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Abstract: Classical multi-echelon repairable item inventory models are based 
either on steady-state analysis or infinite repair capacity, which may not work 
well in situations when the demand is nonstationary, or repair capacity is 
limited. In this paper, we propose an analytical model for evaluating system 
performance that works well under limited repair capacity and nonstationary 
demands. Following the METRIC methodology, we then develop an 
optimisation algorithm to solve the corrective maintenance problem in military 
logistics. Experimental results show that our approach yields good solutions 
efficiently. This work has also resulted in a software that has been field-tested 
by a military organisation. 

Keywords: multi-echelon; repairable item; inventory; queueing; maintenance; 
military logistics. 
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1 Introduction and motivation 

Advanced systems, especially military systems such as aircrafts, have expensive complex 
structures that break down because components are either worn out or damaged during 
operations. To support high operational readiness (or availability), sufficient quantities of 
spare components (called Line Replaceable Unit or LRU) and maintenance resources 
(comprising repair manpower and tools) are required to sustain demands arising from 
LRU breakdowns (or failures). However, since spares and resources are costly, consume 
space, and become obsolete over time, there is a trade-off between cost and availability. 
The goal of the planner is to sustain the life cycle of systems with respect to cost and 
availability. 

The importance of spare parts management has increased in the past decades owing to 
the increasing value of service part inventory investment. As an example, a survey on 
computer manufacturers conducted by Cohen et al. (1997) reveals that service parts 
inventory investment take up a significant 8.75% of the value of product sales. 

The motivation of this work arises from the task of designing an automated tool for 
optimising the sustenance of military systems1 for near-future mission planning purposes. 
To sustain a military system, the planner should decide how many units of spares should 
be bought over time, and what repair capacity should be set aside for the repair of 
repairable parts throughout its lifetime. Unfortunately in real life, it is hard for planners to 
make such decisions over the long term owing to the following reasons. First, the demand 
(i.e., breakdown) rate varies as time because of system utilisation rates that fluctuate from 
season to season. This situation is even more acute in the military context, since military 
systems usage varies from one mission to another, and transits rapidly from peace to 
wartime. Most academic and even commercial offerings assume that the demand is given 
by a stationary Poisson process with a mean such as the annual demand rate. In reality, 
however, point estimates based on mean values will cause high errors at certain time 
points. Another reason peculiar to the military context – and increasingly so in today’s 
commercial context as well – is that the (mission) planning period is progressively 
getting shorter, to the extent that the underlying inventory system may not converge even 
to steady state. As an example, the lifetime of an aircraft is typically 10–30 years, 
whereas it is necessary to make decisions and predict the system behaviours based on 
utilisation rates, which are available on, say, 6-monthly basis. Furthermore, utilisation 
information is usually probably not available for a much longer period. Finally, military 
systems usually exhibit low failure rates, which make it difficult even to forecast the 
average rate in the first place. 

Hence, the planner is interested to predict and plan for the near future (say  
6-monthly), during which exercise or mission schedules (and hence utilisation rates)  
are known. Furthermore, on a rolling operating horizon basis, the planner will continue 
predicting and planning based on the existing system performances at hand when 
information becomes available. During wartime, this allows the planner to plan the next 
operation/mission in response to dynamically changing demand information such as 
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combat damage. There is a need to predict how the inventory performance such as 
availability fluctuates over time given certain spares and repair resources allocation.  
This will help planners consider whether to buy extra spare parts or hire extra manpower 
in the next period. 

Motivated by the above requirement, this paper is concerned with a 2-echelon 
repairable item inventory system under nonstationary Poisson demands (Nelson, 1995)2 
and limited repair capacity. We present how to evaluate the system performance of a 
given spares and resource allocation configuration. Using that evaluation model, we then 
devise an efficient algorithm that generates optimal solutions for the quantities and joint 
allocation of spares as well as repair resources to sustain time-varying demands. We call 
this the corrective maintenance problem. 

At this early stage, it is important to understand what we mean by time-varying 
demands. Our view of time-varying demands is based on our project experience with a 
military organisation. The demand rate of a given LRU item is derived by and dependent 
on several factors. Some of the common ones are the system utilisation rate (i.e., the 
percentage/fraction of system usage varying over a certain time interval), the Mean  
Time Between Failures (MTBF) of the item (i.e., the expected value of time duration 
between two consecutive failures), the number of operating military systems, and the 
number of LRU items of the given type per military system. Of particular interest  
is the system utilisation rate. As an illustration, we borrow a real-life military system and 
give an example of her 6-month utilisation rate as follows: 0.0486 (0–1440 h), 0.0833 
(1440–2160 h), 0.5833 (2160–2520 h), 0.3333 (2520–3240 h), 0.5 (3240–3600 h) and 
0.25 (3600–4320 h). Observe that during the entire operating period of six months, the 
utilisation rate varies frequently and drastically from phase to phase. It is clear that a 
stationary Poisson process cannot accurately model such a demand pattern. Instead in this 
paper, we approximate this demand pattern by a nonstationary Poisson process  
with varying mean demand rate over time (i.e., the demand rate is now a function of time 
t, denoted λ(t)). We will use the term ‘nonstationary’ interchangeably with the term 
‘time-varying’ or ‘time-dependent’. 

This paper is organised as follows. A literature survey is provided in Section 2.  
In Section 3, we describe the problem formally. Section 4 presents an analytical model to 
evaluate the system performance given current spares and repair resources allocation.  
In Section 5, we present a nonstationary multi-class finite-server queuing system, which 
is a core computational problem underlying our model and then present how to compute 
the expected number of each class of customers in the queuing system at any time 
efficiently. An optimisation algorithm based on the ideas proposed in Sections 4 and 5 is 
then developed in Section 6 to solve the corrective maintenance problem. Experimental 
results are shown in Section 7 followed by conclusion and future work in Section 8. 

2 Literature review 

Optimisation of multi-echelon repairable inventory systems has been an active area of 
research over the last 30 years. Much of the research has focused on steady-state spare 
allocation and very little attention has been placed on nonstationary demands or the issue 
of finite resources. In this work, we take interest in four key parameters: the underlying 
echelon network, indenture structure, repair resource capacity and demand distribution. 
Accordingly, we provide a classification of some major analytical multi-echelon models 
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based on the key parameters above. Following classical scheduling terminology,  
we classify these models in the form of a/b/c/d, annotated as follows. The first field is the 
echelon structure where 1 denotes single-echelon model, 2 denotes 2-echelon model and 
m denote multi-echelon model. The second field is indenture structure where 1 denotes 
single-indenture (items have only LRUs) while 2 denotes two-indenture (items have both 
LRUs and their sub-components) and m denotes multi-indenture. The third field is 
capacity of repair resources, which is ∞ for infinite repair capacity and S for limited 
repair capacity with S servers. The default value is ∞ if this field is blank. Finally, the 
fourth field is demand process, which is λ for stationary Poisson distribution or λt for 
time-dependent Poisson distribution. The default value is λ if this field is blank. Table 1 
summarises key classical works according to our classification. 

Table 1 Classifications of models 

Problem Reference 

2/1 Sherbrooke (1968) (METRIC) 

2/1 Graves (1985) 

2/m Sherbrooke (1986) (VARI-METRIC) 

m/m OPUS9 (1992) and OPUS10 (1998) 

2/1/S Díaz and Fu (1997) 

2/1/S Alfredsson (1997, 1999) (OPRAL) 

3/3/S Sleptchenko et al. (2002, 2003) 

2/1/S/λt Jung (1993) 

2/1/∞/λt Slay et al. (1996) 

m/3/∞/λt Isaacson and Boren (1988) Dyna-METRIC 

The following subsections trace the evolution of the analytical models, followed by a 
brief discussion of simulation and queuing models. 

