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Abstract

The advancement in the utilization and technologies 

of the Internet has led to the rapid growth of grid 

computing; and the perpetuating demand for grid 
computing resources calls for an incentive-compatible 

solution to the imminent QoS problem. This paper 

examines the optimal service priority selection problem 
that a grid computing network user will confront. We 

model grid services for a multi-subtask request as a 

prioritized PERT graph and prove that the localized 
conditional critical path, which is based on the cost-

minimizing priority selection for each node, sets the 

lower bound for the length of cost-effective critical path 
that commits the optimal solution. We also propose a 

heuristic algorithm for relaxing the nodes on the non-
critical paths with respect to a given critical path.  

Keywords: Grid computing, computing power 

economy, network resource pricing, quality of service, 
PERT/CPM, time-cost tradeoff 

1. Introduction

The fast adoption of Internet-based grid computing 

technology indicates a booming of the application that 

calls for the incentive compatible mechanism to 

guarantee required quality of service (QoS). It has been 

well accepted that pricing will be the effective 

resolution to the grid computing resource allocation 

problem. A grid computing network with priced 

services can be considered a digital economy consisting 

of firms (servers), products (CPU services, application 

services, software services and data services), and 

consumers (users) [1][8][18].  So far, two different 

economic setups for the implementation of network 

resource pricing have been proposed, aiming at 

different economic objectives: social welfare 

maximization and profit maximization.  The former can 

be applied to a network computing economy with 

centralized management that cares about the overall 

benefits for both users and service providers. The latter 

is for profit-making service providers selling their 

network computing services to the consumers in the 

network. However, these research efforts are focused 

on the service provider side problem – how to price 

their services. The user side problem was not well 

tackled, in which users will inevitably face a 

complicated decision problem – how to choose proper 

priority for each of the services that jointly fulfill their 

grid computing tasks in order to minimize the total cost 

with regard to price and throughput delay costs. This 

paper is intended to explore how to optimize service 

priority selections for a multi-subtask request in a grid 

network with prioritized services at different prices. 

The scope of this paper will be limited to the discussion 

of a sub-optimum solution for the critical path problem 

in a prioritized PERT graph because of the NP-hard 

nature of this problem.  

2. Prioritized PERT/CPM Model 

Consider a grid network with prioritized computing 

services, including CPU, bandwidth, data access and 

software sharing. These services are priced in 

accordance with their usage load. We conceptualize all 

these kinds of services into logical servers. Users 

submit requests that are divided into multiple 

independent or dependent subtasks to the grid 

computing network for services.  

Different service requests have different levels of 

urgency and different values to users. The higher 

priority service costs more, but saves more time which 

reduces the delay cost. It is obvious that if a subtask is 

extremely sensitive to service delay, the user must 

choose the highest priority for it, or vice versa (Figure 

1). In many situations, a user can choose a moderate 

priority, not too high but good enough for a subtask to 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



2

minimize the cost and they can coordinate the 

selections at different servers in order to maximize their 

overall utility. We assume that the pricing information 

and server throughput time regarding the services are 

available to users so that they can select service quality 

properly according to the information. 

Priority: k

Cost: Cm=ctk+pk

1          2 … … k           4  … …Km

Delay-sensitive request

Delay-insensitive request

Other request

Figure 1: The optimum service priority to different 
types of service request (the greater k, the lower 

the priority) 

Based on the above description, we use an AON 

(activity-on-node) PERT graph to represent the order of 

processing the subtasks [12]. The starting node and the 

ending node, b and e respectively, are symbolic with 

throughput time 0; the other nodes are activity nodes, 

denoted by the set M. Each node represents a subtask to 

be process by a logical server; and the arcs indicate the 

sequence in which the subtasks are processed. Thus, 

this PERT graph is essentially an acyclic direct graph 

and is denoted as G = (V, E), where V = {b, e}  M,

and E is the set of ordered pairs representing arcs/edges.  

We assume that a node m  M provides K m classes

of priorities, with k m = 1 being the highest, the total 

cost of a given subtask at node m for each priority can 

be estimated, and that the higher priority requires less 

time and is more expensive. Thus, for a given subtask at 

any node m with priority k m , we construct a triplet 

(k m , t
mk , p

mk ), where t
mk  and p

mk  are the throughput 

time and the associated cost at priority k m  respectively. 

We also assume that each unit service delay will incur a 

cost c to the user. So, the expected cost with a priority 

service at node m is Cm = ct
mk + p

mk if the delay at the 

node impacts the overall throughput time. We name this 

graph as a prioritized PERT graph. A question of 

interest is how to minimize the total expected cost by 

choosing the optimum k m  at each node.  

