Provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-1996

Export Database Derivation Approach for

supporting Object-Oriented wrapper queries

Ee Peng LIM

Singapore Management University, eplim@smu.edu.sg

Hon-Kuan LEE

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Numerical Analysis and
Scientific Computing Commons

Citation

LIM, Ee Peng and LEE, Hon-Kuan. Export Database Derivation Approach for supporting Object-Oriented wrapper queries. (1996).
Cooperative databases and applications: Proceedings of the International Symposium on Cooperative Database Systems for Advanced
Applications, Kyoto, Japan, December 5-7, 1996. 337-346. Research Collection School Of Information Systems.

Available at: https://ink library.smu.edu.sg/sis_research/1024

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/13248706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Export Database Derivation and Query Processing for

Object-Oriented Wrappers

EE-PENG LiMm

Hon-KuaN LEg*

School of Applied Science

Nanyang Technological University
Nanyang Avenue, Singapore 639798, SINGAPORE

Abstract

Wrappers export the schema and data of existing
heterogeneous databases and support queries on them.
In the context of cooperative information systems, we
present a flexible approach to specify the derivation of
object-oriented export databases from local relational
databases. Our export database derivation consists of
a set of extent derivation structures which de-
fines the extent and deep extent of export classes.
Having well-defined semantics, the extent derivation
structures can be readily used in transforming wrapper
queries to local quertes. Based on the extent derivation
structures, we developed a wrapper query evaluation
strateqy which handles object-oriented queries on the
erport databases. The strategy further considers the
limited query processing capabilities of local database
systems and the language constraints on the local query
languages.

1 Introduction

Traditionally, a wrapper has been defined to be a
software component that converts data and queries
from one model to another. However, in order to de-
ploy wrappers in a cooperative information systems[6,
1] that provide integrated access to multiple exist-
ing heterogeneous databases (also known as local
databases), it’s functionalities have to be further ex-
tended. In the following, we enumerate the function-
alities that are required by a wrapper:

¢ Exporting and homogenizing the schemas
and data of existing databases (DBs):
Wrappers export schemas and data of existing
DBs to the global users or applications of a co-
operative information system. The set of schema
and data exported from a local DB is called an
export DB. Unlike the traditional view defini-
tion, the export DBs may be designed with an
intention to ease the resolution of inter-database
schema- or instance-level conflicts. An export DB
may contain or incorporate extra semantics that
are not found in the local DB[4].

¢ Encapsulating the data model and query
language differences among local database

*The author is now with the Port of Singapore Authority.

systems:

Apart from exporting local DBs, wrappers have
to process queries on the export DBs. Queries
on the export DBs are also known as wrapper
queries. By adopting a common data model
and query language to represent and query export
DBs respectively, wrappers hide the differences of
local database systems from the cooperative infor-
mation systems and facilitate the development of
global applications which query the export DBs.

¢ Controlling the subset of local DBs acces-
sible by the global users:
Another important reason for having wrappers is
to allow local DBAs to control the subsets of lo-
cal DBs (both in terms of schema elements and
instances) accessible by the cooperative informa-
tion system users through the definition of export
DBs. This also prevents some classified local in-
formation from being read by unauthorized peo-
ple.

In our work, we have designed a flexible DB map-
ping approach which allows local DBAs to derive an
OO export DB from a local relational DB declara-
tively and graphically using a computational struc-
ture known as extent derivation structure(EDS).
In this approach, basic OO semantics, such as class
mheritance, aggregation relationship, and object iden-
tifiers, can be readily supported. We have also devel-
oped the wrapper query evaluation strategy which in-
cludes some translation algorithms to transform wrap-
per queries into local DB queries. We note that it is
not always possible to translate a wrapper query into
a single local DB query. This is due to some local
query language constraints, such as: (a) some opera-
tions required by wrapper query are not supported by
the local DBMS; (b) the wrapper query involves input
data not found in the local DB; or (c¢) the local query
language grammar imposes some constraints on the
translation. For example, a SQL statement may not
support selection or projection over a union of tables.