2.1 Analytical models 

2.1.1 METRIC 

Multi-Echelon Technique for Recoverable Item Control (METRIC) by Sherbrooke 
(1968) is the pioneer study for the majority of multi-echelon repairable-item models that 
follow. METRIC assumes that there is infinite repair capacity (implying no queue  
at the depot), hence allows repair times to be independent of the number of items  
in repair. The failures at bases are assumed to be Poisson and hence the number of items 
in the pipeline of depot also follows a Poisson distribution. Under the assumption of  
first-come-first-served replenishments from the depot to the bases, the distribution of the 
number of items in the base pipelines is also approximated to be Poisson. Under this 
environment, METRIC solves the spares allocation problem elegantly and efficiently by 
marginal analysis. 
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2.1.2 METRIC extensions 

Arguably, METRIC is a simplistic model and during its implementation, it was found 
that the Expected Number of Backorders (EBO) computed was often underestimated  
due to the use of Poisson distributions. Graves (1985) proposes to model the distribution 
of the number of items in the base pipelines by a negative binomial distribution,  
i.e., it uses the variance parameter to reduce the gap. The improvement comes from the 
observation that the variance-to-mean ratio must be one under Poisson distribution, 
whereas it is usually greater than one in practice. Under Graves’ model, both mean and 
variance of backorders are calculated and the probability distribution is chosen based on 
the variance-to-mean ratio. It has also been proved that Graves’ model performs 
equivalently to METRIC when the depot stock level is zero. When the depot stock is not 
equal to zero, empirical results show that Grave’s model produces more than 99% 
accuracy in spares allocation whereas METRIC achieves around 89% accuracy. 
Sherbrooke (1986, 1992) proposes VARI-METRIC that captures variance based on 
Graves’ model. This model is interesting in that if the variance-to-mean ratio is of the 
pipeline greater than one, negative binomial distribution will be adopted. If it is equal to 
one, Poisson distribution will be adopted. If it is less than one, binomial distribution will 
be adopted. The OPUS9 (1992) and OPUS10 (1998) are METRIC-based spares 
optimisation software tools developed commercially by Systecon. Besides adopting the 
structure and assumptions of METRIC, the tool provides additional features, e.g., the user 
has the flexibility to specify problem scenarios and order policies. 

2.1.3 Limited repair capacity 

The models discussed hitherto assume infinite repair capacity, which is often an 
unrealistic assumption in industrial contexts. More specifically, such an assumption will 
underestimate the quantity of spare parts needed in systems with high repair facility 
utilisation. Díaz and Fu (1997) first relax this assumption by considering limited  
repair facilities at the depot. They consider the setting where all failed LRUs are repaired 
at the depot and propose results and approximations based on queuing theory for  
three cases – where the queue at the depot follows M/M/s single-class model, M/G/s 
single-class model and M/G/s multi-class model. For the M/M/s single-class model, the 
failure follows a Poisson process and repair time follows an exponential distribution with 
limited repair facilities (servers). Based on single-class, different types of failed LRUs 
will require different types of servers and only one unit of the required type of server. 
The mean and variance of the number of items in the repair facility, both in queue and in 
repair, are calculated using standard M/M/s queuing theory. The model is then extended 
to M/G/s where the repair process follows a general distribution. This is further extended 
to a multi-class model that allows each type of server to be used to repair multiple types 
of LRUs. Díaz and Fu (1997) provide an aggregation–disaggregation approach to 
calculate the first two moments of per-class number in queue and repair. Unfortunately, 
the variance of per-class number in queue and repair pipeline is derived only for the 
single-server multi-class queue model due to analytical complexity. 

This line of work has been extended recently in several interesting ways.  
Sleptchenko et al. (2002, 2003) use a more general multi-class multi-server queuing 
model for the repair shop under steady state when the repair capacity is given.  
Perlman et al. (2001) use congestion externalities to set expediting repair policy to choose 
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either the repair mode with a normal repair time or the one with an expedited repair time. 
However, to use exact methods, they restrict themselves to a single repair capacity shop. 
Kim et al. (2000) extend previous results to the system where spares allocated at the 
bases as well as the depot. 

2.1.4 Joint spares and resource allocation 

The models discussed so far only consider the spare allocation problem addressing the 
question “how many spares to stock and where to put them”. The number of repair 
facilities is assumed to be fixed and the optimal allocation of repair resources has not 
been considered. Alfredsson (1997, 1999) proposes OPRAL (an offshoot of OPUS) that 
tackles the joint spares and resource allocation problem within a single model.  
It considers the question of “how much repair capacity is needed and where to allocate 
resources” in addition to the spares allocation problem. It assumes that each failed LRU 
requires only one resource type but different LRUs may share a common repair resource 
type. This assumption implies that LRUs can be partitioned into disjoint resource groups, 
each of which contains the LRUs that require that particular resource type. The queue 
within a resource group is modelled as M/M/s to calculate the expected waiting time for 
an available resource. Poisson distribution is used primarily rather than negative binomial 
distribution, but some passing remarks were made on the use of negative binomial 
distribution to improve the fidelity of the model. 

More recently, Zijm and Avsar (2003) consider optimal resource allocation under 
capacitated two-indenture models, but within only a single site. Slepchenko et al. (2003) 
present a procedure for joint optimisation of spares and repair capacities, especially for 
noninteger repair capacities. Both these models consider finite repair capacity under 
steady state (i.e., Poisson demands). 

2.1.5 Time-varying demands 

All the above models are steady-state models, which work well when demand follows  
a stationary Poisson distribution, i.e., the demand rate is constant over time. 
Unfortunately, many repairable items have long lifecycles and hence the demand rates 
will inevitably change with time. In a time-varying demand situation, these models will 
not produce accurate results. Jung (1993) first presents a methodology for a recoverable 
inventory system with time-varying demand using discrete event simulation. The echelon 
structure is based on METRIC with limited repair capacity at the depot, except that the 
demand rate tends to decrease in successive periods. Thus, the repair process at the depot 
is modelled as a nonstationary M/M/s system. The expected number of items in queue 
and repair at the depot is time-dependent due to nonstationary Poisson process.  
Jung (1993) implements the SIMAN system for computing this time-dependent value 
with the empty queue condition at the beginning. Given a fill rate target, it presents  
a method to determine the stock level at a certain given time point. Unfortunately,  
the limitation is that only a single item type is allowed, and the method does not perform 
optimisation. 

Slay et al. (1996) propose an aircraft sustainability optimisation model that can 
handle problems with time-dependent demand rates but under infinite resources.  
The underlying echelon structure is that a depot only supports a base, and the failure  
at the base is a nonstationary Poisson process whose mean value varies with time.  
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As an optimisation model, it only considers spares allocation but not resource allocation, 
and it investigates the objective and spare allocation only at specific time points of 
interest. In this model, the failure rate need not decrease with time (as required by Jung, 
1993) – it is high during wartime and low in peacetime. The repair time and shipment 
time may or may not be time-dependent. The expected number in the pipeline will be 
calculated first by using integration and then the EBO will be calculated at the certain 
time point of interest. 

