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Abstract. At ACNS 2008, Canard et al. introduced the notion of trap-
door sanitizable signature (TSS) based on identity-based chameleon hash
(IBCH). Trapdoor sanitizable signatures allow the signer of a message
to delegate, at any time, the power of sanitization to possibly several
entities who can modify predetermined parts of the message and gener-
ate a new signature on the sanitized message without interacting with
the original signer. In this paper, we introduce the notion of hierarchical
identity-based chameleon hash (HIBCH), which is a hierarchical exten-
sion of IBCH. We show that HIBCH can be used to construct other
cryptographic primitives, including hierarchical trapdoor sanitizable sig-
nature (HTSS) and key-exposure free IBCH. HTSS allows an entity who
has the sanitization power for a given signed message, to further delegate
its power to its descendants in a controlled manner. Finally, we propose a
concrete construction of HIBCH and show that it is t-threshold collusion-
resistant.

Keywords: Chameleon Hash, Trapdoor Sanitizable Signature, Hierar-
chical Identity-Based Chameleon Hash, Hierarchical Trapdoor Sanitiz-
able Signature.

1 Introduction

Chameleon hash was introduced by Krawczyk and Rabin [20] as a tool to con-
struct chameleon signatures. Informally, a chameleon hash function is a trap-
door collision-resistant hash function: without knowledge of the trapdoor, the
chameleon hash function is collision-resistant; however, collisions can be eas-
ily computed once the trapdoor is known. Similar to undeniable signatures
[9], chameleon signatures possess the properties of non-repudiation and non-
transferability for the signed messages; however, chameleon signatures are non-
interactive protocols. In order to provide a recipient with a non-transferable
signature, a signer hashes the message to be signed with a recipient’s chameleon
� Corresponding author.
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hash function and signs on the resulting digest value. The recipient knows the
trapdoor of the chameleon hash function and hence is able to re-use the hash
value to obtain a signature on a second message. On the other hand, the signer
can prove knowledge of a hash collision, since the original signed message and
the claimed signed message have the same hash value. Such a collision can be
seen as proof of forgery by the signature recipient, as nobody apart from the re-
cipient has more than a negligible probability of successfully finding a collision.
One limitation of the original chameleon signature scheme [20] is that signature
forgery results in the signer discovering the recipient’s trapdoor information.
This deterrent effect of key/trapdoor exposure on forgeries threatens the claims
of non-transferability provided by the scheme. In fact, a third party will likely
believe claims made by the recipient, because the potential devastating damage
to the recipient would result from the forgery of a signature.

Identity-based chameleon hash (IBCH) and identity-based chameleon signa-
ture (IBCS), introduced by Ateniese and Medeiros [2], partly addressed the
problem of key exposure. In IBCH/IBCS, a unique transaction-specific public
key, called customized identity, is used to compute the chameleon hash of a trans-
action. The customized identity is computed by the signer from special strings
that describe the transaction, including the signer and recipient information as
well as a nonce value or time-stamp. As a result, the trapdoor corresponding
to the customized identity is transaction specific and signature forgery only re-
sults in the signer recovering the trapdoor information associated with a single
transaction.

Based on chameleon hash, Ateniese et al. [1] introduced the notion of sani-
tizable signature and presented its generic construction. Sanitizable signatures
allow a signer to partly delegate signing rights to a semi-trusted party, called
a sanitizer. During generation of a signature on a message, the signer chooses
a specific sanitizer who can later modify predetermined parts of the message
and generate a new signature on the sanitized message without interacting with
the signer. The capability of modification renders sanitizable signatures valuable
for many applications, such as authenticated multicast, authenticated database
outsourcing and secure routing.

At ACNS 2008, Canard et al. [8] introduced the notion of trapdoor sanitizable
signature (TSS) and showed its generic construction based on IBCH. TSS allows
the signer to delegate the power of sanitization for a specific signed message to
possibly several entities. Different from the sanitizable signatures in [1] where
the sanitizer is predetermined at the time of signature generation by the signer,
the signer in TSS can choose to whom and when it will provide the trapdoor
information and therefore, any entity can potentially act as a sanitizer. This
property makes a crucial difference from the conventional sanitizer signatures
and is essential for applications where the potential sanitizers are not known at
the time of signature generation.

In this paper, we introduce the notions of hierarchical identity-based chameleon
hash (HIBCH) and hierarchical trapdoor sanitizable signature (HTSS), which are
the hierarchical extensions of IBCH and TSS, respectively. We present a generic
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construction of HTSS from HIBCH. Like TSS, HTSS allows a signer to dele-
gate the power of sanitization for a specific signed message to any sanitizers at
any time. In addition, HTSS allows a sanitizer to further delegate sanitization
power to its descendants in an identity hierarchy. This distinguishing feature
of cascaded delegation of sanitization powers makes HTSS especially power-
ful in protecting information flows in distributed settings, such as automated
web-service-enabled business processes [26] and tiered multimedia distribution
systems [25].

As an example of automated web-service-enabled business processes, let us
consider a simple quotation response process, involving an electronic distributor
(ED), a transportation company (TC) and an electronic manufacturer (EM). A
business document Quotation in XML format is transferred between various en-
tities with use of document-styled web services. The quotation response process
begins when ED receives a request for quotation from an electronic retailer (ER).
ED generates the Quotation by providing quotes for each item and the taxes as-
sociated and forwards the Quotation document to TC via a SOAP message.
Upon receipt of the document, TC adds the delivery cost, delivery information
and updates the total cost. TC then forwards the document to EM, which inputs
additional product information based on the retailer’s information and then for-
wards the Quotation to ER. Upon receipt of the document, ER informs ED that
the quotation has been received. A basic security requirement of the quotation
response process is integrity and authenticity of the Quotation document. Such
a requirement can be fulfilled readily using HTSS: the document originator ED
generates a signature and a trapdoor on the Quotation document and forwards
them to TC. With the knowledge of the trapdoor, TC is able to perform prede-
termined modification on the document, such as adding delivery cost, without
invaliding the original signature. TC then generates a new trapdoor and for-
wards the updated document and the trapdoor to EM, which in turn modifies
the document based on its input.