Definition 1: Cost-effective critical path (CECP), 

denoted as (P, EP) G, where P  V and EP  E, is the 

critical path of G, in which the priority of each node is 

configured to yield the minimum total cost of service.  

If a CECP (P, EP) can be identified, in which both 

t
mk  and p

mk are optimized, the user can apply the time 

constraints preset by the CECP to solve for the 

optimum k m  in the remaining nodes by minimizing 

p
mk as long as t

mk  is within the constraint range set by 

the CECP. Accordingly, we can define a non-critical 

path as a series of nodes connected one after another, 

whose start node and end node are the only ones on the 

CECP. Based on this discussion, the user cost 

minimization problem can be defined in a general form: 

msssm kPmkkkPskVP ppctMinCMin )(,

s.t.  
sNn kPskNn pt for every non-critical path 

(N, EN), N  V and EN  E, which starts and ends in 

the nodes in the CECP. 

To solve the problem we can reformulate the above 

as an integer programming problem [12]: 

Minimize C = )]([
1

ss

s

s

s kkm

K

k

k

Gm

ptcyx

Subject to the following constraints:   

m

m

m

K

k

kx
1

1 , s.t. m G,
mkx is binary; 

my = 1, m P, where (P, EP) is one of the 

paths between nodes b and e; my = 0, m  P;

Given any path (Q, EQ)  (P, EP) from node a

to b, and for any other path (N, EN) starting 

and ending with a and b,

Nm

k

Qs

k ms
tt .

3. Discrete Time-cost Tradeoff Problem

The problem defined in the last section falls into the 

time-cost tradeoff problem category [5].  However, it 

differs from the traditional time-cost tradeoff problem 

in that it takes into account the delay cost without 

applying the budget or deadline constraints.  

Denote  as the set containing all possible 

combinations of priority selections for the nodes in the 

prioritized PERT graph G. Let  be a configuration 

of the network with the selection of a particular priority 

for each activity node: 

 = {( k m , m), m  M} 

Let T( ) and C( ) be the overall time and cost for the 

configuration . The traditional time-cost tradeoff 

problem with the budget constraint is to minimize the 

total time with a cost constraint, b:

Find t|c such that T( t|c) = min {T( ): C( ) b}.
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The version with the deadline constraint is to 

minimize the total time given a due time, d:

Find c|t such that C( c|t) = min {C( ): T( ) d}.

The above two versions were proved to be NP-hard 

[5] and have attracted a lot research effort in finding a 

feasible algorithm. Our basic formulation is identical to 

that of the traditional time-cost tradeoff problem in that 

at each node, the higher priority has a shorter 

throughput time and a higher price. But, in addition to 

the cost incurred from processing jobs at the nodes, we 

also introduce a delay cost, which can be considered 

zero in the traditional problems.  

4.  Critical Path Optimization Strategy

Definition 2: Conditional critical path (CCP) is the 

critical path for a given configuration of priority 

selections for the prioritized PERT graph.  

We can solve a CCP by setting each node at the 

priority level that minimizes the local cost Cm. We 

name this CCP as Localized CCP or LCCP. We 

understand that this local optimization may not 

necessarily minimize the total service costs for whole 

network. However, it can provide some information for 

searching the optimization solution more efficiently. 

Let 0 be a configuration of the network, by which 

every node has been selected a priority that minimizes 

the local cost. We have:  
)()(|),{(0 mmmm jjkkm ptcptcmk

},1 MmKj mm

Let  be the optimal configuration after relaxing the 

non-critical paths within the time constraints set by the 

LCCP based on 0.

Denote the resulting LCCP as a set of nodes P, such 

that P G; and let P  be the configuration of the 

nodes on the CCP: 

P
={( }),(|), Pmmkmk mm

,
P

.

The total throughput time of configuration is the 

sum of the throughput time of the nodes on the critical 

path. Let us denote the total throughput time as, 

T( )=
Pm

km
t =

pm

m

mk

kt
),(

.

And the total cost of the configuration is,

C( )=

Pm

m

Pm

mm

mk

k

mk

kk pptc
),(),(

)( .

Theorem 1 The total throughput time of the optimal 

configuration is no less than T( ).

The proof of this theorem is based on the following 

two corollaries. 

Corollary 1.1 Given a LCCP P with configuration 

P , if 'P ' , such that C( ' )  C( )

and T( ' ) < T( ), then "P " , such that 

C( " )  C( ' ), T( " ) > T( ).

Proof: The only way to shorten the total throughput 

time without changing the critical path is to raise 

priorities on the LCCP. This change alone, however, 

will also increase the total cost; thus, it is necessary to 

also lower the priorities for other nodes on the LCCP. If 

the resultant configuration has a lower total cost and 

throughput time, by un-raising the priorities raised, the 

total cost is further reduced, yielding a more optimal 

configuration with a longer total throughput time. 

