
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2004

A Cost-Effective Critical Path Approach for Service
Priority Optimization in the Grid Computing
Economy
Mei LIN
Singapore Management University, mlin@smu.edu.sg

Zhangxi LIN
Texas Tech University

DOI: https://doi.org/10.1109/ITCC.2004.1286597

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Sciences Commons, and the Management Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIN, Mei and LIN, Zhangxi. A Cost-Effective Critical Path Approach for Service Priority Optimization in the Grid Computing
Economy. (2004). ITCC '04: Proceedings of the International Conference on Information Technology: Coding and Computing: April 5-7,
2004, Las Vegas. 100-104. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1726

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ITCC.2004.1286597
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1726&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1726&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1726&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1

A Cost-Effective Critical Path Approach for Service Priority Optimization in

the Grid Computing Economy

Mei Lin

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

meilin@mail.utexas.edu

Zhangxi Lin

The Rawls College of Business Administration

Texas Tech University

Lubbock, TX 79409-2101

zlin@ba.ttu.edu

Abstract

The advancement in the utilization and technologies

of the Internet has led to the rapid growth of grid

computing; and the perpetuating demand for grid
computing resources calls for an incentive-compatible

solution to the imminent QoS problem. This paper

examines the optimal service priority selection problem
that a grid computing network user will confront. We

model grid services for a multi-subtask request as a

prioritized PERT graph and prove that the localized
conditional critical path, which is based on the cost-

minimizing priority selection for each node, sets the

lower bound for the length of cost-effective critical path
that commits the optimal solution. We also propose a

heuristic algorithm for relaxing the nodes on the non-
critical paths with respect to a given critical path.

Keywords: Grid computing, computing power

economy, network resource pricing, quality of service,
PERT/CPM, time-cost tradeoff

1. Introduction

The fast adoption of Internet-based grid computing

technology indicates a booming of the application that

calls for the incentive compatible mechanism to

guarantee required quality of service (QoS). It has been

well accepted that pricing will be the effective

resolution to the grid computing resource allocation

problem. A grid computing network with priced

services can be considered a digital economy consisting

of firms (servers), products (CPU services, application

services, software services and data services), and

consumers (users) [1][8][18]. So far, two different

economic setups for the implementation of network

resource pricing have been proposed, aiming at

different economic objectives: social welfare

maximization and profit maximization. The former can

be applied to a network computing economy with

centralized management that cares about the overall

benefits for both users and service providers. The latter

is for profit-making service providers selling their

network computing services to the consumers in the

network. However, these research efforts are focused

on the service provider side problem – how to price

their services. The user side problem was not well

tackled, in which users will inevitably face a

complicated decision problem – how to choose proper

priority for each of the services that jointly fulfill their

grid computing tasks in order to minimize the total cost

with regard to price and throughput delay costs. This

paper is intended to explore how to optimize service

priority selections for a multi-subtask request in a grid

network with prioritized services at different prices.

The scope of this paper will be limited to the discussion

of a sub-optimum solution for the critical path problem

in a prioritized PERT graph because of the NP-hard

nature of this problem.

2. Prioritized PERT/CPM Model

Consider a grid network with prioritized computing

services, including CPU, bandwidth, data access and

software sharing. These services are priced in

accordance with their usage load. We conceptualize all

these kinds of services into logical servers. Users

submit requests that are divided into multiple

independent or dependent subtasks to the grid

computing network for services.

Different service requests have different levels of

urgency and different values to users. The higher

priority service costs more, but saves more time which

reduces the delay cost. It is obvious that if a subtask is

extremely sensitive to service delay, the user must

choose the highest priority for it, or vice versa (Figure

1). In many situations, a user can choose a moderate

priority, not too high but good enough for a subtask to

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

2

minimize the cost and they can coordinate the

selections at different servers in order to maximize their

overall utility. We assume that the pricing information

and server throughput time regarding the services are

available to users so that they can select service quality

properly according to the information.

Priority: k

Cost: Cm=ctk+pk

1 2 … … k 4 … …Km

Delay-sensitive request

Delay-insensitive request

Other request

Figure 1: The optimum service priority to different
types of service request (the greater k, the lower

the priority)

Based on the above description, we use an AON

(activity-on-node) PERT graph to represent the order of

processing the subtasks [12]. The starting node and the

ending node, b and e respectively, are symbolic with

throughput time 0; the other nodes are activity nodes,

denoted by the set M. Each node represents a subtask to

be process by a logical server; and the arcs indicate the

sequence in which the subtasks are processed. Thus,

this PERT graph is essentially an acyclic direct graph

and is denoted as G = (V, E), where V = {b, e} M,

and E is the set of ordered pairs representing arcs/edges.