RAND Corporation has developed a proprietary system called Dyna-METRIC to 
serve the US Department of Defense. The Dyna-METRIC series are capability 
assessment models designed to explore ways to improve wartime logistics support to 
aircraft. They can solve many problems including nonstationary demands and 
cannibalisation to assess the effects of wartime dynamics and projects operational 
performance measures. Version 5 (Isaacson and Boren, 1988) is the latest analytical 
model to-date in which logistics support system is assumed to be 5-echelon and  
3-indenture. Version 5 has its limitations. First, it assumes that the aircrafts deployed  
at each base are identical, i.e., it does not deal with different item types. Second  
and unfortunately, like Slay et al. (1996), it provides a steady-state solution to a  
time-dependent problem. 

2.2 Simulation models 

In this subsection, we briefly discuss three influential simulation models, namely  
Dyna-METRIC (Version 6), SPAR and Pyke (1990). 

While Version 5 of Dyna-METRIC is an analytic model based on dynamic  
form of Palm’s theorem, Version 6 is a Monte-Carlo simulation tool as an answer to 
limitations imposed by analytic models, such as infinite capacity. It is a 3-echelon,  
2-indenture model that accommodates interesting features such as lateral supply  
between bases, lateral repair, information lags and exception reporting. It allows items to 
have priority to be repaired not only based on FCFS scheduling policy. Although superior 
to analytical versions in repair process, version 6 has its own limitations. For instance,  
it does not compute spares requirements because the equations on spares allocations  
are unavailable in the simulation. It has to draw support from analytical model.  
Another limitation is that simulation model is usually very slow when compared with 
executing the counterpart analytical model. SPAR (http://www.clockwork-group.com) is 
a commercial Monte-Carlo simulation tool that deals with the problem of time-dependent 
demands. At the point of writing, SPAR requires external FORTRAN programming to 
perform the role of repair resource allocation. We also observe that optimisation is slow 
because it entails running simulation many times. Pyke (1990) presents a simulation 
study for repairable electronic equipment used by military aircrafts. This model covers a 
3-echelon system: a repair depot, a stockpile of repair parts and a set of bases.  
It considers priority rules for allocating repaired items to bases and sequencing items at 
the repair depot. It also considers the importance of the initial allocation of a fixed 
amount of stock, and the lateral transhipment that occurs only when it is possible to fill 
all the backorders of a specific base. The optimisation is performed taking into account 
three decisions: repair rule, distribution rule and where the initial stock of spares is 
allocated. 
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2.3 Queuing models 

A line of work in queuing theory is concerned with approximations under time-dependent 
arrival and service rates. One of the well-known approximations is the Pointwise 
Stationary Approximation (PSA), which assumes pointwise stationarity in time and 
approximates long-run average performance measures (see Green and Kolesar, 1991, 
1997; Green et al., 1991). Another approximation is the ‘closure approximation’, which 
employs negative binomial distribution to approximate the time-dependent measures 
(Rothkopf and Oren, 1979). In this paper, as part of the effort in evaluating system 
performance, we will be studying and adapting the results of Rothkopf and Oren (1979). 

3 Problem definition 

In Section 3.1, we provide the scope of our problem. Section 3.2 gives the notations used; 
and Section 3.3 gives a formal problem formulation. 

3.1 Problem scope 

In our environment, there is a single depot that supports a number of bases where military 
systems are deployed. Each military system is composed of multiple items (LRUs), 
which are assumed to be connected in series. For simplicity, we assume that all systems 
are identical. Spares can be allocated at both bases and the depot, whereas repair 
resources are only allowed to be allocated at the depot. For simplicity, repair resources 
are categorised into resource types. When an LRU at a base fails, the system will be 
grounded at the base and the failed LRU will be removed and replaced by a spare unit if 
it is available at the base. Otherwise, there is a backorder at the base and the entire system 
has to wait until a spare is available. The failed and removed LRU will be delivered to the 
depot where finite repair resources are allocated. If the required repair resources are 
available, this LRU will be repaired. Otherwise, it has to wait for repair. When repair is 
completed, the ‘good’ LRU will be placed in the depot stock to meet future demands. 

In this paper, the following assumptions are made: 

1 All LRUs must and can be repaired at the depot. 

2 Continuous resupply, i.e., an LRU can be shipped between the depot and bases 
without delay at any time (i.e., there is an infinite number of transporters).  
However, transportation time is incurred, and is known as order-and-ship time. 

3 (s – 1, s) inventory policy is applied for all LRUs at all sites because LRUs are 
usually expensive with low failure rate. 

4 The repair time of an item follows an exponential distribution. 

5 Each LRU requires exactly one repair resource type. Different types of LRUs may 
compete for the same repair resource type, and resources are assigned to contending 
LRUs according to the FCFS policy. 

6 FCFS replenishment from the depot to bases. 

7 There is no lateral supply, i.e., no supply or shipment between bases. 
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The justification for these assumptions is given as follows. First, contrary to Sleptchenko 
et al. (2002, 2003) where each location consists of a repair shop, we assume that all items 
must and can be repaired at the depot. Our model can be extended easily to the one in 
Sleptchenko et al. (2002) so long as the repair probabilities are mutually exclusive,  
as assumed in Sleptchenko et al. (2002). Assumptions (2)–(4) are standard assumptions in 
the existing literature. Assumption (5) is also well assumed where one resource can be 
one team. As for Assumption (6), although Pyke (1990) shows by simulation that priority 
queuing has a positive impact on the system performance, we adopt the FCFS discipline 
in replenishment as done in Sleptchenko et al. (2002). Assumption (7) is justified as 
stated in Sleptchenko et al. (2002) since lateral supply has only significant impact for low 
fill rates at downstream locations. These assumptions imply that the various pipelines can 
be estimated fairly accurately by time-varying Poisson distributions, and hence our 
analysis in this paper will be based on mean values only. 

We are concerned with two issues. First, we evaluate the time-dependent system 
performance of a fixed spares and resource configuration for the 2/1/S/λt problem. To be 
consistent with the METRIC and other literature, we adopt the Expected Number of 
Backorders (EBO) as the measure of system performance. Arguably, one may also  
use a related metric such as Ao (availability). Typically, EBO and Ao are inversely 
proportional to one another, and one such relationship is given in Lau et al. (2006). 
Second, we are also interested in solving the joint spares and resource optimisation 
problem for 2/1/S/λt. Without loss of generality, our approach can readily be extended 
easily to more than two echelons and more than one indenture. Compared with the 
existing literature, this can be viewed as an extension of Alfredsson (1997, 1999) in 
tackling time-dependent demands, or extension of Isaacson and Boren (1988),  
Jung (1993) and Slay et al. (1996) in tackling finite resources from a non-steady-state 
optimisation perspective. 

3.2 Notations 

We adopt and extend the notations of those in Alfredsson (1997, 1999) and Sherbrooke 
(1992). We use j to index the sites, where j = 0 for the depot and j = 1, …, J for the bases. 
LRU types are indexed by k = 1, …, K, while repair resource types are indexed  
by g = 1, …, G. Time is indexed by t = 1, …, T where T is the operating horizon.  
The following notations are used: 

MTBFk: Mean Time Between Failures of LRU k 
TATk: Mean repair time of LRU k (often called turnaround time in practice and some 
 literature) 
OSTk: Constant order-and-ship time for LRU k from the depot to the base 
Nsysj: Number of military systems deployed at base j 
QPMk: Quantity of LRU k contained in a military system (often called quantity per 
 mother-item) 
UR(t): System utilisation rate at time t (system utilisation rates are assumed to be the 
 same across bases) 
Csk: Unit cost of spare LRU k 
Crg: Unit cost of repair resource g 
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s0k: Number of spare units of LRU k at the depot 
sjk: Number of spares of LRU k at base j 
rg: Number of repair resource g at the depot. 

