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Charlotte, NC 28223
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Abstract. Disclosure analysis in two-way contingency tables is impor-
tant in categorical data analysis. The disclosure analysis concerns whether
a data snooper can infer any protected cell values, which contain privacy
sensitive information, from available marginal totals (i.e., row sums and
column sums) in a two-way contingency table. Previous research has been
targeted on this problem from various perspectives. However, there is a
lack of systematic definitions on the disclosure of cell values. Also, no pre-
vious study has been focused on the distribution of the cells that are sub-
ject to various types of disclosure. In this paper, we define four types of
possible disclosure based on the exact upper bound and/or the lower
bound of each cell that can be computed from the marginal totals. For
each type of disclosure, we discover the distribution pattern of the cells
subject to disclosure. Based on the distribution patterns discovered, we
can speed up the search for all cells subject to disclosure.

1 Introduction

In this paper, we focus on the disclosure problem for two-way contingency ta-
bles. The traditional disclosure problem in two-way contingency tables, which
has been formulated before (e.g., in [40, 11]), asks whether a data snooper can
infer accurate information about any protected cell values given the marginal
totals. In this context, the internal cells of a contingency table provide privacy
sensitive information, which should be protected, while the marginal totals are
the sums of cell values in a row or column, which can be released to the public
if they lead to no disclosure of any cell values. This problem has many practi-
cal applications such as medical/health statistics, national census, and student
records management. In health insurance data, for example, it is important to
protect a cell value, which represents how many times a patient undergoes a
certain treatment, against being inferred from the marginal totals, which are ag-
gregate statistics on the total number of each treatment being taken or the total
number of each patient visiting doctors. For another example, in an agent-stock
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table, where each cell indicates the volume of a stock in which an agent invests, a
commercial secret may be revealed if a snooper infers from the released marginal
totals that the agent buys more (or less) than certain amount of the stock.

Previous study on this problem has identified that the disclosure of any cell
value depends on the upper bound and lower bound of the cell value which a
snooper can derive from the available marginal information (e.g., see [21,22,6]).
If the upper bound is the same as the lower bound, the cell value is exposed.
Likewise, if the difference between the upper bound and the lower bound is
very small, the security of the table is also considered to be compromised [40].
However, there is a lack of systematic definitions on the disclosure of cell values.
Also, no previous study has been focused on the distribution of the cells that
are subject to various types of disclosure. In this paper, we define four types
of possible disclosure based on the exact upper bound and/or the lower bound
of each cell that can be computed from the marginal totals. For each type of
disclosure, we discover the distribution pattern of the cells subject to disclosure.
Based on the distribution patterns discovered, we propose two efficient methods
to speed up the search for all cells subject to disclosure.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
naries for the research of disclosure analysis. Section 3 defines various types of
disclosure that are commonly used in practice. Section 4 reveals in a contingency
table the distribution patterns of the cells that are subject to different types of
disclosure. Based on the distribution patterns discovered, Section 5 investigates
how to efficiently detect all cells subject to disclosure. Section 6 reviews the
related work. Finally, Section 7 concludes the paper.

2 Preliminaries

A two-way contingency table A with m rows and n columns is denoted by {aij |
1 ≤ i ≤ m, 1 ≤ j ≤ n}, where aij ≥ 0. In tradition, the cell values in a
contingency table are usually assumed to be nonnegative integers (e.g., counts).
We extend this assumption such that the cell values can be nonnegative real
numbers. The results given in this paper hold in both integer domain and real
domain.

Denote a+j =
∑m

i=1 aij , ai+ =
∑n

j=1 aij , and a++ =
∑

ij aij , where a+j and
ai+ are marginal totals and a++ is the grand total. The marginal totals satisfy∑n

j=1 a+j =
∑m

i=1 ai+ = a++, which is called the consistency condition.
The marginal totals of a two-way contingency table can be released while the

cell values are protected. A traditional disclosure analysis question in a two-
way contingency table asks [40,11]: Can any information about protected cells be
inferred from the released marginal totals? The answer to this question depends
on the bounds that a snooper can obtain about a protected cell from the marginal
totals that are given [21, 22, 6].

