
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-1995

Myriad: Design and implementation of a federated
database prototype
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

San-Yih HWANG
University of Minnesota - Twin Cities

Jaideep SRIVASTAVA
University of Minnesota - Twin Cities

Dave CLEMENTS
University of Minnesota - Twin Cities

M. GANESH
University of Minnesota - Twin Cities

DOI: https://doi.org/10.1002/spe.4380250505

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng; HWANG, San-Yih; SRIVASTAVA, Jaideep; CLEMENTS, Dave; and GANESH, M.. Myriad: Design and
implementation of a federated database prototype. (1995). Software: Practice and Experience. 25, (5), 553-562. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1002/spe.4380250505
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 25(5), 533–562 (MAY 1995)

Myriad: Design and Implementation of a Federated
Database Prototype

EE-PENG LIM, SAN-YIH HWANG, JAIDEEP SRIVASTAVA,∗ DAVE CLEMENTS AND M. GANESH
Department of Computer Science, University of Minnesota, 4-192 EE/CS Bldg, 200 Union St. SE, Minneapolis,

MN 55455, U.S.A.

SUMMARY

A key problem in providing ‘enterprise-wide’ information is the integration of databases that have been
independently developed. An important requirement is to accommodate heterogeneity and maintain the
autonomy of component databases. Myriad is a federated database prototype developed at the Univer-
sity of Minnesota, to provide a testbed for investigating alternatives in architecture and algorithms for
database integration, query processing and optimization, and concurrency control and recovery. The sys-
tem incorporates our group’s research results in these areas. This paper describes our experiences in
the design and implementation of Myriad, and in the project management. Special emphasis is given to
discussing design alternatives and their impact on Myriad. This paper also presents the software engi-
neering principles and the project management techniques we used in developing Myriad and the lessons
we learned. We believe these lessons would be useful for practitioners who wish to develop a similar
system.

Handling heterogeneity and autonomy were prime objectives throughout the prototyping effort. We
are convinced that a prototype federated database is an important infrastructural requirement for the
overall goal of ‘enterprise-integration’, and believe Myriad to be a significant contribution towards this.

KEY WORDS: enterprise integration; federated database; schema integration; query processing; transaction management

INTRODUCTION
The ability to access data that resides in multiple autonomous and heterogeneous data-
sources, in a uniform and integrated manner, is becoming very important to organizations, as
the realization grows that information is a vital organizational asset. Apart from system-level
incompatibilities between different database systems, incompatibilities also exist between
the content of different but related databases. The heterogeneity and autonomy characteris-
tics of the local database systems cause a variety of difficultie in both efficien processing
of global queries and the correct execution of transactions which have to satisfy global
serializability. Moreover, heterogeneity among the databases’ content has to be shielded
from the global users who want to view the collection of databases as an integrated entity.

Myriad is a federated database system (FDBS) prototype developed at the University
of Minnesota to satisfy the above needs. It seeks to provide global transaction manage-
ment and query processing over a set of autonomous and heterogeneous DBMSs on which
pre-existing databases were designed and implemented. It acts as a testbed for validating

ppyeo
Typewritten Text
* All correspondence should be directed to Professor Jaideep Srivastava

ppyeo
Typewritten Text
https://doi.org/10.1002/spe.4380250505

and comparing solutions to various FDBS problems such as transaction management and
query optimization. It also provides an environment for realizing new federated database
applications.

Related work
In the last decade a number of database integration projects have focused on schema

integration1,2 leading to some commercial products. However, few supported good query
capabilities, and none supported transaction management. A number of FDBS projects are
currently underway. The Multibase3 project developed the concept of generalized hier-
archies to integrate heterogeneous schemas. It focused on query processing, but did not
address transaction management issues. In Multidatabase,4 there is no integrated schema
over local databases. The result of processing a global query is presented as a set of re-
lations, each of which corresponds to the result of a local query decomposed from the
global query. Multidatabase also does not provide transaction management. Pegasus5 is an
ongoing project at HP Labs which focuses on using an object-oriented data model to inte-
grate local databases. While original plans did include transaction management, the actual
approach taken by Pegasus has not been described in the literature. Interbase6 provides a
tool-based interface to execute global transactions without violating the autonomy of local
DBMSs. To execute a global transaction, a user has to specify a set of subtransactions
(one for each server site) together with their interrelationships, i.e. the decomposition of
global transactions into sub-transactions is not automated by Interbase. Interbase does not
provide any integrated view over existing databases. Hence, global query processing and
optimization have not been considered. Thus, Myriad is the firs system to provide schema
integration, query processing and optimization, and transaction management capabilities in
a single framework.

Myriad’s strengths
In Myriad, a federation consists of an integrated database the schema of which is rep-

resented as sets of integrated relations. SQL, mainly due to its simplicity and popularity
among database users and vendors, has been adopted to express global queries as well as the
queries for the local database gateways. The Myriad prototype addresses global transaction
management and query processing in an integrated manner. The main contributions of the
Myriad prototype developement include:

1. designing a flexibl FDBS architecture for accommodating and experimenting with
different query processing strategies and transaction management algorithms;

2. providing a site transparent environment in which local databases can be presented in
both a tightly and a loosely integrated manner to the global users;

3. definin and implementing a useful set of integration operations which include user-
define functions to resolve data incompatibilities between independently designed
local databases;

4. developing a query processing strategy in which local DBMS sites with different query
processing capabilities can collaborate in a distributed manner to compute global query
results.

5. supporting the ACID transaction model as the atomic unit of interaction at the global
level while providing a general-purpose programming facility to co-ordinate sequential
or concurrent execution of multiple global transactions.

Software development experience

We employed several software engineering and project management techniques in Myriad
software development. These techniques include standard coding conventions, event-driven
code mapping, standard debugging and testing procedures, code walk through, documen-
tation, and project schedule monitoring. While these techniques in general were found to
be useful in our software design, we discovered that in some cases the realization of these
techniques could be further improved. For example, coding standard should not only be
comprehensive in order to accomodate enough information but also be concise to give
programmers flexibilit in writing their code; including more information in a debugging
message, such as site and process identifier helps the programmers locate the problems; a
flexibl project schedule keeps the project development on schedule even in the presence
of unanticipated events or difficulties

In the following sections we describe in detail our database integration philosophy, the
system architecture used to realize the integration, and the design and implementation of
various system components. As Myriad required a substantial effort that involved several
developers and produced about 35,000 lines of code, project management was a crucial
aspect. We have also presented our experience in managing the Myriad project. Finally, we
provide our conclusions and directions for future extension.

FEDERATED DATABASE INTEGRATION
A federated database system is one that provides site-transparent access to multiple com-
ponent databases. The user of an FDBS system poses queries against a federated (global)
schema or the export schemas of the component databases. These queries are translated into
queries on the individual databases by the FDBS. In this section we describe our approach
to integrating heterogeneous databases, construction of global schemas and the operations
we use to achieve this.

Framework

The integration framework adopted by Myriad is shown in Figure 1. One or more existing
local databases can participate in a federation in which an integrated database is defined
An integrated database comprises of a global schema which is a set of relations whose data
are derived from the local databases. These derived relations are also known as integrated
relations. In Myriad, each local database that participates in an integrated database must
provide a relational export schema. A local database may have multiple export schemas
for different integrated databases. An export schema can also be shared among different
integrated databases. Each export schema contains a set of relations on which relational
queries can be posed. Relational queries on an export schema are translated appropriately
into local database queries which may be non-relational. The relational to local query
translation is performed by the gateways residing on the local database systems.

