
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-1996

Export Database Derivation Approach for
supporting Object-Oriented wrapper queries
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Hon-Kuan LEE

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng and LEE, Hon-Kuan. Export Database Derivation Approach for supporting Object-Oriented wrapper queries. (1996).
Cooperative databases and applications: Proceedings of the International Symposium on Cooperative Database Systems for Advanced
Applications, Kyoto, Japan, December 5-7, 1996. 337-346. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1024

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Export Database Derivation and Query Processing forObject-Oriented WrappersEe-Peng Lim Hon-Kuan Lee�School of Applied ScienceNanyang Technological UniversityNanyang Avenue, Singapore 639798, SINGAPOREAbstractWrappers export the schema and data of existingheterogeneous databases and support queries on them.In the context of cooperative information systems, wepresent a
exible approach to specify the derivation ofobject-oriented export databases from local relationaldatabases. Our export database derivation consists ofa set of extent derivation structures which de-�nes the extent and deep extent of export classes.Having well-de�ned semantics, the extent derivationstructures can be readily used in transforming wrapperqueries to local queries. Based on the extent derivationstructures, we developed a wrapper query evaluationstrategy which handles object-oriented queries on theexport databases. The strategy further considers thelimited query processing capabilities of local databasesystems and the language constraints on the local querylanguages.1 IntroductionTraditionally, a wrapper has been de�ned to be asoftware component that converts data and queriesfrom one model to another. However, in order to de-ploy wrappers in a cooperative information systems[6,1] that provide integrated access to multiple exist-ing heterogeneous databases (also known as localdatabases), it's functionalities have to be further ex-tended. In the following, we enumerate the function-alities that are required by a wrapper:� Exporting and homogenizing the schemasand data of existing databases (DBs):Wrappers export schemas and data of existingDBs to the global users or applications of a co-operative information system. The set of schemaand data exported from a local DB is called anexport DB. Unlike the traditional view de�ni-tion, the export DBs may be designed with anintention to ease the resolution of inter-databaseschema- or instance-level con
icts. An export DBmay contain or incorporate extra semantics thatare not found in the local DB[4].� Encapsulating the data model and querylanguage di�erences among local database�The author is now with the Port of Singapore Authority.

systems:Apart from exporting local DBs, wrappers haveto process queries on the export DBs. Querieson the export DBs are also known as wrapperqueries. By adopting a common data modeland query language to represent and query exportDBs respectively, wrappers hide the di�erences oflocal database systems from the cooperative infor-mation systems and facilitate the development ofglobal applications which query the export DBs.� Controlling the subset of local DBs acces-sible by the global users:Another important reason for having wrappers isto allow local DBAs to control the subsets of lo-cal DBs (both in terms of schema elements andinstances) accessible by the cooperative informa-tion system users through the de�nition of exportDBs. This also prevents some classi�ed local in-formation from being read by unauthorized peo-ple.In our work, we have designed a
exible DB map-ping approach which allows local DBAs to derive anOO export DB from a local relational DB declara-tively and graphically using a computational struc-ture known as extent derivation structure(EDS).In this approach, basic OO semantics, such as classinheritance, aggregation relationship, and object iden-ti�ers, can be readily supported. We have also devel-oped the wrapper query evaluation strategy which in-cludes some translation algorithms to transform wrap-per queries into local DB queries. We note that it isnot always possible to translate a wrapper query intoa single local DB query. This is due to some localquery language constraints, such as: (a) some opera-tions required by wrapper query are not supported bythe local DBMS; (b) the wrapper query involves inputdata not found in the local DB; or (c) the local querylanguage grammar imposes some constraints on thetranslation. For example, a SQL statement may notsupport selection or projection over a union of tables.Related WorkIn [4], the concept of metaclass has been intro-duced to integrate relational DBs into a federated DBsystem based on an OO data model known as VO-DAK. This approach requires methods to be de�ned