Related Work

In [4], the concept of metaclass has been intro-
duced to integrate relational DBs into a federated DB
system based on an OO data model known as VO-
DAK. This approach requires methods to be defined

to extract the attributes of relations into the VODAK
data model as properties of export classes. Our work,
on the other hand, has further studied the derivation
of class inheritance from relational databases and the
evaluation of wrapper queries.

The Penguin project at Stanford University[9] ad-
dresses the problem of storing data as relations but
retrieving them using an OO query interface. There is
a subtle difference between this problem and designing
OO query interface to existing relational DBs. While
the former designs relations to support QO views, the
latter assumes that relational DBs and their applica-
tions have existed for some time and the OO views
must be supported without any modification to them.
Hence, Penguin adopts the top-down approach in de-
signing the OO views instead of the boltom-up ap-
proach which is more appropriate in our context.

2 Export DB Definition versus Deriva-
tion

To satisfy a wide variety of interoperability require-
ments, every local to export DB mapping strategy
must allow different OO export DBs to be defined for
the same local relational DB. The reason is that the
same local DB may have to participate in different
cooperative information systems that have different
export DB requirement. Moreover, we need to dis-
tinguish between the definition of export DBs from
their derivation. The former describes the schema
of export DBs. The latter describes the mapping be-
tween local DBs and export DBs. In this paper, we
shall only focus on export DB derivation.

3 Mapping between Local Relational
DB and OO Export DB
3.1 Example of Local DB and Export
DBs
To demonstrate the export DB derivation process,
the following company database is used as a local re-

lational DB example.
Example: (Company DB Example)!

Employee(eno,name,etype,salary,dob,sales,dno)
LocalDept (dno,dname,mgr)

OverseasDept (dno,dname ,mgr)
OfficeAssign(zrno,dno,floor)
Project(pno,ptitle)

ProjBudgEETpno,budget)

EmpProj(eno,pno)

In the Employee table, each employee record is
identified by the employee number (eno), and it con-
tains attributes such as name (name), type of em-
ployment (etype), i.e. part-time or full-time, salary,
date of birth (dob), sales amount (sales) and the de-
partment number (dno) in which the employee works.
While part-time employees are paid daily, full-time
employees are paid monthly. Hence, the salary at-
tribute has been overloaded by two different mean-
ings. For administrative purposes, department in-
formation has been stored in two tables, LocalDept

1The key of each table has been underlined.

Ca
[oer (&=
= N
P Evd [FTEwP (floor)

Figure 1: Example Export Schema

and OverseasDept. For the local department offices,
OfficeAssign contains the office room records which
contain the room numbers (rno), departments occu-
pying the office; and the floors on which the offices
are located. The project title and budget informa-
tions have been stored in separate relations. Project
table contains project number (pno) and project title
(ptitle) whereas ProjBudget table contains the bud-
get for each project. EmpProj contains the employee-
to-project assignment.

We assume that the local DBA, after having used
some DB re-engineering tool and negotiated with the
global users, has decided to export the local database
using the OO schema given in Figure 1. In the ex-
port schema, the PI'_EMP and FT_EMP classes
have been defined to differentiate between part-time
and full-time employee records, respectively. The age
attribute does not exist in the local database but
can be computed from the date of birth dob. The
revenue of a DEPT object is defined to be the sum
of sales made by employees in the department. Since
each department may be allocated several offices lo-
cated on different floors, floor is a set attribute. The
PROJECT class contains prname and budget as at-
tributes. Notice that the project number (pno), the
key of Project local table, has been excluded from
PROJECT. Though not shown in the export schema,
an object id is implicit in every object class, and can
be queried.