While the translation between export schema and local database is handled by the gateway
customized for the local DBMS and DB, the resolution of data incompatibilities between
export schemas is an essential task in Myriad query processing. Incompatibilities exist
because the local databases represented by these export schemas have been designed and
developed independently, often by different teams of people, to meet different application
requirements. In order to process federated queries over a global schema, the mapping from

Global
ASchema

Global
Schema B

Global Schema
Mappings

Local Local Local
Database 1

Local
Database 2 Database 3 Database 4

Export Export Export Export Export
Schema 3a Schema 3b Schema 4Schema 1 Schema 2

Applications Applications

Users Users
Myriad

Myriad Myriad

Myriad

Figure 1. Myriad schema architecture.

the integrated relations to the export relations has to be defined We call this the global
schema mapping task. In the following subsection, we represent a global schema mapping
as trees of integration operations which defin the computation of integrated relations from
the set of export relations.

Integrating local schemas

Myriad assumes each exported local schema is in the relational model.∗ The job of schema
integration is to integrate several local relations, some of which may be located in different
databases controlled by different DBMSs, to form a global relation. In Myriad, we have
focused on two instance-level integration problems, namely the entity identificatio 7 and
attribute value conflic 8 problems. The firs is the problem of identifying record instances
from different export databases which correspond to the same real-world entity. The second
arises when the attribute values in different databases, modeling the same property of a real-
world entity, do not match. To resolve these two problems in the specificatio of global
schema mapping, Myriad supports outerjoin and generalized attribute derivation (GAD)9
as integration operations in addition to the usual set of relational operations.

Two-way outerjoin (denoted by ↔
1) is particularly useful for merging a pair of relations

such that tuples coming from different relations satisfying some predicate can be combined
together. The result of outerjoin preserves all attributes of component local relations. Out-
∗ In case a local DBMS does not support the relational model, it is the gateway’s responsibility to convert the non-relational

schema to a relational schema.

erjoin integrates local relations in such a way that the tuples from different relations are
combined when some predicate is satisfied Those tuples that do not satisfy the predicate
are still preserved by padding NULL values for attributes that do not exist in their relations.

While the integrated relation after outerjoin preserves all attributes from different relations,
the desired global relation may only want to expose some attributes or show another set of
attributes derived from local attributes. Myriad provides global attribute derivation functions
(GAD) for users to specify the functions that resolve local attribute value conflict and map
them to global attributes.
GAD over a relation R is define as:

GAD(R, (a1 F1(X1))
(a2 F2(X2))

· · ·
(am Fm(Xm)))

where F1, · · · , Fm are the attribute derivation functions for integrated attributes a1, · · · , am
respectively. For each i, Xi is the set of attributes from R that are used in Fi to derive
ai. GAD computes each tuple in the output relation from a tuple in R, and the integrated
attributes of the output tuple by applying the attribute derivation functions on the R tuple.

Example

There are three local databases, namely DBA, DBB and DBC, that maintain information
about restaurants. A federated database FDB is define over them, merging the common
tuples between the local databases, and preserving tuples which are found only in one local
database. The keys of the local relations have been underlined.

Local database DBA:
RESA (rname,street,bldgno,phone,founder,rating,cost)
MENUA (rname,foodname,cuisine,chef,price, svctime,spiciness)

Local database DBB:
RESB (rname,street,bldgno,phone,rating, cost,parking,delivery)
MENUB (rname,foodname,cuisine,country,price,svctime)

Local database DBC:
RESC (rname,street,bldgno,phone,wdayhrs,wendhrs)
BUFFETC (rname,mealtype,costperhead,numofdishes)

Federated database FDB:
RES (rname,street,bldgno,phone,founder,

rating,cost,parking,delivery,wdayhrs,wendhrs)
MENU (rname,foodname,cuisine,chef,country,

price,svctime,spiciness)
BUFFET (rname,mealtype,costperhead,numofdishes)

The derivations of RES, MENU and BUFFET in FDB are shown as algebraic ex-
pressions below∗:

RES ← GAD(
↔
1 ({RESA,RESB,RESC}, (RESA.rname = RESB.rname)and

(RESA.rname = RESC.rname) and
(RESB.rname = RESC.rname)) ,

(rname Fkey(RESA.rname,RESB.rname,RESC.rname))
(street Fany(RESA.street ,RESB.street ,RESC.street))
(bldgno Fany(RESA.bldgno,RESB.bldgno,RESC.bldgno))
(phone Fany(RESA.phone,RESB.phone,RESC.phone))
(founder Fid(RESA.founder))
(rating Favg(RESA.rating,RESB.rating))
(cost Fmax(RESA.cost ,RESB.cost))
(parking Fid(RESB.parking))
(delivery Fid(RESB.delivery))
(wdayhrs Fid(RESC.wdayhrs))
(wendhrs Fid(RESC.wendhrs)))

MENU ← GAD(
↔
1 ({MENUA,MENUB},
(MENUA. < rname, foodname >= MENUB. < rname, foodname >)),
(< rname, foodname > Fkey(MENUA. < rname, foodname >,

MENUB. < rname, foodname >))
(cuisine Fany(MENUA.cuisine,MENUB.cuisine))
(chef Fid(MENUA.chef))
(country Fid(MENUB.country))
(price Fmax(MENUA.price,MENUB.price))
(svctime Favg(MENUA.svctime,MENUB.svctime))
(spiciness Fid(MENUA.spiciness)))

BUFFET ← GAD(BUFFETC,
(< rname,mealtype > Fkey(BUFFETC. < rname,mealtype >))
(costperhead Fid(BUFFETC.costperhead))
(numofdishes Fid(BUFFETC.numofdishes))

Among the attribute derivation functions used in the GAD operations, Fkey is define as
follows:

Fkey(k1, k2) =

{
k1 if k1 is not NULL
k2 if k1 is NULL but k2 is not

Fid is the identity function. Fany selects any non-NULL value from its input arguments if
there are any and outputs NULL value otherwise. Fmax selects the largest value among its
input arguments and outputs NULL value if all input arguments are NULL. Favg performs
average over its input arguments. Note that the above functions are chosen to be simple
just to make the example easy to understand.
∗ For the equality (=) in outerjoin (

↔
1) predicates, we assume NULL is equal to any non NULL value.

rname Fk(RESA.rname,RESB.rname,RESC.rname)
street Fany (RESA.street,RESB.street,RESC.street)
bldgno Fany(RESA.bldgno,RESB.bldgno,RESC.bldgno)

founder Fi(RESA.founder)
phone Fany(RESA.phone,RESB.phone,RESC.phone)

rating Favg(RESA.rating,RESB.rating)

RES

founder,rating,cost)
(rname,street,bldgno,phone, (rname,street,bldgno,phone,

RES
(rname,street,bldgno,phone,

wdayhrs, wendhrs)

RESA B C

rating,cost,parking,delivery)

GAD

wendhrs
wdayhrs
delivery
parking Fi(RESB.parking)

Fi(RESC.wdayhrs)
Fi(RESB.delivery)

Fi(RESC.wendhrs)

cost Fmax(RESA.cost,RESB.cost)

RES .rnameRES .rnameB C

RES .rname RES .rname=A C

RES .rname RES .rname=A B

=

Figure 2. Derivation of integrated relation RES.

Currently, Myriad provides a set of system-define attribute derivation functions which
include some commonly used aggregate functions, e.g. Fmin, Fmax, Favg, Fid, Fsum, Fkey, etc.
To reconcile more varied attribute value conflicts Myriad allows federation DBAs to defin
attribute derivation functions using any programming language.

Global schema mapping

Global schema mapping define the derivation of each integrated relation in a global
schema from a set of related export relations. In Myriad, we represent the derivation of an
integrated relation as an operator tree the leaf nodes of which denote the export relations
involved, and internal nodes denote either relational or integration operations. The choice of
a tree-structured representation greatly simplifie the subsequent step of augmenting global
queries. In Figure 2, we show the operator tree of RES as define in the example of the
previous section.