Another application of HTSS is end-to-end content authentication in tiered
multimedia distribution systems, where multimedia contents are distributed from
a top-tier primary content provider to multiple levels of lower-tier affiliating
providers each with its own user groups. An example is a multinational com-
pany that has a global headquarter, a number of regional headquarters and
many country level offices worldwide. To promote a new product, the company
produces a video advertisement for the product and delivers it to all the regional
headquarters for processing, which then disseminate the processed video clips to
the country level offices. In order to better fit local markets, regional headquar-
ters and country level offices are entitled to derive their own local versions (e.
g., adding subtitles in the local language) based on the original advertisement.
In scenarios like this, higher-tier content providers may authorize lower-tier con-
tent providers performing transcoding operations on the original content, such as
content downscaling, content alteration, and content insertion. Apparently, the
capability of cascaded delegation of sanitization powers makes HTSS an ideal
solution for authenticated content delivery in such environments.
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1.1 Our Contributions

In this paper, we make the following contributions:

1. We introduce the notion of HIBCH, which is a hierarchical extension of
IBCH. We also introduce the security definitions of HIBCH.

2. We introduce the notion of HTSS, which is a hierarchical extension of TSS. In
an HTSS scheme, a signer can delegate at any time the power of sanitization
for a specific signed message to an entity; the entity in turn can further
delegate its power to its descendants in a controlled manner (details are
given in Section 4.1). We extend the standard security definitions of TSS for
the hierarchical setting and propose a generic construction of HTSS based
on HIBCH.

3. We show that a key-exposure free IBCH can be obtained from a two-level
HIBCH, though the latter is not key-exposure free. The construction of
key-exposure free IBCH from HIBCH with key-exposure is similar to the
construction of key-exposure free chameleon hash from IBCH [2,3]. In our
construction, forgery only results in recovering the trapdoor information as-
sociated to a specific transaction, and therefore offering a partial answer to
the key exposure problem of IBCH. We also point out in the full version of
the paper a flaw in [11] which was the first full construction of a key-exposure
free IBCH.

4. We present a concrete construction of HIBCH, which is resilient against
compromise of a threshold number of entities in every level of the underlying
hierarchy.

1.2 Related Work

Chameleon hash was introduced by Krawczyk and Rabin [20]. The original con-
struction of chameleon hash [20] suffers from the key exposure problem. The
problem was partly addressed by IBCH, which was introduced by Ateniese and
Medeiros [2].

Chen et al. [10] presented the first full construction of a key-exposure free
chameleon hash, which works in the setting of gap groups with bilinear pair-
ings. Ateniese and Medeiros [3] proposed three key-exposure free chameleon hash
functions, two based on RSA and one based on pairings. Other key-exposure free
chameleon hash constructions [14,13,12] were proposed subsequently.

Zhang et al. [28] proposed two IBCH schemes from bilinear pairing. Recently,
Chen et al. [11] considered the key exposure problem of IBCH and proposed a
concrete construction of key-exposure free IBCH. However, in the Appendix, we
point out a fault of the construction in [11].

The notion of sanitizable signature was introduced by Ateniese et al. [1]. San-
tizable signature allows a sanitizer to modify predetermined parts of a signed
message and generate new signature on the sanitized message without interact-
ing with the signer. Klonowski and Lauks [19] presented several extensions of
sanitizable signature, including limitation of the set of possible modifications of
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a single mutable block and limitation of the number of modifications of mutable
blocks.

Ateniese et al. [1] identified five security requirements of sanitizable signa-
ture schemes, including unforgeability, immutability, privacy, transparency and
accountability. Recently, Brzuska et al. [7] revisited the security requirements for
sanitizable signatures and investigated the relationship of the security require-
ments, showing for example that transparency implies privacy.

Miyazaki et al. [23] also used the notion of sanitizable signature in a slightly
different vein. Such sanitizable signature schemes [23,17,22] allow the sanitizer
to only delete predetermined parts of a signed message.

The notions of incremental cryptography [4] and homomorphic signatures,
which encompass transitive [21], redactable [18] and context-extraction signa-
tures [24], are also related to sanitizable signatures. We refer the reader to [1]
for details.

Canard et al. [8] introduced the notion of trapdoor sanitizable signatures
(TSS), in which the power of sanitization is given to possibly several entities.
Based on IBCH, Canard et al. [8] proposed a generic construction of TSS. Re-
cently, Yum et al. [27] presented a generic construction of trapdoor sanitizable
signatures from ordinary signature schemes; therefore, one-way functions imply
trapdoor sanitizable signatures.

1.3 Organization

The rest of the paper is organized as follows. Some preliminaries are given in
Section 2. We introduce the notion and security requirements of HIBCH in Sec-
tion 3. We introduce the notion of HTSS and propose a generic construction of
HTSS from HIBCH in Section 4. In Section 5, we describe the generic construc-
tion of key-exposure free IBCH from HIBCH with key exposure. We describe
and analysis our concrete HIBCH scheme in Section 6. Finally, we state our
conclusion in Section 7.