A nonnegative value aij is said to be a lower bound of cell value aij if, for any
contingency table {a′

ij} that has the same marginal totals as A, the inequality
aij ≤ a′

ij holds. A value aij is said to be the exact lower bound of aij if (i) it is
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a lower bound; and (ii) there exists a contingency table {a′
ij} such that a) the

marginal totals of A′ are the same as those of A, and b) a′
ij = aij . An upper

bound or the exact upper bound aij can be defined similarly.

Definition 2.1. (Fréchet bounds) Given marginal totals {a+j} and {ai+} of a
two-way contingency table A, the Fréchet bounds for any cell value aij are

max{0, ai+ + a+j − a++} ≤ aij ≤ min{ai+, a+j}

The Fréchet bounds are exact bounds as proven in [13]. Therefore, the Fréchet
bounds give a data snooper the “best” estimate of a protected cell from the
marginal totals.

3 Disclosure Types

Based on the exact bounds, we define four types of information disclosure in
two-way contingency tables: existence disclosure, threshold upward disclosure,
threshold downward disclosure, and approximation disclosure.

Definition 3.1. Existence disclosure: The exact lower bound of a protected
cell is positive.

The concept of existence disclosure can be illustrated using a patient-treatment
table. In such table, each cell shows the number of times that a patient undergoes
a particular treatment. To protect each patient’s privacy, only the marginal totals
are released. However, from the marginal totals, a snooper can easily calculate
the exact lower bound of each cell. If an exact lower bound is positive, the
snooper may infer that a patient has suffered from certain disease. This type of
disclosure is common in privacy protection of statistical data.

Definition 3.2. Threshold upward disclosure: The exact lower bound of a pro-
tected cell is greater than a positive threshold.

Definition 3.3. Threshold downward disclosure: The exact upper bound of a
protected cell is less than a positive threshold.

The threshold upward disclosure is similar to the existence disclosure with the
difference that the threshold is a positive value rather than zero, while the thresh-
old downward disclosure is a dual to the threshold upward disclosure. In certain
applications, knowing that a cell value is positive is not harmful, while knowing
that the cell value is greater or less than certain threshold is dangerous. For ex-
ample, in an agent-stock contingency table, where each cell indicates the volume
of certain stock in which an agent invests, it is often trivial if a snooper deduces
that an agent invests in certain stock, but a commercial secret may be revealed
if the snooper infers that the agent buys more (or less) than certain amount of
the stock. These types of disclosure often occur in business and wealth related
tables.
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Definition 3.4. Approximation disclosure: The difference between the exact
lower bound and the exact upper bound of a protected is less than a positive
threshold.

This type of disclosure is defined based on not only the exact lower bound but
also the exact upper bound. If the difference between the two exact bounds for
a protected cell is small enough, one can estimate the cell’s value with a high
precision. For example, if one knows that a professor’s salary is between 90K
and 92K, then the actual salary amount is largely revealed.

Among the four types of disclosure, the definitions of existence disclosure and
approximation disclosure summarize the similar concepts discussed in some pre-
vious papers (e.g., [40,11,34]). To be more systematic, we extend these concepts
to threshold upward disclosure and threshold downward disclosure.

4 Distribution of Cells Subject to Disclosure

In the previous section, we have defined four types of information disclosure in
a contingency table. In this section, we study the distribution of the cells that
are subject to various types of disclosure. For the first time we discover that the
cells subject to disclosure demonstrate some regular patterns.

Theorem 4.1. Consider existence disclosure or threshold upward disclosure
with a fixed threshold in a two-way contingency table. The cells subject to dis-
closure, if exist, must appear in the same row or column, but not both.

Proof. Prove by contradiction. Assume there exist two cells ai1j1 and ai2j2 subject
to existence disclosure and i1 �= i2, j1 �= j2. Then

ai1+ + a+j1 − a++ > 0
ai2+ + a+j2 − a++ > 0

These two inequalities lead to ai1+ + ai2+ − a++ −
∑

j �=j1,j2
a+j > 0. A contra-

diction is committed as ai1+ + ai2+ − a++ −
∑

j �=j1,j2
a+j ≤ 0 must hold (note

that ai1+ + ai2+ − a++ ≤ 0). Thus, the theorem is proven for the existence
disclosure. Since any cell subject to threshold upward disclosure must also be
subject to existence disclosure, the theorem is proven for the threshold upward
disclosure. ♦

The above theorem reveals the distribution pattern for the cells that are subject
to existence disclosure or threshold upward disclosure. This pattern can be used
to limit the search for cells subject to existence disclosure or threshold disclosure,
which we will discuss in the next section.