Specifying the global schema mapping is an important but difficul task. The mapping
process usually requires the local DBAs to co-operate among themselves as well as with the
federation users. In Myriad the schema mapping information for various federated schemas
is represented in files To reduce the difficult of generating these file we are currently
developing a graphical input tool for the DBAs.

Loosely-coupled versus tightly-coupled FDBSs

The Myriad integration framework supports both loosely- and tightly-coupled FDBS.10 In
a loosely-coupled FDBS, the federation DBAs do not attempt to integrate export relations
from different local databases. Federation users can freely use the data manipulation op-
erations provided by the FDBS to integrate data from export relations in a manner that
best suits their precise needs. An example of a loosely-coupled FDBS is the Multidatabase
project.4 Advantages of the loosely-coupled approach include: (a) no DBA effort is required
to resolve semantic heterogeneity among local databases; and (b) this does not require the
DBA to anticipate the needs of federation users. However, the loosely-coupled approach
has the serious drawback of requiring federation users to be familiar with the locations and
the contents of the heterogeneous export schemas in order to pose direct queries on them.
In this approach, since there is no integrated schema, the amount of optimization that can
be performed by the optimizer is also limited. In contrast, a tightly-coupled FDBS hides
the location and semantic heterogeneity of local databases from the federation users by
providing them with global schemas.

Myriad DBAs can defin a global schema such that incompatibilities between export
relations are resolved. Myriad users therefore see the global schema as an ordinary single
database schema. Global queries on such a global schema can only involve relational op-
erations. To achieve flexibilit in integrating local databases, Myriad also allows a global
schema to contain simply the export relations of the local databases without resolving their
differences. While the location transparency of local databases is still supported, the Myriad
users of this global schema defin the exact way of merging these export relations in their
global queries using the integration operators and relational operators provided by Myriad.
Thus, the framework provided by Myriad supports both loose and tight integration in a
uniform way.

SYSTEM ARCHITECTURE
This section documents the detailed design of Myriad’s various architectural components.
Figure 3 shows the different subsystems and components in Myriad. Each subsystem is
responsible for a different functional layer of Myriad. Each component within a subsystem
implements a different functionality of the subsystem. Figure 4 shows the Myriad process
architecture.

A suite of application tools are used by Myriad users and DBAs to access the system. A
user-friendly query formulator provides an interactive query interface to federated databases.
Interactions among a collection of related global transactions, specifie using synchroniza-
tion constructs, are preprocessed into multiple global transactions and executed according
to the specifie inter-dependencies. DBAs use the schema integrator to merge the poten-
tially conflictin local databases and to defin the global schemas. Schema browsers allows
both DBAs and Myriad users to comfortably familiarize themselves with the relations and
attributes of the global schemas.

Components in the query processing subsystem support different aspects of query pro-
cessing in Myriad. A federated query manager (FQM) manages global query processing
for a Myriad user. There is one FQM process for each user active in the system. The FQM
does the mapping from the user’s view of the integrated database to the FDBS’s view of
the individual local databases. A federated query agent (FQA) is responsible for query pro-
cessing at a local database that is participating in a global transaction. FQAs are told what

Transaction
Management
Subsystem

M Y R I A D

Federated
Transaction Manager

Federated
Transaction Agent

Global Concurrency
Controller

Schema
Integrator

Query
Formulator Preprocessor

Myriad Schema
Browser

Federated
Query AgentQuery Manager

Federated Gateway

C o m m u n i c a t i o n P r o c e s s Communication

Subsystem

Query

Tools
Application

Subsystem

Processing

Figure 3. Myriad functional layers.

to do by site execution plans that are built and sent by the query’s FQM process. Query
processing in Myriad is done in a distributed fashion with FQA processes sending interme-
diate results to each other before one of them returns a single result to the FQM. Gateway
processes are Myriad’s interface to local databases. A gateway receives SQL requests from
an FQA, translates it into the local DBMS’s data manipulation language, and then submits
the request to the local DBMS.

The transaction management subsystem components support transaction management in
Myriad. The federated transaction manager (FTM) and federated transaction agent (FTA)
are analogous to the FQM and FQA in the query processing subsystem. An FTM manages
global transactions for a Myriad user. An FTA co-ordinates a global transaction’s access to
a particular local database. There is a different FTA for each local database participating
in a global transaction. There is exactly one global concurrency controller (GCC) in the
system. The GCC is responsible for ensuring the serializability of global transactions.

The communication subsystem consists of a communications process (CP) running at each
physical site in the system. The CP routes messages and intermediate query results between
logical and physical sites. It also serves as a site co-ordinator for each physical site. The
CP does the mapping between logical and physical sites; it is the only process in Myriad
that knows about physical sites. Each CP can communicate with all other CPs. Each CP
also keeps track of which transactions are active in each of the logical sites at its physical
site.

Design principles

We now describe the principles on which the design and implementation of the Myriad
prototype has been based.

1. Implement a clean design first and then tune for performance. Whenever we had the
choice between a clean design and a more complicated (and may be more efficient
design, we chose the former. Should bottlenecks be found in our implementation, we
felt it would be easier to improve performance after having done a clean initial design
than it would be to implement a complicated design.

FQM

FTM
FQA

FTA

Federated Query Manager
Federated Query Agent
Federated Transaction Manager
Federated Transaction Agent

GCC Global Concurrency Controller

C o m m u n i c a t i o n P r o c e s s

Local DBMS

Gateway

FTA

FQA

LDB3

GCC

Local DBMS Site and
GCC Site

Physical
Site 3

Myriad Application

Local DBMS

Gateway

C o m m u n i c a t i o n P r o c e s s

FQA

FTAFTM

FQM

LDB1

Query Site and
Local DBMS Site

Local DBMS

Gateway

FTA

FQA

LDB2

Physical
Site 1

C o m m u n i c a t i o n P r o c e s s

Physical
Site 2

Local

Site
DBMS

Figure 4. Myriad process architecture.

For example, the FQM and FTM have been implemented as separate processes be-
cause they perform separate functions: one handles global query processing and the
other global transaction management. However, they are both created and destroyed
at the same time, and they communicate frequently with each other. From a perfor-
mance perspective, it makes sense to implement them as one process even though
they perform two different functions. However, designing them as one large process
would have blurred that separation and most likely have resulted in a less flexibl
implementation. We implemented them as separate processes and ended up with two
processes that could be merged into one without a significan loss of clarity. The same
argument applies to the FTA and FQA.

2. Use an event-driven message-passing paradigm. Myriad processes are state-based en-
tities which do some action and enter a new state when an event happens. The events
in Myriad are the reception of messages from some other process. Message passing is

an asynchronous activity and therefore allows significan flexibilit in how different
processes communicate with each other. Messages and their responses need not have
one-to-one correspondence and therefore handling of asynchronous events such as
local database aborts becomes easier.

3. Restrict the number of processes that any one process can communicate directly with.
The different components in Myriad can be viewed as a logical pipeline, with the user
at the top and the local database at the bottom. The FQM, FTM, CP(s), FTA, FQA,
and gateway (in that order) make up the middle (see Figure 4). Any process along
that pipeline can talk directly to its two immediate neighbors. If a process needs to
send a message to another process that is more than one hop away in the pipeline
then the message must be passed through each process between the two.
This restricted message passing model requires extra hops for some types of messages,
but its simplicity actually reduces the overall message passing overhead in Myriad. It
greatly simplifie the propagation of events and messages through the system and the
handling of asynchronous events such as local database aborts and errors.

SYSTEM IMPLEMENTATION
In this section we describe the implementation of each Myriad subsystem and how the
functionalities presented in our design is achieved. We have classifie the description un-
der the following headings: Query Processing and Optimization, Transaction Management,
Communications and Process Management, and Application Level Tools.