3.2 Extent Derivation Structures and

their Algebraic Semantics

Extent derivation structure (EDS) defines how
the extent and deep extent of an export class can be
derived separately from a set of local relations. We
define the extent of a class to be the set of objects
that directly belong to the class, and deep extent to
be set of objects that directly or indirectly belong to
the class. We denote the extent and deep extent of a
class C' by E¢ and Ef, respectively. For example, the
extent of EM P class (denoted by Egarp) includes all
objects that belong to the EM P class only, but not
PT_EMP or FT_EMP. On the other hand, the deep
extent of the EM P class (denoted by Ffy,p) includes
all the objects that belong to EM P, PI'_'EM P and
FT_EMP. In our OO query model, we allow queries
to be directed at both the extents and deep extents of
classes.

Export Class's Extent/Deep Extent Nested query graph that computes
the members that belong to the
N/ class extent or deep class extent

<Member_expression>

Entity key : <Entity_key> ¢\ Key attributes that identify the

member of the export class

<Attribute_computation>
The derivation of export class attributes
Export Export
Attrib 1 Attribn

from the attributes produced by
the member_expression.

Figure 2: Extent Derivation Structure

E PrROJ (sameasE;ROJ)

P.pno =

Project | PB.pno | ProjBudget
U e N

Entity key: (P.pno)

Foid("PROJ", Ppno) ‘ PB. budget

pname budget

Figure 3: Extent Derivation Structure for Fproys and
Eeros

EDSs are declarative in nature. Unlike other pre-
viously proposed derivation languages[? 4], the class
derivation structures are expressible in a graphical
form. It 1s therefore easy to adopt extent derivation
structures in a graphical tool for specifying export
database derivation.

Definition: (Extent Derivation Structure)
An extent derivation structure (EDS)is defined as a
3-tuple, < member_expression, entity_key,
attribute_computation >, and 1s represented graphi-
cally in Figure 2.

An EDS example for deriving both Epgros and
Ebroy 18 shown in Figure 3 (to be further explained
in Section 4). The member_expression is itself a
nested query graph that computes, from the lo-
cal relations, the relation containing the necessary in-
formation about object members of a class extent or
deep class extent. At present, the operations involved
in the member_expression operate on relations only.
An export object may therefore correspond to a set
of tuples computed by the member_expression. En-
tity key refers to the set of attributes used to identify
these tuples that represent an object in the deep extent
of an export class. Usually, entity keys are also pri-
mary keys of some local relations but are not always
so. Note that this piece of information is required be-
cause entity_key is not always retained as attributes in
the export class. For example, pno from the Project
relation is not kept in the PROJ class. Attributes of
the export class extent (or deep class extent) are ex-
tracted or computed from member_expression using
attribute_computation. In the case of a relationship
attribute from a source export class to a destination
export class, the attribute_computation of the source
export class must include the derivation of the entity
key of the destination export class.

Project (Project) (Project W

o
e (e |

@ (b) ©

Figure 4: Primitive Nested Query Graph

The nested
query graph representing member_expression extends
the well-known query graph model by accommodat-
ing a large set of algebraic operations, i.e. selection

(¢), projection (), join(X), full—outerjoin(gq), one-

Way—outerjoin(b_;l), groupby, generalization attribute
derivation (GAD - defined later in this section),
union(U), intersection(N), subtraction(—) and aggre-
gation. Clearly, the query graph can be further ex-
tended with new operations if the derivation of export
DB requires. Due to its nested nature, the evalua-
tion of a nested query graph should begin with the in-
nermost component(s), unless wrappers perform some
algebraic transformations that alter the implicit order-
ing of operations. Where necessary, the nested query
graph also allows the relation represented by any of its
components to be assigned an alias, and the relation’s
attributes to be renamed.
Definition: (Nested Query Graph)

A nested query graph is formed by two components,
namely (a) a graph component, and (b) an optional
relation alias with an optional list of attribute aliases.
A nested query graph can be recursively defined as
follows: (Due to space constraint, we do not show the

nested query graphs constructed by ;<1, N, — and ag-
gregation.)