Now consider the distribution of the cells that are subject to threshold down-
ward disclosure or approximation disclosure. The following lemma compares the
difference of the exact bounds for any cells that are subject to existence disclo-
sure with that for any cells that are not subject to existence disclosure.



Disclosure Analysis for Two-Way Contingency Tables 61

Lemma 4.1. The difference of the exact bounds for any cell that is subject to
existence disclosure is no less than that for any cell that is not subject to existence
disclosure in a two-way contingency table.

Proof. Assume ai1j1 is subject to existence disclosure. The difference of its exact
bounds is

min{ai1+, a+j1} − (ai1+ + a+j1 − a++) = min{
∑

i�=i1

ai+,
∑

j �=j1

a+j}

Consider any other cell ai2j2 that is not subject to existence disclosure. Because
the exact lower bound of ai2j2 is zero, the difference of its exact bounds is
min{ai2+, a+j2}. To prove the theorem, we need to prove

min{ai2+, a+j2} ≤ min{
∑

i�=i1

ai+,
∑

j �=j1

a+j}

We prove this in three possible cases: (i) i2 �= i1, j2 �= j1, (ii) i2 �= i1, j2 = j1, and
(iii) i2 = i1, j2 �= j1. Clearly, the inequality holds for case (i). In the following,
we prove the theorem for case (ii) only. The proof for case (iii) is similar to case
(ii).

In case (ii), let j1 = j2 = j′. Since i1 �= i2, we have a+j′ = ai1j′ + ai2j′ +∑
i�=i1,i2

aij′ and ai2+ = ai2j′ +
∑

j �=j′ ai2j . Because ai1j′ is subject to exis-
tence disclosure, we have ai1+ + a+j′ − a++ = ai1j′ −

∑
i�=i1,j �=j′ aij > 0;

then, we have ai1j′ >
∑

i�=i1,j �=j′ aij ≥
∑

j �=j′ ai2j . Therefore, we have a+j′ >
ai2+. Since ai2j′ is not subject to existence inference, the difference of the ex-
act bounds for ai2j′ is ai2+. To prove the theorem, we need to prove ai2+ ≤
min{

∑
i�=i1

ai+,
∑

j �=j′ a+j}.
On the one hand, it is clear ai2+ ≤

∑
i�=i1

ai+. On the other hand, since ai2j′

is not subject to existence disclosure, we have ai2j′ ≤
∑

i�=i2,j �=j′ aij . Adding∑
j �=j′ ai2j to both sides of this inequality, we have ai2+ ≤

∑
j �=j′ a+j. The

theorem is proven. ♦

From this lemma, one can easily derive the following

Lemma 4.2. The exact upper bound for any cell that is subject to existence dis-
closure is no less than that for any cell that is not subject to existence disclosure
in a two-way contingency table.

According to the above lemmas, we have the following theorem regarding the
distribution of cells subject to approximation disclosure or threshold downward
disclosure.

Theorem 4.2. Consider approximation disclosure or threshold downward dis-
closure with a fixed threshold in a two-way contingency table. If a cell is subject
to disclosure, the other cells in the same row or column must also be subject to
disclosure.

Proof. First, consider approximation disclosure with a fixed threshold τ > 0.
If a cell ai′j′ is subject to approximation disclosure, the difference of its exact
bounds is less than τ . The theorem is proven in the following two cases.
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Case (i): ai′j′ is also subject to existence disclosure. From Theorem 4.1, we
know that all of the cells that are subject to existence disclosure must be in row
i′ or column j′, but not both. Without loss of generality, we assume that these
cells are in row i. Therefore, all of the cells in the column j′ except ai′j′ are
not subject to existence disclosure. According to the Lemma 4.1, the differences
of the exact bounds for these cells in column j′ are smaller than or equal to
the difference of the exact bounds for aij , which is less than τ . Therefore, all of
the cells in column j′ are subject to approximation disclosure. The theorem is
proven.

