
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2009

Efficient Valid Scope Computation for Location-
Dependent Spatial Queries in Mobile and Wireless
Environments
Ken C. K. LEE
Pennsylvania State University - Main Campus

Wang-chien LEE
Pennsylvania State University - Main Campus

Hong Va LEONG
Hong Kong Polytechnic University

Brandon UNGER
Pennsylvania State University - Main Campus

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

DOI: https://doi.org/10.1145/1516241.1516264

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LEE, Ken C. K.; LEE, Wang-chien; LEONG, Hong Va; UNGER, Brandon; and ZHENG, Baihua. Efficient Valid Scope Computation
for Location-Dependent Spatial Queries in Mobile and Wireless Environments. (2009). ICUIMC '09: Proceedings of the 3rd
International Conference on Ubiquitous Information Management and Communication, Suwon, Korea, January 15-16. 131-140. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/385

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1516241.1516264
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Efficient Valid Scope Computation for Location-Dependent
Spatial Queries in Mobile and Wireless Environments

Ken C. K. Lee†‡ Wang-Chien Lee† Hong Va Leong‡ Brandon Unger† Baihua Zheng§

†Department of Computer Science and Engineering, Pennsylvania State University, USA
{cklee,wlee,bunger}@cse.psu.edu

‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong
{cscklee,cshleong}@comp.polyu.edu.hk

§School of Information Systems, Singapore Management University, Singapore
bhzheng@smu.edu.sg

ABSTRACT
In mobile and wireless environments, mobile clients can access in-
formation with respect to their locations by submitting Location-
Dependent Spatial Queries (LDSQs) to Location-Based Service
(LBS) servers. Owing to scarce wireless channel bandwidth and
limited client battery life, frequent LDSQ submission from clients
must be avoided. Observing that LDSQs issued from similar client
positions would normally return the same results, we explore the
idea of valid scope, that represents a spatial area in which a set of
LDSQs will retrieve exactly the same query results. With a valid
scope derived and an LDSQ result cached at the client side, a client
can assert whether the new LDSQs can be answered with the main-
tained LDSQ result, thus eliminating the LDSQs sent to the server.
As such, contention on wireless channel and client energy con-
sumed for data transmission can be considerably reduced. In this
paper, we design efficien algorithms to compute the valid scope
for common types of LDSQs, including nearest neighbor queries
and range queries. Through an extensive set of experiments, our
proposed valid scope computation algorithms are shown to signifi
cantly outperform existing approaches.

1. INTRODUCTION
With rapid technological advancement of portable devices, posi-

tioning equipment and wireless communication, the vision of mo-
bile and wireless computing becomes closer to reality. Among
many applications developed in mobile and wireless environments,
Location-Based Service (LBS) is one of those killer applications.
LBS provides useful information to the users at the right time in
the right place. Typically, location-related information and requests
for this information are expressed as spatial objects (or objects, for
short) and Location-Dependent Spatial Queries (LDSQs), respec-
tively. Example LDSQs issued by mobile clients include “where
are ATMs within 1 mile from my current position?” and “where
is the nearest gas station with respect to my position?”. Figure 1
shows a client-server system model where LBS is commonly de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the firs page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.
ICUIMC ’09, January 15-16, 2009, Suwon, S. Korea
Copyright 2009 ACM 978-1-60558-405-8 ...$5.00.

LBS serverMobile clients
Base station

LDSQ

LDSQ result

Figure 1: Client-server based LBS system model

ployed upon. Here, mobile clients send LDSQs via a base station
to the LBS server querying for spatial objects. Typical types of LD-
SQs include nearest neighbor (NN) queries, window queries and
range queries. An NN query find an object within a set of objects
that is closest to the current user position; a kNN (k > 1) query
extends NN query to search for k nearest objects. A window query
searches for objects within a spatial window centered at the current
user position and a range query retrieves objects within a specifie
distance from the current user position.
Unlike conventional spatial queries, LDSQs are parameterized

with a query point that represents the current user location. As
such, the result of an LDSQ is dependent on the client location
where the query is issued. For instance, a query “where is the near-
est gas station?” issued at different positions would lead to differ-
ent results. Those clients who are interested in keeping track of
updated LDSQ results while moving will need to repeatedly eval-
uate the query to ensure the correctness of LDSQ results. How-
ever, staying proactive to reevaluate LDSQs certainly consumes a
lot of precious wireless bandwidth and client energy and imposes
extra load on the server. In fact, the results of LDSQs with respect
to similar positions are most likely to remain the same. For in-
stance, as shown in Figure 2(a), a range query issued at two query
points q and q′ cover exactly the same result (i.e., spatial objects c
and d). Therefore, suppose that the result of LDSQ issued at q is
maintained by a client, reevaluating the query issued at q′ can be
avoided, thereby saving expensive query execution costs. We call
this the self answerability property of the query at the client [6].
To avoid unnecessary LDSQ reevaluation, a valid scope that rep-

resents a spatial area can be derived and associated with a query
result. Inside the valid scope, the associated result is guaranteed
to be identical for the corresponding query. Thus, a client inside a
valid scope can simply reuse the result for the query, and perform
query reevaluation only when it moves out of the valid scope. To
represent a valid scope, it is straightforward to retrieve and label all

-131-

h

a

b c

d e

f
g

q
q'

query points

objects result objects

(a) Range queries at q and q′

q

valid scope

result objects

complementary
object

h

a

b c

d e

f
g

q'

(b) Valid scope

Figure 2: Illustration of valid scope

objects as result objects and non-result objects. However, retrieval
of all objects from the LBS server is very time and energy con-
suming. Instead, we determine a small and representative subset of
non-result objects, called “complementary objects”, together with
result objects to represent a valid scope. Referring to our example,
the valid scope of an LDSQ result is formed as shown in Figure 2(b)
by two result objects, i.e., c and d and one complementary objects,
a. Now, the client with the LDSQ result and a few complementary
objects can determine if the result can be reused. By reducing the
number of LDSQ reevaluations, contention on wireless bandwidth
and client energy consumption can be alleviated. Furthermore, the
server load can be relieved as well.
Although algorithms to determine valid scope have been recently

proposed, as to be discussed shortly, they are very inefficien and
they cannot support various types of LDSQs. Motivated by the
importance of valid scopes to LDSQs and the need of highly ef-
ficien valid scope algorithms, we develop in this paper a suite of
efficien online valid scope computation algorithms for various LD-
SQs. Note that the concepts behind those algorithms are generic to
be applicable to other types of LDSQs not discussed in this pa-
per. As opposed to existing works, our proposed algorithms can
determine an LDSQ result and its valid scope together with only a
single index lookup, thus shortening the valid scope computational
and I/O access time. Besides, our algorithms are generic to support
more types of LDSQs while existing ones cannot. We conduct an
extensive set of experiments to validate the effectiveness of valid
scopes in reducing the evaluation cost of LDSQs and to measure
the efficien y of our proposed algorithms in comparison with exist-
ing works. In summary, we make the following important contri-
butions.

1. We investigate the valid scope determination problem and
transform it into an issue of identifying complementary ob-
jects with respect to LDSQ result objects, based on which
efficien online valid scope computation algorithms can be
developed.