e Primitive nested query graph: In this case, the
graph component contains just the local relation.
If necessary, a relation alias may be assigned or a
list of attribute aliases can be specified to replace
attribute names. This is illustrated by Figure 4.
Figure 4(a) shows a Project relation. Figure 4(b)
shows that the Project relation is assigned a new
relation alias; Figure 4(c) shows that the Project
relation is assigned both relation and attribute
aliases.

e Selection and projection on nested query graph:
Selection and projection can be specified on a
nested query graph as shown in Figure 5. Re-
lation and attribute aliases are not required since
selection and projection do not create any new
attribute or tuple.

e Join of nested query graphs: Two or more nested
query graphs can be joined together to form an-
other nested query graph as shown in Figure 6(a).
For any two nested query graphs involved in a
join, we connect them by an undirected edge la-
beled with the join predicate. Relation and at-
tribute aliases are optional.

e One-way-outerjoin of nested query graphs: Two

O E.name="ABC"
T(salary,dob,sale)

‘ Employee

‘ E (eno,name,etype,sal ary,dob,sales,dno)

Figure 5: Selection and Projection on Nested Query

Graph

P.pno=PB.pno

Project ProjBudget

@

- — EPpno= ——
E.eno EmpProj P.po Project

P.eno
Employee EP L P J
Department

E.dno=
D.dno

:
HIH

Figure 6: (a) Join of Nested Query Graphs, (b) One-

Way-Outerjoin of Nested Query Graphs

or more nested query graphs can participate in a
series of non-cyclic one-way-outerjoins as shown
in Figure 6(b). We further restrict the outerjoin
connectivity to be originated from a single class.
Relation and attribute aliases are optional.

o (eneralized attribute derivation on query graph:
In order to perform computations on attributes,
we introduce an operation known as generalized
attribute derivation (GAD). GAD is an unary
operation that computes an output relation which
contains attributes derived by applying system-
or user-defined functions on the input relation. It
is formally defined as:

Definition: (Generalized Attribute Deriva-
tion - GAD)

Let R be a relation with attributes A, and Fj’s
be attribute functions.

Like the functions used in attribute_computation,
the commonly used functions such as average
function, identity function, etc. can be built-into
the wrapper. Other functions can be user-defined
and can be registered with the wrapper when re-
quired. A nested query graph example for GAD
is shown in Figure 7(a). In this example, the em-
ployee’s salary in Marks and age are computed
by Fusstomark and Fug. Tespectively. Since new
tuples are generated, new relation and attribute
aliases are assigned.

e Groupby nested query graph: Groupby divides
a relation horizontally into several partitions of
records and summarizes selected attributes for
each partition. This can be represented in a
nested query graph as shown in Figure 7(b). Since
the groupby operation creates new summary at-
tributes, it is mandatory to assign relation and at-
tribute aliases to the groupby nested query graph.

e Union of nested query graphs: Nested query
graphs can be unioned together as shown in Fig-
ure 7(c). The resultant nested query graph must
be given new relation and attribute aliases due to
the merging of attributes.

4 Examples of Using Extent Deriva-

tion Structures

To illustrate the use of EDSs, we describe how the
0O export DB example in Figure 1 can be derived
from the set of local relations given in Section 3.1.
Recall that an EDS must be defined for every export
class extent and deep class extent. Nevertheless, it
is clear that when an export class does not have any
subclass, 1t’s extent and deep extent are equivalent.

Deriving Epros and Epgoy

GAD(<eno,Fyssiomark (E.salary),Fage (E.dob)>)

Employee

Groupby(dno, <dno,count(*)>)

Employee

‘ R (eno,newSdlary,age) S (dno, numOfEmployees)

@ (b)

‘ LocalDept‘ ‘ OverseasDept ‘

‘ D (dno, dname, mgr)

©

Figure 7: (a) GAD Nested Query Graph, (b) Groupby
Nested Query Graph, (¢) Union of Nested Query
Graphs

The EDS in Figure 3 is defined for both EPROJ
and Eppoy. In the figure, the member expression in-
dicates that the Epros (or Ebgos) members can be
derived from a join between Project and ProjBudget
assuming that every project must have a budget. The
attribute, P.pno, has been designated to be the entity
key. This implies that all export objects in Epgroy can
be uniquely identified by P.pno and therefore, any ref-
erence from other classes to Fpros has to use P.pno
to obtain the corresponding Epros (or Efpoy) mem-
ber(s). P.pno together with the export class name
PROJ are used to generate the export oids.