to extract the attributes of relations into the VODAKdata model as properties of export classes. Our work,on the other hand, has further studied the derivationof class inheritance from relational databases and theevaluation of wrapper queries.The Penguin project at Stanford University[9] ad-dresses the problem of storing data as relations butretrieving them using an OO query interface. There isa subtle di�erence between this problem and designingOO query interface to existing relational DBs. Whilethe former designs relations to support OO views, thelatter assumes that relational DBs and their applica-tions have existed for some time and the OO viewsmust be supported without any modi�cation to them.Hence, Penguin adopts the top-down approach in de-signing the OO views instead of the bottom-up ap-proach which is more appropriate in our context.2 Export DB De�nition versus Deriva-tionTo satisfy a wide variety of interoperability require-ments, every local to export DB mapping strategymust allow di�erent OO export DBs to be de�ned forthe same local relational DB. The reason is that thesame local DB may have to participate in di�erentcooperative information systems that have di�erentexport DB requirement. Moreover, we need to dis-tinguish between the de�nition of export DBs fromtheir derivation. The former describes the schemaof export DBs. The latter describes the mapping be-tween local DBs and export DBs. In this paper, weshall only focus on export DB derivation.3 Mapping between Local RelationalDB and OO Export DB3.1 Example of Local DB and ExportDBsTo demonstrate the export DB derivation process,the following company database is used as a local re-lational DB example.Example: (Company DB Example)1Employee(eno,name,etype,salary,dob,sales,dno)LocalDept(dno,dname,mgr)OverseasDept(dno,dname,mgr)OfficeAssign(rno,dno,floor)Project(pno,ptitle)ProjBudget(pno,budget)EmpProj(eno,pno)In the Employee table, each employee record isidenti�ed by the employee number (eno), and it con-tains attributes such as name (name), type of em-ployment (etype), i.e. part-time or full-time, salary,date of birth (dob), sales amount (sales) and the de-partment number (dno) in which the employee works.While part-time employees are paid daily, full-timeemployees are paid monthly. Hence, the salary at-tribute has been overloaded by two di�erent mean-ings. For administrative purposes, department in-formation has been stored in two tables, LocalDept1The key of each table has been underlined.

e# name age

PROJ EMP

PT_EMP FT_EMP

daysal mthsal

pname

budget

DEPT

d#

dname

floor

workon

workin

has

managedby

revenueFigure 1: Example Export Schemaand OverseasDept. For the local department o�ces,OfficeAssign contains the o�ce room records whichcontain the room numbers (rno), departments occu-pying the o�ce, and the
oors on which the o�cesare located. The project title and budget informa-tions have been stored in separate relations. Projecttable contains project number (pno) and project title(ptitle) whereas ProjBudget table contains the bud-get for each project. EmpProj contains the employee-to-project assignment.We assume that the local DBA, after having usedsome DB re-engineering tool and negotiated with theglobal users, has decided to export the local databaseusing the OO schema given in Figure 1. In the ex-port schema, the PT EMP and FT EMP classeshave been de�ned to di�erentiate between part-timeand full-time employee records, respectively. The ageattribute does not exist in the local database butcan be computed from the date of birth dob. Therevenue of a DEPT object is de�ned to be the sumof sales made by employees in the department. Sinceeach department may be allocated several o�ces lo-cated on di�erent
oors, floor is a set attribute. ThePROJECT class contains pname and budget as at-tributes. Notice that the project number (pno), thekey of Project local table, has been excluded fromPROJECT . Though not shown in the export schema,an object id is implicit in every object class, and canbe queried.3.2 Extent Derivation Structures andtheir Algebraic SemanticsExtent derivation structure (EDS) de�nes howthe extent and deep extent of an export class can bederived separately from a set of local relations. Wede�ne the extent of a class to be the set of objectsthat directly belong to the class, and deep extent tobe set of objects that directly or indirectly belong tothe class. We denote the extent and deep extent of aclass C by EC and E�C, respectively. For example, theextent of EMP class (denoted by EEMP) includes allobjects that belong to the EMP class only, but notPT EMP or FT EMP . On the other hand, the deepextent of the EMP class (denoted by E�EMP) includesall the objects that belong to EMP , PT EMP andFT EMP . In our OO query model, we allow queriesto be directed at both the extents and deep extents ofclasses.