Assume there is a 'P  derived from P , (jm,

m) 'P , such that jm < km, for (km, m) P , and 

(lm, m) 'P , such that lm > km, for (km, m) P .

Let H be the set of nodes on LCCP P that have 

priorities higher than the original configuration and the 

effected nodes on the non-critical path, and L be the set 

of nodes on critical path P that have priorities lower 

than the original configuration and the effected nodes 

on the non-critical path. Thus, 

C( 'H )>C( H ), C( 'L )<C( L ), T( 'H ) < 

T( H ), and T( 'L )>T( L ).

 Since C( ' ) C( ) and T( ' ) < T( ), then

(C( 'H ) - C( H )) (C( L ) - C( 'L )) and (T( 'L )

- T( L ))<(T( H ) - T( 'H )).

Let " be ' with the modification that m H,

use (km, m)  (this is equivalent to letting " be 

with the modification that m L, use (km, m)

' ). Since C( 'H ) > C( H ) and C( 'L )<C( L ), 

so C( " )<C( ' )<C( ). And because T( 'H ) < 

T( H ) and T( 'L )>T( L ), T( " )>T( )>T( ' ).

Corollary 1.2 Given a LCCP P, if ''P ' ,

where P’  P, such that C( ' ) C( ) and T( ' ) < 

T( ), "'P "  such that C( " )  C( ' ),

T( ' ) < T( " ), and T( ) < T( " ). 

This theorem states that for any configuration with a 

different critical path that has a lower total cost and a 

shorter total throughput time, there exists another 

configuration that has a lowest total cost and longest 

total throughput time among the three configurations. 

Thus, the total throughput time of the optimal solution 

is still lower-bounded by T( ).

Proof: In the new configuration, parts or all of LCCP 

P are non-critical paths to the shorter critical path P’.

For any continuous section of P that is now a non-

critical path and contains the nodes of higher or 

unchanged priorities, the cost of the sub-graph 

containing the corresponding section of the new critical 
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path P’ and other effected nodes is higher than the 

original cost of that sub-graph. In order to have a lower 

total cost, there must also be parts of the P that are 

lengthened for the lower price, whether or not they are 

parts of the new critical path P’. And the cost of those 

sub-graphs is lower than the cost of the same nodes 

with the original configuration, such that the overall 

cost is lower than the original total cost. Thus, by undo 

the changes made in the higher-cost sub-graphs, the 

resulting configuration has a lower total cost compared 

to the old and new configurations, and a longer 

throughput time. The formal proof is similar to that of 

Corollary 1.1.

5. A Heuristic Algorithm for Optimizing 

Priority Selections on Non-Critical Paths

5.1. Node Contractions 

After a sub-optimal CCP and its configuration are 

determined, the next problem is how to relax the time 

constraints of nodes on the non-critical paths to 

optimize the total cost. In order to improve the 

efficiency of problem solving process, we propose three 

graph contraction schemes in this section for reducing 

the complexity of the graph. By using contraction rules, 

we can recursively contract a large graph down to a 

smaller and simpler one by reducing each unit to one 

node, thus reduce the size of a large grid.  

Definition 3: A node with only one immediate 

precedent node and one immediate subsequent node is 

called a single-path node. A subgraph formed by a 

series of two or more single-path nodes connected one 

after another is called a straight unit.

Definition 4: A node with more than one immediate 

precedent node or subsequent node is called a junction 
node. A junction node always belongs to more than one 

path. It cannot contract with any one of the annexed 

nodes if one of the nodes is also a junction node (Figure 

2a), or if the annexed nodes do not have a common 

immediate node on another side even if all of them are 

single-path nodes (Figure 2b).  

(a) (b) 

Figure 2: Junction nodes (shaded circle) 

Contraction Rule 1:  If the arc between two 

connecting nodes is the only arc on that side of each 

node, then the two nodes can be merged into a single 

node (Figure 3). The triplet describing the new node is 

(k, t k , p k ), where priority k is one of the priority 

combinations of the priorities of the nodes in the unit, 

and t k  and p k  are the sums of the t’s and the p’s

respectively of the priority combination k.

(a)

(b)

(c)

Figure 3: Contractions in three different situations 

Contraction Rule 2: In a subgraph where there are 

multiple paths between two nodes and the paths do not 

have any arc connecting to any node outside of the 

path, these paths can be merged into a single node 

(Figure 4). If there are J paths and each path j is

characterized by priority set Kj, throughput time set Tj,

and price set Pj, the triplet (k, t k , p k ) for the new node, 

where k  Kj, t k  Tj, and p k  Pj, can be defined as the 

following: 

t k is in the throughput time set T*  ( j Tj),

ranging [tmin, tmax], where tmin = max j{mins tsj| tsj

Tj} and tmax = max j{maxs tsj| tsj  Tj}.

k is the priority that matches the throughput time 

t k  originally defined for the associated node. 

p k =

Jj

jPtt p
jkj ,min .