2 Preliminaries

If L is a positive integer, then [1, L] = {1, 2, . . . , L}. If S1, S2 are two sets,
S1\S2 = {x ∈ S1|x /∈ S2}. Let Zp denote the set {0, 1, 2, . . . , p − 1} and Z

∗
p

denote Zp\{0}. For a finite set S, x
$← S means choosing an element x ∈ S

with a uniform distribution. If x1, x2, . . . are strings, then x1‖x2‖ . . . denotes
their concatenation. If A is a probabilistic algorithm, then A(x, r) is the result
of running A on input x and coins r. We denote by A(x;R) the random variable
of choosing coins r uniformly at random from R and outputting A(x, r).

We say that a function f(λ) is negligible if for every c > 0 there exists an
λc such that f(λ) < 1/λc for all λ > λc. We say that two distribution ensem-
bles {X(λ, z)}λ∈N,z∈{0,1}∗ and {Y (λ, z)}λ∈N,z∈{0,1}∗ are computationally indis-
tinguishable, if for any probabilistic polynomial-time (PPT) algorithm D, and
for all sufficiently large λ and any z ∈ {0, 1}∗, it holds that |Pr[D(λ, z, X) =
1]− Pr[D(λ, z, Y ) = 1]| is negligible in λ.
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2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic
multiplicative group of the same order p. A bilinear pairing is a map e : G×G→
GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z
∗
p, we have e(ga

1 , gb
2) = e(g1, g2)ab;

– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for
∀g1, g2 ∈ G.

2.2 Identity-Based Chameleon Hash

A identity-based chameleon hash (IBCH) scheme [2] is a tuple of algorithms
described as follows:

Setup takes as input a security parameter λ. It generates a public/private key
pair (pk, sk), publishes pk and keeps sk secret. This algorithm is run by a
trusted party, called private key generator (PKG).

(pk, sk)← Setup(λ).

Extract takes as input sk and an identity ID. It outputs the trapdoor information
skID associated with the identity. This algorithm is run by PKG.

skID ← Extract(sk, ID).

Hash takes as input pk, an identity ID and a message m. It chooses a randomness
r and outputs a hash value h.

h← Hash(pk, ID, m, r).

Forge takes as input an identity ID, the trapdoor information skID associated
with ID, the hash value h on a message m with r, and a new message m′. It
outputs a value r′.

r′ ← Forge(skID, ID, m, r, h, m′).

For correctness, it requires that

Hash(pk, ID, m, r) = h = Hash(pk, ID, m′, r′ = Forge(skID, ID, m, r, h, m′)) and m′ �= m.

The security of an IBCH scheme consists of two requirements: resistance to
collision forgery under active attacks and semantic security. In the following and
throughout the rest of the paper, we use A to denote an adversary which can be
any probabilistic polynomial-time algorithm.

Resistance to collision forgery under active attacks: The IBCH scheme
is secure against (existential) collision forgery under active attacks, if for any
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PPT adversary A, for all sufficiently large λ, any (pk, sk)← Setup(λ), the prob-
ability that A(λ, pk) outputs (ID, m, r, m′, r′), satisfying Hash(pk, ID, m, r) =
Hash(pk, ID, m′, r′) and m′ �= m, is negligible. A is allowed to query an oracle
OExtract

IBCH
1 on adaptively chosen identities other than ID.

Semantic security: The IBCH scheme is said to be semantically secure if, for all
sufficiently large λ, any (pk, sk)← Setup(λ), any target identity ID and all pairs
of messages m and m′, the distribution ensembles {Hash(pk, ID, m;R)}λ,pk,ID,m,m′

and {Hash(pk, ID, m′;R)}λ,pk,ID,m,m′ are computationally indistinguishable.

3 Hierarchical Identity-Based Chameleon Hash

Like an IBCH scheme, a hierarchical identity-based chameleon hash (HIBCH)
scheme consists of four algorithms: Setup, Extract, Hash and Forge. In HIBCH,
however, identities are organized into a hierarchy, where an identity at depth
k of the hierarchy is represented as a vector of dimension k, and the trapdoor
information for an identity is generated by its parent. Concretely, an �-HIBCH
scheme consists of the following algorithms:

Setup takes as input a security parameter λ and the maximum hierarchy depth
� that is polynomial in λ. It generates a public/private key pair (pk, sk),
publishes pk and keeps sk secret. This algorithm is run by PKG.

(pk, sk)← Setup(λ, �).

Extract takes as an identity ID = (ID1, . . . , IDk) at depth k ≤ �, and the trapdoor
information skID|k−1 of the parent identity ID|k−1 = (ID1, . . . , IDk−1) at depth
k − 1. It outputs the trapdoor information skID for identity ID.

skID ← Extract(skID|k−1 , ID).

Note that, if k = 1, the trapdoor information skID|k−1 of the identity ID|k−1

is sk. Running Extract algorithm recursively, an identity ID = (ID1, . . . , IDk),
using its trapdoor information skID, can generate trapdoor information for
all its descendants. So, we also can denote this algorithm as

skID′ ← Extract(skID, ID′),

where ID′ is a descendant of ID.
Hash takes as input pk, an identity ID and a message m. It chooses a randomness

r and outputs a hash value h.

h← Hash(pk, ID, m, r).

1 When the adversary A queries OExtract
IBCH on an identity ID′, the simulator gives the

trapdoor information skID′ associated with ID′ to A.
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Forge takes as input an identity ID, the trapdoor information skID associated
with ID, the hash value h on a message m with randomness r, and a new
message m′. It outputs r′.

r′ ← Forge(skID, ID, m, r, h, m′).