Export
Attrib n

the members that belong to the
Export Class’s Extent/Deep Extent

<Member_expression>

Entity key : <Entity_key>

Export
Attrib 1

Nested query graph that computes

class extent or deep class extent

Key attributes that identify the
member of the export class

<Attribute_computation>
The derivation of export class attributes
from the attributes produced by
the member_expression.Figure 2: Extent Derivation Structure

Foid("PROJ", P.pno)

oid

P.title

pname

PB.budget

budget

P

Project

PB

ProjBudget
P.pno =
PB.pno

PROJ
*(same as E)E PROJ

Entity key: (P.pno)Figure 3: Extent Derivation Structure for EPROJ andE�PROJEDSs are declarative in nature. Unlike other pre-viously proposed derivation languages[7, 4], the classderivation structures are expressible in a graphicalform. It is therefore easy to adopt extent derivationstructures in a graphical tool for specifying exportdatabase derivation.De�nition: (Extent Derivation Structure)An extent derivation structure (EDS)is de�ned as a3-tuple, < member expression; entity key;attribute computation >, and is represented graphi-cally in Figure 2.An EDS example for deriving both EPROJ andE�PROJ is shown in Figure 3 (to be further explainedin Section 4). The member expression is itself anested query graph that computes, from the lo-cal relations, the relation containing the necessary in-formation about object members of a class extent ordeep class extent. At present, the operations involvedin the member expression operate on relations only.An export object may therefore correspond to a setof tuples computed by the member expression. En-tity key refers to the set of attributes used to identifythese tuples that represent an object in the deep extentof an export class. Usually, entity keys are also pri-mary keys of some local relations but are not alwaysso. Note that this piece of information is required be-cause entity key is not always retained as attributes inthe export class. For example, pno from the Projectrelation is not kept in the PROJ class. Attributes ofthe export class extent (or deep class extent) are ex-tracted or computed from member expression usingattribute computation. In the case of a relationshipattribute from a source export class to a destinationexport class, the attribute computation of the sourceexport class must include the derivation of the entitykey of the destination export class.

Project Project

P P(pno,ptitle)

Project

(a) (b) (c)Figure 4: Primitive Nested Query GraphThe nestedquery graph representing member expression extendsthe well-known query graph model by accommodat-ing a large set of algebraic operations, i.e. selection(�), projection (�), join(1), full-outerjoin($./), one-way-outerjoin(!./), groupby, generalization attributederivation (GAD - de�ned later in this section),union([), intersection(\), subtraction(�) and aggre-gation. Clearly, the query graph can be further ex-tended with new operations if the derivation of exportDB requires. Due to its nested nature, the evalua-tion of a nested query graph should begin with the in-nermost component(s), unless wrappers perform somealgebraic transformations that alter the implicit order-ing of operations. Where necessary, the nested querygraph also allows the relation represented by any of itscomponents to be assigned an alias, and the relation'sattributes to be renamed.De�nition: (Nested Query Graph)A nested query graph is formed by two components,namely (a) a graph component, and (b) an optionalrelation alias with an optional list of attribute aliases.A nested query graph can be recursively de�ned asfollows: (Due to space constraint, we do not show thenested query graphs constructed by $./, \, � and ag-gregation.)� Primitive nested query graph: In this case, thegraph component contains just the local relation.If necessary, a relation alias may be assigned or alist of attribute aliases can be speci�ed to replaceattribute names. This is illustrated by Figure 4.Figure 4(a) shows a Project relation. Figure 4(b)shows that the Project relation is assigned a newrelation alias; Figure 4(c) shows that the Projectrelation is assigned both relation and attributealiases.� Selection and projection on nested query graph:Selection and projection can be speci�ed on anested query graph as shown in Figure 5. Re-lation and attribute aliases are not required sinceselection and projection do not create any newattribute or tuple.� Join of nested query graphs: Two or more nestedquery graphs can be joined together to form an-other nested query graph as shown in Figure 6(a).For any two nested query graphs involved in ajoin, we connect them by an undirected edge la-beled with the join predicate. Relation and at-tribute aliases are optional.� One-way-outerjoin of nested query graphs: Two