2. We devise valid scope determination algorithms for common
types of LDSQs, that include nearest neighbor, k nearest
neighbor, and range queries, and explore some correspond-
ing optimization techniques.

3. We implement our proposed algorithms and conduct experi-
ments with both synthetic and real data sets to test their scal-
ability and practicality. The results well demonstrate the ef-
fectiveness of valid scope and the efficien y of our proposed
algorithms.

The remainder of the paper is organized as follows. Section 2
provides some background of this research and reviews closely re-
lated works. Section 3 and Section 4 present the valid scope de-
termination algorithms for NN (including kNN) queries and range

queries, respectively. Section 5 describes the experiment settings
and the results. Section 6 concludes this paper and states our future
research directions.

2. PRELIMINARY
In this section, we firs review R-tree and best-firs search algo-

rithm that are useful to both LDSQ processing and our valid scope
computation. Then, we review closely related works.

2.1 R-tree and Best-First Search Algorithm
In this paper, we assume that all the objects maintained by an

LBS server are indexed by an R-tree [3] on their spatial coordinates,
because of its wide acceptance and efficien y. As briefl described,
R-tree clusters spatially close objects, represents them using mini-
mum bounding boxes (MBBs) and recursively groups MBBs until
the root of the index is formed. Figure 3(a) depicts an R-tree with
a maximum fanout of three. At the bottom, 8 objects labeled ‘a’
through ‘h’ are grouped into 3 MBBs, i.e., N1, N2 and N3. Then,
the three MBBs are grouped to form the root of the index. The
positions of objects and MBBs are shown in Figure 3(b).

root

N1 N2 N3

N1

a c

N2

b d g

N3

e f h

(a) R-tree

h

a

b

c

d e

f
g

q

N1

N2

N3

(b) Object positions

Figure 3: R-tree and search algorithm

To efficientl retrieve objects required by a spatial query, many
efficien search algorithms are developed based on the notion of
best-firs traversal [4] upon R-tree. Best-firs search algorithm or-
ganizes unexplored index nodes and objects to be accessed in a
priority queue according to their minimum distances with respect
to a query point (i.e., mindists [8]). The search initializes the pri-
ority queue with the root node. It repeatedly dequeues the head
entry (that can be an index node or an object) of the queue for
evaluation (that is guaranteed to have the minimum distance to the
query point among all unexplored entries) until the queue becomes
empty or all the remaining objects in the queue do not satisfy the
query. The pseudo-code for a best-firs search algorithm is shown
in Figure 4. The algorithm explores the head entry ε in a priority
queue each time (in line 2-9). If ε is a node, it is expanded into its
child nodes (line 5-6). Otherwise, it is checked against the query
and collected as a result object if it satisfie the query (line 8-9).
We simply use a termination condition to indicate when the search
completes, so that it could be easily generalized for various queries.
For kNN query, the search terminates when the result set contains
k result objects. For range query, the termination condition is sat-
isfie when all the remaining objects of the queue are outside the
search area.
To facilitate our discussion, we illustrate best-firs search algo-

rithm using a running example. Suppose a 2NN query is issued at
a point q, based on an R-tree shown in Figure 3(a). The trace of
the algorithm for each iteration is outlined in Figure 5. First, the
root node, the initial entry in the priority queue, is fetched and ex-
amined. All its child nodes N1, N2, and N3 are placed back to the
queue, sorted according to their mindists, in the order N2, N1, N3.
As N2 is the head entry, it is dequeued and replaced by its chil-
dren b, d and g in the queue, once again in sorted mindists order.

-132-

Algorithm BestFirstSearch(T ,q)
Input. an R-tree (T), a query point (q)
Local. a priority queue (P)
Output. a result set of objects (R)
Begin
1. P .enqueue(T .root, mindist(T .root, q));
2. while (P is not empty and the termination condition is not

satisfied do
3. (ε, d)← P .dequeue();
4. if (ε is a node) then
5. foreach child c of ε do
6. P .enqueue(c, mindist(c, q));
7. else
8. if (ε satisfie the query) then
9. R← R ∪ {ε};
10. output R;
End

Figure 4: Algorithm BestFirstSearch

Next, N1 is the closest one and is explored and expanded into a
and c to be placed in the queue. At this moment, d is at the head of
the queue. It is dequeued and collected as part of the result. After
that, c is also dequeued and collected. Now, c and d form the 2NN
query result and the search completes. At this point, all the remain-
ing entries in the queue, which represent the non-result objects, are
guaranteed to be located farther away, in non-decreasing distance
order, from the query point.

Entry (ε) Priority queue (ordered by ascending mindists)
root N2, N1, N3

N2 N1, d, N3, b, g
N1 d, c, a, N3, b, g
d c, a, N3, b, g
c a, N3, b, g

Figure 5: Trace based on a 2NN query with best-first search

As to be discussed, our approaches are based on best-firs search
algorithm because of following three reasons. First, it can sup-
port various types of LDSQs that usually access proximate objects
around query points. Second, upon the search termination, the re-
maining priority queue content represents all the non-result objects,
based on which a valid scope for the query result can be derived.
Third, as those non-result objects that affect the determination of
a valid scope are expected to be close to the result objects and
the query point, remaining priority queue already has them sorted
based on their distances to the query point. By tracking both result
and non-result objects in a single priority queue, our valid scope
computation incurs only one index lookup. Since valid scope for-
mulation is dependent on the types of LDSQs, we shall discuss in
detail the algorithms for nearest neighbor and range queries in the
subsequent sections.

2.2 Related Work
If mobile clients can be assured that the result of a previous

LDSQ remains valid for new LDSQs, unnecessary query reeval-
uation can be avoided. To equip mobile clients with such a capa-
bility, a number of related research works are studied and reported
in the literatures. In [2], Dar et al. maintain window query results
as semantic regions. Any window query fully covered by existing
semantic regions is guaranteed to be answered by the client locally.
Specifi for handling NN query, Zheng et al. in [13] associate each
NN result with a precalculated Voronoi cell [1] (as shown in Fig-
ure 6(a)). The result is asserted to be valid if the client (i.e., the
query point) is inside the corresponding cell. For kNN query, Song
et al. in [9] extend the search for m (m > k) NN objects with
respect to the same query point q. Due to triangular inequality, a

client can be assured that kNN is contained by the mNN result if
the distance it moved from q is less than |om,q|−|ok,q|

2
, i.e., the half

distance difference between k-th NN and m-th NN with respect to
q1. However, this is ineffective to reduce query reevaluation. For
example in Figure 6(b), based on q, a 2NN is executed as a 4NN
and δ is the distance between the second NN and the fourth NN.
A new query point q′ (see Figure 6(b)) is located more than a dis-
tance of δ/2 away from q, and hence needs reevaluation. In fact,
the 4NN result still covers 2NN objects to q′, which implies that
this over-conservative estimation cannot effectively eliminate un-
necessary queries.

qc

e i

g ha

f

db

(a) Voronoi cell

|g,q|-|e,q|

q

2NN

4NN

q'