Query processing and optimization

The Myriad query subsystem addresses the problem of processing and optimizing global
queries in a heterogeneous and locally autonomous environment. Apart from having the
data distributed, federated query processing is also affected by the heterogeneity of data
among databases, and local autonomy among different database systems. These additional
factors manifest themselves in the following ways:

1. Processing of integration operations. Due to data conflict among databases, the fed-
erated query processor has to support new integration operations in addition to the
standard set of relational operations. Currently, Myriad supports the outerjoin and
GAD operations to resolve the entity-identificatio and attribute-value conflic prob-
lems. An important point worth noting is that regardless of whether the FDBS supports
loosely- or tightly-coupled export databases, the federated query processor must be
able to evaluate integration operations, as well as to optimize queries involving these
operations.

2. Local query execution autonomy. In a FDBS, the local DBMSs involved are fully
autonomous entities. Each local DBMS may adopt its own query processing strategy
which in general can neither be revealed nor dictated by the federation software.
Hence, query optimization is divided into global and local optimization phases. The
former is performed by the FDBS while the latter by the local DBMSs.

3. Availability of statistical information and local cost model. The success of query opti-
mization often depends on the accuracy of knowledge about the statistics on referenced
relations and the execution cost model of the local DBMSs.11 In a FDBS environment,
some local DBMSs may not have, or may not supply (due to autonomy) sufficien

information about database statistics, DBMS workloads, and cost models. This may
seriously restrict the opportunities for performing global query optimization. The de-
sign of Myriad query subsystem recognizes these limitations, and focuses on adopting
useful heuristics to generate execution plans that reduce the amount of local data ac-
cesses. We also introduce an additional statistics collection step into query processing
so that cost-based optimization can be performed.12

The following describes in detail the design and implementation of functional components
in the Myriad query subsystem.

Gateway
Myriad gateways support a relational interface to local DBs using SQL. This design choice

was made mainly because of the popularity of SQL gateways for non-relational DBMSs
and relational but non-SQL DBMSs, e.g., IDMS/R,13 Ingres,14 etc. By adopting SQL as
the uniform interface to all local DBMSs, we achieve portability and interoperability in the
Myriad design.

Three kinds of database services are provided by Myriad gateways. They are access
control, transaction services, and query services. Access control services include connecting
to and disconnecting from export DBs with security features such as export DB names and
passwords. Before any query can be performed, the appropriate export database name and
its password must be provided. The gateway supports transaction services such as begin-
transaction, prepare, commit and abort. These transaction services allow Myriad to manage
global subtransactions as transactions in the local DBMS. To perform a retrieval with a
Myriad gateway, both the query (in the form of an SQL SELECT statement) and the name
of the fil to contain the result relation, must be supplied. The gateway translates the SQL
statement into local query statement(s), transforms the local query result into a relation, and
populates the result file

In cases where local DBMSs are relational and can participate in federated query process-
ing, intermediate results may be created within the local databases during query processing.
Hence, Myriad gateways support SQL DDL and DML statements such as table creation,
deletion, and tuple insertion. In Myriad, we have designed the gateway such that it can
create a temporary local relation when given an intermediate result file Note that the ‘bulk
load’ utilities available in the local DBMSs are normally not suitable for this purpose since
the temporary relation must be associated with some global-subtransaction in order for them
to be queried or removed within the subtransaction. Myriad gateways discard all temporary
relations when the global-subtransaction is committed or aborted.

Federated query manager (FQM)
The FQM is responsible for generating efficien execution plans for queries submitted by

the application layer. The execution plan determines the manner in which the federated
query agents and gateways collaborate in order to produce the fina result of the global
query. Figure 5 depicts the functional components within a federated query manager. The
meta-knowledge about the export databases and local DBMSs is also shown in the figure

In Myriad the FQM process always exists together with a corresponding FTM process.
These processes are alive throughout an interaction session with a user process. One user
interaction session can last for any duration and may comprise many transactions. When

Query
Parsing

Query
Augmentation

Query
Optimization

Query
Decomposition

Execution
Query

Communication Process

Federated Transaction Manager

Query
Statistics

Global

Mapping
Schema

Capabilities
Processing

Local

Global
Schema

Query Statistics
Collection

SQL QueryResult

F e d e r a t e d Q u e r y M a n a g e r

Figure 5. Federated query manager.

the FQM is created as a user session begins, it loads up the meta-data about the federated
database from configuratio files These data include information such as the global schema
and also processing capabilities of the component databases.

A query from the application layer is firs parsed against the integrated relation definition
in the global schema. Any syntactic error or illegality in the query is detected and reported
to the caller without further processing. The parser in Myriad has been generated using the
Lex/Yacc utilities. A query that is parsed successfully is then represented as an operator tree
with relational operators as internal nodes and integrated relations as leaf nodes. The query
augmentation unit further replaces the leaf nodes by derivation expressions that correspond
to the integrated relations. This step requires knowledge of the global schema mapping as
discussed previously. The augmented operator tree contains both relational and integration
operations.

The augmented operator tree is then passed to the Myriad query optimizer which generates
an execution plan to efficientl produce an equivalent query result. The optimizer decides
which operations in the query tree are performed at which FQAs and gateways. It also
determines the order in which these operations are carried out. The optimization requires
information about the local processing capabilities and query statistics such as export relation
sizes, cost parameters, etc. In order to attain interoperability and preserve local autonomy, a
federated query processor must be able to accommodate gateways and FQAs with different
processing capabilities. In Myriad, we model the local processing capabilities of FQAs
and gateways as sets of operations. Each FQA or gateway must make its supported set of

operations known to the federation so that it will not be asked to handle any unsupported
operations during query execution. Since there is an extra overhead incurred for exchanging
relations between gateways and FQAs, our optimizer gives preference to the FQA when
an operation is supported by both the FQA and the gateway at the same site. Due to local
autonomy, it is possible that export relation sizes may not be made known to the FQM.
To perform a cost-based query optimization, the optimizer has to generate some query
fragments for the query statistics collection unit. The statistics collection unit subsequently
sends these query fragments to the appropriate sites to collect the required relation statistics.
Note that the intermediate relations produced by the query fragments may be kept in the
FQA while only the statistics are returned to the FQM.

Due to the use of outerjoin and GAD as integration operations, the existing algebraic
transformation framework, for relational operations alone, is not sufficien for optimizing
Myriad global queries. We have therefore developed an algebraic transformation framework
involving outerjoin, GAD and other relational operations. The extended set of transfor-
mation rules explores new opportunities of query transformation by incorporating useful
semantics about user-define functions (of GAD operations) and query predicates (see
Reference 9 for a detailed discussion).

Eventually, the FQM decomposes the optimized query execution plan into one or more
query fragments. Each query fragment is assigned to either a FQA or gateway. All query
fragments going to the same logical site, as well as the partial orderings of executing them,
are compiled together as a site execution plan. The FQM sends all the site execution plans
to the FTM which then distributes each site execution plan to the FQA at the appropriate
logical site for execution.

Federated query agent (FQA)
The federated query agent co-ordinates the processing of global queries at a logical site.

It also evaluates the integration operations and relational operations not supported by the
gateway at the site. To execute the site execution plan assigned by the FQM, the FQA has
to interact with both the local gateway and FQAs at other logical sites. Figure 6 shows the
functional components within an FQA.

Similar to the FQM/FTM pair the FQA always exists at a local database (server) site in
conjunction with an FTA. The FQA/FTA pairs are also associated with one user session,
but they do not exist beyond the duration of a transaction. The FQA/FTA pair is created
at all sites accessed by the transaction and when a transaction completes execution these
processes are removed.