Deriving Epgpr and E}, gprp

The EDSs of the DEPT class extent and deep class
extent are identical since DEPT does not have any
subclass. The information of Epgpr (or B gpr) ob-
jects can be derived from several relations as shown in
Figure 8.

The EDS in Figure 8 indicates that LocalDept and
OverseasDept tables have to be unioned together to
obtain the department numbers, department names
and managers’ employee numbers. The union’ed rela-
tion is aliased LO, and its attributes are also assigned
new aliases. A department’s revenue can be deter-
mined by the total sales made by 1ts employees. To ob-
tain the revenue information, the tuples in Employee
are grouped by department numbers and the sum of
sales for each group is computed. The groupby re-
sult is given a new relation alias(GE) and new set of
attribute aliases. One-way outerjoins from LO to E,
GE and OA relations collect all information needed to
compute attributes of the department objects.

The entity key of Epgppr (or E},ppr) objects is
L0.dno and it, together with “DEPT” | are used to
generate the oids of DEPT objects. The other DEPT
attributes, e.g. dname, d#, floor and revenue, are
derived or computed from the relation generated by
the nested query graph. For relationship attributes
has and managedby, the entity keys of the domain
classes, in this case E.eno and LO.mgr respectively,

EDEPT (sameasE D*EPT)

LO.dno=0A. dno
[LocaJDept OverwasDept OfflceAsstgn

‘ LO (dno,dname,mgr)
LO.dno= Groupby(dno, <sum(salary),dno>)
E.dno -
LO.dno= Employee
Employee GE.dno
‘ GE (sum,dno) ‘

Entity key: (LO.dno)

F0|d(DEPT",LO.dno) ‘@
OA floor

dname manageby revenue

floor

Figure 8: Extent Derivation Structure for Epgpr and
Ebepr

*
Eemp

E.eno=EP.eno

workin

Entity key' (E.eno)
workon

Figure 9: Extent Derivation Structure for £, p

are computed.
Deriving Egyp and Efyp

The EDS of Egpp is not shown here since 1t is
empty. Figure 9 depicts the EDS of E%y,p, the deep
extent of FM P. To derive the relationship attribute,
workon, we need the Employee to be extended with
the project assignment information. Therefore, a one-
way outerjoin from Employee to EmpProj is specified
in the nested query graph. The EM P oids and at-
tributes are generated or derived in a way similar to
those of PRO.J and DEPT. Note that EM P, being
selected as the id of the class poset involving EM P,
PT_EMP and FT_EM P, has been used to compute
the EM P oid. Note that the age attribute is com-
puted by applying a function Fage on E.dob. Since
no Fage exists in the local database, the function has
to be included as part of the wrapper’s data dictionary
and is used during query evaluation.

Deriving Epr_gymp and Epp parp

Figure 10 shows the common EDS shared by
EFT_EMP and E;‘T_EMP'

Deriving Epr_gymp and Epr parp

This is similar to that of Err_gayp and Efr parp,

*
EFT_EMP (sameasEFT_EVP)

O etype="Full time"

E.eno=EP.eno

Entity key: (E.eno)

name mthsal

Figure 10: Extent Derivation Structure for Epr_gyp
and Epp_gyp

and we do not show 1t here.

5 Wrapper Query Processing

The transformations of OO wrapper queries into
local relational queries require both the export DB
definition and derivation information. The former is
needed to ensure the given wrapper queries are cor-
rectly formulated while the latter is used to replace
the export classes by their corresponding derivation
expressions in order to evaluate the queries. Our pro-
cessing strategy decomposes a wrapper query into one
or more local relational queries, generates interme-
diate results, and stores them in the local database
during query processing. To handle operations not
supported by the local DBMS, we incorporate query
processing capabilities into the wrapper. The wrap-
per further performs query simplification to reduce the
processing overhead.