Since the demand is time-dependent, EBO will inevitably be time-dependent and is 
denoted by EBO(t), which we define as the sum of expected backorders over all LRUs 
and all bases at time t. 

3.3 Problem formulation 

The first problem of evaluating system performance is defined as: given a fixed spares 
and resource allocation configuration (s0k, sjk, rg), compute EBO(t) analytically. Our 
proposed model will be discussed in Sections 4 and 5. 

The second problem is an optimisation problem driven by cost and system 
performance. The cost model we consider is a function of the investment cost incurred by 
spares and resources. The investment cost for spares is straightforward, and is computed 
by the unit costs multiplied by the number of spare units purchased. The investment cost 
for resources, however, is a little tricky. As spares are purchased and circulate in the 
system for a number of years, we should calculate a kind of ‘purchasing price’ for repair 
men3 using the net present value of all the cost for a repair man throughout the system 
lifecycle. These expenditures include wages, taxes and social premiums, housing, 
education, tools, etc., Sleptchenko et al. (2003). We will use the terminology LSC 
(standing for Life Support Cost in OPUS9 (1992) and OPUS10 (1998)) as the notation for 
total cost, where 

1 0 1
.

K J G

s rk jk g g
k j g

LSC C s C r
= = =

 
= + × 

 
∑ ∑ ∑  (1) 

Let maxEBO = maxt∈[0,T]EBO(t). Given a budget amount B, one problem is to find an 
allocation of spares and repair resources (i.e., deciding the values of (s0k, sjk, rg)) that 
minimises maxEBO while not exceeding the budget (i.e., min maxEBO s.t. LSC ≤ B). 
Conversely, we wish to find a minimum-cost spare and repair resource allocation such 
that the EBO at any time within the operating horizon will not exceed a specified target 
Emax, (i.e., min LSC s.t. maxEBO ≤ Emax). 

Note that both these optimisation problems are generalisations of the knapsack 
problem, which renders them NP-hard.4 The good news, however, is that planners are 
usually not interested in the optimal allocation point with respect to a specific budget or a 
target EBO, but rather the problem is to combine the two problems as one by seeking a 
Cost/Effectiveness (or C/E) curve where each point on the curve is an optimal allocation 
associated with a cost and EBO value (see Figure 4). This is known as the corrective 
maintenance problem in this paper. It is well known that marginal analysis, together with 
convexification, provides an efficient polynomial-time solution approach to solve this 
problem (Sherbrooke, 1992). The idea of applying marginal analysis to plot the C/E 
curve will be adopted in our optimisation algorithm presented in Section 6. 
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4 Evaluating system performance 

In this section, we present our analytical model for evaluating the system performance 
EBO(t). The following is a list of intermediate (i.e., state) variables used: 

EBO0k(t): EBO of LRU k at the depot at time t 
EBOjk(t): EBO of LRU k at base j at time t 
λ0k(t): Demand rate of LRU k at the depot at time t 
λjk(t): Demand rate of LRU k at base j at time t 
RP0k(t): Random variable representing number of LRU k in the depot repair pipeline 
 at time t 
BPjk(t): random variable representing number of LRU k in the pipeline of base j at 
 time t 
OSPjk(t): Random variable representing number of LRU k in the order-and-ship 
 pipeline to base j at time t 
fjk(t): Fraction of LRU k at base j contributing to the EBO at the depot at time t. 

As in Sherbrooke (1992), the notation EBO(s|λ) is used to denote value of EBO given 
stock level s when the mean pipeline is λ. Following standard probability, this quantity  
is computed as ( ) Pr{ }

x s
x s X x

>
− =∑  where X is the pipeline random variable with  

mean λ. 
In the following, we will present a bottom-up derivation of the EBO function. 
First, we compute the demand rate. Similar to the assumption in METRIC and 

Perlman et al. (2001),5 the demand rate of LRU k at base j is computed by definition as 
follows: 

( )( ) .
/jk j

k k

UR tt Nsys
MTBF QPM

λ = ×  (2) 

Hence, by aggregating demands, we can compute the depot demand rate as: 

0
1

( ) ( ).
J

k jk
j

t tλ λ
=

=∑  (3) 

Next, we compute RP0k(t), the depot pipeline of LRU k. This is a Poisson random 
variable with mean equal to the expected number of LRU k in the repair facility, 
consisting of those in queue (waiting for repair resources) and in process (being repaired), 
at time t. Let Nk(t) be a random variable representing this quantity. Hence, 

0[ ( )] [ ( )].k kE RP t E N t=  (4) 

Unfortunately, the quantity Nk(t) cannot be easily computed under finite capacity, and 
Section 5 will provide a method to estimate this quantity using a queuing model. 

Given the stock of LRU k at the depot s0k, the depot EBO at time t is, by definition: 

0 0 0( ) ( | [ ( )]).k k kEBO t EBO s E RP t=  (5) 

Having computed EBO0k(t), we can now derive the base pipeline BPjk(t). By definition, 
this is a sum of the order-and-ship pipeline (i.e., those in transportation) by time t for 
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those items having been shipped out from depot by time t-OST, plus the portion of the 
depot repair pipeline attributed to the base, which cannot be shipped out by t-OST.  
From the splitting theorem for nonhomogeneous Poisson process (Slay et al., 1996),  
we know that a sum of Poisson processes is still a Poisson process. Hence, BPjk(t) is a 
Poisson process, and by the linearity of expectation, its expected value is given as: 

0[ ( )] [ ( )] ( ) ( ).jk jk jk k k kE BP t E OSP t f t OST EBO t OST= + − −  (6) 

Having computed BPjk(t), we can now compute the EBO at base, EBOjk(t). Given the 
stock of LRU k at base j sjk, the EBO of LRU k at base j at time t is given by: 

( ) ( | [ ( )]).jk jk jkEBO t EBO s E BP t=  (7) 

And finally, our system performance measure EBO(t) is: 

1 1
( ) ( ).

K J

jk
k j

EBO t EBO t
= =

=∑∑  (8) 

4.1 Derivation of intermediate variables 

It remains to show how the intermediate variables OSPjk(t) and fjk(t) are derived. Under 
the assumption that the number of components in the pipeline follows a time-dependent 
Poisson distribution, the expected number of demands in the pipeline at time t can be 
computed by a dynamic form of Palm’s theorem, presented in Carrillo (1991) by relaxing 
the arrival process and service time distribution assumptions: 

Theorem 1 (Carrillo, 1991): Suppose we have nonhomogeneous Poisson arrival with 
intensity function λ(t) ≥ 0 for t ≥ 0, λ(t) = 0 otherwise, and nonstationary service 
distribution G. Then, the number of arrivals undergoing service at time t has a Poisson 
distribution with mean 

0
( ) (1 ( , )) ( )d

t
t G s t s sλΛ = −∫  (9) 

where the random service time Y at time t has the distribution P{Y(t) ≤ y} = G(t, t + y). 

Hence, under the assumption of constant transport time, Theorem 1 shows that OSPjk(t) is 
indeed a Poisson random variable with mean equal to 

( )
[ ( )] ( )d

k

t

jk jkt OST
E OSP t s sλ

+−
= ∫  (10) 

because by time t, all items shipped out within time slot (t-OST, t) are still in the  
order-and-ship pipeline since it takes time OST to transport items while those shipped  
out before t-OST have been out of the transport pipeline. 