During query processing, each FQA receives a site execution plan containing query
fragments and their execution order. A query fragment is ready for execution in either
the gateway or the FQA if all the input relations it requires are available at the site. An
FQA employs a site execution monitoring unit which keeps track of the execution readiness
of every local query fragment. Whenever an intermediate result is produced locally or is
shipped from a remote site, the readiness status of the local query fragments are updated. A
query fragment is evaluated as soon as it is ready for execution. In this manner, parallelism
in query execution is achieved among all FQAs and gateways participating in a global
query.

If an FQA query fragment is ready for execution, it is given to the FQA query fragment
evaluation unit. This unit can evaluate user-define attribute derivation functions by forking
processes to execute the appropriate user programs. If a gateway query fragment is ready for

Evaluation
Fragment

FQA Query

Site Execution
Monitoring

Defined
User-

Attribute
Derivation
Functions

Intermediate
Results

Gateway
Queries

Gateway
Results

Gateway

F e d e r a t e d Q u e r y A g e n t

Gateway Query
Fragment
Evaluation

Communication Process

Federated Transaction Agent

Figure 6. Federated query agent.

execution, the gateway query fragment evaluation unit (within the FQA) translates it into
an SQL SELECT statement before sending the query to the gateway. Upon the completion
of a query fragment evaluation, the site execution monitoring unit determines whether: (i)
any other local query fragment is ready for execution; (ii) the result has to be shipped to
another FQA for further execution; or (iii) shipped to FQM as the fina result.

In the current Myriad design, it is assumed that information required for integration, e.g.,
attribute derivation functions in GAD operations, can be provided to all the FQAs. This
assumption will be relaxed in the future to allow more flexibilit in the FQA execution.

Transaction management

One of the most important features supported by database management systems is transac-
tion management. Most of the existing DBMSs provide some transaction facility. However,
even though each component DBMS is able to guarantee consistent local execution, without
further control undesired results may occur with respect to global transactions that access
data across sites through the FDBS. We describe such a scenario in the following example.
Example. The Smiths have one account at bank A and another at bank B. An FDBS has
been built on top of the databases of banks A and B that allows users to access data in
databases of both banks. Mr Smith issues a global transaction G1 that transfers $10,000
from account A to account B. Meanwhile Mrs. Smith issues another global transaction G2

to examine the balances of both accounts. G1 and G2 are as follows:

G1: G2:
accountA ← accountA − 10, 000print(accountA)
accountB ← accountB + 10, 000 print(accountB)

Without any control, the following execution may happen:

bank A: bank B:
accountA ← accountA − 10, 000print(accountB)
print(accountA) accountB ← accountB + 10, 000

Obviously, the above execution is undesirable. Myriad controls the execution of global
transactions in such a way as to prevent anomalous results. The correctness criterion we
adopt for the execution of global and local transactions is serializability. Traditional ap-
proaches used in distributed database systems for concurrency control are not applicable in
an FDBS, due to the unwillingness (in general) of local DBMSs to provide internal control
information (due to autonomy) and the differences in transaction management mechanisms
adopted by local DBMSs (due to heterogeneity). Over the past fiv years, transaction man-
agement has become one of the most active research areas in FDBSs. Many algorithms have
been proposed.15,16,17,18,19,20,21,22,23,24 Only recently have researchers started to investigate the
relative performance of the various proposed algorithms.25 However, such investigation is
still in its early stage, and it is not clear how different algorithms behave in a real sys-
tem. Therefore, one of our design choices in transaction management was to make our
architecture flexibl to allow various algorithms to be implemented and tested.

Myriad contains three types of processes for handling transactions: federated transac-
tion manager (FTM), federated transaction agent (FTA), and global concurrency controller
(GCC). Each FTM exclusively controls a global transaction. A global transaction issues
queries that access data controlled by multiple DBMSs. The queries of a global transaction
that access the same site are grouped together as a subtransaction which is treated as a single
transaction by the local DBMS. A FTA monitors the execution of a subtransaction. The
global concurrency controller (GCC) verifie whether the current execution is consistent.
The FTMs, the FTAs and the GCC work co-operatively to achieve serializable execution.
The detailed operations of each type of components depend on the chosen concurrency
control protocol.

Concurrency control
The proposed concurrency control algorithms for FDBS can be classifie on the following

two dimensions:

1. Centralized versus distributed control
2. Restricted versus general transaction model

Most of the proposed algorithms use centralized control, see, e.g., References 15–22
and 24. GCC process is responsible for monitoring the execution of global transactions.
A centralized concurrency control algorithm can be realized by the GCC. Through the
co-operation between GCC, FTM and FTA, consistent execution is guaranteed. For those
algorithms that employ distributed concurrency control (see, e.g., References 23 and 26),

each of them can be realized by the co-operation between FTM and FTAs. GCC, in this
case, is not used.

Many of the proposed algorithms put restrictions on the global transaction model so as
to achieve consistent execution or prevent global deadlocks. For example, some algorithms
require a global transaction to declare the sites it will access at the begin-transaction state-
ment (see, e.g., References 16, 19, and 22). Others require no value dependency between
subtransactions (see, e.g., References 23, 24, and 27). While the applicability of restricted
transaction models depends on the kinds of federated DB applications, our transaction man-
agement components can realize any of the restricted transaction models as well as the
standard transaction model, in which no such restrictions are imposed.

In the current Myriad implementation, we adopt the standard transaction model (as cur-
rently used by many transaction processing systems). This assumption will be relaxed in
the future. By laying out the processes as we have, the transaction management components
– FTM, FTA, and GCC – can directly communicate with each other without involving the
query processing mechanism. Realization of different transaction management algorithms,
in Myriad, therefore involves only modification to the TM modules. Since the services
offered to the query processing components are the same, the changes in the TM modules
do not affect the former. This approach of associating functionality with a module also
illustrates the flexibilit of Myriad as a testbed.

Recovery
Myriad assumes that each local DBMS has the ability to recover from failure. However,

even though each local DBMS can guarantee consistent local executions in the presence of
failure, the execution of global transactions, which access data across several local DBMSs,
may reach an inconsistent state when failure occurs. To prevent the anomalous execution
results caused by failure, some researchers argue that all local DBMSs should provide
prepare to commit state to support the two-phase commit (2PC) protocol. In the real world,
however, the local DBMS may or may not support such visible prepare to commit state
for global subtransactions. Myriad uses a 2PC protocol over all local DBMSs. In case a
local DBMS does not support prepare to commit state, the associated gateway simulates
it by logging the write operations after a subtransaction enters its prepared state and re-
submitting these operations if failure occurs. Several algorithms proposed in the literature
(see, e.g., Reference 28) can be used to control the resubmission.

However, the simulated 2PC mechanisms do not come for free. Several restrictions have
to be imposed, including local concurrency control mechanisms (e.g., only strict 2PL is
allowed), local transaction data access (e.g., the data set is partitioned into two parts that
are updatable by local and global transactions, respectively) or local recovery procedure
(e.g., global subtransactions have exclusive use of local DBMSs after recovery). While
these restrictions may compromise some autonomy, we see them as a price to pay in order
to achieve consistent execution in the presence of failure.

Deadlock handling
Many of the proposed concurrency control algorithms cannot prevent global deadlocks.

Therefore, some mechanisms to detect and resolve global deadlocks are required. Unlike
traditional distributed database systems, FDBSs cannot obtain the exact data conflic rela-
tionship among global transactions due to autonomy of participating databases. Thus, time-

out is needed to establish the potential conflic relationship among global transactions.29,30

A timeout period is associated with each query submitted to the local DBMS. If the result
of a query does not return within the timeout period, the global transaction to which the
query belongs is assumed to conflic with some other global transactions executing at the
same local DBMS.