σ

E (eno,name,etype,salary,dob,sales,dno)

Employee

E.name="ABC"
π(salary,dob,sale)Figure 5: Selection and Projection on Nested QueryGraph

ProjBudget

PB

Project

P

P.pno=PB.pno

D

Department

EmpProj

EP

Project

PEmployee

E
E.dno=
D.dno

P.pno
EP.pno=

(b)

P.eno
E.eno=

(a)Figure 6: (a) Join of Nested Query Graphs, (b) One-Way-Outerjoin of Nested Query Graphs

or more nested query graphs can participate in aseries of non-cyclic one-way-outerjoins as shownin Figure 6(b). We further restrict the outerjoinconnectivity to be originated from a single class.Relation and attribute aliases are optional.� Generalized attribute derivation on query graph:In order to perform computations on attributes,we introduce an operation known as generalizedattributederivation (GAD). GAD is an unaryoperation that computes an output relation whichcontains attributes derived by applying system-or user-de�ned functions on the input relation. Itis formally de�ned as:De�nition: (Generalized Attribute Deriva-tion - GAD)Let R be a relation with attributes A, and Fi'sbe attribute functions.GAD(R;F1(X1); F2(X2); � � � ; Fm(Xm)) =f< F1(X1(r)); F2(X2(r)); � � � ; Fm(Xm(r)) > jr 2 Rgwhere Xi � ALike the functions used in attribute computation,the commonly used functions such as averagefunction, identity function, etc. can be built-intothe wrapper. Other functions can be user-de�nedand can be registered with the wrapper when re-quired. A nested query graph example for GADis shown in Figure 7(a). In this example, the em-ployee's salary in Marks and age are computedby FUS$toMARK and Fage respectively. Since newtuples are generated, new relation and attributealiases are assigned.� Groupby nested query graph: Groupby dividesa relation horizontally into several partitions ofrecords and summarizes selected attributes foreach partition. This can be represented in anested query graph as shown in Figure 7(b). Sincethe groupby operation creates new summary at-tributes, it is mandatory to assign relation and at-tribute aliases to the groupby nested query graph.� Union of nested query graphs: Nested querygraphs can be unioned together as shown in Fig-ure 7(c). The resultant nested query graph mustbe given new relation and attribute aliases due tothe merging of attributes.4 Examples of Using Extent Deriva-tion StructuresTo illustrate the use of EDSs, we describe how theOO export DB example in Figure 1 can be derivedfrom the set of local relations given in Section 3.1.Recall that an EDS must be de�ned for every exportclass extent and deep class extent. Nevertheless, itis clear that when an export class does not have anysubclass, it's extent and deep extent are equivalent.Deriving EPROJ and E�PROJ

Employee

E

R (eno,newSalary,age)

GAD(<eno,F (E.salary),F (E.dob)>)ageUS$toMARK

LocalDept OverseasDept

D (dno, dname, mgr)

(c)

(a) (b)

Employee

E

Groupby(dno, <dno,count(*)>)