5.1 Wrapper Query Processing Steps

The wrapper query processing steps are as follows:

e Step 1: Set up the initial query graph

An initial query graph consists of nodes represent-
ing export class extents, and edges representing
the relationships between the export class extents
referenced by the query. Let the class extent ap-
pearing in the FROM clause be called the anchor.
We construct directed edges from the anchor to
the other class extents referenced by path expres-
sions found in the SELECT and WHERE clauses.

e Step 2: Replace the export class extents
in the query by simplified member expres-
sions
The export class extents in the initial query graph
are replaced by the member expressions of their
corresponding EDSs. In the process, the mem-
ber expressions are simplified by removing those
subexpressions which do not contribute to the
query result. We call the resulting query graph
the augmented query graph.

e Step 3: Generate the query tree
From the augmented query graph, a query tree

workin

workon

which indicates the order of evaluating the query
operations is generated. The leaf nodes and in-
ternal nodes of the query tree denote the local re-
lations and query operations, respectively. Since
multiple query trees can be generated from a sin-
gle augmented query graph, the query tree must
be carefully chosen to reflect the query optimiza-
tion strategy adopted by the wrapper. As part of
query optimization, the query tree may be simpli-
fied by a set of heuristic rules to reduce its pro-
cessing cost.

e Step 4: Determine the wrapper and local
DBMS query fragments
Since not all operations in a query tree may be
evaluated by the local DBMS, a wrapper query
processor has to distinguish between the opera-
tions to be executed by the local DBMS and by
itself. By clustering the operations to be per-
formed at the wrapper and the local DBMS, we
obtain the wrapper query fragments and lo-
cal DBMS query fragments, respectively.

5.2 An Example Wrapper Query and Its
Processing

In this section, we demonstrate wrapper query pro-
cessing using the following query example (Q1). The
query retrieves, for the full-time employees who are
younger than 20 years old and who work on some
project of budget greater than $1,000, their names,
department names, and the project names they work
on.

(Q1: SELECT F.name,F.workin.dname,
F.workon.pname FROM FT EMP F
WHERE F.age<20 and F.workon.budget>1000

Step 1: Set up the initial query graph

Figure 11 depicts the initial query graph con-
structed for Q1. The export class extents referenced
are assigned unique class aliases and the directed
edges between export class extents are marked with
the corresponding relationship attribute names. The
class aliases C'1, C'2 and C3 have been assigned to
Err_emp, Ehpppr and Ebgoy, respectively. The
simple attributes referenced by the query, i.e. name,
age, dname, pname and budget, are attached to the
export class extents they belong to. The target at-
tributes, name, dname and pname, are marked by .
The WHERE predicates are also indicated next to their
attributes.

Step 2: Replace the export class extents by
simplified member expressions

Figure 12 shows the augmented query graph ob-
tained by replacing the export class extents by their
simplified member expressions. To avoid the same re-
lation alias to be used by different member expres-
sions, we prefix the relation aliases in the member
expressions by the unique class aliases of their cor-
responding export class extents. By examining at-
tributes referenced by the query, some member ex-
pressions can be simplified. For example, the E} pprp

*

*
E DeEPT

c2

)

) G
=

>1,000

Figure 11: The Initial Query Graph for @1

*

C2_LO.dname

O C1_E.etype="Full Time"

C1_E.dno=

C1 _E.eno= -
Employee | 71 EP.en C2_LO.dno [LocaIDept] (Over%asDept]‘
CLE Cl EP ‘ C2_L O:(dno,dname,mgr)

C3_P.pno=
C3_PB.pno

C3 PB.budget * @

>1,000

‘ C1_EP.pno=
C3_P.pno
Fage(C1_E.dob)
<20

Figure 12: The Augmented Query Graph for @1

member expression used in this example has been
simplified since the employee, floor and revenue in-
formation of departments are not referenced by the
query. The simple attributes are replaced by their
relational correspondences while the relationship at-
tributes are replaced by the appropriate outerjoin
predicates. For example, the workin relationship at-
tribute of Fpp_garp has been replaced by the join
predicate involving C'1_F.dno, computed by the EDS
of Err_pymp, and C2_LO.dno which 1s the entity key
of the DEPT class.