2

a

b

c

d

i

h
g

e

f

(b) mNN query

Figure 6: Voronoi cell and mNN query

q
c

e i
g ha

f

d
b

(a) NN query

q

a

b

c

d

i
hg

e

f

window
queryvalid

scope

(b) Window query

Figure 7: Valid scope based on TP-based approach

Zhang et al. in [12] derive algorithms to determine valid scopes
as we are investigating in this paper. Their algorithm involves two
steps. The firs step determines the LDSQ result. The second step
determines the valid scope that is initialized as the entire object
space and keeps being refine until client movement inside the
region is certainly not violating the result validity. More specif-
ically, the second step executes a number of time parameterized
(TP) queries [10] to simulate all possible client movement paths.
Figure 7(a) shows the valid scope refinemen for an NN query re-
sult. TPNN queries are issued towards all the vertices of the region
to probe non-result objects that influenc the query result (i.e., com-
plementary objects, in our terminology). If non-result objects are
found before the TPNN reaches the target vertices, the valid scope
is trimmed along a bisector formed between the NN result object
and the closest non-result object. Otherwise (i.e., no non-result ob-
jects are found), the query result is considered to be valid at the
edge of the scope. Figure 7(b) illustrates the valid scope determi-
nation for a window query result. TPWINDOW queries are initi-
ated from a query point q towards all vertices of the region. Then,
the valid scope is refine by removing the portion that touches any
non-result object. Again, the issuance of TPWINDOW queries is
repeated until no non-result object can be probed. The number of
TP queries required is highly related to the complexity of the valid
scope. As reported in [12], this valid scope determination has to
repeatedly access an R-tree index, resulting in a large number of
1We denote with |i, j| for the Euclidean distance between point i
and point j and i, j for the line joining the two points.

-133-

disk accesses. These algorithms are clearly inefficient since they
involve complicated polygon manipulation. If the search range is
very complex or not in a polygon shape (e.g., circle as in range
query), the valid scope computation will be very computationally
and I/O expensive. To address this, we introduce more efficien
online valid scope computation algorithms in this paper.
Recently we have also studied the problem of valid scope com-

putation in mobile broadcast environments [7]. Although the ba-
sic idea of the server-based valid scope computation algorithms
presented in this paper bear some similarity to the approach for
broadcast environments, the challenges faced by algorithm designs
for these two environments are very different. Thus, the focus are
clearly not the same. As in broadcast environments where the deliv-
ery order of objects are fi ed in a broadcast channel, the emphasis
of valid scope computation algorithm is on how to determine the
search space for complementary objects, in order to optimize the
tuning and access time. Here, we focus on how to integrate exist-
ing query processing algorithm with valid scope computation so as
to reduce the overall server processing cost.

3. NEAREST NEIGHBOR QUERY
In this section, we present online valid scope computation algo-

rithms for NN query and kNN query, and discuss the result validity
check for new NN/kNN queries from the client.

3.1 Valid Scope for NN Query
Let the set of objects in our environment be O. For an NN or

kNN query p, let the set of result objects be Rp and the remaining
non-result objects be Np. Then O = Rp ∪ Np and Rp ∩ Np = ∅.
Assume that for an NN query p, it has the nearest neighbor ob-
ject o, then the result set for the NN query is Rp = {o}. Let
V (p) be the valid scope for the NN query result Rp. It is obvi-
ous that the Voronoi cell of o, denoted by ♦(o), is the valid scope
of the corresponding NN query result with respect to p. Thus,
V (p) = ♦(o). Object o is guaranteed to be the nearest neigh-
bor to any point inside ♦(o). The formation of a Voronoi cell is
based on half-planes. Given two objects o and o′, two half-planes,
HPo,o′(o) and HPo,o′(o′) are formed sharing a bisector ⊥o,o′ be-
tween o and o′. With a set of non-result objects denoted by Np,
♦(o) = ∩o′∈NpHPo,o′(o), i.e., an intersection of all the half-
planes that cover o formed against all the non-result objects. Ob-
viously, examining all non-result objects to determine their half-
planes and to derive the Voronoi cell of an NN object is totally
impractical. In fact, only those non-result objects that contribute
the bisector as the Voronoi cell perimeter are needed. We refer
to those objects as a set of complementary objects, denoted by
Cp (Cp ⊆ Np). Thus, the valid scope for an NN query result
Rp = {o} is formed as ∩o′∈CpHPo,o′(o) instead. Now, the search
of Cp, which is very dependent on the object distribution, becomes
the main challenge of determining the valid scope for NN query
result efficientl .
To tackle this challenge, we exploit the largest empty circle prop-

erty, which is one of the most important Voronoi cell properties, to
identify Cp. The largest empty circle for a set of objects O is a
circle with the largest radius, such that there is no object in O stay-
ing inside the circle. Furthermore, the center of the circle is inside
the convex hull of the set of objects O and at least two objects lie
on the boundary of the circle. In ♦(o), each vertex, v, is formed
by an intersection of two bisectors, ⊥o,o′ and ⊥o,o′′ , of a Voronoi
cell and it should be equidistant to all o, o′ and o′′. Then v should
have its largest empty circle that covers the object, o, inside the cell
and at least two objects outside the cell. Formally, we denote the
largest empty circle centering at v by �(v, |v, o|), where the radius

is |v, o|. This is illustrated in Figure 8(a). The shaded area repre-
sents a part of the Voronoi cell of an object o, and point v is one
of the vertices of ♦(o). On the other hand, each object o′ that con-
tributes one edge of ♦(o) must be touched by two largest empty
circles, centered at the two endpoints of the edge contributed by o′

itself respectively. If a vertex v is valid (i.e., belonging to♦(o)), its
corresponding circle �(v, |v, o|) must be empty. Otherwise, there
should exist another object that stays inside the corresponding cir-
cle and that is close to o. As a whole, the union of all the largest
empty circles �(v, |v, o|) of existing vertices v forms the search
space of possible non-result objects needed in Cp. Since only ob-
jects inside the circle �(v, |v, o|) will impact the validity of v, ob-
jects outside all those largest empty circles can be safely skipped.
In our approach, the determination of NN query result and the

valid scope for the result takes two steps and shares one index
lookup based on the best-firs search. In the firs step, it retrieves
the nearest object. Based on it, a tentative valid scope is formed
as the entire service area. Then the largest empty circles of all the
corners of the area form the search area for Cp. In the second step,
non-result objects are examined in the remaining priority queue to
refin the valid scope. Every time when an object o′ is found inside
the circle�(v, |v, o|) associated with a vertex v, v becomes invalid.
A bisector between the newly detected object o′ and NN object o
is formed, which will intersect the original edges (that connect to
vertex v) at two new vertices. Then, both the valid scope and the set
of complementary objects are revised. Meanwhile, when an index
node is covered by any existing largest empty circle, it is expanded
and all its children are queued for later examination. On the other
hand, those index nodes or objects that are out of all the existing
largest empty circles are skipped from detail examination. The sec-
ond step terminates when the priority queue becomes empty. At
that time, the valid scope is finalized
For simplicity, we only show the second step, i.e., valid scope re-

finemen and depict it as Algorithm ValidScopeForNN in Figure 9.
We assume that the result set R is already retrieved and the priority
queue, P , is retained. Based on the service area, a tentative valid
scope is formed. Then the search algorithm repeatedly dequeues
the head entry ε from P and examines it. We check ε against all ex-
isting largest empty circles. If ε is an index node, it is expanded and
all its children are queued for later examination. Otherwise (i.e., ε
is an object), for each of those empty circles where ε is covered,
the corresponding vertex is removed; the new vertices are then in-
troduced and the set of complementary objects C is updated. Once
the queue becomes empty, the search terminates and C becomes
the output.