We assume that a node m M provides K m classes

of priorities, with k m = 1 being the highest, the total

cost of a given subtask at node m for each priority can

be estimated, and that the higher priority requires less

time and is more expensive. Thus, for a given subtask at

any node m with priority k m , we construct a triplet

(k m , t
mk , p

mk), where t
mk and p

mk are the throughput

time and the associated cost at priority k m respectively.

We also assume that each unit service delay will incur a

cost c to the user. So, the expected cost with a priority

service at node m is Cm = ct
mk + p

mk if the delay at the

node impacts the overall throughput time. We name this

graph as a prioritized PERT graph. A question of

interest is how to minimize the total expected cost by

choosing the optimum k m at each node.

Definition 1: Cost-effective critical path (CECP),

denoted as (P, EP) G, where P V and EP E, is the

critical path of G, in which the priority of each node is

configured to yield the minimum total cost of service.

If a CECP (P, EP) can be identified, in which both

t
mk and p

mk are optimized, the user can apply the time

constraints preset by the CECP to solve for the

optimum k m in the remaining nodes by minimizing

p
mk as long as t

mk is within the constraint range set by

the CECP. Accordingly, we can define a non-critical

path as a series of nodes connected one after another,

whose start node and end node are the only ones on the

CECP. Based on this discussion, the user cost

minimization problem can be defined in a general form:

msssm kPmkkkPskVP ppctMinCMin)(,

s.t.
sNn kPskNn pt for every non-critical path

(N, EN), N V and EN E, which starts and ends in

the nodes in the CECP.

To solve the problem we can reformulate the above

as an integer programming problem [12]:

Minimize C =)]([
1

ss

s

s

s kkm

K

k

k

Gm

ptcyx

Subject to the following constraints:

m

m

m

K

k

kx
1

1 , s.t. m G,
mkx is binary;

my = 1, m P, where (P, EP) is one of the

paths between nodes b and e; my = 0, m P;

Given any path (Q, EQ) (P, EP) from node a

to b, and for any other path (N, EN) starting

and ending with a and b,

Nm

k

Qs

k ms
tt .

3. Discrete Time-cost Tradeoff Problem

The problem defined in the last section falls into the

time-cost tradeoff problem category [5]. However, it

differs from the traditional time-cost tradeoff problem

in that it takes into account the delay cost without

applying the budget or deadline constraints.

Denote as the set containing all possible

combinations of priority selections for the nodes in the

prioritized PERT graph G. Let be a configuration

of the network with the selection of a particular priority

for each activity node:

 = {(k m , m), m M}

Let T() and C() be the overall time and cost for the

configuration . The traditional time-cost tradeoff

problem with the budget constraint is to minimize the

total time with a cost constraint, b:

Find t|c such that T(t|c) = min {T(): C() b}.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

3

The version with the deadline constraint is to

minimize the total time given a due time, d:

Find c|t such that C(c|t) = min {C(): T() d}.

The above two versions were proved to be NP-hard

[5] and have attracted a lot research effort in finding a

feasible algorithm. Our basic formulation is identical to

that of the traditional time-cost tradeoff problem in that

at each node, the higher priority has a shorter

throughput time and a higher price. But, in addition to

the cost incurred from processing jobs at the nodes, we

also introduce a delay cost, which can be considered

zero in the traditional problems.

4. Critical Path Optimization Strategy

Definition 2: Conditional critical path (CCP) is the

critical path for a given configuration of priority

selections for the prioritized PERT graph.

We can solve a CCP by setting each node at the

priority level that minimizes the local cost Cm. We

name this CCP as Localized CCP or LCCP. We

understand that this local optimization may not

necessarily minimize the total service costs for whole

network. However, it can provide some information for

searching the optimization solution more efficiently.

Let 0 be a configuration of the network, by which

every node has been selected a priority that minimizes

the local cost. We have:
)()(|),{(0 mmmm jjkkm ptcptcmk

},1 MmKj mm

Let be the optimal configuration after relaxing the

non-critical paths within the time constraints set by the

LCCP based on 0.

Denote the resulting LCCP as a set of nodes P, such

that P G; and let P be the configuration of the

nodes on the CCP:

P
={(}),(|), Pmmkmk mm

,
P

.

The total throughput time of configuration is the

sum of the throughput time of the nodes on the critical

path. Let us denote the total throughput time as,

T()=
Pm

km
t =

pm

m

mk

kt
),(

.

And the total cost of the configuration is,

C()=

Pm

m

Pm

mm

mk

k

mk

kk pptc
),(),(

)(.

Theorem 1 The total throughput time of the optimal

configuration is no less than T().

The proof of this theorem is based on the following

two corollaries.

Corollary 1.1 Given a LCCP P with configuration

P , if 'P ' , such that C(') C()

and T(') < T(), then "P " , such that

C(") C('), T(") > T().