Step 3: Generate the query tree

The generation of the query tree from an aug-
mented query graphs is a query optimization problem.
In this paper, we do not intend to delve much into the
wrapper query optimization issue since it is beyond
the scope of this paper. We will, however, describe
some heuristic optimization that can be performed on
the query tree. Details of the algebraic transformation
rules that make the heuristic optimization possible can
be found in [2, 5, 3]. The generation of query trees can
be divided into two sub-steps.

o Sub-step 1: (Decide the ordering of joins and out-
erjoins)
By deciding the ordering of joins and outerjoins,
a preliminary query tree can be constructed. A
selection operation attached with the WHERE pred-
icates, and a projection operation that keeps only
the target attributes are added as the last two op-
erations in the query tree as shown in Figure 13.
The [< relation_alias >:< attribute_alias_list >
] notations attached to some nodes indicate
places where relations or attribute names are
named /renamed.

T(C1_E.name,C2_LO.dname,
C3_Ptitle)

O C3_PB.budget>1,000
Fage(C1_E.dob)<20

=
™ ¢1_EPpno=C3_P.pno

TN

£ C1_E.dno= > 3 ppno=
/ C2_LO.dno / \Y?,_PB.pno
9 C1_E.etype="Full Time" ! '
Project ProjBudget
/P [C3 P [C3_PB]
= C1_E.eno= U
/N @ o [C2_LO:(dno,dname,mgr)]
Employee EmpProj Local Dept OverseasDept
[C1_E] [C1_EP]

Figure 13: Query Tree Before Heuristic Optimization

o Sub-step 2: (Perform heuristic optimization on
the query tree)
Without any local cost model information, one
can only perform heuristic optimization on the
preliminary query tree using some algebraic
transformation rules. To reduce the amount
of processing, we push the selection operations
and projection operations down the tree nearer
to the leaf nodes so that they are evaluated as
early as possible. In the process, we also con-
vert some outerjoins into joins without affect-
ing the final result. Figure 14 shows the query
tree after heuristic optimization. Note that the
selection predicate Fage(C1_FE.dob) < 20 has
been moved to right above the Employee leaf
node. The predicate C'3_P B.budget > 1,000 is
also moved to right above the ProjBudget node.
The outerjoin operation along this move is trans-
formed into a join operation since records with
C3_PB.budget = NULL have to be discarded.
Interested readers can refer to [5] for information
about the transformation rules.

Step 4: Determine the wrapper and local
DBMS query fragments

Assuming that the local DBMS is SQL-based and
does not handle Fage() and outerjoins, the optimized
query tree can be decomposed into wrapper and local
DBMS query fragments as shown in Figure 14. Each
local DBMS query fragment can be translated into a
SQL query and be submitted to the local query pro-
cessor. In the figure, each query fragment is enclosed
by a dotted region annotated by a label (GQF; for
wrapper query fragment and LQF; for local DBMS
query fragment, for some ¢ and j). While the wrapper
query fragments are evaluated by the wrapper query
processor, the intermediate results produced may have
to be created as local database tables in order for the
local DBMS to execute the next local DBMS query
fragments. Note that LQF5 and LQF4, though be-
ing next to each other, cannot be evaluated as one

LQF5 T (C1_E.name,C2_LO.dname,C3_Ptitle)

i ™ c1_EPpno=c3 Ppno

> C3_P.pno=

C3_PB.pno
/ R\]/-P[(C3_PB.pno)

“ (C3_P{pnojtitle})

B N ; Project

ProjBudget
. [C3_P]

GQFL 1 (,,,,,,,,,,,,,,,

Cl_E.{eno,dno,name}b)‘}l . LQF4

. 9C1_E.etype="Full Time" .