Algorithm ValidScopeForNN(R,P ,p)
Input. An NN result set (R), a priority queue (P), a query point (p)
Local. A set of largest empty cirles (L)
Output. Complementary set (C)
Begin
1. initialize L with largest empty circles centered at the corners

of service area;
2. while (P is not empty) do
3. (ε, d)← P .dequene();
4. if (∃l ∈ L, ε ∈ l) then
5. if (ε is an index node) then
6. forall children c of ε do
7. P .enqueue((c, |p, c|));
8. else /* ε is an object */
9. update L and C;
10. output C;
End.

Figure 9: Algorithm ValidScopeForNN

We illustrate the valid scope computation in Figure 8(b) through

-134-

o

o'
o''

v

|v,o|
o,o''o,o'

(a) Largest empty circle

h

a

b
c

d
e

fg

q

v1

v2 v3

v4

|d,v4|

N3

largest empty circle centered at v4

(b) Initial search space

h

a

b
c

d
e

fg

q

v1

v2 v3

v4

|d,v5|

v5

v6

d,c

T

N3

|d,v6|

(c) Examining c

h

a

b
c

d
e

fg

q

v1

v2 v3

v4v5

v6

d,a

T

N3

v7

v8

(d) Examining a

h

a

b
c

d
e

fg

q

(e) Valid scope

Figure 8: Determination of valid scope for NN query result

Figure 8(e). Suppose object d is the NN answer object and the re-
maining objects (i.e., non-result objects), namely, c, a, N3, b, g
in the priority queue are sorted according to their distance to q as
a result of the best-first-search Initially the service area is taken
as the tentative valid scope (see Figure 8(b)). The corners of the
area, namely, v1, v2, v3 and v4, form four largest empty circles.
Then c, the second nearest object is examined. The bisector ⊥c,d

intersects the existing edges v1, v4 and v3, v4 at v5 and v6 respec-
tively. Then v4 is replaced with the new vertices v5 and v6. The
corresponding largest empty circle �(v4, |v4, d|) is removed and
two new circles, �(v5, |v5, d|) and �(v6, |v6, d|) are formed (see
Figure 8(c)). Similarly after examining a, the search space is fur-
ther refine as shown in Figure 8(d). Owing to limited space, we
skip the explanation of the examination of other objects, since the
process is similar. Finally, the valid scope is formed with all largest
empty circles not covering other objects as depicted in Figure 8(e).
Compared with the TP-based approach, our approach to compute

a valid scope is more efficient First, it does not access the R-tree
multiple times. Second, it does not need to validate all vertices.
Instead it examines the objects in distance order until no largest
empty circle is violated. All those operations are performed within
one single index lookup. Finally, we devise Algorithm ValidityTest-
ForNN (depicted in Figure 10) for clients to detect if an existing NN
query result remains valid for a new query point. The basic idea of
this algorithm is to check if any complementary object is found to
be closer than the NN object to q. Whenever the algorithm is in-
voked, it sorts the NN object and all complementary objects. If the
firs object is no longer the NN result object, it reports invalid for a
reevaluation.

Algorithm ValidityTestForNN(R,C,p)
Input. An NN result set (R), a set of complementary objects (C),

a query point (p)
Output. valid (if the same NN result) or invalid (otherwise)
Begin
1. add R and C to a sorted list;
2. if (the firs object of the list is NN result) then
3. output valid;
4. else
5. output invalid;
End.

Figure 10: Algorithm ValidityTestForNN

3.2 Valid Scope for kNN Query
kNN query is an extension of NN query. It can be classifie

into order-sensitive and order-insensitive NN queries. The former
is concerned with the distance order of result kNN objects. The ob-
jects in the result set are sorted based on their distance to the query
point, and the result set 〈a, b〉 is considered to be different from the
set 〈b, a〉. The latter does not care about the distance order. As long

as the same set of objects is included in the result set, the result is
treated to be identical, e.g., {a, b} and {b, a} are identical. Our dis-
cussion starts with valid scope determination for order-insensitive
kNN query followed by the discussion of the necessary extension
for order-sensitive kNN query.

3.2.1 Order-Insensitive kNN Query
The valid scope for an order-insensitive kNN query is an order-k

Voronoi cell [1]. Suppose k objects o1, · · · ok form the result set,
Rp, of a kNN query evaluated at a query point p and the rest belong
to non-result objects, Np = O − Rp. Each NN object oi has its
own valid scope formed as♦(oi) = ∩o∈CiHPoi,o′(oi) (where the
set of complementary objects Ci ⊆ Np), outside which object oi

is no longer the nearest to p. The order-k Voronoi cell, i.e., V (p),
is formed as the intersection of all ♦(oi), i.e., ∩oi∈Rp♦(oi). Fig-
ure 11(a) shows a scenario in which a 2NN query is issued at query
point, q, and objects a and b form the result set. The shaded area
represents the valid scope of the result set, constituted by a’s and
b’s own Voronoi cells. To determine the valid scope for kNN query
result, we simply extend our algorithm ValidScopeForNN support-
ing NN query. Initially, kNN objects need to be identifie as the
result set. Next, for each individual NN object, oi, we maintain Li

and Ci (1 ≤ i ≤ k) to keep track of the largest empty circles and
set of complementary objects for every oi. The rest of the logic
is similar to that already discussed. The fina valid scope is the
intersection of individual NN valid scopes. Similar to NN query,
the validity check for kNN query is to check if any complemen-
tary object appears closer to a query point than any existing result
object.

a

b

c
d

e

f

g

q

(a) Order-insensitive kNN query

a

b

a,b

c
d

e

f

g

q

(b) Order-sensitive kNN query
Figure 11: Valid scope for kNN query

3.2.2 Order-Sensitive kNN Query
To facilitate the checking of order, we partition the valid scope

of kNN query result by adding bisectors between the kNN objects.
As shown in Figure 11(b), the bisector ⊥a,b is introduced and it
partitions the valid scope into two smaller portions. Within the
valid scope, when the client moves from one divided portion to
another, the result is considered to become invalid due to the change
of distance order. However, the client needs only to reorder the

-135-

result objects, since the set of objects still remains the same, since
the client is still staying within the combined valid scope of the
unordered result set.

4. RANGE QUERY
Range queries search for objects within specifie query ranges.

In the following, we discuss valid scope determination algorithm
for answering range queries, with circular query regions.