For correctness, it requires that

Hash(pk, ID, m, r) = h = Hash(pk, ID, m′, r′ = Forge(skID, ID, m, r, h, m′)) and m′ �= m.

We now introduce the security requirements of HIBCH, including resistance
to collision forgery under active attacks, semantic security and forgery indistin-
guishability. The security requirements of resistance to collision forgery under
active attacks and semantic security are extended from the security require-
ments of IBCH. For forgery indistinguishability, informally, it requires that an
adversary be not able to decide whether (m, r, h) is a forgery or not.

Resistance to collision forgery under active attacks: The HIBCH scheme
is secure against (existential) collision forgery under active attacks, if for any
PPT adversaryA, for any sufficiently large λ, any hierarchy depth � that is poly-
nomial in λ, any (pk, sk) ← Setup(λ, �), the probability that A(λ, pk) outputs
(ID, m, r, m′, r′), satisfying Hash(pk, ID, m, r) = Hash(pk, ID, m′, r′) and m′ �= m,
is negligible. A is allowed to query an oracle OExtract

HIBCH
2 on adaptively chosen

identities other than ID or an ancestor of ID.
We say that an HIBCH scheme is t-threshold resistant to collision forgery

under active attacks (or t-threshold collusion-resistant for simplicity.), if A
issues at most t queries to its OExtract

HIBCH oracle on identities at each depth of the
hierarchy.

Semantic security: The HIBCH scheme is said to be semantically se-
cure if, for all sufficiently large λ, any hierarchy depth � that is polynomial
in λ, any (pk, sk) ← Setup(λ, �), all identities ID and all pairs of messages
m and m′, the distribution ensembles {Hash(pk, ID, m;R)}λ,pk,ID,m,m′ and
{Hash(pk, ID, m′;R)}λ,pk,ID,m,m′ are computationally indistinguishable.

Forgery indistinguishability: The HIBCH scheme is said to be forgery-
indistinguishable if, for all sufficiently large λ, any hierarchy depth � that is
polynomial in λ, any (pk, sk) ← Setup(λ, �), all identities ID and all pairs of
messages m and m′, the following distribution ensembles are computationally
indistinguishable:

DForge = {(m′, r̂, h)|r $←R, h← Hash(pk, ID, m, r), skID ← Extract(sk, ID),
r̂ ← Forge(skID, ID, m, r, h, m′)}λ,pk,ID,

DHash = {(m′, r′, h′)|r′ $←R, h′ ← Hash(pk, ID, m′, r′)}λ,pk,ID.

2 When the adversary A queries OExtract
HIBCH on an identity ID′, the simulator gives the

trapdoor information skID′ associated with ID′ to A.
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4 Hierarchical Trapdoor Sanitizable Signature and Its
Construction from HIBCH

In this section, we first introduce the notion of hierarchical trapdoor sanitizable
signature (HTSS), which is a hierarchical extension of TSS, and extend the stan-
dard security definitions of TSS for the hierarchical setting. Then, we propose a
generic construction of HTSS from HIBCH. The construction is similar to the
construction of TSS from IBCH [8].

4.1 Hierarchical Trapdoor Sanitizable Signature

Informally, in an HTSS scheme, an identity associated with an entity who has
the power of sanitization for a given signed message, can delegate its rights to
its descendant identities in a controlled manner. In the following, to simplify the
description, we will use the terms identity and entity interchangeably.

In the sequel we assume that each signed message m = m1‖ · · · ‖mL is par-
titioned into L blocks, where L is an positive integer. We define a hierarchical
sanitizable description ADM of m using a tree. Each leaf node of the tree is labeled
by a distinct block index i ∈ [1, L], which indicates the block is sanitizable. Each
node of the tree is associated with an identity. The identity of a node at depth
k is a k + 1-dimensional vector, and the first k components of the identity is in-
herited from its parent. The identity of the root node is computed from special
strings, which may include the signer and recipient information as well as some
nonce or time-stamp. We say that an identity ID matches ADM if an internal node
of the tree is associated with the identity ID.

A pictorial depiction of a hierarchical sanitizable description ADM is given
in Figure 1, where L = 8. We can obtain from the ADM that the set of in-
dices I ={1, 4, 5, 8} that are sanitizable, and identities ID0, (ID0, ID

1
1), (ID0, ID

2
1),

(ID0, ID
1
1, ID

1
2) and (ID0, ID

1
1, ID

2
2) match the ADM.

Like a TSS scheme, an HTSS scheme consists of five algorithms: KeyGen, Sign,
Trapdoor, Sanitize and Verify. In HTSS, however, Sign algorithm takes as input
a hierarchical sanitizable description ADM, not only a set of the indices I ⊆ [1, L]

(ID0, ID1
1, ID1

2, ID1
3)

(ID0, ID1
1, ID2

2, ID2
3)

(ID0, ID1
1, ID2

2, ID3
3)

ID0

(ID0, ID1
1, ID2

2)

(ID0, ID1
1)

(ID0, ID1
1, ID1

2)

(ID0, ID2
1, ID3

2)

(ID0, ID2
1)

4 5

8

1

Fig. 1. An example of hierarchical sanitizable description
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that are sanitizable in TSS, and the trapdoor information for an identity is
generated by its parent, which runs Trapdoor algorithm. Concretely, an HTSS
scheme consists of the following algorithms:

KeyGen takes as input a security parameter λ and the maximum hierarchy
depth � of hierarchical sanitizable descriptions. It generates a public/private
key pair (pk, sk), publishes pk and keeps sk secret.

