
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2007

Model Checking in the Absence of Code, Model
and Properties
David LO
Singapore Management University, davidlo@smu.edu.sg

Siau-Cheng KHOO
National University of Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Report is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LO, David and KHOO, Siau-Cheng. Model Checking in the Absence of Code, Model and Properties. (2007). 5th Asian Symposium on
Programming Languages and Systems (APLAS) (Poster Track), November 29 - December 1. 1-2. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1279

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Model Checking in the Absence of Code, Model and Properties
(A Preliminary Study)

David Lo
National University of Singapore

dlo@comp.nus.edu.sg

Siau-Cheng Khoo
National University of Singapore

khoosc@comp.nus.edu.sg

Abstract
Model checking is a major approach in ensuring software cor-
rectness. It verifies a model converted from code against some
formal properties. However, difficulties and programmers’ reluc-
tance to formalize formal properties have been some hurdles to
its widespread industrial adoption. Also, with the advent of com-
mercial off-the-shelf (COTS) components provided by third party
vendors, model checking is further challenged as often only a bi-
nary version of the code is provided by vendors. Interestingly, lat-
est instrumentation tools like PIN and Valgrind have enable execu-
tion traces to be collected dynamically from a running program. In
this preliminary study, we investigate what can be done with model
checking tools when code, model and properties are not available
and the only available input is execution traces. Specifically, we
combine studies on learning automata from traces and learning
temporal properties from traces. The preliminary study suggests an
automatic way to discover bugs using model checking tools when
only execution traces are available.

1. Motivation and Basic Idea
Model checking verifies a form of automata (Buchi [2] or Prob-
abilistic [8]) against some temporal logic properties. The model is
usually extracted from code [3] or drafted manually while the prop-
erties to be verified are usually given by the user. Besides ensuring
absolute correctness, model checking has also been used in finding
bugs [7]. The latter is the focus of our study.

The difficulties and programmers’ reluctance in formulating a
set of formal properties have been some of the barriers to the
widespread adoption of model checking [1, 9]. Adding the fact that
software changes throughout its lifespan [13], the model checking
process is further challenged. As a system changes and features
are added or removed, there is a constant need to add, modify or
remove properties to ensure the effectiveness of model checking
in finding bugs and ensuring software correctness. Hence, a tool
to automatically extract or infer program properties as a program
changes over time is desirable [1].

Commercial Of-The-Shelf (COTS) components are compo-
nents purchased from third party vendors to reduce software devel-
opment time and effort [21]. Due to the market demand to develop
large software solutions fast, COTS components have become com-
monly used in the industry. With the advent of COTS components
provided by third party vendors, model checking is further chal-
lenged as often only a binary version of the code is provided by
vendors. Interestingly, latest instrumentation tools like PIN [20]
and Valgrind [23] have enabled execution traces to be collected
from running program dynamically without the need of a source
code. It is certainly desirable to have a tool that can automatically
learn a model either from a binary code or traces for model check-
ing purpose.

Recently, there have been active interests in mining program
specifications from traces (e.g., [1, 18, 24, 16, 19]). Two types of
formal specifications are often mined: automata [1, 18] and Linear
Temporal Logic (LTL) [10] rules or properties [24, 16, 19]. Let

us refer to the two approaches asautomata-based and rule-based
specification miningrespectively1

In [1], Ammons et al. learn an automata expressing a speci-
fication of X11 Windowing Toolkit library from traces. We have
extended the above work in [18] in order to improve the accuracy,
scalability and robustness of the mining process. In [24], Yanget al.
learn a family of two-event LTL rules (e.g., 〈lock〉 → 〈unlock〉)
from traces. We have extended the above work in [16, 19] to mine
a family of LTL rules of arbitrary lengths from traces. Each of the
mined rules has the following format: “Whenever a series of events
pre occurs, eventually another series of eventspost will occur”.
The rules correspond to two families of frequently used LTL prop-
erties for model checking [4].