Next, we will show how to compute fjk(t), i.e., how to distribute EBO at the depot 
among the bases. The trick is to distribute it according to the proportion of their 
respective demand rates. This is a good approximation due to two reasons. First,  
we assume FCFS replenishment policy from depot to bases. Second, we assume that 
system utilisation rates are the same across all bases implying that demand rates among 
bases vary synchronously over time. These two assumptions imply that the waiting times 
for an available depot spare are the same across all bases. Hence, 
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( ) .

( )
jk

jk
k

t
f t

t
λ
λ

=  (11) 

With these quantities defined, EBO can now be evaluated according to equations (6)–(8). 

5 Nonstationary multi-class finite-server queue 

The previous section shows that the EBO computation involves the calculation of the 
expected number of failed LRUs in the repair facility (i.e., Nk(t) for all LRU types 
1, …, k), which will be presented in this section. Note that while Palm’s theorem is 
readily applicable in case of infinite capacity, under finite capacity, failed LRUs may 
need to wait for resource availability and hence exhibit a queuing system behaviour. 
Furthermore, when compared with classical queuing models such as M/M/s, we have 
multiple classes of customers (LRUs), each of which has its own arrival and service rates, 
where the arrival process is a nonstationary Poisson process. 

To be consistent with queuing theory terminology, a repair resource is equivalently 
called a server and an LRU is called a customer. Under our assumption that each LRU 
type requires exactly one repair resource type, LRUs (or more precisely LRU types) can 
be partitioned into disjoint resource groups, each of which consists of all LRUs 
competing for the certain type of resource. The scheduling policy within each resource 
group is FCFS, i.e., all demands competing for the same resource will wait in a single 
queue until one of the identical parallel repair resources is free. This gives rise to a 
nonstationary multi-class finite-server queuing system. Henceforth, without loss of 
generality, we will concentrate our discussion on a single multi-class queue associated 
with one resource group. 

Our aim is to compute the expected number of customers (i.e., units of LRUs) in the 
queue of each class (i.e., LRU type) at any time. To our knowledge, there is no known 
analytical method on how to compute this measure exactly. In the following, we propose 
a new computationally efficient approximation method. We assume that the inter-arrival 
and service time follow exponential distributions, respectively. 

In Rothkopf and Oren (1979), a method was proposed that gives good approximations 
for nonstationary single-class queuing systems. In Alfredsson (1997) and Díaz and  
Fu (1997), the authors view multiple classes of customers as a single class by using 
cumulative arrival rate and mean service rate. Our proposed strategy is essentially to first 
merge multiple classes into a single class as Alfredsson (1997) and Díaz and Fu (1997), 
and employ the method in Rothkopf and Oren (1979) to estimate the expected number of 
customers in the system of all classes. We then calculate the expected number of 
customers of each class via disaggregation. Details are as follows. 

Before presenting our method, we introduce some further notations. Notice that in our 
attempt to follow queuing terminology in this section, we will unambiguously equate the 
index c (customer class) with index k (LRU type). 

s: Number of servers 
λc(t): Arrival rate of class c at time t (equivalent to λ0k(t) for LRU k) 
µc: Service rate of class c (equivalent to TATk for each LRU k) 
λ(t): Cumulative arrival rate at time t 
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µ(t): Mean service rate at time t 
Nc(t): Expected number of class c customers in the system at time t (which is the target 
 to be computed) 
N(t): Expected number of customers of all classes in the system at time t 
Qc(t): Expected number of class c customers waiting in queue at time t 
Q(t): Expected number of customers of all classes waiting in queue at time t 
Rc(t): Expected number of class c customers in service (i.e., being repaired) at time t 
U(t): Server utilisation (i.e., expected number of customers of all classes in service)  
 at time t. 

The cumulative arrival rate at time t is the summation of arrival rates of all classes  
at time t, given by 

( ) ( )c
c

t tλ λ=∑  (12) 

and the mean service rate of all classes at time t is given by 

( )( ) .
( ( ) / )c cc

tt
t

λµ
λ µ

=
∑

 (13) 

From Matta et al. (1995) and Rothkopf and Oren (1979), we know how to compute the 
expected number of customers of all classes in the queuing system at time t.  
The algorithm is given in Rothkopf and Oren (1979), starting from t = 0 when the system 
is empty. After computing N(t), we calculate the time-dependent expected number of 
each class customers in the system. We have for all t: 

( ) ( ).c
c

N t N t=∑  (14) 

The key is to separate N(t) into disjoint parts, one for each class. 
We know from Alfredsson (1997) and Díaz and Fu (1997) that the expected waiting 

time for a server is equal for all customers under steady state. Let W be the expected 
waiting time for a server under steady state. We have: 

Nc = λcW + λc/µc (15) 

for stationary models. If we divide the expected number of customers in the system into 
two parts: one in queue Qc, and the other in service Rc, then, from equation (15), we see 
that Qc = λcW, which is proportional to the arrival rate of class c, and Rc = λc/µc, which is 
proportional to the server utilisation for class c. 

Under the time-dependent case, since the in-rate is dependent on the arrival rate λ(t) 
and out-rate is dependent on both the arrival rate λ(t) and service rate µ(t), we will divide 
the expected number of customers of all classes in the system at time t N(t) into two 
parts: one is that in queue Q(t) and the other is that in service i.e., U(t). Hence, 

N(t) = Q(t) + U(t) (16) 

Nc(t) = Qc(t) + Rc(t). (17) 
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Since the expected number of each class customers in queue and in service is 
proportional to the respective arrival rate and server utilisation, i.e., Qc(t) is proportional 
to λc(t) and Rc(t) is proportional to λc(t)/µc, we have: 

( ) ( )( ) ( ) ( ( ) ( ))
( ) ( )

c c
c

t tQ t Q t N t U t
t t

λ λ
λ λ

= = −  (18) 

( ) /( ) ( ).
( ) / ( )
c c

c
tR t U t

t t
λ µ
λ µ

=  (19) 

6 Optimisation 

In this section, we present our optimisation algorithm to solve the corrective maintenance 
problem. Since the system performance EBO varies with time, we are in fact dealing with 
a time-dependent optimisation problem. Most literature deals with either steady-state 
results or optimisation with respect to a certain time point of interest. For example, in 
Isaacson and Boren (1988) and Slay et al. (1996), the time at the end of peak demand 
rate/utilisation rate, which is viewed as the ‘worst’ or most demanding day is selected as 
the point of interest since it is believed that the allocation of spares sufficient to support 
that point is also adequate to maintain the target throughout the life cycle. 

Unfortunately, our problem is not as straightforward. Since we are under finite repair 
resources, not all failures can be repaired at once. Therefore, the EBO at the end of peak 
utilisation rate may not be the worst case due to the unavailability of repair resources.  
It is also not surprising that with finite repair resources, where the repair time is long and 
the demand rate is high, the number of failures in the repair facility pipeline will build up 
over time. In other words, if we myopically optimise with respect to the time point at the 
end of peak utilisation rate, the spares and repair resources, which are sufficient to 
support that point, may not be sufficient to maintain the system performance throughout 
the operating horizon. This implies that instead of choosing the end of the peak utilisation 
as the gauge for the worst case EBO, we should indeed be examining EBO at various 
time points in the horizon and locate the time point when the worst case occurs. 