An optimal timeout period is determined by several factors, such as query size, degree
of data contention, degree of resource contention, resource availability, etc. Myriad uses
a mechanism that dynamically adjusts the timeout period based on the current system
performance. Specifically we record the system performance and measure the average
response times for transactions during different intervals of time. The timeout period is
then selected to allow most of the transactions to complete. If the system performance
increases as a result of this adjustment, the timeout period is further tuned in the same
direction. However, if the performance decreases then a correction is done in the opposite
direction.31

Communication subsystem and process management

The communications process (CP) in Myriad serves several purposes. It acts as a co-
ordinator for distributed processing and manages the inter- process communication at dif-
ferent physical sites. Myriad can be started by a DBA from any of the participating sites in
the system. This site provides the startup file containing the system configuration as well
as the global schema information to Myriad.

The startup site then invokes the communication process at each participating sites and
passes on the configuratio information as well as the meta-data. All process interaction in
Myriad is done using logical site IDs, transaction IDs and query IDs. CPs at each site are the
only processes aware of the physical site to logical site mapping. Hence all communication
between processes which are likely to be at different physical sites is done through the CP.

We have used the Unix message queues32 for communication between processes at the
same physical site and stream sockets for inter-site communication in Myriad. Each process
type (e.g., the FTM or FQA) has one designated incoming mailbox for messages. All
processes at invocation will attach to the message queue for its corresponding process type.
Message destination in a queue is identifie by using the process-id of the receiver as the
message type.

Process management is another function carried out by the CP. Every process in Myriad
registers itself with the CP using its transaction-id, logical site-id and process-id. Messages
send across physical sites specify their destination as a combination of the logical site-
id, transaction-id, and process type. Since there is a unique correspondence between this
address and a process-id in the CP process tables, the CP can route the messages to their
correct destination.

System shutdown is also co-ordinated by the communication process. The shutdown pro-
cess can be initiated from any of the participating sites. Shutdown command is propagated
to the CPs at all the sites and the local CPs remove the message queues and terminate them-
selves. Any other running processes also will terminate themselves when they determine
that the message queues have been removed. Since Myriad has been implemented based on
a event-driven paradigm where message receptions are the events, we could terminate the
processes in a very efficien way as described above.

Application tools

To simplify user and DBA interaction with Myriad we have developed a set of application
tools. These include a X/Motif based user interface (UI), a schema browser, and a schema
integrator tool.

The user interface provides a windows-based environment for the user to conduct the
session with Myriad. The facilities include specificatio of transactions and queries, and
options to view or save the results files A user session is started up when the interface is
invoked. This allows the UI to attach to the message queues and start communicating with
its corresponding FQM process. During a session, the user can start transactions which will
bring up the query window. Queries may be posed interactively or read in from files Query
results are displayed and the user is given options for saving the result files Transactions
may be aborted or commited.

Schema browser is a very useful tool with which the user or DBA can look up the global
schema mapping of the federation. The browser has options to display the derivation trees
for each of the global relations as well as the operations being done at each node in the
tree. Figure 7 shows the use of schema browser to view the global relation RES and the
attribute derivation function for the fiel RNAME.

A schema intergrator tool which is currently being developed will allow the DBAs to
graphically construct the global schema information without having to get buried in the
intricacies of the global schema representation. This tool will also aid in making changes
to the global schema.

IMPLEMENTATION AND TESTING EXPERIENCE
This section describes those experiences in implementing and testing our software which
we feel are unique to the Myriad project. During the design and implementation phases, we
made some important decisions that had an impact on the architecture as well as construction
of the system. In the following, we briefl describe the rationale for each decision and its
impact.

1. Use peer-to-peer model rather than client–server model for the communication between
Myriad processes. The client–server model is currently widely used by as an interface
for communicating with other systems. However, client–server model incurs extra
messages and requires synchronization between client and server processes. We believe
that the peer-to-peer model is the right choice for intra-system communication. The
peer-to-peer model requires neither acknowledgements nor waiting for each request
transmitted, which is flexibl and efficient

2. Use message queues for intra-site process communication. To realize the peer-to-peer
model, we choose message queues, supported by UNIX System V, for process com-
munication within a site. A message queue is associated with each type of processes.
A process retrieves a message from its associated message queue and handles this
message.

3. Use event-driven paradigm to describe the behavior of each process. As described
before, each process retrieves a message from a specifi message queue, takes some
action according to the requirements of the message, and then gets the next message for
processing. This entire procedure is best realized by a state diagram. A state diagram
consists of a set of states and transitions between states that are caused by events. In

Figure 7. Viewing a global schema using the browser.

Myriad implementation, events are characterized by the commands specifie on the
messages in message queues. Figure 8 shows the state diagram of FTM.
State diagrams allow us to examine the message flo at the design level. This is espe-
cially useful when several processes are involved, as in the Myriad system. Sometimes
the designers of different processes may have inconsistent assumptions concerning
message exchange. We found several such inconsistencies when walking through the
state diagrams of different processes, especially since a team of six people was work-
ing on the project.

Software engineering principles

In addition to using standard coding conventions and mechanisms for debugging, we have
developed a mechanism for directly translating from state diagrams to an implementation.
Standard translation of a state diagram to code: As mentioned before, we use a state diagram
at the design level to describe a process. While state diagrams provide a convenient means
by which the designers can examine consistent message exchange, we need a straightforward
mapping between the state diagram on the paper and the corresponding code in the system.

We need a data structure to record the information of a state diagram and a function
associated with the data structure that, given an incoming message and the current state,
invokes an appropriate procedure (to take the appropriate action). That procedure may bring
the process to another state according to the state diagram. The following shows the data
structure used to store the state diagram of ‘ftm’, described in the previous section.

std_Private _sma_Table ftmSmaTableGto = {
/*-- S T A T E */
/*-- */ { _ABORTED,
/*-- */ _ABORTS_SENT,
/*-- . */ _COMMITS_SENT,
/*-- . . */ _COMMITTED,
/*-- . . . */ _IDLE,
/*-- */ _NOT_EXIST,
/*-- */ _PREPARES_SENT,
/*-- */ _Q_READY,
/*-- */ _Q_WAIT,
/*-- */ _TRANS_BEGUN,

/*-- M E S S A G E */ _TRANS_REQ},
{{MSG_FTM_ABORT_TRANS, {dis,dis,inv,inv,dis,inv,inv,a05,inv,a07,inv}},
{MSG_FTM_ABORT_TRANS_ACK, {inv,a10,inv,inv,inv,inv,inv,inv,inv,inv,inv}},
{MSG_FTM_BEGIN_TRANS, {inv,inv,inv,inv,a15,inv,inv,inv,inv,inv,inv}},
{MSG_FTM_BEGIN_TRANS_ACK, {inv,inv,inv,inv,inv,inv,inv,inv,inv,inv,a20}},
{MSG_FTM_COMMIT, {inv,inv,inv,inv,dis,inv,inv,a25,inv,a27,inv}},
{MSG_FTM_COMMIT_ACK, {inv,inv,a30,inv,inv,inv,inv,inv,inv,inv,inv}},
{MSG_FTM_DEREGISTER_ACK, {a35,inv,inv,a40,inv,inv,inv,inv,inv,inv,inv}},
{MSG_FTM_EXEC_QUERY, {dis,dis,inv,inv,dis,inv,inv,a45,inv,a45,inv}},
{MSG_FTM_EXEC_QUERY_ACK, {dis,dis,inv,inv,inv,inv,inv,inv,a50,inv,inv}},
{MSG_FTM_EXIT, {inv,inv,inv,inv,a60,inv,inv,inv,inv,inv,inv}},
{MSG_FTM_LOCAL_ABORT, {dis,dis,inv,inv,inv,inv,a70,a05,a80,inv,inv}},
{MSG_FTM_PREPARE_ACK, {inv,inv,inv,inv,inv,inv,a75,inv,inv,inv,inv}}
}

};

The associated look up function will take this data structure, the current state, and the type
of incoming message, and invoke a corresponding procedure. For example, if the current
state is Q READY and the incoming message is MSG FTM EXEC QUERY, procedure
‘a45()’ will be invoked.

n

s
r

q
p

 at least 1 site aborted

get last

get last MSG_FTM_PREPARE_ACK (FTA) or
 MSG_FTM_LOCAL_ABORT (FTA) and

get MSG_FTM_ABORT_TRANS_ACK (FTA)

get MSG_FTM_DEREGISTER_ACK (CP)
get MSG_FTM_EXIT (FQM)

 MSG_FTM_ABORT_TRANS_ACK (FTA)

send MSG_FTA_ABORT_TRANSs to each logical site in the transaction

send MSG_FQM_EXIT_ACK and then kill itself
send MSG_FQM_ABORT_TRANS_ACK, clear site list and trans ID

tell CP to deregister FTM & transaction (send MSG_CP_DEREGISTER)
record that the sending site has aborted its subtransaction.