S (dno, numOfEmployees)Figure 7: (a) GAD Nested Query Graph, (b) GroupbyNested Query Graph, (c) Union of Nested QueryGraphsThe EDS in Figure 3 is de�ned for both EPROJand E�PROJ . In the �gure, the member expression in-dicates that the EPROJ (or E�PROJ) members can bederived from a join between Project and ProjBudgetassuming that every project must have a budget. Theattribute, P.pno, has been designated to be the entitykey. This implies that all export objects in EPROJ canbe uniquely identi�ed by P.pno and therefore, any ref-erence from other classes to EPROJ has to use P.pnoto obtain the corresponding EPROJ (or E�PROJ) mem-ber(s). P.pno together with the export class namePROJ are used to generate the export oids.Deriving EDEPT and E�DEPTThe EDSs of the DEPT class extent and deep classextent are identical since DEPT does not have anysubclass. The information of EDEPT (or E�DEPT) ob-jects can be derived from several relations as shown inFigure 8.The EDS in Figure 8 indicates that LocalDept andOverseasDept tables have to be unioned together toobtain the department numbers, department namesand managers' employee numbers. The union'ed rela-tion is aliased LO, and its attributes are also assignednew aliases. A department's revenue can be deter-mined by the total sales made by its employees. To ob-tain the revenue information, the tuples in Employeeare grouped by department numbers and the sum ofsales for each group is computed. The groupby re-sult is given a new relation alias(GE) and new set ofattribute aliases. One-way outerjoins from LO to E,GE and OA relations collect all information needed tocompute attributes of the department objects.The entity key of EDEPT (or E�DEPT) objects isLO.dno and it, together with \DEPT", are used togenerate the oids ofDEPT objects. The otherDEPTattributes, e.g. dname, d#, floor and revenue, arederived or computed from the relation generated bythe nested query graph. For relationship attributeshas and managedby, the entity keys of the domainclasses, in this case E:eno and LO:mgr respectively,

(same as E DEPT
*)DEPTE

LocalDept OverseasDept
LO.dno=OA.dno

OfficeAssign

OA

LO.dno=
E.dno

Employee

E

Employee

Groupby(dno, <sum(salary),dno>)

GE (sum,dno)

Foid("DEPT",LO.dno) LO.dname GE.sum

OA.floor

floor

oid

LO.mgrLO.dno

d# dname manageby revenue
E.eno

has

LO (dno,dname,mgr)

GE.dno
LO.dno=

Entity key: (LO.dno)Figure 8: Extent Derivation Structure for EDEPT andE�DEPT
E

Employee EmpProj

EP

Foid("EMP",E.eno) E.eno E.name Fage(E.dob)

EP.pno

E.dno

E EMP
*

E.eno=EP.eno

Entity key: (E.eno)

oid e# name age

workon

workinFigure 9: Extent Derivation Structure for E�EMPare computed.Deriving EEMP and E�EMPThe EDS of EEMP is not shown here since it isempty. Figure 9 depicts the EDS of E�EMP , the deepextent of EMP . To derive the relationship attribute,workon, we need the Employee to be extended withthe project assignment information. Therefore, a one-way outerjoin from Employee to EmpProj is speci�edin the nested query graph. The EMP oids and at-tributes are generated or derived in a way similar tothose of PROJ and DEPT . Note that EMP , beingselected as the id of the class poset involving EMP ,PT EMP and FT EMP , has been used to computethe EMP oid. Note that the age attribute is com-puted by applying a function Fage on E.dob. Sinceno Fage exists in the local database, the function hasto be included as part of the wrapper's data dictionaryand is used during query evaluation.Deriving EFT EMP and E�FT EMPFigure 10 shows the common EDS shared byEFT EMP and E�FT EMP .Deriving EPT EMP and E�PT EMPThis is similar to that of EFT EMP and E�FT EMP ,

EP.pno

E.dno

Foid("EMP",E.eno) E.eno E.name

oid e# name

Fage(E.dob) E.salary

E FT_EMP (same as E FT_EMP
*)

E.eno=EP.eno

Entity key: (E.eno)

E

Employee

workon

workin

age mthsal

σ etype="Full time"