Proof: The only way to shorten the total throughput

time without changing the critical path is to raise

priorities on the LCCP. This change alone, however,

will also increase the total cost; thus, it is necessary to

also lower the priorities for other nodes on the LCCP. If

the resultant configuration has a lower total cost and

throughput time, by un-raising the priorities raised, the

total cost is further reduced, yielding a more optimal

configuration with a longer total throughput time.

Assume there is a 'P derived from P , (jm,

m) 'P , such that jm < km, for (km, m) P , and

(lm, m) 'P , such that lm > km, for (km, m) P .

Let H be the set of nodes on LCCP P that have

priorities higher than the original configuration and the

effected nodes on the non-critical path, and L be the set

of nodes on critical path P that have priorities lower

than the original configuration and the effected nodes

on the non-critical path. Thus,

C('H)>C(H), C('L)<C(L), T('H) <

T(H), and T('L)>T(L).

 Since C(') C() and T(') < T(), then

(C('H) - C(H)) (C(L) - C('L)) and (T('L)

- T(L))<(T(H) - T('H)).

Let " be ' with the modification that m H,

use (km, m) (this is equivalent to letting " be

with the modification that m L, use (km, m)

'). Since C('H) > C(H) and C('L)<C(L),

so C(")<C(')<C(). And because T('H) <

T(H) and T('L)>T(L), T(")>T()>T(').

Corollary 1.2 Given a LCCP P, if ''P ' ,

where P’ P, such that C(') C() and T(') <

T(), "'P " such that C(") C('),

T(') < T("), and T() < T(").

This theorem states that for any configuration with a

different critical path that has a lower total cost and a

shorter total throughput time, there exists another

configuration that has a lowest total cost and longest

total throughput time among the three configurations.

Thus, the total throughput time of the optimal solution

is still lower-bounded by T().

Proof: In the new configuration, parts or all of LCCP

P are non-critical paths to the shorter critical path P’.

For any continuous section of P that is now a non-

critical path and contains the nodes of higher or

unchanged priorities, the cost of the sub-graph

containing the corresponding section of the new critical

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

4

path P’ and other effected nodes is higher than the

original cost of that sub-graph. In order to have a lower

total cost, there must also be parts of the P that are

lengthened for the lower price, whether or not they are

parts of the new critical path P’. And the cost of those

sub-graphs is lower than the cost of the same nodes

with the original configuration, such that the overall

cost is lower than the original total cost. Thus, by undo

the changes made in the higher-cost sub-graphs, the

resulting configuration has a lower total cost compared

to the old and new configurations, and a longer

throughput time. The formal proof is similar to that of

Corollary 1.1.

5. A Heuristic Algorithm for Optimizing

Priority Selections on Non-Critical Paths

5.1. Node Contractions

After a sub-optimal CCP and its configuration are

determined, the next problem is how to relax the time

constraints of nodes on the non-critical paths to

optimize the total cost. In order to improve the

efficiency of problem solving process, we propose three

graph contraction schemes in this section for reducing

the complexity of the graph. By using contraction rules,

we can recursively contract a large graph down to a

smaller and simpler one by reducing each unit to one

node, thus reduce the size of a large grid.

Definition 3: A node with only one immediate

precedent node and one immediate subsequent node is

called a single-path node. A subgraph formed by a

series of two or more single-path nodes connected one

after another is called a straight unit.

Definition 4: A node with more than one immediate

precedent node or subsequent node is called a junction
node. A junction node always belongs to more than one

path. It cannot contract with any one of the annexed

nodes if one of the nodes is also a junction node (Figure

2a), or if the annexed nodes do not have a common

immediate node on another side even if all of them are

single-path nodes (Figure 2b).

(a) (b)

Figure 2: Junction nodes (shaded circle)

Contraction Rule 1: If the arc between two

connecting nodes is the only arc on that side of each

node, then the two nodes can be merged into a single

node (Figure 3). The triplet describing the new node is

(k, t k , p k), where priority k is one of the priority

combinations of the priorities of the nodes in the unit,

and t k and p k are the sums of the t’s and the p’s

respectively of the priority combination k.

(a)

(b)

(c)

Figure 3: Contractions in three different situations

Contraction Rule 2: In a subgraph where there are

multiple paths between two nodes and the paths do not

have any arc connecting to any node outside of the

path, these paths can be merged into a single node

(Figure 4). If there are J paths and each path j is

characterized by priority set Kj, throughput time set Tj,

and price set Pj, the triplet (k, t k , p k) for the new node,

where k Kj, t k Tj, and p k Pj, can be defined as the

following:

t k is in the throughput time set T* (j Tj),

ranging [tmin, tmax], where tmin = max j{mins tsj| tsj

Tj} and tmax = max j{maxs tsj| tsj Tj}.

k is the priority that matches the throughput time

t k originally defined for the associated node.

p k =

Jj

jPtt p
jkj ,min .