(pk, sk)← KeyGen(λ, �).

Sign takes as input a message m = m1‖ · · · ‖mL, a hierarchial sanitizable de-
scription ADM and sk. It outputs a signature σ on the message m.

σ ← Sign(m, ADM, sk).

Trapdoor takes as input a message m, a valid signature σ on m, a hier-
archial sanitizable description ADM, the trapdoor skID|k−1 of the identity
ID|k−1 = (ID1, . . . , IDk−1), and a child identity ID = (ID1, . . . , IDk). It out-
puts a trapdoor skID associated with ID.

skID ← Trapdoor(m, ADM, σ, ID, skID|k−1).

Note that, if k = 1, the trapdoor skID|k−1 of the identity ID|k−1 is sk. Run-
ning Trapdoor algorithm recursively, an identity ID = (ID1, . . . , IDk) with its
trapdoor skID can generate the trapdoors for all its descendants.

Sanitize takes as input pk, a message m, a valid signature σ on m, a hierarchial
sanitizable description ADM, a trapdoor skID associated with identity ID, a
new message m′. It outputs a new signature σ′ on m′.

σ′ ← Sanitize(pk, m, ADM, σ, m′, ID, skID).

Verify takes as input pk, a message m, a putative signature σ and a hierarchial
sanitizable description ADM. It outputs 1 if the signature σ on m is valid and
0 otherwise.

0/1← Verify(pk, m, ADM, σ).

For an HTSS scheme the usual correctness properties should hold, saying that
genuinely signed or sanitized messages are accepted. Formally, for correctness, an
HTSS scheme must satisfy the following condition. For any security parameter
λ and maximum hierarchy depth � of hierarchical sanitizable descriptions, any
message m = m1‖ · · · ‖mL, any hierarchial sanitizable description ADM, any iden-
tity ID = (ID1, . . . , IDk) and the trapdoor skID|k−1 of the parent identity ID|k−1 =
(ID1, . . . , IDk−1), letting (pk, sk) ← KeyGen(λ, �), σ ← Sign(m, ADM, sk), skID ←
Trapdoor(m, ADM, σ, ID, skID|k−1), σ′ ← Sanitize(pk, m, ADM, σ, m′, ID, skID),

1. Verify(pk, m, ADM, σ) = 1.
2. Verify(pk, m′, ADM, σ′) = 1.
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The security requirements of an HTSS scheme include unforgeability and in-
distinguishability, which are extended from the security requirements of TSS.
Informally, unforgeability requires that an outsider be not able to forger a signa-
ture on the original or the sanitized message, and indistinguishability requires
that an outsider be not able to decide whether a message has been sanitized or not.

Unforgeability: An HTSS scheme is existential unforgeable under adap-
tive chosen message attacks, if for all sufficiently large λ, any hierarchy depth
� that is polynomial in λ, any (pk, sk) ← Setup(λ, �), any PPT adversary
A(λ, pk), after issuing OSign

HTSS , OTrapdoor
HTSS and OSanitize

HTSS
3 oracle queries adaptively,

with only negligible probability, can output (m∗, ADM∗, σ∗) such that:

1. Verify(pk, m∗, ADM∗, σ∗) = 1;
2. A never queries OSign

HTSS oracle on (m∗, ·);
3. (m∗, σ∗) does not come from OSanitize

HTSS oracle, i. e., A never queries OSanitize
HTSS

oracle on (m, ·, σ, m∗, ·);
4. A never queries OTrapdoor

HTSS oracle on (m, ADM, σ, ID) such that mi = m∗
i for all

i /∈ I, where I is extracted from ADM and is a set of indices I ⊆ [1, L] that
are sanitizable.

Indistinguishability: Indistinguishability of an HTSS scheme demands that
the output distributions of Sign algorithm and Sanitize algorithm be computa-
tionally indistinguishable. In other words, for all sufficiently large λ, any hierar-
chy depth � that is polynomial in λ, any (pk, sk)← Setup(λ, �), any hierarchial
sanitizable description ADM, all message pairs m, m′ such that mi = m′

i for all
i /∈ I, where I is extracted from ADM and is a set of indices I ⊆ [1, L] that are
sanitizable, any identity ID = (ID1, . . . , IDk) that matches ADM and the trapdoor
skID|k−1 of the parent identity ID|k−1 = (ID1, . . . , IDk−1), the following distribu-
tion ensembles DSanitize and DSign are computationally indistinguishable:

DSanitize = {(m′, σ̂)|σ ← Sign(m,ADM, sk), skID ← Trapdoor(m, ADM, σ, ID, skID|k−1),

σ̂ ← Sanitize(pk, m, ADM, σ, m′, ID, skID)}λ,pk,ID,ADM,

DSign = {(m′, σ′)|σ′ ← Sign(m′, ADM, sk)}λ,pk,ID,ADM.

4.2 Generic Construction of HTSS from HIBCH

In our construction, to sign a message m = m1‖ · · · ‖mL, the signer first sets
m̃ = m̃1‖ · · · ‖m̃L, where m̃i = mi if i /∈ I and otherwise, m̃i = hi =
HIBCH.Hash(pk, ID(i), mi, ri). The set of indices I ⊆ [1, L] that are sanitizable
and the identity ID(i) associated with the sanitizable block index i ∈ I are given
in the hierarchial sanitizable description ADM. Then, the signer signs the message

3 When the adversary A queries OSign
HTSS on a message (m, ADM), the simulator gives

a valid signature σ = Sign(m,ADM, sk) on m to A. When the adversary A queries
OTrapdoor

HTSS on (m,ADM, σ, ID), the simulator gives the corresponding trapdoor skID to
A. When the adversary A queries OSanitize

HTSS on (m,ADM, σ, m′, ID), the simulator gives
a valid signature σ′ on m′ to A.
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m̃ using a conventional signature scheme. Obviously, an entity with the trapdoor
associated with ID(i) or an ancestor of ID(i) can modify mi and generate a new
signature on the sanitized message.