Case (ii): ai′j′ is not subject to existence disclosure. According to Theorem
4.1, all of the cells in row i′ and column j′ are not subject to existence disclosure.
Since ai′j′ is subject to approximation disclosure, we have min{ai′+, a+j′} < τ .
To prove the theorem, we prove that all of the cells in either row i′ or column
j′ are subject to approximation disclosure. If min{ai′+, a+j′} = ai′+ < τ , then
for any cell ai′j where j �= j′, the difference of the exact bounds for ai′j is
min{ai′+, a+j} ≤ ai′+ < τ . Thus, all of the cells in row i′ is subject to approxi-
mation disclosure. Similarly, if min{ai′+, a+j′} = a+j′ , all of the cells in column
j′ are subject to approximation disclosure.

Then consider the threshold downward disclosure with a fixed threshold. The
theorem can be proven similarly as in the case of approximation disclosure. The
only difference is that one needs to replace the phrase “approximation disclosure”
with “threshold downward disclosure”, “the difference of the exact bounds” with
“the exact upper bound”, and “lemma 4.1” with “lemma 4.2” in the proof. ♦

Note that the distribution pattern for the cells that are subject to approximation
disclosure or threshold downward disclosure is different from that for the cells
that are subject to existence disclosure or threshold upward disclosure. The
former pattern is a single row or column, but not both, while the latter must
“fill” some rows or columns.

5 Disclosure Detection

An important task in contingency table protection is to detect all cells that
are subject to disclosure before one can eliminate such disclosure using some
disclosure limitation method. We consider disclosure detection in this section,
while disclosure limitation will be summarized in the related work section.

A naive approach to disclosure detection is to check all cells one by one. To
check whether a cell is subject to disclosure, one needs to compute its Fréchet
lower bound (two plus/minus operations and one comparison operation) and/or
Fréchet upper bound (one comparison operation), depending on what type of
disclosure is of concern. This naive approach requires checking all mn cells in an
m × n contingency table.

We improve this naive approach by reducing its time complexity from O(mn)
to O(m+n). Such an improvement is meaningful in practice especially for some
information organizations (e.g., statistical offices) which routinely process a large
number of sizable contingency tables.
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First, consider the existence disclosure and the threshold upward disclosure.
According to Theorem 4.1, the cells subject to disclosure must exist in a single
row or column, but not both. Based on this distribution pattern, we propose the
following

Procedure 1. (Disclosure detection for existence disclosure or threshold upward
disclosure)
1. Discover all i′ and j′ such that ai′+ = maxi{ai+} and a+j′ = maxj{a+j};

proceed to step (2) if ai′j′ is subject to disclosure; otherwise, output no cell
subject to disclosure.

2. Check all cells in row i′. If no cell is subject to disclosure, continue checking
all cells in column j′. Output all cells subject to disclosure that are discovered
in both step (1) and step (2).

If there exists at least one cell subject to existence disclosure or threshold upward
disclosure, ai′j′ must be one of such cells since the exact upper bound of any
other cell is less than or equal to the exact upper bound of ai′j′ . According to this
fact and the distribution pattern, it is easy to know that this procedure outputs
all and only the cells that are subject to existence disclosure or threshold upward
disclosure.

Second, consider the threshold downward disclosure and the approximation dis-
closure. According to Theorem 4.2, the cells subject to disclosure must “fill” some
rows or columns. Based on this distribution pattern, we propose the following

Procedure 2. (Disclosure detection for threshold downward disclosure)

1. Discover all i′ and j′ such that ai′+ < τ and a+j′ < τ .
2. Output all cells in the discovered rows i′ and columns j′ to be subject to

disclosure.

For threshold downward disclosure with threshold τ , a cell ai′j′ is subject to
disclosure if and only if its marginal total ai′+ or a+j′ is less than τ . According
to this fact and the distribution pattern, it is easy to know that the above
procedure outputs all and only the cells that are subject to threshold downward
disclosure.