Since time t is a continuous variable, ranging from 0 to the operating horizon T,  
we first discretise the time horizon into N periods, which are indexed by n = 1, …, N,  
so that 

• the utilisation rate within each period is constant 

• the length of each period is small enough so we do not miss out on the worst case. 

We define tn to be the time at the end of period n, so maxEBO = maxn∈{1,…,N}EBO(tn). 

6.1 Significance levels and resource groups 

In OPUS9 (1992) and OPUS10 (1998), the concept of significance level was introduced. 
The significance level describes the importance of different stock positions, where  
a stock position contains an item and its location. The more important the stock position, 
the higher the significance level is. In our problem, the stock positions of spares at bases 
are the most important because they have direct effects on EBO, whereas the spares at the 
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depot are of next importance because they determine the resupply delay for LRUs.  
The repair resources at the depot are the least important stock position, only influencing 
the repair pipeline of LRUs at the depot. Consequently, the significance level of repair 
resources at the depot is set to be 0, that of spares at the depot is 1, and that of spares  
at the bases is 2. Since the computation of EBO at a certain level only requires  
the information on stock positions whose significance levels are less or equal, 
optimisation can be carried out level-by-level from the lowest-significance level 0 until 
the highest level. 

Under the assumption that each failed LRU requires only one repair resource  
(see Assumption (5) in Section 3), different LRUs can be partitioned into disjoint 
resource groups in such a way that each group contains the common repair resources and 
LRUs requiring them. In doing so, our strategy is to decompose the entire problem into 
independent sub-problems for each resource group, and subsequently combine them 
using marginal allocation. 

6.2 Optimisation algorithm for generating Cost/Effectiveness (C/E) curve 

We now present our optimisation algorithm to generate the C/E curve. Our approach 
follows the optimisation algorithm proposed in Alfredsson (1997) (which was based on 
marginal analysis in Sherbrooke, 1992), and extends it by the time dimension. Marginal 
analysis is essentially a myopic method where one unit of the item with maximum 
marginal utility is increased at each step. The basic idea is to apply marginal analysis 
from the lowest to the highest significant levels, and then merge the C/E curves via 
convexification, in the same way as Alfredsson (1997) and Sherbrooke (1992). 

The algorithm proceeds in three stages. First divide all LRUs according to disjoint 
resource groups. Second, within each resource group, perform optimisation (i.e., generate 
a C/E curve for this resource group) as follows: 

1 Apply marginal analysis to generate the C/E curve for significance level 0.  
(This curve contains optimal allocations of repair resources at the depot) 

2 For each repair resource allocation in (1), generate a C/E curve by doing the 
following: 

2a For each LRU within the resource group, find the time point t* when the worst 
case depot EBO occurs (i.e., EBO0k(t*) = maxn∈{1,…,N}EBO0k(tn)) and obtain 
spares allocation with respect to t* as follows: 

i At time t*, apply marginal analysis to generate the C/E curve for 
significance level 1. 

ii For each point on the step (1) C/E curve, apply marginal analysis at time t* 
to generate a C/E curve for significance level 2. 

2b Apply marginal analysis to combine the curves obtained in step 2a to generate  
a C/E curve for this resource allocation. 

3 Merge all C/E curves generated in step (2) to form the C/E curve for this resource 
group. (Note that this merging can be performed efficiently by any standard 
computational geometry algorithm, such as the Graham scan, that finds a convex hull 
for a given set of points on the plane).6 
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Third and finally, we apply marginal analysis to combine the C/E curves of all repair 
resource groups to generate the final C/E curve. Details of our algorithm are found in 
Appendix A. 

7 Experimental results 

We consider a number of test cases extracted from real-life scenarios of a military 
organisation. There are 40 identical military systems deployed at the bases, each of which 
has 46 LRUs with very different failure rates and repair times. For example, repair time 
of some LRUs is 168 h while that of others is 1556.6 h while MTBF ranges from 2000 h 
to 10,309 h. We will benchmark our results against a specialised simulation tool  
(that behaves identically as SPAR). For the purpose of benchmarking, we will use the 
time-dependent availability (Ao) as the system performance. Note again that conversion 
from EBO into Ao in a time-dependent setting has been presented in Lau et al. (2006). 
For simplicity, we shall term our proposed approach as ‘approximation’ or ‘App.’ in the 
following tables, in contrast with ‘simulation’ or ‘Sim.’ in the following tables (for the 
simulation tool). 

The large number of experiments and their extensive results do not allow us to 
present all the details in this paper. We will only present the key performance 
characteristics. 

7.1 Evaluation of system performance 

To assess the accuracy of our proposed approximation over a given spare and repair 
resource allocation, we compare results from a simulation run. The simulation 
experiments were developed on the Extend (version 6) software, in which we use the 
random number generator provided to generate the time between arrivals and service time 
based on exponential distribution. The simulation result is based on the average of the 
performance measures obtained by running 1000 replications (which enabled us to 
achieve results within 95% confidence interval). 

First, we assess the quality of our approximate method for the nonstationary  
multi-class finite-server queue presented in Section 5. We ran a large number of cases 
among which the result of one case is provided here (due to space constraint). In this 
case, there are three servers and two classes of customers whose service rates are 
µ1 = 0.2, µ2 = 0.25. The demand rates are time varying, which are given as follows: 
λ1 = 1/3(0–48 h), 1/12(48–120 h), 1/6(120–168 h); λ2 = 1/4(0–48 h), 1/16(48–120 h), 
1/8(120–168 h). The results are shown in Figure 1. From that we can see that our 
analytical model agrees well with simulation results. 

Next, we experiment on instances arising from a real application. In the following 
problem instance, the utilisation rates are given as follows: 0.0486 (0–1440 h), 0.0833 
(1440–2160 h), 0.5833 (2160–2520 h), 0.3333 (2520–3240 h), 0.5 (3240–3600 h) and 
0.25 (3600–4320 h). We assume that there is one repair resource type, which can repair 
all LRUs. In this instance, the MTBF values are large, ranging from 2000 h to 10,309 h, 
implying that very few demands are entering the system, which causes the number of 
items in queue and service to be very small. We randomly choose five LRUs from the 
data set and ran 1000 simulation replications to generate both the average number of 
items in queue and service as well as their 95% confidence intervals. Again, Table 2 
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shows that our analytical approximates are all within 95% confidence intervals. We then 
performed experiments to evaluate the system performance. The results are shown in 
Figure 2. From Figure 2, we observe that our approximation matches simulation very 
well with low error. The highest error is around 3.5% and the error for availability under 
worst case is around 0.04%. Next, we demonstrate that stationary approximations fail 
miserably in a time-dependent setting. For this purpose, we first approximate the 
nonstationary demand with a stationary demand with the average utilisation rate of 
0.217575 (0–4320 h). We then compute Ao using our proposed model but with a standard 
Poisson demand instead. Figure 2 shows the gap in terms of actual system behaviour 
between the stationary (Stat.) and nonstationary (App.) approximations. Observe also that 
the trends of two curves are totally different, the highest error is around 57% and  
the error for availability under worst case is more than 7.5%. Figure 3 shows the system 
behaviours of high availability using simulation (Sim.), nonstationary (App.) 
approximation and stationary (Stat.) given more spares. 