Comparing studies on automata-based and rule-based specifica-
tion mining, we observe the following:

Automata-based specification mining learns aglobal model
of the input traces while rule-based specification mining
extractstrong propertiesobserved in the traces.

From the above observation, we propose a novel approach to
combine the benefits of learning automata (i.e., the model) and
rules (i.e., the properties) from traces and integrate them into a
model checking framework. Our purpose is bug finding and is
based on the assumption made by Engleret al. [5], namely, bugs
usually correspond to deviant behaviors. Simply put, if a program
behaves in one way 99% of the time and the opposite 1% of the
time, the latter is potentially a bug.

The outline of the paper is as follows: Section 2 presents our
novel end-to-end mining-model-checking framework. Section 3
discusses related issues on learning models from traces. We finally
conclude and present some future work in Section 4.

2. End-to-end Framework
Our end-to-end mining-model checking framework is shown in
Figure 1.

We start with a set of test cases and a program. The program
can then be instrumented by various approaches. Java class files
can be instrumented using Java Runtime Analysis Toolkit [11] (c.f.,
[24, 18]). Binary C files can be instrumented using Executable Edit-
ing Library [12] (c.f., [1]) or Kvasir [22] (c.f, [6]). Latest instru-
mentation tools PIN [20] and Valgrind [23] has enable execution
traces to be collected dynamically from a running program.

Running an instrumented code over the test cases will generate
a set of execution traces. A trace can be considered as a sequence
of events, each corresponding to: a statement that is executed or a
method that is invoked, etc. Traces can then be abstracted to a level
of interest. Abstraction takes a trace and converts it to a sequence
of symbols from an alphabet. Two or more similar events can be
represented as or unified to the same symbol. Some events can also
be ignored as non-interesting ones.

For example, one might be interested in the orderings of method
calls and would like to verify these. Non-method calls recorded

1 The terms come from two previous studies in [17, 1].

during the trace generation process can then be removed. One can
also choose to ignore non-interesting behaviors (e.g., calls to a
method writing to a log file). Furthermore, one can unify method
invocations of object instances of classes belonging to the same
inheritance hierarchy to the same symbol. One can also abstract
away, group together or consider in detail parameters passed to a
method when it was called.

After the abstraction process, we obtain abstract traces and it
corresponds to a multi-set of sequences of symbols. These ab-
stracted traces can then be fed to the model generation and prop-
erty extraction processes. The result is a model in the form of an
automata and a set of strong LTL properties observed in the traces
ready as inputs for model checking. A strong property is one that is
observed frequently and with a high confidence (see [16, 19]). The
set of LTL rules minable by our technique proposed in [16, 19] can
be represented in the Backus-Naur Form (BNF) as follows:

rules := G(prepost)
prepost := event → post|event → XG(prepost)

post := XF (event)|XF (event ∧XF (post))

Model checking will verify the generated model against the
LTL rules. It will either confirm its verification or return a counter
example identifying a potential bug.

3. Discussion
Aside from addressing situations where the source code is unavail-
able (as is the case with COTS components), generating model
from traces also has its own forte.

Models extracted from traces are especially suitable for captur-
ing behaviors of user-input-dependent programs. Also, the model
can focus on a behavior of interest, rather than on all possible be-
haviors a code might exhibit. The model will also tend to be smaller
and faster to check. Many programs are not built from scratch,
rather often they are adapted (via copy and paste) from existing pro-
grams [14]. After several chains of adaptations, it is highly likely
that many paths in the program although remaining feasible are
never executed. Models generated from code can be very large, in
an experiment using Bandera [3], generating a model from 37 lines
of Java code produces more than 200,000 lines of model code [15].

Models extracted from traces included runtime information that
would otherwise be unavailable from code. Due to inheritance and
polymorphism, actual methods called at times can only be known
during runtime. Of course, in most cases, values of parameters
passed to a method can only be known during runtime. Aliasing is
a hard problem to solve with static analysis; however, information
on which address a pointer points to is available during runtime.