Given a conventional signature scheme Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify) and
an HIBCH scheme Π = (Π.Setup, Π.Extract, Π.Hash, Π.Forge), we define the 5-
tuple algorithms (KeyGen, Sign, Trapdoor, Sanitize, Verify) of an HTSS scheme as
follows:

KeyGen Given a security parameter λ and the maximum hierarchy depth � of
hierarchical sanitizable descriptions, it first runs

(pkΣ , skΣ)← Σ.KeyGen(λ), (pkΠ , skΠ)← Π.Setup(λ, � + 1).

Then, it sets the public key pk = (pkΣ , pkΠ) and the private key sk =
(skΣ , skΠ). Finally, it publishes pk and keeps sk secret.

Sign Given a message m = m1‖ · · · ‖mL, a hierarchial sanitizable description
ADM and sk = (skΣ , skΠ), it first extracts a set of indices I ⊆ [1, L] that are
sanitizable from ADM. Then, it proceeds as follows.
1. For all i ∈ [1, L]\I, it sets m̃i = mi.
2. For all i ∈ I, let ID(i) be the identity of the leaf node of ADM labeled by the

block index i, it chooses a randomness ri uniformly, and computes hi =
Π.Hash(pkΠ , ID(i), mi, ri) and sets m̃i = hi. Let r be the concatenation
of all random values ri, i ∈ I.

3. It sets m̃ = m̃1‖ · · · ‖m̃L and runs

σ̃ ← Σ.Sign(m̃, skΣ).

4. Finally, it sets σ = σ̃‖r and outputs the signature σ on m.
Trapdoor Given a message m, a valid signature σ on m, a hierarchial sanitizable

description ADM, an identity ID = (ID1, . . . , IDk), and the trapdoor skID|k−1

of the parent identity ID|k−1 = (ID1, . . . , IDk−1), it first checks whether ID
matches ADM. If not, it outputs ⊥, denoted an error. Otherwise, it runs

skID ← Π.Extract(skID|k−1 , ID),

and outputs the trapdoor skID associated with ID.
Note that, if k = 1, the trapdoor skID|k−1 of the identity ID|k−1 is skΠ .

Sanitize Given pk = (pkΣ , pkΠ), a message m = m1‖ · · · ‖mL, a valid signature
σ = σ̃‖r on m, a hierarchial sanitizable description ADM, a trapdoor skID

associated with identity ID, a new message m′ = m′
1‖ · · · ‖m′

L, it proceeds
as follows.
1. Let I ′ = {i ∈ [1, L]|mi �= m′

i}. It extracts a set of indices I ⊆ [1, L]
that are sanitizable from ADM. Then, it checks whether I ′ ⊆ I. If not, it
outputs ⊥, denoted an error.

2. It checks whether ID matches ADM. If not, it outputs ⊥.
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3. For all i ∈ I ′, let ID(i) be the identity of the leaf node of ADM labeled by
the block index i, it checks whether ID(i) is a descendant of ID. If not, it
outputs ⊥. Otherwise, it runs

skID(i) ← Π.Extract(skID, ID(i)),

to obtain the trapdoor skID(i) associated with ID(i).
4. It retrieves {ri|i ∈ I} from the signature σ = σ̃‖r.
5. For all i ∈ I ′, it computes hi ← Π.Hash(pkΠ , ID(i), mi, ri) and

r′i ← Π.Forge(skID(i) , ID(i), mi, ri, hi, m
′
i).

6. For all i ∈ I\I ′, it sets r′i = ri. Let r′ be the concatenation of all random
values r′i, i ∈ I.

7. It sets σ′ = σ̃‖r′ and outputs the new signature σ′ on m′.
Verify Given pk = (pkΣ , pkΠ), a message m = m1‖ · · · ‖mL, a putative signature

σ = σ̃‖r and a hierarchial sanitizable description ADM, it proceeds as follows.
1. It extracts a set of indices I ⊆ [1, L] that are sanitizable from ADM and

retrieves {ri|i ∈ I} from the signature σ = σ̃‖r.
2. For all i ∈ [1, L]\I, it sets m̃i = mi.
3. For all i ∈ I, let ID(i) be the identity of the leaf node of ADM labeled by

the block index i, it computes hi = Π.Hash(pkΠ , ID(i), mi, ri) and sets
m̃i = hi.

4. It sets m̃ = m̃1‖ · · · ‖m̃L and outputs Σ.Verify(pkΣ , m̃, σ̃).

It is obvious that the above HTSS scheme satisfies correctness. We now state
the security theorems of the above HTSS scheme, including unforgeability and
indistinguishability. The proofs of the security theorems are similar to those in
[8] and will be given in the full version of the paper.

Theorem 1 (Unforgeability). If the signature scheme Σ is existential un-
forgeable under adaptive chosen message attacks [16] and the HIBCH scheme Π
is resistant to collision forgery under active attacks, the above construction of
HTSS is existential unforgeable under adaptive chosen message attacks.