Figure 1 Expected number of customers of each class in the nonstationary system 

 

Table 2 Approximation vs. simulation by 95% confidence interval 

Time Class c Sim. LB UB App. In 95% interval 
48 h Class 1 0.111 0.090370 0.131630 0.125607 True 
 Class 2 0.065 0.048737 0.081263 0.070686 True 
 Class 3 0.051 0.036805 0.065195 0.061391 True 
 Class 4 0.162 0.135130 0.188870 0.143537 True 
 Class 5 0.043 0.030118 0.055882 0.035318 True 
120 h Class 1 0.196 0.163922 0.228078 0.172506 True 
 Class 2 0.103 0.082397 0.123603 0.100819 True 
 Class 3 0.076 0.058218 0.093782 0.086738 True 
 Class 4 0.227 0.194929 0.259071 0.214665 True 
 Class 5 0.045 0.031560 0.058440 0.051765 True 
168 h Class 1 0.203 0.170199 0.235801 0.185531 True 
 Class 2 0.092 0.070922 0.113078 0.109611 True 
 Class 3 0.072 0.055038 0.088962 0.084052 True 
 Class 4 0.266 0.230418 0.301582 0.236403 True 
 Class 5 0.059 0.043127 0.074873 0.056702 True 
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Next, we like to quantifiably verify the statement in Sleptchenko et al. (2002),  
“the impact of finite capacity increases with repair shop utilisation and decreases with the 
number of servers”. That is, we like to investigate the effects of finite capacity on 
availability. Unlike the queuing model under steady state in which the utilisation rate 
must be less than 1, which otherwise cannot go into steady state, the utilisation rate under 
a time-dependent scenario can be greater than 1. Since there are 40 military systems 
deployed at the base, the utilisation rate can be very large. Under the given stock 
allocation (provided by an industry partner), Table 3 shows that our solution achieves 
more than 95% availability under infinite repair capacity (see last column). From Table 3, 
we can verify the impact of finite capacity stated in Sleptchenko et al. (2002): that the 
deviation (gap) in availability decreases with capacity and increases with utilisation rate. 

Figure 2 Ao by simulation, approximation and stationary with low Ao 

 

Figure 3 Ao by simulation, approximation and stationary with high Ao 
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Table 3 Impact of finite capacity (Capacity and UR of repair resources) 

Capacity UR App. (%) Sim. (%) ∞ Capacity (%) 

1 60.18 35.82 36.10 96.99 
5 12.04 40.91 41.39 96.99 
10 6.02 46.98 46.80 96.99 
25 2.41 63.93 63.64 96.99 
40 1.50 78.47 78.94 96.99 
65 0.93 94.86 94.47 96.99 
80 0.75 96.93 96.73 96.99 

Next, we examine the impact of finite capacity as the change of spare allocation.  
The results are shown in Table 4, where columns 2–4 show the availabilities achieved 
under repair capacity (rc) of 10 units, 25 units, and infinite number of units under 
different spares cost, respectively. Err3,4 is the deviation between columns 3 and 4.  
From Table 4 Err3,4 column, we observe interestingly that the impact of finite capacity 
will increase with increasing spares first and then decrease after a certain level. This can 
be explained as follows. In the case of infinite repair capacity, all increased spares will 
improve availability. Where there are finite capacities, however, increased spares will 
barely offset the effect of finite capacities at the beginning; but after a certain threshold, 
the offset takes effect – since all newly increased spares will replace failures immediately 
even though there are finite capacities. Hence, the impact of finite capacity increases with 
the spare and then decreases after a certain level. This phenomenon takes place not only 
between finite and infinite repair capacity, but also between fewer and greater capacity 
(See Err2,3). 

Table 4 Impact of finite capacity as spares 

Cost App. (rc = 10) (%) App. (rc = 25) (%) ∞ Capacity (%) Err3,4 (%) Err2,3 (%) 

0 14.41 32.84 36.59 3.75 18.43 
6538 14.58 35.17 47.14 11.97 20.59 
52564 16.63 37.73 66.26 28.53 21.10 
78080 20.13 40.81 84.45 43.64 20.68 
115761 28.62 47.51 87.33 39.82 18.89 
266532 46.98 63.93 96.99 33.06 16.95 
646447 79.40 94.99 99.99 5.00 15.59 

Tables 5 and 6 provide an insight into the impact of nonstationary demand 
approximation. Since we are concerned with the system performance under the worst 
case, the availabilities listed in Tables 5 and 6 are the worst availabilities over the 
operating horizon. In Table 5, the worst availabilities obtained by simulation (Sim.), our 
approximation method (App.) and the stationary approximation under varying repair 
resource capacities (Stat.) are listed, and we compute the errors from simulation, 
respectively. Similarly, Table 6 presents comparison results under varying spare 
allocations with different costs while fixing resource capacity at 25. Table 5 shows that 
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error gets larger as the number of resources increases while Table 6 shows that the error 
gets smaller as more spares are bought. This can be explained intuitively as follows. 
When the repair capacity increases at the beginning, due to heavy utilisation in 
nonstationary scenario, the size of pipeline may not be improved as well as that under 
smooth utilisation rate, so the error gets larger. Until both the queuing systems converge 
towards steady state, that is, the effect of capacity tends towards saturation, the deviation 
gets smaller and tends to be steady. That explains why the error decreases after 16.44% 
and around 14.2% eventually (see Table 5). On the other hand, although the deviation 
under worst case gets smaller as more spares are bought, the stationary approach  
still cannot approximate the system behaviour effectively, especially during transition 
periods (See Figure 3). 

To illustrate the phenomenon that the system performance at the end of peak 
utilisation rate may not be the worst case, we use three simplified test cases with only one 
LRU whose MTBF is 10,000 h. Table 7 gives a summary of the results. TAT = 1556.5 h 
in the first case and TAT = 168 h in the second case. The operating horizon T is 4320 h 
and the utilisation rates are given as above. In the third case, both TAT = 168 and T = 168 
and UR = 1(0–48 h), 1/13(48–120 h), 0.5(120–168 h). In Table 7, the column EBO(t) 
shows the EBO at the end of peak utilisation rate and the corresponding time point at 
which this EBO occurs, while the column maxEBO(t) is the worst EBO and the 
corresponding time point. From Table 7, we can see for test cases 1 and 2, the worst 
system performance takes place at the time far beyond the end of peak utilisation rate 
when repair capacity is small and only gets closer as the capacity increases. Comparing 
case 1 with 2, we can see the worst EBO occurs at the time, which gets closer to the end 
of peak utilisation rate more quickly when TAT is small. This can be explained as: when 
capacity is small, there are too few resources to repair the failed LRUs in time so the 
pipeline gets larger with time, whereas with enough capacities ailed units can be repaired 
almost at once. On the other hand, small TAT means repair can be finished within a short 
duration so that this item in the pipeline will not be counted over time, while large TAT 
means it will always be kept in the pipeline at least for a long repair time. Comparing test 
cases 2 and 3, we can see when the operating horizon is short, even shorter than TAT, the 
worst EBO will occur at time far beyond the end of peak utilisation rate. 