4.1 Valid Scope for Range Query
The query region for a range query Qp with range r is a circle,

i.e., �(p, r), where p and r represent the query point (i.e., the cur-
rent user position) and the query range, respectively. To answer a
range query, objects located inside �(p, r) are collected as the re-
sult set Rp and all remaining objects form the non-result set Np.
Every object in Rp is covered by �(p, r), whereas all objects in
Np are not.
Given a query range r, let us defin theMinkowski region,M̃(S),

for a space S as M̃(S) = {m|∃s ∈ S, |m, s| ≤ r}. For a sin-
gle object o, it is obvious that M̃(o) = �(o, r) and we call it a
Minkowski circle. Corresponding to the query region �(p, r), all
objects inRp should have their Minkowski regions M̃(o) (o ∈ Rp)
covering p, i.e., ∀o ∈ Rp, p ∈ M̃(o). On the other hand, no non-
result object o′ in Np has its Minkowski region, M̃(o′), enclosing
p, i.e., ∀o′ ∈ Np, p �∈ M̃(o′). As shown in Figure 12(a), a circular
search space �(q, r) is generated for a range query issued at q with
a radius of r. The result objects are c and d. Other objects like
a lying outside �(q, r) are non-result objects. On the other hand,
Figure 12(b) shows the Minkowski circles of all objects. Clearly,
only �(c, r) and �(d, r) cover q while others, e.g., �(a, r), do
not.

h

a

b c

d e

f
g

q

r

cir(q,r)

(a) �(q, r) (or cir(q, r))

r
h

a

b c

d e

f
g

valid scope

{c}

{d}

cir(a,r)

q

(b) Minkowski circles

Figure 12: Circular search range and Minkowski circles

Specificall , the valid scope for p, denoted by V (p), which rep-
resents an area in which Rp remains valid, can be computed as
an area equal to the intersection of the Minkowski regions of all
the result objects (i.e., where all results objects are still included)
minus those Minkowski regions of the non-result objects (i.e., no
additional non-result objects become involved), as stated in Equa-
tion (1).

V (p) =
\

o∈Rp

M̃(o) −
[

o′∈Np

M̃(o′) (1)

Continuing with our example, a valid scope for a result set {c, d}
is shown in Figure 12(b). However, making use of Np and its
Minkowski region to derive a valid scope for the query is totally
impractical, due to the need of a large number of object examina-
tion operations. To address this, we propose a different approach
in this paper. Observing that A − B ≡ A − A ∩ B, where A

and B are two sets, those non-result objects o′ with the property
that M̃(o′) ∩ S

o∈Rp
M̃(o) = ∅ can be safely discarded as their

Minkowski regions do not have any impact on the formation of
the valid scope. Thus, we introduce a set of complementary ob-
jectsCp, i.e., a small and representative subset of non-result objects
(Cp ⊆ Np) in place of Np to derive the valid scope. The formula-
tion of a valid scope can then be revised and stated in Equation (2).

V (p) =
\

o∈Rp

M̃(o) −
[

o′∈Cp

M̃(o′) (2)

In Equation (2), the set of complementary objects Cp refer to
those objects whose Minkowski regions overlap with those of the
result objects, i.e.,

˘

o′|o′ ∈ Np ∧ M̃(o′) ∩ S

o∈Rp
M̃(o) �= ∅¯

.
WithRp andCp available at the client side, the client can determine
whether a new query point p′ is within the current valid scope V (p)
of query p by checking whether p′ stays inside all the Minkowski
regions of all the result objects and outside those of the comple-
mentary objects. Consequently, it simplifie the validation process
and also avoids the need of using complicated polygon represen-
tation for the valid scope. In effect, we represent the valid scope
on the fl and on demand in the form of an algorithm. Algorithm
ValidityTest, as outlined in Figure13, is devised to perform validity
test on the valid scope (i.e., whether p′ ∈ V (p)).

Algorithm ValidityTest(R,C,p)
Input. A result set (R), a set of complementary objects (C),

a query point (p)
Output. valid (if the same NN result) or invalid (otherwise)
Begin
1. if (∃o ∈ R, p ∈ M̃(o)) then
2. output invalid;
3. else if (∃o′ ∈ C, p ∈ M̃(o′)) then
4. output invalid;
5. else
6. output valid;
End.

Figure 13: Algorithm ValidityTest

Now, the only remaining problem is to compute efficientl for
the set of complementary objects, Cp. The derivation of Cp de-
pends on the availability of the result set Rp. Recall that when we
compute forRp, we adopt the best-firs search approach. In the pro-
cess of maintaining the priority queue, all the remaining elements
in the queue represent all non-result objects, be it in the form of
an actual object, or a minimum bounding box for a collection of
objects. As a side effect, Np is available and ordered in a useful
way. Since only those non-result objects whose Minkowski circles
overlap with those of all the result objects are taken as complemen-
tary objects, the valid scope computation algorithm for range query
then becomes quite straightforward. By computing for the two sets,
Rp and Cp, in such a way, only one single expensive index lookup
is required. Note that we have assumed that the valid scope for the
range query is formed when the result set is non-empty. If the re-
sult set is empty, a nearest surrounder query [5] can be evaluated
to identify all the nearest neighbor objects in all directions with
respect to the query point p. Then the area bounded by all those
nearest surrounders can be adopted as the valid scope for the empty
result set.
Figure 14 outlines Algorithm ValidScopeForRange that deter-

mines the valid scope for range query. The result set is assumed
to be determined in prior by best-firs search algorithm and the pri-
ority queue is retained in order to identify the complementary ob-
jects. The algorithm iteratively examines the head entry ε from the

-136-

priority queue P . For each examination, if the Minkowski circle
for ε overlaps all Minkowski circles of the result objects (line 3),
we examine it in greater details (line 4-7); we will ignore it oth-
erwise. Since ε can be an MBB, for computational efficien y, we
measure the distance bound between ε and the result objects, o, in-
stead based on Lemma 1. Then, if ε is an index node, it is expanded
and all its children are enqueued for future examination (line 4-6).
Otherwise (i.e., ε is an object), it is incorporated to the current set
of complementary objects, C (line 7). The algorithm terminates
when P becomes empty.

Algorithm ValidScopeForRange(R,P ,p,r)
Input. A result set (R), a priority queue (P), a query point (p),

a query range (r)
Output. Complementary set (C)
Begin
1. while (P is not empty) do
2. (ε, d)← P .dequene();
3. if (∀o ∈ R, |o, ε| ≤ 2r) then /* Lemma 1 */
4. if (ε is an index node) then
5. forall children c of ε do
6. P .enqueue((c, |p, c|));
7. else
8. C ← C ∪ {ε}; /* ε is an object */
9. output C;
End.