Q_WAIT Q_READY

TRANS_REQ

c

TRANS_BEGUN

PREPARES_SENT

ABORTS_SENT COMMITS_SENT

a

Label

h

j

i

g

p

q

b
c

g

COMMITTED ABORTED

k r

d

e
f

h

i
j
k
m

FQM forks FTM

 and no sites aborted

Event (sending process in parenthesis)

get MSG_FTM_BEGIN_TRANS (FQM)
get MSG_FTM_BEGIN_TRANS_ACK (GCC)
get MSG_FTM_EXEC_QUERY (FQM)

get MSG_FTM_EXEC_QUERY_ACK (FTA)
get MSG_FTM_COMMIT (FQM)

 MSG_FTM_LOCAL_ABORT (FTA)
get last MSG_FTM_PREPARE_ACK (FTA)

get MSG_FTM_PREPARE_ACK (FTA) or

get MSG_FTM_COMMIT_ACK (FTA)
get last MSG_FTM_COMMIT_ACK (FTA)
get MSG_FTM_DEREGISTER_ACK (CP)

Action

get FQM pid, FTM pid, attach message queues
register with CP, send MSG_GCC_BEGIN_TRANS
save transaction ID, send MSG_FQM_BEGIN_TRANS_ACK

 responded.
record that the sending site has responded to the prepare and how it has

 for the query. add each logical site to list of sites this transaction is at.
send MSG_FTA_EXEC_QUERYs to each logical site in the site list

send MSG_FQM_EXEC_QUERY_ACK

 active at.
send MSG_FTA_PREPAREs to each logical site this transaction is

send MSG_FTA_COMMITs to each logical site in the transaction.

record that the sending site has committed its subtransaction
tell CP to deregister FTM & transaction (send MSG_CP_DEREGISTER)
send MSG_FQM_COMMIT_ACK, clear site list and transaction ID
send MSG_FTA_ABORT_TRANSs to each logical site in the transaction get MSG_FTM_ABORT_TRANS (FQM) or

 MSG_FTM_LOCAL_ABORT (FTA)

m n

d

e

FTM State Transition
w/ local timeout
93/10/11

NOT_EXIST

IDLE

a s b

f

d

t u

n

t get MSG_FTM_COMMIT (FQM) tell CP to deregister FTM & transaction (send MSG_CP_DEREGISTER)
u get MSG_FTM_ABORT_TRANS (FQM) tell CP to deregister FTM & transaction (send MSG_CP_DEREGISTER)

Figure 8. State diagram of FTM.

This mechanism provides a straightforward mapping between a state diagram and its
implementation. It dramatically reduces the implementation and debugging effort.

We also used other tools for system implementation and management, such as RCS for
code and document version control and xdbx for module testing. As these tools are quite
straightforward and widely used in software development, we will not repeat our experience
of them here.

Lessons learned

The implementation decisions and software engineering principles we have described gave
us some advantages. However, we also found some disadvantages in applying these deci-
sions and principles. The following lists the lessons we have learned.

1. State diagrams and their mapping to code greatly reduced our effort in debugging
the message exchange among processes. By comparing the state diagrams of several
processes, we discovered many problems in the initial design of process message
exchange. This enabled us to correct the design before coming to the code level. The
mapping of state diagrams to code is very straightforward and we seldom found any
problems in code if the state diagrams were correct.

2. While a standard coding convention kept our code clean, uniform and easy to maintain,
it also placed some burden on our programmers. In fact, some conventions may not
be that useful. For example, our naming convention carries a lot of information, some
of which, e.g., including token type information in the name, is seldom used and
can be eliminated. Besides, because of the elaborateness of the coding standard, some
programmers did not follow it completely. Thus we feel that there is a need to simplify
the coding convention and to get consensus among programmers before adopting it.

3. In contrast to the coding standard, we feel that we need more information about the
debugging message. The current debugging routines only show the process type a
message is from. Because Myriad may involve multiple sites, we often need to know
which site this message is from. Besides, the timing of a message can be important.
Sometimes we may want to know the order of occurrence of messages from different
sites. More information will help the programmers locate problems with ease.

Implementation status

An implementation of Myriad has been realized in the UNIX environment involving a
network of Sun SPARCstations. Currently, we have built gateways on two local DBMSs,
namely Oracle and Postgres. To demonstrate the essential features of database integration in
Myriad, we have constructed several example databases on both Oracle and Postgres such
that relations from these databases are merged into integrated relations using outerjoins,
GADs, and other relational operations. The prototype allows user-define functions to be
used in GAD operations. All programs are written in C and embedded query languages.
The Myriad communication process is implemented using the BSD socket libraries.

In addition to local DBMS dependent gateways, the FQM and FQA components in Myriad
query processing subsystem have already been implemented. The present FQM can parse
any SELECT-PROJECT-JOIN statement in SQL and generates a set of site execution plans
for all local DBMS sites involved. A fully-fledge query optimization module has not yet
been implemented.

Query
Processing

Transaction

Communication
Management &

Technical Leader
Technical Leader

member member

member member
Figure 9. Myriad development team organization.

We have implemented a Myriad transaction management subsystem that supports the
standard transaction model. Presently, the transaction management subsystem supports two-
phase commit over local DBMSs in order to guarantee global serializability. To integrate
those DBMSs that do not provide a visible prepare-to-commit state, Myriad currently sim-
ulates it without imposing any restriction on the autonomy of the DBMSs. That is, the
gateway will simply return ‘Yes’ when it receives a PREPARE-TO-COMMIT request. In
this case, global serializability is not guaranteed if failure of a prepared transaction occurs.

At the application tool level, an easy-to-use user interface has been implemented. This
allows federation users to pose transaction as well as query requests to the Myriad system.
We have also built a schema browser which can be used to view the global schema and the
integration operations from a set of local export schemas.

PROJECT MANAGEMENT AND SCHEDULE
Project management has played a major role in the planning, organizing and managing of
the Myriad prototyping activities. The project schedule is presented showing the ordering of
various prototyping activities together with their deadlines. We also describe our experience
as the result of adopting some of the project management principles and problems faced
when adhering to the project schedule.

Team organization

At the time of initiating the Myriad project, the development team consisted of three Ph.D.
students and three master students. As shown in Figure 9, the project team was organized
in a hierarchical structure. The role of the faculty member has been to provide the over-
all research guidance and oversee the administrative matters. The prototype development
team was divided into two technical sub-teams, each managed by a technical leader. Each
technical leader was responsible for assigning tasks, conducting reviews and walkthroughs,
detecting problem areas, and balancing the workload. The leaders also interacted frequently
with each other in order to keep themselves informed about the progress, and to exchange
technical information.