Table 5 Impact of nonstationary approximation as capacity 

Capacity Sim. (%) App. (%) Stat. (%) Err_App (%) Err_Stat (%) 
0 0 0.03 0.04 0.03 0.04 
5 3.60 3.59 7.23 –0.01 3.63 
8 5.60 5.66 11.54 0.06 5.94 
10 6.80 7.04 14.41 0.24 7.61 
12 7.80 8.41 17.27 0.61 9.47 
20 14.00 13.79 27.65 –0.21 13.65 
22 14.60 15.04 29.89 0.44 15.29 
25 16.40 16.79 32.84 0.39 16.44 
28 19.60 18.31 34.96 –1.29 15.36 
30 21.30 19.16 35.78 –2.14 14.48 
100 22.40 21.06 36.53 –1.34 14.13 
Infinite 22.40 22.54 36.59 0.14 14.19 
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Table 6 Impact of nonstationary approximation as spares cost 

Cost Sim. (%) App. (%) Stat. (%) Err_App (%) Err_Stat (%) 

0 16.40 16.79 32.84 0.39 16.44 

6538 17.90 18.30 35.17 0.40 17.27 

52564 24.20 23.90 37.73 –0.30 13.53 

78080 30.60 30.42 40.81 –0.18 10.21 

115761 39.50 38.38 47.51 –1.12 8.01 

266532 56.50 56.80 63.93 0.30 7.43 

646447 91.70 91.50 94.99 –0.20 3.29 

Table 7 Peak demand EBO vs. worst case EBO 

Case Capacity EBO (t) maxEBO (t) Error (%) 

0 1.360 (2520) 3.760 (4320) 63.83 

1 1.055 (2520) 2.532 (4320) 58.34 

3 0.996 (2520) 1.793 (3600) 44.48 

5 0.994 (2520) 1.752 (3600) 43.27 

TAT = 1556.6 
(T = 4320) 

8 0.994 (2520) 1.749 (3600) 43.19 

0 1.360 (2520) 3.760 (4320) 63.83 

1 0.413 (2520) 0.423 (3600) 2.50 

3 0.353 (2520) 0.353 (2520) 0.00 

TAT = 168 
(T = 4320) 

5 0.353 (2520) 0.353 (2520) 0.00 

0 0.192 (48) 0.310 (168) 38.10 

1 0.169 (48) 0.187 (168) 9.88 

TAT = 168 
(T = 168) 

3 0.167 (48) 0.179 (168) 6.53 

7.2 Optimisation 

The above section illustrates that our proposed approximation approach leads to a fairly 
accurate system performance. In this section, we validate the effectiveness of our 
proposed optimisation algorithm. We apply it to a real-world large test case where each 
military system has more than 50 LRUs. The results are shown in Figure 4. We compare 
our approach with the standard marginal analysis that selects the time point at the end of 
peak utilisation rate as the worst-case time point (t*). The EBO in Figure 4 is the worst 
case over the whole operating horizon. From Figure 4, we find that the results by 
selecting peak utilisation rate are not optimal and not even convex when compared with 
ours. As discussed in Section 6, this is because the worst EBO is not at the end of peak 
utilisation rate due to finite repair resource and long repair time. 
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Figure 4 C/E curves with operating horizon vs. only the end of peak UR 

 

8 Conclusion and future research 

Our work involves an innovative hybridisation of analytical modelling, optimisation, 
queuing theory, and simulation to solve a 2-echelon repairable item inventory problem 
under nonstationary Poisson demands and finite repair facilities. 

In our work, the assumption that each LRU requires exactly one repair resource is 
crucial in reducing the complexity of the problem. What is challenging for future work is 
to develop analytical models that relax this assumption. Another interesting research is to 
adopt priority queuing model for repair by relaxing the assumption of FCFS discipline. 
We also assume that the utilisation rates are the same across all bases so that the demand 
rates vary synchronously, so another challenging aspect of work is the development of a 
model where utilisation rates vary with different systems at different bases at different 
times. Finally, the spare allocation is fixed over operating horizon once it is determined in 
our model. A natural extension of future work is to allow reallocation mission by mission 
over a rolling horizon based on existing system performances in previous periods. 
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Notes 
1In this paper, we use the word ‘(military) system’ to denote equipment such as an aircraft,  
ship or tank. This is not to be confused with the term ‘(inventory) system’ or ‘(queuing) system’ 
also used in the paper. The context should be clear in each occurrence of the term. 

2In this paper, a nonstationary Poisson process refers to a Poisson process, which has a  
time-dependent arrival rate (see, for example Nelson, 1995). 

3For the sake of simplicity, we assume that repair resources comprise only of manpower. 
4This was proven in an internal technical report, which is available upon request. 
5Like Perlman et al. (2001), we assume Nsysj is large enough that the failure may depend upon the 
required number of systems, but did not depend on the actual number of working systems. 
Furthermore, in the Air Force environment, this assumption holds because the fleet must maintain 
the same number of flight missions regardless of the actual number of working aircrafts. 

6For an animation of this algorithm, see for example www.cs.princeton.edu/~ah/alg_anim/version0/ 
Graham.html 

Website 
SPAR Website, http://www.clockwork-group.com 

Appendix A: Optimisation Algorithm Pseudo-Code 

Let each resource group be denoted by RGg, g = 1, …, G. Hence, according to  
equations (1) and (8), we may rewrite system performance and investment cost as a linear 
sum of the respective resource groups: 

1 1
( ) ( ),

G G

g g
g g

EBO t EBO t LSC LSC
= =

= =∑ ∑  

where 
1

( ) ( )J
g jkk RGg j

EBO t EBO t
∈ =

= ∑ ∑  (i.e., total EBO for those LRUs within 
resource group g) and ( )0

J
g g g k jkk RGg j

LSC Cr r Cs s
∈ =

= +∑ ∑  (i.e., total life support 
cost for those LRUs within resource group g). Let ( 0, 1, 2)L

gEBO L =  denote the EBO 
associated with significant levels 0, 1, and 2, respectively. The pseudo-code is given as 
follows: 
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1 Divide LRUs into resource groups, and for each resource group RGg, perform steps (2)–(5). 

2 Initialise EBO and LSC for repair resource at significance level 0 defined by 
 0 0 0

{1, , } 0max ( ) ( ), 0.g n N g n k RGg k n gEBO EBO t EBO t LSC∈ ∈= = Σ =…  

3 Until 0 0( Budget or g gLSC EBO>  is not improved), increase rg by 1 and update 0,gEBO  
 0 ,gLSC  which generates a C/E curve of significance level 0. 

4 For each repair resource allocation on the above C/E curve do the following two steps: 

 4(a) For each LRU k (k ∈ RGg). 

 (i) Find the time point t* such that EBO0k(t*) = maxn∈{1,…,N}EBO0k(tn). 

 (ii) Initialise EBO and LSC at significance level 1 defined by 1
0( *) ( *)gk kEBO t EBO t=  

  and 1 0
0 ( ).gk g k k gLSC LSC Cs s k RG= + ∈  

 (iii) Until 1 1( Budget or ( *)gk gkLSC EBO t>  is not improved), increase s0k by 1 and update 
  1 1( *), .gk gkEBO t LSC  This will generate a C/E curve of significance level 1. 

 (iv) Initialise EBO and LSC at significance level 2 defined by 2 ( *)gkEBO t   
  

1
( *)J

jkj
EBO t

=
=∑  and 2 1

1
,( ).J

gk gk k jk gj
LSC LSC Cs s k RG

=
= + ∈∑  

 (v) Until 2 2( Budget or ( *)gk gkLSC EBO t>  is not improved), increase sj*k by 1 whose 
  marginal utility MUj*k = maxj∈{1,2,…,J}MUjk where MUjk = |∆EBOjk(t*)|/Csk.  
  This will generate a C/E curve of significance level 2. 

 4(b) Apply marginal analysis to combine all level-2 C/E curves generated above to  
  generate a C/E curve for the resource allocation. 

5 Merge all C/E curves associated with all resource allocations to generate a C/E curve for 
 the resource group. 

6 Combine all C/E curves for all resource groups to generate a final C/E curve for the entire 
 problem. 
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