Figure 14: Algorithm ValidScopeForRange

LEMMA 1. Given a result object, o, the maximum distance of
complementary objects from o is bounded by 2r for a query with
radius r. �

Proof. Those complementary objects o′ that can affect the valid
scope of the result object o should have their Minkowski circles in-
tersecting that of o, i.e.,�(o, r)∩�(o′, r) �= ∅. In other words, o′
should be at a distance of no more than 2r away from o. �

To illustrate how the algorithm works, let us consider a range
query at q with radius r, based on a collection of objects in a run-
ning example as shown in Figure 3(a). Right after the best-firs
search procedure is completed to yield the result set, the result
set Rq includes objects c and d and the priority queue P contains
a, N3, b and g in that order. The object positions are shown in
Figure 15(a). First, a, the head entry in P is examined and its
Minkowski circle is found to be covered by those of b and c, as
in Figure 15(b). Thus, a is collected into the set of complemen-
tary objects, C. Next, N3 whose distances to both c and d are less
than 2r is expanded into e, f and h. After that, all objects are ex-
amined but none of them has their Minkowski circles covered by
those of the result objects as shown in Figure 15(c). The search
finall terminates. The valid scope is formed by the intersection
of the Minkowski circles of two result objects, c and d, and one
complementary object, a, as depicted in Figure 15(d).

4.2 Optimizing the Search Space
We have discussed the process in searching for complementary

objects that are used to represent a valid scope purely based on re-
sult objects. In fact, we can further prune the search space if the
complementary objects are also taken into consideration. Let us
consider an example as shown in Figure 16 where the range query
is �(q, r) and o is the only result object. Based on o, o′ and o′′

are considered to be complementary objects since their Minkowski
circles overlap with �(o, r) (also denoted as cir(o, r)). However,
the area represented by

T

o∈Rq
M̃(o)− M̃(o′) is exactly the same

r

h

a

b c

d e

f
g

q

N3

result
objects

non-answer objects
in the priority queue

(a) Result objects c and d

h

a

b c

d e

f
g

q

N3
r

complementary
object

Minkowski
region

cir(c,r)

cir(d,r)

(b) Examine a and N3

h

a

b c

d e

f
g

q

(c) Examine the rest objects

h

a

b c

d e

f
g

q

valid scope
complementary

object

result objects

(d) Valid scope

Figure 15: Determination of valid scope for range query

as [
T

o∈Rq
M̃(o)− M̃(o′)]− M̃(o′′), implying that o′′ has no im-

pact on the valid scope. Including o′′ to represent a valid scope and
for result validity check is therefore redundant. We call objects like
o′′ in this case false complementary objects. In what follows, we
discuss an additional filte to identify false complementary objects
for removal.

r q
o

o'
o''

cir(o,r)

r

r

r

(a) False complementary object o′′

o

o'

cir(o,2r)

o''

HIDE(o,o')

p0
p1

p0'
p1'

2r
r

(b) Hiding area

Figure 16: Hiding area for range query

We firs outline how a false complementary object can be identi-
fie for a range query, based on the example shown in Figure 16(a).
Based on observation, we can conclude that any object falling in-
side the white area in Figure 16(b) is a false complementary object
as its impact on the valid scope is preempted by that of o′. In our
approach, we call this white area the hiding area and formalize it as
follows. Given a result object, o, and a complementary object, o′,
a hiding area HIDE(o, o′) can be formulated as in Equation (3).

HIDE (o, o′) = �(�(o, 2r), ∠p0′op1′)−
[�(�(p0, r),∠op0p0′)

S

�(�(p1, r), ∠op1p1′)]
(3)

In Equation 3, the firs term represents a sector (�) of a circle
�(o, 2r) with angle at o between p′0 and p′

1; the second and third
terms stand for sectors (actually semicircles) centering at p0 and
p1 with radius r. Finally, all non-result objects that fall inside the
hiding areas belonging to the same complementary object for all
result objects can be safely ignored.

-137-

It is noteworthy that identifying and ignoring false complemen-
tary objects can reduce the number of complementary objects to
be delivered to the client, thus reducing bandwidth consumption,
client storage for representing a valid scope and the computational
overhead in determining result validity. However, the complicated
logic of formulating hiding area, especially for range query, would
incur significan server processing cost. In the evaluation section,
we will study the performance due to optimization.

5. PERFORMANCE EVALUATION
This section evaluates the performance of our proposed geo-

metric valid scope computation and compare it with state-of-art
approach, namely, TP query-based approach as discussed in Sec-
tion 2. Our evaluation mainly focuses on overall system perfor-
mance improvement by adopting valid scope for LDSQs, which is
the motivation of our work and extra overhead incurred by com-
puting/transmitting the valid scope.
To measure the performance for different aspects, we use f ve

metrics, namely, query submission rate, bandwidth consumption,
server execution, server I/O cost and area of valid scope. Query
submission rate measures the ratio of queries submitted to the server
for processing. Bandwidth consumption counts the amount of data
in unit of kilobytes downloaded to the clients, including query re-
sult and valid scope if needed. Logically, low query submission
rate and low bandwidth consumption indicate the effectiveness of
approaches in allowing queries to be answered locally. Server ex-
ecution time measures the time when the query is received by the
server to the time when the query is processed and the valid scope
is computed, if any. Meanwhile, I/O cost counts the number of
pages accessed. Both server execution time and I/O cost measure
the overhead incurred by valid scope computation algorithms. Fi-
nally, the area of valid scope estimates the coverage in a space that
LDSQ results remain identical to the cached LDSQ result. The
larger a valid scope is, the more likely new LDSQs are found to
be the same as the cached LDSQ result, thus the smaller the query
submission rate.
In our evaluation, we implement baseline bare query processing

and TP query-based approach in addition to our proposed approach
that determines the valid scope based on result objects and com-
plementary objects, according to the geometric relationship. Our
implementation is in GNU C++ and the algorithms are labeled as
Bare, Valid Scope (TPQ) and Valid Scope (Geo), respectively for
presentation convenience. Bare does not maintain any LDSQ result
and submits all queries to the server for processing. We use both
synthetic and real object sets in our experiments. Two synthetic
object sets, namely, Uni and Gau, are generated based on uniform
and Gaussian distributions, respectively. Both object sets consist of
10K objects. More specificall , we set the mean and standard de-
viation of Gaussian distribution to 500 and 100, respectively for the
synthetic object set. The real object set, obtained from U.S. Census
Bureau TIGER/Line [11], contains 11K shopping malls across the
country. The locations of the objects in these object sets are nor-
malized to a service area of 1000 × 1000 units. We also fi the
size of an object (that includes object location) and object location
at 256 bytes and 16 bytes, respectively.
Corresponding to the object distributions, we generate client lo-

cations where queries are issued and processed. All the three dis-
cussed types of queries, namely, NN query, kNN query and range
query are evaluated. The value of k in kNN is ranged between
1 (subsuming NN query) and 64 and the radii for range query is
varied from 5 up to 20 units. We run our experiments on Solaris
Blade 1000 Workstations equipped with 1GB RAM and SunOS
5.10 operating system. Furthermore, all the experimented object

Parameters Values
Approach Bare: bare query processing

Valid Scope (TPQ): TP query-based approach
Valid Scope (Geo): our geometric approach

Object set Uni : synthetic (uniform, 10000)
Gau : synthetic (Gaussian, 10000)
Real: real (shopping malls, 11000)

Service area 1000 × 1000 units
Query kNN query (k: 1, 4, 16, 64)

range query (radii: 5, 10, 15, 20)
Server cache 5% of the R-tree size

Table 1: Experiment parameters

sets are indexed by R-tree with a disk page size of 4KB. In addi-
tion, a cache with size equal to 5% of R-tree index size managed by
LRU replacement policy is used to alleviate some server I/O cost
for query processing and valid scope computation if needed. While
we have conducted the experiments on different possible settings,
we select a representative set of experiment results to report due to
space constraints. Finally, Table 1 summarizes all the experiment
parameters. Unless specifie otherwise, the underlined values are
used as the default values in our experiments.
In the following, we firs examine the overall system perfor-

mance improvement by adopting the valid scope. Then we study
the overhead incurred by the valid scope computation. As to be dis-
cussed, valid scope is shown to be useful in avoiding unnecessary
LDSQs being submitted to the server. Meanwhile, our approach is
shown to outperform TP query-based approaches as our approach
can considerably reduce computational and I/O costs.