EmpProj

EPFigure 10: Extent Derivation Structure for EFT EMPand E�FT EMPand we do not show it here.5 Wrapper Query ProcessingThe transformations of OO wrapper queries intolocal relational queries require both the export DBde�nition and derivation information. The former isneeded to ensure the given wrapper queries are cor-rectly formulated while the latter is used to replacethe export classes by their corresponding derivationexpressions in order to evaluate the queries. Our pro-cessing strategy decomposes a wrapper query into oneor more local relational queries, generates interme-diate results, and stores them in the local databaseduring query processing. To handle operations notsupported by the local DBMS, we incorporate queryprocessing capabilities into the wrapper. The wrap-per further performs query simpli�cation to reduce theprocessing overhead.5.1 Wrapper Query Processing StepsThe wrapper query processing steps are as follows:� Step 1: Set up the initial query graphAn initial query graph consists of nodes represent-ing export class extents, and edges representingthe relationships between the export class extentsreferenced by the query. Let the class extent ap-pearing in the FROM clause be called the anchor.We construct directed edges from the anchor tothe other class extents referenced by path expres-sions found in the SELECT and WHERE clauses.� Step 2: Replace the export class extentsin the query by simpli�ed member expres-sionsThe export class extents in the initial query graphare replaced by the member expressions of theircorresponding EDSs. In the process, the mem-ber expressions are simpli�ed by removing thosesubexpressions which do not contribute to thequery result. We call the resulting query graphthe augmented query graph.� Step 3: Generate the query treeFrom the augmented query graph, a query tree

which indicates the order of evaluating the queryoperations is generated. The leaf nodes and in-ternal nodes of the query tree denote the local re-lations and query operations, respectively. Sincemultiple query trees can be generated from a sin-gle augmented query graph, the query tree mustbe carefully chosen to re
ect the query optimiza-tion strategy adopted by the wrapper. As part ofquery optimization, the query tree may be simpli-�ed by a set of heuristic rules to reduce its pro-cessing cost.� Step 4: Determine the wrapper and localDBMS query fragmentsSince not all operations in a query tree may beevaluated by the local DBMS, a wrapper queryprocessor has to distinguish between the opera-tions to be executed by the local DBMS and byitself. By clustering the operations to be per-formed at the wrapper and the local DBMS, weobtain the wrapper query fragments and lo-cal DBMS query fragments, respectively.5.2 An Example Wrapper Query and ItsProcessingIn this section, we demonstrate wrapper query pro-cessing using the following query example (Q1). Thequery retrieves, for the full-time employees who areyounger than 20 years old and who work on someproject of budget greater than $1,000, their names,department names, and the project names they workon.Q1: SELECT F.name,F.workin.dname,F.workon.pname FROM FT EMP FWHERE F.age<20 and F.workon.budget>1000Step 1: Set up the initial query graphFigure 11 depicts the initial query graph con-structed for Q1. The export class extents referencedare assigned unique class aliases and the directededges between export class extents are marked withthe corresponding relationship attribute names. Theclass aliases C1, C2 and C3 have been assigned toEFT EMP , E�DEPT and E�PROJ , respectively. Thesimple attributes referenced by the query, i.e. name,age, dname, pname and budget, are attached to theexport class extents they belong to. The target at-tributes, name, dname and pname, are marked by �.The WHERE predicates are also indicated next to theirattributes.Step 2: Replace the export class extents bysimpli�ed member expressionsFigure 12 shows the augmented query graph ob-tained by replacing the export class extents by theirsimpli�ed member expressions. To avoid the same re-lation alias to be used by di�erent member expres-sions, we pre�x the relation aliases in the memberexpressions by the unique class aliases of their cor-responding export class extents. By examining at-tributes referenced by the query, some member ex-pressions can be simpli�ed. For example, the E�DEPT

dname

pname

budget

>1,000

name

age

<20

E FT_EMP

E DEPT*

E PROJ*

C3

C1

C2workin

workon

*

*

*Figure 11: The Initial Query Graph for Q1
σ C1_E.etype="Full Time"

C1_E.name

EmpProj

C1_EP

Fage(C1_E.dob)

<20

Project

C3_P

ProjBudget

C3_PB

C3_P.titleC3_PB.budget

>1,000

*

LocalDept OverseasDept

C2_LO:(dno,dname,mgr)