Theorem 2 (Indistinguishability). If the HIBCH scheme Π is forgery in-
distinguishable, the following distributions DSanitize and DSign are indistinguish-
able for all sufficiently large λ, any hierarchy depth � that is polynomial in λ,
any (pk, sk)← Setup(λ, �), any hierarchial sanitizable description ADM, messages
m, m′ such that mi = m′

i for all i /∈ I, where I is extracted from ADM and is a
set of indices I ⊆ [1, L] that are sanitizable, any identity ID = (ID1, . . . , IDk)
that matches ADM and the trapdoor skID|k−1 of the parent identity ID|k−1 =
(ID1, . . . , IDk−1):

DSanitize = {(m′, σ̂)|σ ← Sign(m,ADM, sk), skID ← Trapdoor(m, ADM, σ, ID, skID|k−1),

σ̂ ← Sanitize(pk, m, ADM, σ, m′, ID, skID)}λ,pk,ID,ADM,

DSign = {(m′, σ′)|σ′ ← Sign(m′, ADM, sk)}λ,pk,ID,ADM.
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5 Key-Exposure Free IBCH from HIBCH

As mentioned in [2,3], a key-exposure free chameleon hash scheme can be ob-
tained from an IBCH scheme. In the construction of key-exposure free chameleon
hash from IBCH, each transaction uses a different public key (corresponding to
a different private key), so that a forgery only results in the user recovering
the trapdoor information associated with a single transaction. The transaction-
specific public key, called customized identity, is computed from special strings
that describe the transaction. Based on the same idea, we show that a 2-HIBCH
can be used to construct a key-exposure free IBCH scheme.

In this section, we first review the notion of key exposure freeness. Then, we
describe the generic construction of key-exposure free IBCH from a two-level
HIBCH formally.

Key Exposure Freeness: An identity-based chameleon hash scheme is
key-exposure free if, for any PPT adversary A, for all sufficiently large λ, any
(pk, sk) ← Setup(λ), the probability that, A(λ, pk) outputs (ID,L, m, r, m′, r′),
satisfying Hash(pk, ID,L, m, r) = Hash(pk, ID,L, m′, r′) and m′ �= m, is negli-
gible. A is allowed to query OForge

IBCH
4 oracle on the adaptively chosen tuples

(ID,Li, mi, ri, m
′
i), except that Li must be different from the target customized

identity L.
Now, given an HIBCH scheme Π = (Π.Setup, Π.Extract, Π.Hash, Π.Forge),

we define the 4-tuple algorithms (Setup, Extract, Hash, Forge) of an IBCH scheme
as follows:

Setup Given a security parameter λ, PKG first runs

(pk, sk)← Π.Setup(λ, 2).

Then, it publishes the public key pk and keeps the private key sk secret.
Extract Given the private key sk and an identity ID, it first runs

skID ← Π.Extract(sk, ID).

Then, it outputs the trapdoor information skID associated with the identity.
Hash Given the public key pk, an identity ID and a message m, it first computes

the customized identity L for this transaction, and chooses a randomness r.
Then, it sets a 2-level identity ˜ID = (ID,L) and runs

h← Π.Hash(pk, ˜ID, m, r).

Finally, it outputs the hash value h.
Forge Given an identity ID, the trapdoor information skID association with ID,

the hash value h on a message m with customized identity L and randomness
r, and a new message m′, it first sets a 2-level identity ˜ID = (ID,L) and runs

4 When the adversary A queries OForge
IBCH on (ID,Li, mi, ri, m

′
i), the simulator gives the

randomness r′i to A such that Hash(pk, ID,Li, mi, ri) = Hash(pk, ID,Li, m
′
i, r

′
i).
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sk
˜ID ← Π.Extract(skID, ˜ID).

Then it runs

r′ ← Π.Forge(sk
˜ID, ˜ID, m, r, h, m′),

and outputs r′.

It is obvious that, if the HIBCH scheme Π satisfies correctness, the above IBCH
scheme also satisfies correctness, and if the HIBCH scheme Π is resistant to
collision forgery under active attacks and semantically secure, so is the above
IBCH scheme. Next, we prove that the above IBCH scheme is key-exposure free.

Theorem 3. If the HIBCH scheme Π is resistant to collision forgery under
active attacks, the above IBCH scheme is key-exposure free.

Proof. To prove this theorem, we will show that, given pk, if a PPT ad-
versary A can output (ID,L, m, r, m′, r′) such that Hash(pk, ID,L, m, r) =
Hash(pk, ID,L, m′, r′) and m′ �= m, we can construct another algorithm B, which
is a forger against the HIBCH scheme Π .

Given a public key pk of the HIBCH scheme Π , using A as a sub-routine, B
simulates a forger against the HIBCH scheme Π . First, B sends pk to A. When A
issues OForge

IBCH oracle queries on the adaptively chosen tuples (ID,Li, mi, ri, m
′
i),

B sets ˜IDi = (ID,Li) and queries its OExtract
HIBCH oracle on ˜IDi to obtain the

trapdoor information sk
˜IDi

; then B computes Π.Hash(pk,˜IDi, mi, ri) = hi and

Π.Forge(sk
˜IDi

, ˜IDi, mi, ri, hi, m
′
i) = r′i and sends r′i to A. Finally, A outputs

(ID,L, m, r, m′, r′) such that Hash(pk, ID,L, m, r) = Hash(pk, ID,L, m′, r′). B
also outputs (˜ID = (ID,L), m, r, m′, r′), which is a collision against the HIBCH
scheme Π .

6 Construction of HIBCH

In this section, based on multivariate polynomials, we propose a concrete con-
struction of HIBCH, which is t-threshold collusion-resistant. Blundo et al. [6]
first used multivariate polynomials to construct key distribution schemes, and
Gennaro et al. [15] extended their schemes for hierarchical systems.