Instrumentation

Traces

Test Cases Start

Program
Program

Execution

Instrumented
Program

Abstraction

Properties
Extraction

Model
Extraction

Abstracted
Traces

Properties

Model Checker

Possible
Bugs

Model No Bug
Found

Figure 1. Proposed Mining-Model Checking Framework

One can also find bugs by comparing the traces themselves to
the mined properties. However, the model learned from the traces
is preferable as it can be used to further characterize the context
where a bug occurs. Hence, not only the buggy trace but also the
set of other potentially buggy traces can be revealed.

4. Conclusion and Future Work
In this preliminary study, we have proposed a novel framework that
allows model checking to be performed in the absence of code,
model and properties. Both the model and the set of properties are
extracted by learning an automata model and a set of strong LTL
properties from traces. A novel end-to-end framework starting from
a program to the identification of potential bugs have been pro-
posed. In [17, 18], we have shown case studies and experiments on
mining models from traces. In [16, 19], we have shown case studies
and experiments on mining bug-revealing properties from traces.
Due to the space limitation, we refer interested readers to the above
papers for more details. We plan to investigate the practicality of
this unique approach to model checking through further case stud-
ies and experimentation, and through improving the accuracy of
learning models and mining more complex temporal properties.

References
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specification. InPOPL, pages

4–16, 2002.

[2] E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[3] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H.-J.
Zheng. Bandera: extracting finite-state models from java source code. InICSE,
2000.

[4] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for
finite-state verification. InICSE, 1999.

[5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant
behavior: A general approach to inferring errors in systems code. InProc. of
Symp. on Operating Systems Principles, 2001.

[6] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution.IEEE Transaction on
Software Engineering, 27(2):99–123, February 2001.

[7] P. Godefroid and N. Klarlund. Software model checking: Searching for
computations in the abstract or the concrete. InIFM, 2005.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for
automatic verification of probabilistic systems. InTACAS, 2006.

[9] G. Holtzmann. The logic of bugs. InSIGSOFT FSE, 2002.

[10] M. Huth and M. Ryan.Logic in Computer Science. Cambridge, 2004.

[11] JRAT. Java runtime analysis toolkit.online at http://jrat.sourceforge.net/.

[12] J. R. Larus and E. Schnarry. EEL: Machine-independent executable
editing. In Proc. of SIGPLAN Conf. on Programming Language Design
and Implementation, 1995.

[13] M. Lehman and L. Belady.Program Evolution - Processes of Software Change.
Academic Press, 1985.

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste and
related bugs in large-scale software code.IEEE Transaction on Software
Engineering, 32(3):176–192, March 2006.

[15] D. Lo. Projects:open discussion. http://projects.cis.ksu.edu/forum/forum.php?
threadid=665&forum id=4, 2007.

[16] D. Lo and S.-C. K. (Advisor). A sound and complete specification miner.
In SIGPLAN PLDI Student Research Competition (awarded2nd position) –
www.acm.org/src/winners.html, 2007.

[17] D. Lo and S.-C. Khoo. QUARK: Empirical assessment of automaton-based
specification miners. InWCRE, 2006.

[18] D. Lo and S.-C. Khoo. SMArTIC: Toward building an accurate, robust and
scalable specification miner. InFSE, 2006.

[19] D. Lo, S.-C. Khoo, and C. Liu. Automatic extraction of temporal rules for
model checking. InVMCAI (under submission), 2007.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. InPLDI, 2005.

[21] L. Mariani, S. Papagiannakis, and M. Pezze. Compatibility and regression
testing of COTS-component-based software. InICSE, 2007.

[22] B. Morse. A c/c++ front end for the daikon dynamic invariant detection system.
Master’s Thesis, MIT, 2002.

[23] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. InPLDI, 2007.

[24] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das. Perracotta: Mining
temporal API rules from imperfect traces. InICSE, 2006.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2007

	Model Checking in the Absence of Code, Model and Properties
	David LO
	Siau-Cheng KHOO
	Citation

	tmp.1534379656.pdf.BLFrC