…

Figure 4: Contraction of parallel paths 

A straight unit can be contracted into a single node 

by repeatedly using Contraction Rule 1, and a multiple 

path subgraph can also be contracted into a single node 

using Contraction Rule 2 and then Contraction Rule 1. 

5.2. Node Priority Optimization  

Once the graph is reduced, optimization of the non-

critical paths can be accomplished in a more efficient 

and systematic fashion. Heuristically, the steps are 
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suggested as, 1) optimizing single-path nodes, 2) 

optimizing the junction nodes.  

The rationale for the above particular order is that a 

junction node usually affects greater number of paths 

than a single-path node does; the cost reduction is 

generally less efficient in optimizing a node that 

elongates the throughput times of larger number of 

paths. Thus, even within a group of many junction 

nodes, it is preferable to optimize the junction node 

with lowest multiplicity, which is defined as the 

product of number of incoming arcs and number of 

outgoing arcs for a junction node. In brief, the larger the 

multiplicity, the more paths one junction node impacts, 

thus less desirable an optimization target.  

While optimizing the single-path nodes, due to prior 

graph reduction, some nodes are the contracted single 

nodes of unit graphs. Before diving into the algorithm 

of optimizing each unit type, it is necessary to specify 

the quantity associated with each node.  

For any node m, let U be the set of non-critical paths 

that m belongs to; let l u be the throughput time of any 

u U, and t u  be the throughput time of the section on 

the critical path that is between the beginning and 

ending nodes of u inclusively, we define Allowable 
Relaxation (AR) with regard to node m as: 

AR m  = inf{t u - l u , for all u U}.

Additionally, for a node contracted from Contraction 

Rule 1, its AR equals to the AR of any of the two nodes 

contracted (note that the two nodes have the same AR); 

and for a node contracted from Contraction Rule 2, its 

AR is the largest AR among the paths.  

It is also necessary to have a quantity indicating the 

rate of savings in cost with respect to increase in time 

from a higher priority to a lower one. In turn, we 

construct another quantity, a set of pairs, denoted mB

for any node m:

Bm = {(rij, dij), where rij = 

ij

ji

tt

pp
, dij = ti - tj | 

 km <= i < Km, km < j <= Km}.

In addition, for a node that is contracted from 

Contraction Rule 1, its B is mB  for the two nodes 

contracted; for a node that is contracted from 

Contraction Rule 2, its B is ,mB  for all nodes 

contracted.  

The optimization procedures for different types of 

nodes are as follows: 

A. Single-Path Node Optimization Procedures 

1. Find the pair (r, d) in mB or B (for contracted 

nodes), such that r is the largest provided that the 

corresponding d  AR.

2. Change the priority of the node according to the 

pair chosen. 

3. Update set mB  or B to exclude the priority 

option used in step 1. 

4. AR = AR - d for the node and other single-path 

nodes on the affected paths. If the resulting AR is 

less than the AR of any of the junction nodes on 

the affected path, change the AR of that junction 

node to this AR.

5. Repeat step 1-5, provided that AR  0 and there 

exists d in mB or B, s.t. d  AR. Otherwise, exit. 

B. Junction Node Optimization Procedures 

1. Find the pair in mB  or B (for contracted 

nodes), for all remaining junction nodes whose 

AR  0, such that r is the largest provided that 

the corresponding d  AR.

2. Change the priority of the chosen node.  

3. Update mB  or B of the node to exclude priority 

option used in step 1. 

4. AR = AR-d for the node and those of the other 

single-path nodes on the affected paths. If the 

resulting AR is less than the AR of any of the 

junction nodes on the affected path, change the 

AR of that junction node to this AR.

5. Repeat step 1-5, if there remains junction nodes 

with AR  0 and there exists d in mB  or B,

s.t. d  AR. Otherwise, exit. 

6. Summary

We have examined the optimal service priority 

selection problem that a grid computing user will 

confront. Grid services to a multi-subtask request are 

modeled as a prioritized PERT/CPM problem. 

Differing from the studies of the traditional time-cost 

tradeoff problem, our formulation added a delay cost in 

regard to the total throughput time. We defined a cost-

effective critical path and proved that it sets a lower 

bound of optimum throughput time for the prioritized 

PERT/CPM problem. This effectively narrows the 

range of the potential optimum critical paths. The 

algorithm can be generalized to fit similar operations 

research problems, such as supply chain management. 
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