C2_LO.dname*

*

C1_EP.enoEmployee

C1_E

C1_E.eno=

C1_EP.pno=
C3_P.pno

C3_P.pno=
C3_PB.pno

C1_E.dno=
C2_LO.dnoFigure 12: The Augmented Query Graph for Q1member expression used in this example has beensimpli�ed since the employee,
oor and revenue in-formation of departments are not referenced by thequery. The simple attributes are replaced by theirrelational correspondences while the relationship at-tributes are replaced by the appropriate outerjoinpredicates. For example, the workin relationship at-tribute of EFT EMP has been replaced by the joinpredicate involving C1 E:dno, computed by the EDSof EFT EMP , and C2 LO:dno which is the entity keyof the DEPT class.Step 3: Generate the query treeThe generation of the query tree from an aug-mented query graphs is a query optimization problem.In this paper, we do not intend to delve much into thewrapper query optimization issue since it is beyondthe scope of this paper. We will, however, describesome heuristic optimization that can be performed onthe query tree. Details of the algebraic transformationrules that make the heuristic optimization possible canbe found in [2, 5, 3]. The generation of query trees canbe divided into two sub-steps.� Sub-step 1: (Decide the ordering of joins and out-erjoins)By deciding the ordering of joins and outerjoins,a preliminary query tree can be constructed. Aselection operation attached with the WHERE pred-icates, and a projection operation that keeps onlythe target attributes are added as the last two op-erations in the query tree as shown in Figure 13.The [< relation alias >:< attribute alias list >] notations attached to some nodes indicateplaces where relations or attribute names arenamed/renamed.

Employee
[C1_E]

EmpProj
[C1_EP]

C1_EP.pno=C3_P.pno

σ C3_PB.budget>1,000
Fage(C1_E.dob)<20

C1_EP.eno
C1_E.eno=

σ C1_E.etype="Full Time"
Project
[C3_P]

ProjBudget
[C3_PB]

C3_P.pno=
C3_PB.pno

LocalDept OverseasDept

C1_E.dno=
C2_LO.dno

[C2_LO:(dno,dname,mgr)]

π

C3_P.title)
(C1_E.name,C2_LO.dname,

Figure 13: Query Tree Before Heuristic Optimization� Sub-step 2: (Perform heuristic optimization onthe query tree)Without any local cost model information, onecan only perform heuristic optimization on thepreliminary query tree using some algebraictransformation rules. To reduce the amountof processing, we push the selection operationsand projection operations down the tree nearerto the leaf nodes so that they are evaluated asearly as possible. In the process, we also con-vert some outerjoins into joins without a�ect-ing the �nal result. Figure 14 shows the querytree after heuristic optimization. Note that theselection predicate Fage(C1 E:dob) < 20 hasbeen moved to right above the Employee leafnode. The predicate C3 PB:budget > 1; 000 isalso moved to right above the ProjBudget node.The outerjoin operation along this move is trans-formed into a join operation since records withC3 PB:budget = NULL have to be discarded.Interested readers can refer to [5] for informationabout the transformation rules.Step 4: Determine the wrapper and localDBMS query fragmentsAssuming that the local DBMS is SQL-based anddoes not handle Fage() and outerjoins, the optimizedquery tree can be decomposed into wrapper and localDBMS query fragments as shown in Figure 14. Eachlocal DBMS query fragment can be translated into aSQL query and be submitted to the local query pro-cessor. In the �gure, each query fragment is enclosedby a dotted region annotated by a label (GQFi forwrapper query fragment and LQFj for local DBMSquery fragment, for some i and j). While the wrapperquery fragments are evaluated by the wrapper queryprocessor, the intermediate results produced may haveto be created as local database tables in order for thelocal DBMS to execute the next local DBMS queryfragments. Note that LQF3 and LQF4, though be-ing next to each other, cannot be evaluated as one

π (C1_E.name,C2_LO.dname,C3_P.title)

C3_P.pno=
C3_PB.pno

Project
[C3_P]

ProjBudget
[C3_PB]

LocalDept OverseasDept

[C2_LO:(dno,dname,mgr)]

π (C2_LO.{dno,dname})
LQF4

LQF3

Employee
[C1_E]