…

Figure 4: Contraction of parallel paths

A straight unit can be contracted into a single node

by repeatedly using Contraction Rule 1, and a multiple

path subgraph can also be contracted into a single node

using Contraction Rule 2 and then Contraction Rule 1.

5.2. Node Priority Optimization

Once the graph is reduced, optimization of the non-

critical paths can be accomplished in a more efficient

and systematic fashion. Heuristically, the steps are

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

5

suggested as, 1) optimizing single-path nodes, 2)

optimizing the junction nodes.

The rationale for the above particular order is that a

junction node usually affects greater number of paths

than a single-path node does; the cost reduction is

generally less efficient in optimizing a node that

elongates the throughput times of larger number of

paths. Thus, even within a group of many junction

nodes, it is preferable to optimize the junction node

with lowest multiplicity, which is defined as the

product of number of incoming arcs and number of

outgoing arcs for a junction node. In brief, the larger the

multiplicity, the more paths one junction node impacts,

thus less desirable an optimization target.

While optimizing the single-path nodes, due to prior

graph reduction, some nodes are the contracted single

nodes of unit graphs. Before diving into the algorithm

of optimizing each unit type, it is necessary to specify

the quantity associated with each node.

For any node m, let U be the set of non-critical paths

that m belongs to; let l u be the throughput time of any

u U, and t u be the throughput time of the section on

the critical path that is between the beginning and

ending nodes of u inclusively, we define Allowable
Relaxation (AR) with regard to node m as:

AR m = inf{t u - l u , for all u U}.

Additionally, for a node contracted from Contraction

Rule 1, its AR equals to the AR of any of the two nodes

contracted (note that the two nodes have the same AR);

and for a node contracted from Contraction Rule 2, its

AR is the largest AR among the paths.

It is also necessary to have a quantity indicating the

rate of savings in cost with respect to increase in time

from a higher priority to a lower one. In turn, we

construct another quantity, a set of pairs, denoted mB

for any node m:

Bm = {(rij, dij), where rij =

ij

ji

tt

pp
, dij = ti - tj |

 km <= i < Km, km < j <= Km}.

In addition, for a node that is contracted from

Contraction Rule 1, its B is mB for the two nodes

contracted; for a node that is contracted from

Contraction Rule 2, its B is ,mB for all nodes

contracted.

The optimization procedures for different types of

nodes are as follows:

A. Single-Path Node Optimization Procedures

1. Find the pair (r, d) in mB or B (for contracted

nodes), such that r is the largest provided that the

corresponding d AR.

2. Change the priority of the node according to the

pair chosen.

3. Update set mB or B to exclude the priority

option used in step 1.

4. AR = AR - d for the node and other single-path

nodes on the affected paths. If the resulting AR is

less than the AR of any of the junction nodes on

the affected path, change the AR of that junction

node to this AR.

5. Repeat step 1-5, provided that AR 0 and there

exists d in mB or B, s.t. d AR. Otherwise, exit.

B. Junction Node Optimization Procedures

1. Find the pair in mB or B (for contracted

nodes), for all remaining junction nodes whose

AR 0, such that r is the largest provided that

the corresponding d AR.

2. Change the priority of the chosen node.

3. Update mB or B of the node to exclude priority

option used in step 1.

4. AR = AR-d for the node and those of the other

single-path nodes on the affected paths. If the

resulting AR is less than the AR of any of the

junction nodes on the affected path, change the

AR of that junction node to this AR.

5. Repeat step 1-5, if there remains junction nodes

with AR 0 and there exists d in mB or B,

s.t. d AR. Otherwise, exit.

6. Summary

We have examined the optimal service priority

selection problem that a grid computing user will

confront. Grid services to a multi-subtask request are

modeled as a prioritized PERT/CPM problem.

Differing from the studies of the traditional time-cost

tradeoff problem, our formulation added a delay cost in

regard to the total throughput time. We defined a cost-

effective critical path and proved that it sets a lower

bound of optimum throughput time for the prioritized

PERT/CPM problem. This effectively narrows the

range of the potential optimum critical paths. The

algorithm can be generalized to fit similar operations

research problems, such as supply chain management.

References: (omitted due to limited paper size)

For a complete version as well as the reference list of

this paper please see:
http://geek.ba.ttu.edu/zlin/pdf/ITCC-grid.pdf or contact

the authors.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2004

	A Cost-Effective Critical Path Approach for Service Priority Optimization in the Grid Computing Economy
	Mei LIN
	Zhangxi LIN
	Citation

	tmp.1449126434.pdf.sFz57