5.1 Experiment 1: Effectiveness of Valid Scope
to System Performance Improvement

We examine the effectiveness of valid scope to enable a client
to answer LDSQs that effectively return the same results, based on
the cached LDSQ result. In this experiment, we simulate mobile
clients moving in the service area based on a random walk model.
Initially 10 mobile clients are randomly allocated in the service area
and then they proceed for 100 steps in their movement. Whenever a
client completes one step movement, it makes a turn in a random di-
rection and proceeds to the next stop in a distance randomly drawn
from 0 to D from the current position, where D is the maximum
distance moved and it is a perimeter in this experiment. For smaller
values of maximum distance moved, it is more likely that the new
LDSQs are issued within the valid scope associated with a cached
LDSQ result. In this case, the valid scope should be very effective.
Also in each stop, every client issues one LDSQ. As such, each
client issues 100 queries during its movement cycle. The value of
k in kNN query, the radius of range query, and the side length of
window query are set to 4, 15, 15, respectively. The results pre-
sented in Figure 17 are obtained by averaging all the experiment
results from all 100 queries issued by the 10 clients.
First, Figure 17(a) shows the performance of valid scope for

kNN query. In the figure we can see that the query submission
rate of Valid Scope (Geo) is lower than that Bare. Here, Valid Scope
(TPQ) is not included for brevity, since it provides the same valid
scope as Valid Scope (Geo). Also, we can observe that the query
submission rate increases with maximum distance moved for all
the evaluated object sets. This is because more new LDSQs are is-
sued out of the valid scope of the current LDSQ result. Next, we
study the bandwidth consumption, execution time and I/O cost av-
eraged by all issued queries. Since some queries can be answered
by the clients when they adopt valid scopes, on average, the band-
width consumed for Valid Scope (Geo) and Valid Scope (TPQ) are
the same and lower than that for Bare, as shown in Figure 17(b).

-138-

0%

20%

40%

60%

80%

100%

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (Geo)

Query submission rate (kNN query)

Object set / maximum distance moved

%

(a) Query submission rate

0

0.2

0.4

0.6

0.8

1

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (TPQ) Valid Scope (Geo)

Bandwidth consumption (kNN query)

Object set / maximum distance moved

ki
lo

by
te

s

(b) Bandwidth consumption

0.0

5.0

10.0

15.0

20.0

25.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Average server processing time (kNN query)

Object set / maximum distance moved

m
ill

is
ec

on
ds

(c) Server execution time

0.0

5.0

10.0

15.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare
Valid Scope (TPQ)
Valid Scope (Geo)

Average I/O server (kNN query)

Object set / maximum distance moved

no
.o

f p
ag

es
 a

cc
es

se
d

(d) Server I/O cost

Figure 17: kNN query

0%

20%

40%

60%

80%

100%

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (Geo)

Query submission rate (range query)

Object set / maximum distance moved

%

(a) Query submission rate

0

2

4

6

8

10

12

14

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare
Valid Scope (Geo)
Valid Scope (Geo) - NO-OPT

Bandwidth consumption (range query)

Object set / maximum distance moved

ki
lo

by
te

s

(b) Bandwidth consumption

0.0

0.5

1.0

1.5

2.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare
Valid Scope (Geo)
Valid Scope (Geo) - NO-OPT

Average server processing time (range query)

Object set / maximum distance moved

m
ill

is
ec

on
ds

(c) Server execution time

0.0

0.5

1.0

1.5

2.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare
Valid Scope (Geo)
Valid Scope (Geo) - NO-OPT

Average I/O server (range query)

Object set / maximum distance moved

no
.o

f p
ag

es
 a

cc
es

se
d

(d) Server I/O cost

Figure 18: Range query

In terms of query submission rate and bandwidth consumption,
Valid Scope (Geo) and Valid Scope (TPQ) are equally effective as
they generate identical valid scopes. However, as shown in Fig-
ure 17(c), Valid Scope (TPQ) incurs a very high execution time.
This is attributed to its exhaustive number of TP queries required
to refin the valid scope. With the same reasons, a large number of
accesses on the R-tree results in high I/O costs, as shown in Fig-
ure 17(d). Thus we can observe that Valid Scope (Geo) can save the
bandwidth consumption at the expense of server execution time.
This is well justifie since wireless bandwidth is very scarce and
cannot be expanded easily, while server computation power can be
increased if more resources are available. Also, we can observe
Valid Scope (Geo) demands similar I/O cost as Bare, thereby indi-
cating the I/O efficien y of our approach in processing LDSQ and
computing valid scope with a single index lookup.
Finally, we examine the overall system performance improved

for range query. Since Valid Scope (TPQ) does not support range
query, it is not included in the evaluation. In general, the simi-
lar observation as that for kNN query can be made here, that Valid
Scope (Geo) can save LDSQ submission and bandwidth consump-
tion as shown in Figure 18(a) and Figure 18(b). In particular, we
examine the improvement induced by search space optimization as
discussed in Section 4.2. We include an additional approach, i.e.,
our valid scope computation approach with no search space opti-
mization and label it as Valid Scope (Geo) - NO-OPT. As shown
in Figure 18(c), Valid Scope (Geo) - NO-OPT saves some process-
ing overhead. Meanwhile, since no false complementary object is
removed, slightly higher bandwidth and I/O costs, as shown in Fig-
ure 18(d), are resulted.
Based on the evaluations on various queries, valid scope is proven

to be effective in mobile and wireless environments for reducing
the scarce bandwidth consumption. Meanwhile, our proposed valid
scope computation that exploits the geometric relationship between
result objects and complementary objects and index lookup sharing
with query processing clearly outperform more standard TP query-
based approach. Besides, our approach following the same prin-
ciple can also support range queries, but the TP query-based ap-
proach cannot.