For approximation disclosure with threshold τ , one can classify those cells that
are subject to disclosure into two categories: (i) cells that are subject to thresh-
old downward disclosure with threshold τ , and (ii) cells that are not subject to
threshold downward disclosure with threshold τ . It is clear that the cells in cate-
gory (ii) must be subject to existence disclosure (and approximation disclosure).
Procedure 2 can be used to discover all and only the cells in category (i), while
procedure 1 can be easily extended to discover all and only the cells in category
(ii). The union of the cells discovered in categories (i) and (ii) is the set of cells
subject to approximation disclosure.

6 Related Work

The problem of protecting sensitive data (e.g., privacy related information)
against disclosure from nonsensitive data (e.g., aggregations) has long been
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a focus in statistical database research [1, 19, 46, 24, 26]. The proposed tech-
niques can be roughly classified into restriction-based and perturbation-based.
The restriction-based techniques limit the disclosure of privacy information by
posing restrictions on queries [5, 45, 44], including the number of values aggre-
gated in each query [19], the common values aggregated in different queries [20],
and the rank of a matrix representing answered queries [10]. Other restriction-
based techniques include partition [9,39], microaggregation [25,46], suppression
and generalization [14, 13, 31, 43], and k-anonymity privacy protection [37, 41,
47]. The perturbation-based techniques protect/distort sensitive private data by
adding random noises without affecting the use of data significantly. The ran-
dom noises can be added to data structures [38], query answers [4], or source
data [42,2,3,35,8,36]. Recently, however, people have discovered that the origi-
nal sensitive data can be estimated accurately from the perturbed data [32,30],
indicating that the perturbation-based techniques should be examined carefully
in practice so as to protect sensitive data effectively.

For protecting contingency tables, people have developed various techniques
including cell suppression, controlled rounding, and controlled tabular adjust-
ment. Cell suppression is applied to suppress any sensitive cells as well as other
appropriately selected cells so as to prevent inference to sensitive cells from mar-
ginal totals [14,17,28,29]. The challenge is to provide sufficient protection while
minimizing the amount of information loss due to suppression [27].

Controlled rounding is another disclosure limitation method which rounds
each cell value in a contingency table to adjacent integer multiples of a positive
integer base [16,15,7]. It requires that the sum of the rounded values for any row
or column be equal to the rounded value of the corresponding marginal total.
The controlled round can be customized for limiting various types of disclosure.

Controlled tabular adjustment (or synthetic substitution) [18] uses threshold
rules to determine how cells should be modified. It replaces a sensitive cell value
by a “safe” value (e.g., either zero or a threshold value) and uses linear pro-
gramming to make small adjustments to other cells so as to restore the tabular
structure. Similar to the controlled rounding method, this method requires that
some cell values be modified, thus introducing errors to the protected data.

Our study on the disclosure analysis is complementary to the previous study
on disclosure limitation. To apply any disclosure limitation method, one needs
to first discover all cells that are subject to disclosure. Rather than applying a
naive brute-force approach, we investigate the distribution patterns for the cells
subject to disclosure and, based on the patterns, propose efficient methods to
speedup the searching process significantly.

Parallel to the development of data protection techniques for two-way tables,
an active line of research deals with protecting multiway contingency tables or
“cubes.” It has been known that the Fréchet bounds, after being extended to
high-dimensional space, may not necessarily be the exact bounds [13]. Recent
studies have been focused on estimating the exact bounds [13,12,6,33] or giving
the exact bounds in some special cases [21, 22, 23]. Once the exact bounds are
given, our definitions on various types of disclosure can be easily extended to
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multiway contingency tables. The challenge is that the distribution patterns dis-
covered in two-way contingency tables may not hold in high dimensions. There-
fore, it deserves further study on multiway contingency tables.

7 Conclusion

The major contribution of this paper can be summarized as follows. Firstly,
we defined four types of disclosure for evaluating the disclosure of cell values
in contingency tables. Secondly, for each type of disclosure, we discovered the
distribution patterns for the cells subject to disclosure in a two-way contingency
table. The discovery of the distribution patterns is important as it enables us
to speed up the search for all cells subject to disclosure. In the future, we plan
to extend our study to multiway contingency tables. The major challenge in
multiway contingency tables is that the Fréchet bounds may not be exact bounds
in general. Some recent efforts have been made to approach the exact bounds
beyond two-dimensions [21, 22, 33].
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