" Employee ™. ~ EmpProj

LeLg U[CLEP|/ LocalDept OverssasDept -
LOFL Lor2 T e

Figure 14: Query Tree After Heuristic Optimization
and Query Fragment Generation

local DBMS query fragment. This is due to the SQL
language constraint which disallows a selection to be
performed on a union expression within a single query
statement.

6 Conclusions

In this paper we have described in detail the de-
sign of a wrapper to support object-oriented queries
on an export DB view built on an existing relational
DB. We design the wrapper such that it can fulfil the
different DB integration needs. We propose the con-
cept of extent derivation structure (EDS), which
allows us to derive the export class extents and deep
class extents. The EDS representation also supports
relationships between export classes. Due to its inher-
ent algebraic semantics, the expressive power of EDS
can be defined mathematically as the set of algebraic
operations it can support. A wrapper query can be
translated into more than one local queries depending
on the complexity of the export DB derivation. To
support query operations not found in the relational
DBMS, we allow extra query processing capabilities
to be incorporated into the wrapper query processor.

As part of our cooperative information system
project, we have prototyped the core components of
the wrapper query processor. The wrapper proto-
type is able to support OO queries on export DBs
constructed on relational databases implemented in
Postgres[8]. The future research directions to be pur-
sued include:

e Cost-based
Optimization of Wrapper Queries: So far,
we have determined a set of algebraic transfor-
mations for heuristics optimization. This can be
further improved if the cost model of the exist-

0 C3_PB.budget>1,000 /

U [C2_LO:(dno,dname,mgr)] LQF3

ing DBMS is made available or can be calibrated.
With a cost model, we can perform better query
optimization on the wrapper queries.

¢ Modeling of Legacy Applications: In this pa-
per, the focus in on the reuse of existing relational
databases. A large amount of information can,
however, be found embedded in the legacy appli-
cations. At present, the modeling of legacy appli-
cations has not been studied much in the litera-
ture. We plan to extend our approach to model
such application semantics in the future.

References
[1] M.W. Bright, A.R. Hurson, and S.H. Pakzad. A

taxonomy and current issues in multidatabase sys-
tems. TEEE Computer, March 1992.

[2] A.L.P. Chen. Outerjoin optimization in multi-
database. In Proceedings of Databases in Parallel
and Distributed Systems, pages 211-217, 1990.

[3] C. Galindo-Legaria and A. Rosenthal. How to ex-
tend a conventional optimizer to handle one- and
two-sided outerjoin. In Proceedings of the 8th Int’l
Conf. on Data Engineering, pages 402-409, 1992.

[4] Wolfgang Klas, G. Fischer, and K. Aberer. In-
tegrating relational and object-oriented database
systems using a metaclass concept. Journal of Sys-
tems Integration, 4(4), 1994.

[5] E-.P. Lim, J. Srivastava, and S-Y. Hwang.
An algebraic transformation framework for mul-
tidatabase queries. Distributed and Parallel
Database Journal, 3(3), 1995.

[6] W. Litwin and A. Abdellatif. Multidatabase inter-
operability. ITEEE Computer, December 1986.

[7] C.C. Liu and A.L.P. Chen. Object view derivation
and object query transformation. In Proc. IEEFE
COMPSAC, 1994.

[8] M. Stonebraker and G. Kemnitz. The post-
gres next-generation database management sys-
tem. Communications of the ACM, 34(10), Oct.
1991.

[9] T. Takahashi and A.M. Keller. Implementation
of object view query on relational database. In
Int’l Conf. on Data and Knowledge Systems for
Manufacturing and Engineering (DKSME), Hong
Kong, May 1994.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-1996

	Export Database Derivation Approach for supporting Object-Oriented wrapper queries
	Ee Peng LIM
	Hon-Kuan LEE
	Citation

	tmp.1452236321.pdf.nIxrw

