: Proceedings
of CIDR 2007, January 2007

3. Gedik, B., Liu, L.: Mobieyes: distributed processing of continu-
ously moving queries on moving objects in a mobile system. In:
Proceedings of EDBT’04. Heraklion, March 2004

4. Hoffmann-Wellenhof, B., Lichtenegger, H., Collins, J.: GPS The-
ory and Practice. Springer, New York (1997)

5. He, T., Vicaire, P.A., Yan, T., Luo, L., Gu, L., Zhou, G., Stoleru, R.,
Cao, Q., Stankovic, J.A., Abdelzaher, T.: Achieving real-time target
tracking using wireless sensor networks. ACM Trans. Embed.
Comput. Syst. (TECS) (2007)

123

Localized monitoring of kNN queries in wireless sensor networks 117

6. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion:
a scalable and robust communication paradigm for sensor net-
works. In: Proceedings of Mobicom (2000)

7. J-sim homepage. http://www.j-sim.org
8. Karp, B., Kung, H.T.: GPSR: Greey perimeter stateless routing for

wireless networks. In: Proceedings of Mobicom, Boston, August
2000

9. Lee, W.-C., Xu, Y., Winter, J.: Prediction-based strategies for
energy saving in object tracking sensor networks. In: Proceedings
of MDM’04, Berkeley, January 2004

10. Li, D., Wong, K.D., Hu, Y.H., Sayeed, A.M.: Detection, classifi-
cation and tracking of targets in distributed sensor networks. IEEE
Signal Process. Mag. 19(2), March (2002)

11. Madden, S., Franklin, M.J., Hellestein, J.M., Hong, W.: TAG: a tiny
aggregation service for ad-hoc sensor networks. In: Proceedings of
OSDI’02, Boston, December 2002

12. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.: Wireless
sensor networks for habitat monitoring. In: Proceedings of the 1st
ACM Workshop on Sensor Networks and Applications, pp. 88–97,
Atlanta, September 2002

13. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual par-
titioning: an efficient method for continous nearest neighbor mon-
itoring. In: Proceedings SIGMOD’05, Baltimore, June 2005

14. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A threshold-
based algorithm for continuous monitoring of k nearest neigh-
bors. IEEE Trans. Knowl. Data Eng. (TKDE) 17(11), 1451–1464
(2005)

15. Navas, J.C., Imielinski, T.: GeoCast — geographic addressing and
routing. In: ACM/IEEE MobiCom (1997)

16. Niculescu, D., Nathi, B.: Ad hoc positioning system (aps) using
aoa. In: Proceedings of INFOCOM’03, San Francisco, 2003

17. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for
wireless sensor networks. In: SenSys ’04: Proceedings of the 2nd
International Conference on Embedded Networked Sensor System,
pp. 95–107 (2004)

18. Pottie, G.: Wireless integrated network sensors. Commun. ACM
43(5), 51–58 (2000)

19. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S.:
Query indexing and velocity constrained indexing: Scalable tech-
niques for continuous queries on moving objects. IEEE Trans.
Comput. 51(10), 1124–1140 (2002)

20. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R.,
Shenker, S., Ght: a geographic hash table for data-centric storage.
In: Proceedings of the First ACM International Workshop on Wire-
less Sensor Networks and Applications, Atlanta, September 2002

21. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R.,
Yin, L., Yu, F.: Data-centric storage in sensornets with ght, a
geographic hash table. Mobile Netw. Appl.(MONET) 8(4), 427–
442 (2003)

22. Sharaf, M.A., Beaver, J., Labrinidis, A., Chrysanthis, P.K.: TiNA:
a scheme for temporal coherency-aware in-network aggregation.