In our construction, the private key of the HIBCH scheme is a random
multivariate polynomial f(x1, . . . , x�), where the degree of xi is a threshold
parameter t. The trapdoor information of an identity ID = (ID1, . . . , IDk) is
f(ID1, . . . , IDk−1, IDk, xk+1, . . . , x�), which can be derived from his parent’s trap-
door information f(ID1, . . . , IDk−1, xk, . . . , x�). Blundo et al. [6] proved that, if
an adversary colludes with at most t entities in each depth of the hierarchy, the
multivariate polynomial f(x1, . . . , x�) can still be kept secret.

In fact, if we choose a random multivariate polynomial f(x1, . . . , x�) as the
private key, where the degree of xi is ti, our HIBCH scheme is resilient against
the adversary who colludes with at most ti entities at depth i of the hierarchy.
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The scheme consists of the following algorithms:

Setup Given a security parameter λ and the maximum hierarchy depth
�, it first generates a bilinear map group system 〈p, G, GT , e〉. Then it
chooses a random polynomial (over Zp) f(x1, . . . , x�) = at,t,...,tx

t
1x

t
2 · · ·xt

� +
at−1,t,...,tx

t−1
1 xt

2 · · ·xt
� + · · · + a0,0,...,0, where the degree of xi is the thresh-

old parameter t. Next, it chooses a generator g of G and an idle identity
ID ∈ Zp. Finally, it chooses a cryptographic hash function H : {0, 1}∗ → G.
The published public key is

pk = (p, G, GT , e, g, H, ID, gat,...,t , . . . , ga0,...,0),

and the private key is sk = f(x1, . . . , x�).
Extract Given an identity ID = (ID1, . . . , IDk) of depth k ≤ �, and the trapdoor

information skID|k−1 = f(ID1, . . . , IDk−1, xk, . . . , x�) of the parent identity
ID|k−1 = (ID1, . . . , IDk−1) at depth k−1, it first checks whether IDi �= ID for
1 ≤ i ≤ k. If not, it outputs ⊥, denoted an error. Otherwise, it computes

skID = f(ID1, . . . , IDk−1, IDk, xk+1, . . . , x�),

and outputs the trapdoor information skID for identity ID.
Note that, if k = 1, the trapdoor information skID|k−1 of the identity

ID|k−1 is sk.
Hash Given pk, an identity ID = (ID1, . . . , IDk) of depth k ≤ �, and a message

m ∈ {0, 1}∗, it first chooses a randomness R ∈ G uniformly. Then it computes

h = e(R, g) · e(H(m), gf(ID1,...,IDk,ID,...,ID)),

and outputs the hash value h.
Note that, given gat,...,t , . . . , ga0,...,0 , one can compute gf(ID1,...,IDk,ID,...,ID).

Forge Given an identity ID = (ID1, . . . , IDk), the trapdoor information skID =
f(ID1, . . . , IDk, xk+1, . . . , x�) associated with ID, the hash value h on a mes-
sage m ∈ {0, 1}∗ with randomness R, and a new message m′ ∈ {0, 1}∗, it
first computes f(ID1, . . . , IDk, ID, . . . , ID) using skID. Then it computes

R′ = R · (H(m) ·H(m′)−1)f(ID1,...,IDk,ID,...,ID),

and outputs the randomness R′.

Note that
Hash(pk, ID, m′, R′) = e(R′, g) · e(H(m′), gf(ID1,...,IDk,ID,...,ID))

= e(R · (H(m) ·H(m′)−1)f(ID1,...,IDk,ID,...,ID), g)

·e(H(m′), gf(ID1,...,IDk,ID,...,ID))

= e(R, g) · e(H(m), gf(ID1,...,IDk,ID,...,ID))
= Hash(pk, ID, m, R).

So, the above construction of HIBCH satisfies correctness. We now state the se-
curity theorems of the above HIBCH scheme. The proofs of the security theorems
will be given in the full version of the paper.
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Theorem 4. In the random oracle model [5], the above construction of HIBCH
is t-threshold resistant to collision forgery under active attacks.

Theorem 5. The above construction of HIBCH is semantically secure.

7 Conclusions

In this paper, we introduced the notion of HIBCH, which is a hierarchical ex-
tension of IBCH. We showed that HIBCH can be used to construct other cryp-
tographic primitives, including HTSS, which is a hierarchical extension of TSS,
and key-exposure free IBCH, even the HIBCH is not key-exposure free. Finally,
we proposed a concrete construction of HIBCH, which is t-threshold collusion-
resistant. A future direction is to find other constructions of HIBCH, which are
fully collusion-resistant and key-exposure free.
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Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)



218 F. Bao et al.

8. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

9. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

10. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg
(2004)

11. Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based chameleon
hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010)

12. Chen, X., Zhang, F., Tian, H., Wei, B., Kim, K.: Key-exposure free chameleon
hashing and signatures based on discrete logarithm systems. Cryptology ePrint
Archive, Report 2009/035 (2009), http://eprint.iacr.org/

13. Gao, W., Li, F., Wang, X.: Chameleon hash without key exposure based on schnorr
signature. Computer Standards & Interfaces 31(2), 282–285 (2009)

14. Gao, W., Wang, X., Xie, D.: Chameleon hashes without key exposure based on
factoring. J. Comput. Sci. Technol. 22(1), 109–113 (2007)

15. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.:
Strongly-resilient and non-interactive hierarchical key-agreement in mANETs. In:
Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 49–65. Springer,
Heidelberg (2008)

16. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

17. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: PIATS: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
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