5.2 Experiment 2: Overhead Incurred by Valid
Scope Computation

In the second set of experiments, we focus on the overhead in-
curred by valid scope computation. We issue 100 LDSQs which
are independent to one another. The results presented in this sec-
tion are obtained by averaging those from the 100 queries. First of
all, we investigate the area of the valid scope as shown in Figure 19,
which explains why the application of valid scope can improve the
system performance. In general, for kNN query, the area of valid
scope shrinks with increase in the value of k. This is because the
valid scope for kNN query is formed by intersecting Voronoi cells
of result objects. When more result objects are obtained, the area
of intersection among those result objects becomes smaller. How-
ever, for range query, we made two observations. For Uni, when
the search area increases, the area of valid scope shrinks, but it ex-
pands for Gau and Real. Recall that a valid scope for range query
is formed by intersecting Minkowski regions. If the result objects
are far apart and are distributed evenly in the space, as is the case of
Uni, the overlapping area of their Minkowski regions becomes very
small. On the contrary, when the result objects are closely located,
especially for very skewed object sets, the overlapping area of their
Minkowski regions would be much larger.
Figure 20 and Figure 21 depict the server execution time and

I/O cost needed for query processing and valid scope computa-
tion. Compared with Bare, which only involves the execution of
LDSQs, our approach Valid Scope (Geo) actually incurs a certain
degree of extra overhead in computing for the valid scope. Clearly
Valid Scope (TPQ) is the worst among all. Furthermore, we can
see that Valid Scope (Geo) - NO-OPT leads to an improvement of
the server execution time of Valid Scope (Geo), with only a slightly
higher I/O cost (about one more page accessed). That means Valid
Scope (Geo) - NO-OPT is an attractive alternative for Valid Scope
(Geo). Also due to the little extra bandwidth consumed, as shown
in Figure 22, as incurred by Valid Scope (Geo) - NO-OPT, we would
like to consider the incorporation of false complementary object re-
moval algorithm into the client, as the next step of our work. This
can make good use of computation power of mobile clients in re-
lieving the server load.

-139-

1

10

100

1000

10000

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare Valid Scope (Geo)

Valid scope area (kNN query)

Object set / k

sq
ua

re
 u

ni
ts

 (l
og

 s
ca

le
)

(a) kNN query

1

10

100

1000

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare
Valid Scope (Geo)

Valid scope area (range query)

Object set / radius

sq
ua

re
 u

ni
ts

 (l
og

 s
ca

le
)

(b) Range query

Figure 19: Area of valid scope

1

10

100

1000

10000

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare Valid Scope (TPQ) Valid Scope (Geo)

Server processing time (kNN query)

Object set / k

m
ill

is
ec

on
ds

 (l
og

 s
ca

le
)

(a) kNN query

1

10

100

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare
Valid Scope (Geo)
Valid Scope (Geo) - NO-OPT

Server processing time (range query)

Object set / radius

m
ill

is
ec

on
ds

 (l
og

 s
ca

le
)

(b) Range query

Figure 20: Server execution time

0

10

20

30

40

50

60

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

I/O cost (kNN query)

Object set / k

no
.

of
 p

ag
es

 a
cc

es
se

d

(a) kNN query

0

1

2

3

4

5

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare
Valid Scope (Geo)
Valid Scope (Geo) - NO-OPT

I/O cost (range query)

Object set / radius

no
.

of
 p

ag
es

 a
cc

es
se

d

(b) Range query

Figure 21: I/O cost

1

10

100

1000

10000

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare Valid Scope (TPQ) Valid Scope (Geo)

Bandwidth consumption (kNN query)

Object set / k

ki
lo

by
te

s
(lo

g
sc

al
e)

(a) kNN query

0.1

1

10

100

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare Query
Valid Scope (Geo)
Valid Scope (Geo) - NO-OPT

Bandwidth consumption (range query)

Object set / radius

ki
lo

by
te

s
(lo

g
sc

al
e)

(b) Range query

Figure 22: Bandwidth consumption

6. CONCLUSION
In this paper, we studied an important adaptation of valid scope

that contributes in avoiding redundant LDSQs if their results would
be identical to the previous LDSQ results returned to mobile clients
for usage. We propose new valid scope computation algorithms that
exploit the geometric relationship between result objects and some
important non-result objects, namely, complementary objects, to
derive and represent the valid scope. Our approach is very I/O-
efficien since it can share the index access with LDSQ processing,
by only incurring a single index lookup. For range queries, we
considered search space optimization approach in identifying false
complementary objects and ignoring them from the construction
of a valid scope. We conducted an extensive set of experiments
to evaluate the system performance gained by adopting valid scope
and compare our approach with state-of-art approach based on time
parameterized queries. As proven in our evaluation, the concept of
valid scope can effectively improve the system performance and
our proposed algorithms are more efficien than existing ones. As

future work of this research, we are investigating into incorporating
false complementary object removal algorithm onto the client side
to offloa the server burden. Besides, we are studying the compu-
tation of valid scope for other types of LDSQs.

7. REFERENCES
[1] F. Aurenhammer. Voronoi Diagrams - A Survey of a

Fundamental Geometric Data Structure. ACM Computing
Survey, 23(3):345–405, 1991.

[2] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic Data Caching and Replacement. In
Proceedings of International Conference on Very Large Data
Bases (VLDB’96), pages 330–341, 1996.

[3] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD’84), pages
47–57, 1984.

[4] G. R. Hjaltason and H. Samet. Distance Browsing in Spatial
Databases. ACM Transactions on Database Systems,
24(2):265–318, 1999.

[5] K. C. K. Lee, W.-C. Lee, and H. V. Leong. Nearest
Surrounder Queries. In Proceedings of International
Conference on Data Engineering (ICDE’06), pages 85–94,
2006.

[6] K. C. K. Lee, H. V. Leong, and A. Si. Semantic Data
Broadcast for a Mobile Environment based on Dynamic and
Adaptive Chunking. IEEE Transactions on Computer,
51(10):1253–1268, 2002.

[7] K. C. K. Lee, J. Schiffman, B. Zheng, and W.-C. Lee. Valid
Scope Computation for Location-Dependent Spatial Query
in Mobile Broadcast Environments. In Proceedings of ACM
International Conference on Information and Knowledge
Management (CIKM’08), pages 1231–1240, 2008.

[8] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. In Proceedings of ACM SIGMOD
International Conference on Management of Data
(SIGMOD’95), pages 71–79, 1995.

[9] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search
for Moving Query Point. In Proceedings of International
Symposium on Advances in Spatial and Temporal Databases
(SSTD’01), pages 79–96, 2001.

[10] Y. Tao and D. Papadias. Time-Parameterized Queries in
Spatio-Temporal Databases. In Proceedings of ACM
SIGMOD International Conference on Management of Data
(SIGMOD’02), pages 334–345, 2002.

[11] U.S. Census Bureau. Topologically Integrated Geographic
Encoding and Referencing System. U.S. Census Bureau -
TIGER/Line.

[12] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based Spatial Queries. In Proceedings of ACM
SIGMOD International Conference on Management of Data
(SIGMOD’03), pages 443–454, 2003.

[13] B. Zheng and D. L. Lee. Semantic Caching in
Location-Dependent Query Processing. In Proceedings of
International Symposium on Advances in Spatial and
Temporal Databases (SSTD’01), pages 97–116, 2001.

-140-

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2009

	Efficient Valid Scope Computation for Location-Dependent Spatial Queries in Mobile and Wireless Environments
	Ken C. K. LEE
	Wang-chien LEE
	Hong Va LEONG
	Brandon UNGER
	Baihua ZHENG
	Citation

	paper.dvi