In: Proceedings of the 3rd International ACM Workshop on Data
Engineering for Wireless and Mobile Access, pp. 69–76, San
Diego, September 2003

23. Silberstein, A., Braynard, R., Yang, J.: Constraint chaining: on
energy-efficient continuous monitoring in sensor networks. In: Pro-
ceedings of SIGMOD’06, Chicago, June 2006

24. Silberstein, A., Munagala, K., Yang, J.: Energy-efficient monitor-
ing of extreme values in sensor networks. In: Proceedings of SIG-
MOD’06, Chicago, June 2006

25. Sobeih, A., Hou, J.C., Kung, L.-C., Li, N., Zhang, H., Chen,
W.-P., Tyan, H.-Y., Lim, H.: J-sim: a simulation and emulation
environment for wireless sensor networks. IEEE Wirel. Com-
mun. 13(4), 104–119 (2006)

26. Stojmenovic, I.: Geocasting with guaranteed delivery in sensor net-
works. IEEE Wirel. Commun. 11(6), 29–37 (2004)

27. Winter, J., Xu, Y., Lee, W.-C.: Energy efficient processing of
k nearest neighbor queries in location-aware sensor networks.
In: Proceedings of the Second International Conference on Mobile
and Ubiquitous Systems: Networking and Services (Mobiqui-
tous’05). San Diego, July 2005

28. Wu, M., Xu, J., Tang, X., Lee, W.-C.: Monitoring top-k query in
wireless sensor networks. In: Proceedings of ICDE’06, Atlanta,
April 2006

29. Wu, S.-H., Chuang, K.-T., Chen, C.-M., Chen, M.-S.: Diknn: an
itinerary-based knn query processing algorithm for mobile sensor
networks. In: Proceedings of ICDE’07, Istanbul, April 2007

30. Xiong, X., Mokbel, M., Aref, W.: SEA-CNN: scalable incremen-
tal processing of continuous queries in spatio-temporal databases.
In: Proceedings of ICDE’05, Tokyo, April 2005

31. Xu, J., Tang, X., Lee, W.-C.: EASE: an energy-efficient
in- network storage scheme for object tracking in sensor networks.
In: Proceedings of IEEE SECON’05, Santa Clara, September 2005

32. Xu, Y., Lee, W.-C., Xu, J., Mitchell, G.: Processing window queries
in wireless sensor networks. In: Proceedings of ICDE’06, Atlanta,
April 2006

33. Yao, Y., Tang, X., Lim, E.-P.: In-network processing of nearest
neighbor queries for wireless sensor networks. In: Proceedings of
DASFAA’06, Singapore, April 2006

34. Yao, Y., Tang, X., Lim, E.-P.: Continuous monitoring of kNN
queries in wireless sensor networks. In: Proceedings of the 2nd
International Conference on Mobile Ad-hoc and Sensor Networks
(MSN 2006), Hong Kong, December 2006

35. Yu, X., Pu, K., Koudas, N.: Monitoring k-nearest neighbor queries
over moving objects. In: Proceedings of ICDE’05, Tokyo, April
2005

36. Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile tar-
get tracking in sensor networks. In: Proceedings of INFOCOM’04,
Hong Kong, March 2004

37. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sen-
sor collaboration for tracking applications. IEEE Signal Pro-
cess. 19(2), 61–72 (2002)

123

http://www.j-sim.org

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2009

	Localized Monitoring of kNN Queries in Wireless Sensor Networks
	Yuxia YAO
	Xueyan TANG
	Ee Peng LIM
	Citation

	Localized monitoring of kNN queries in wireless sensor networks
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 System model
	3.2 One-shot kNN query processing
	3.3 Preliminary search
	3.4 Expanded search

	4 Localized scheme for continuous kNN queries
	4.1 Overview
	4.2 Monitoring area setup
	4.3 Query reevaluation
	4.4 Maintenance of monitoring area

	5 Scheduling strategy to shrink the monitoring area
	5.1 Optimal schedule to shrink the monitoring area
	5.2 Adaptive schedule to shrink the monitoring area

	6 Performance evaluation
	6.1 Experimental setup
	6.2 Impact of m in shrinking the monitoring area
	6.3 Performance comparison of five strategies
	6.4 Impact of the number of nearest objects monitored
	6.5 Impact of number of objects tracked

	7 Conclusion