σ C1_E.etype="Full Time"

π (C1_E.{eno,dno,name})

EmpProj
[C1_EP]

C1_E.dno=
C2_LO.dno

C1_EP.pno=C3_P.pno

LQF5

GQF3
π (C3_P.{pno,title})

(C3_PB.pno)π

C3_PB.budget>1,000σ

Fage(C1_E.dob)<20

C1_EP.eno
C1_E.eno=

LQF1 LQF2

GQF2

GQF1Figure 14: Query Tree After Heuristic Optimizationand Query Fragment Generationlocal DBMS query fragment. This is due to the SQLlanguage constraint which disallows a selection to beperformed on a union expression within a single querystatement.6 ConclusionsIn this paper we have described in detail the de-sign of a wrapper to support object-oriented querieson an export DB view built on an existing relationalDB. We design the wrapper such that it can ful�l thedi�erent DB integration needs. We propose the con-cept of extent derivation structure (EDS), whichallows us to derive the export class extents and deepclass extents. The EDS representation also supportsrelationships between export classes. Due to its inher-ent algebraic semantics, the expressive power of EDScan be de�ned mathematically as the set of algebraicoperations it can support. A wrapper query can betranslated into more than one local queries dependingon the complexity of the export DB derivation. Tosupport query operations not found in the relationalDBMS, we allow extra query processing capabilitiesto be incorporated into the wrapper query processor.As part of our cooperative information systemproject, we have prototyped the core components ofthe wrapper query processor. The wrapper proto-type is able to support OO queries on export DBsconstructed on relational databases implemented inPostgres[8]. The future research directions to be pur-sued include:� Cost-basedOptimization of Wrapper Queries: So far,we have determined a set of algebraic transfor-mations for heuristics optimization. This can befurther improved if the cost model of the exist-

ing DBMS is made available or can be calibrated.With a cost model, we can perform better queryoptimization on the wrapper queries.� Modeling of Legacy Applications: In this pa-per, the focus in on the reuse of existing relationaldatabases. A large amount of information can,however, be found embedded in the legacy appli-cations. At present, the modeling of legacy appli-cations has not been studied much in the litera-ture. We plan to extend our approach to modelsuch application semantics in the future.References[1] M.W. Bright, A.R. Hurson, and S.H. Pakzad. Ataxonomy and current issues in multidatabase sys-tems. IEEE Computer, March 1992.[2] A.L.P. Chen. Outerjoin optimization in multi-database. In Proceedings of Databases in Paralleland Distributed Systems, pages 211{217, 1990.[3] C. Galindo-Legaria and A. Rosenthal. How to ex-tend a conventional optimizer to handle one- andtwo-sided outerjoin. In Proceedings of the 8th Int'lConf. on Data Engineering, pages 402{409, 1992.[4] Wolfgang Klas, G. Fischer, and K. Aberer. In-tegrating relational and object-oriented databasesystems using a metaclass concept. Journal of Sys-tems Integration, 4(4), 1994.[5] E-.P. Lim, J. Srivastava, and S-.Y. Hwang.An algebraic transformation framework for mul-tidatabase queries. Distributed and ParallelDatabase Journal, 3(3), 1995.[6] W. Litwin and A. Abdellatif. Multidatabase inter-operability. IEEE Computer, December 1986.[7] C.C. Liu and A.L.P. Chen. Object view derivationand object query transformation. In Proc. IEEECOMPSAC, 1994.[8] M. Stonebraker and G. Kemnitz. The post-gres next-generation database management sys-tem. Communications of the ACM, 34(10), Oct.1991.[9] T. Takahashi and A.M. Keller. Implementationof object view query on relational database. InInt'l Conf. on Data and Knowledge Systems forManufacturing and Engineering (DKSME), HongKong, May 1994.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-1996

	Export Database Derivation Approach for supporting Object-Oriented wrapper queries
	Ee Peng LIM
	Hon-Kuan LEE
	Citation

	tmp.1452236321.pdf.nIxrw