Code walkthrough

As part of an effort to verify and validate the quality of the Myriad prototype, we have
adopted code walkthrough throughout the prototype life cycle, with emphasis given to the
Myriad component design and program codes. Since the size of the Myriad system is
moderate, our walkthroughs usually involved all the team members. The objectives were to
allow team members to review the assumptions, decisions, and techniques adopted in the
design or software development. The walkthroughs also ensured that the coding standards
were observed.

Group communication

In the Myriad project, we conducted meetings at least on a weekly basis in order to up-
date the team on the progress, to exchange technical problems and solutions, and to discuss
some administrative matters. In some meetings, walkthroughs and software demonstrations
were included. The frequency of meetings increased during the coding phase when many
engineering problems required immediate attention and solutions. In addition to regular
meetings for the entire team, small meetings between a technical leader and team mem-
bers were also arranged on a one-to-one basis to discuss specifi technical issues before
presenting them to the rest of the team.

Documentation process

Documentation is viewed as an important activity in the Myriad prototyping effort. We
share a common belief that without a proper documentation of our design and coding, it will
be difficul for us or future team members to understand, maintain and extend the system. A
set of design documents for query processing, transaction management and communication
have been written and maintained throughout the project. We began with design documents
with little details. They were constantly updated by the team members whenever the design
became became more detailed or underwent revision. In order to facilitate the documentation
process, all design documents are kept in a common directory and are managed by the RCS
version control utility.

Project schedule

Figure 10 depicts the planned project schedule when the Myriad project was initiated.
According to this schedule we had expected to design the Myriad architecture first then
design, implement and test of each functional subsystems, and finall integrate the subsys-
tems and test the entire system. We were able to keep up with the planned schedule in
the development of the subsystems. Testing of the subsystems, however, took longer than
expected since we had to develop some tools which helped simulate communication with
other subsystems. As the result of this delay the system testing and integration also ran one
month behind the planned schedule and we were able to finis the project by March 1994.

(Trans. Processing Subsystem)

(Trans. Processing Subsystem)

(Trans. Processing Subsystem)
T2.2: Implementation

T2.3: Module and Subsystem Testing

T2.1: Design

(Query Processing Subsystem)

(Query Processing Subsystem)

(Query Processing Subsystem)
T3.3: Module and Subsystem Testing

T3.2: Implementation

T3.1: Design

M A J S O N DM J A J F

1993

(Communication Subsystem)

(Communication Subsystem)

(Communication Subsystem)

T0: Architecture Design

T1.2: Implementation

T1.3: Module and Subsystem Testing

T4: System Testing and Integration

T1.1: Design

1994

Figure 10. Planned project schedule.

Code distribution

The Myriad project has so far produced about 35,000 lines of C code. As we develop more
applications and implement various algorithms for performance comparison, the size of the
system is expected to grow. Table 1 shows the current code-size distribution for different
components of the Myriad system. It is clear that most of the code written was for the
query processing subsystem. This is due to the large number of activities to be performed
in query processing, e.g., query parsing, query augmentation, optimization, execution mon-
itoring, etc. Furthermore, each different local DBMS requires a different gateway to be
implemented, thus making the size of query processing subsystem grow with the number
of local DBMSs. The SQL parser was generated using Lex and YACC systems. The trans-
action management subsystem does not require a lot of code since transaction processing
activities are currently relatively simple. Upon adding recovery features, this component is
expected to grow much more. The user interface, schema browser, and schema integrator
tools have all been implemented in X/Motif. We had developed some tools, during the
implementation, to perform module testing. These tools, as well as the standard functions
used for providing debugging information are grouped into the miscellaneous category.

Experience

During the entire Myriad prototyping effort, the practice of project management princi-
ples has played an important role in structuring the development activities of our project
members. We initially expected that our research knowledge in the federated database area
would enable us to complete Myriad with little difficulty Nevertheless, during the numerous
design walkthrough sessions on both the design and coding, we discovered many technical
problems which were not identifie in our initial study. For example, during the implemen-
tation of the Postgres gateway, we realized that certain data types supported by the SQL
standard do not exist in the Postgres DBMS. In particular, the fixe length character string
and decimal data types are not supported by Postgres. This problem was later resolved by
augmenting Postgres with user-define data types as well as their operations. As part of
its query processing steps, Myriad requires temporary relations to be created within the
local DBMSs. To do so, the query processing team originally intended to use the relation
import facility provided by local DBMS. It was during a walkthrough session that our
transaction management members pointed out that such a design would violate the global
transaction model because importing a relation would be treated as a separate transaction
by the local DBMS. Consequently, we have modifie the FQA and gateway designs so
that they could allow temporary relations to be created and discarded within a single global
transaction. Several other problems were discovered during the walkthroughs. In retrospect,
we realize that walkthroughs have helped us tremendously in revealing unexpected design
problems and enforcing coding standards. In building an advanced prototype liked Myriad,
walkthroughs have helped implementation faults to be avoided at an early stage by incor-
porating feedback from all the other members. By reviewing others’ design and codes, we
have also gained a better understanding of the entire system.

Design documentation has been a time consuming but important activity in the Myriad
project. We realized that the design has been constantly changing throughout the develop-
ment process as we gained more experience and knowledge. In addition, many design and
implementation decisions have been made during the meetings. Without detailed documen-
tation, it would be impossible to recall the reason for making these decisions. Furthermore,
as the membership of the Myriad development will change in the future (given the nature
of a University environment) the documention provides the continuity of knowledge and is
an essential reading material for new members.

As already mentioned, we have built some tools for performing module testing. These
tools helped us simulate the missing functional components and allowed us to perform white
box testing.33

Lastly, we note that the project schedule has helped us greatly in monitoring the progress

Table I. Code distribution.

Myriad subsystem Lines of C code
Query processing 11,700
SQL parsing 6000
Transaction management 2800
Communications 3000
User interface 2000
Schema browser 2000
Schema integrator 2000
Miscellaneous 5000

of our development efforts. However, we also experienced some difficultie in keeping our
actual development exactly on schedule. For example, instead of completing the architecture
design by mid-April, we made a major revision sometime in June as the reult of the need to
simplify the interactions between FTM and FQM. We believe that the exploratory nature of
the Myriad system made it necessary for us to revisit and modify previous design decisions.
Therefore, we conclude that the planned project schedule is more of a tool to gauge the
status of the project. It also kept us aware of the activities that are yet to be performed.

CONCLUSIONS AND FUTURE DIRECTIONS
Local autonomy and heterogeneity, at both system and database levels, characterize the
nature of FDBSs. In this paper, we have presented the design and implementation expe-
riences with Myriad, an FDBS prototype, which provides an environment with which to
meet the increasingly important demand for the integration of existing autonomous database
systems. The Myriad system architecture is flexibl enough to allow the implementation of
various transaction management and query processing strategies. Various research groups
have been, in recent times, looking into the design of different query processing strategies
and transaction management methods for the FDBS environment. We believe that a testbed
such as Myriad can play an important role in validating and comparing these research re-
sults in a realistic setting. In the next phase of Myriad research, we will implement and
evaluate a number of query processing strategies and transaction management algorithms.

We are currently integrating an application called data flo query language (DFQL)34

with the Myriad framework. This tool has been designed to work as a visual data flo
query interface to a database system, especially suited to science and engineering users.
Integration of DFQL with Myriad will allow the DFQL users to issue queries on multiple
databases simultaneously through a federated schema. Initial experience with this project
show that Myriad design lends itself very well to the integration of new applications. A
sucessful integration of this tool with Myriad will validate the flexibilit of its architecture.

In query processing, we will pursue the development of a new query optimization strategy
that handles the integration operations supported by Myriad. We will also study the problems
of integrating both legacy applications and database systems in Myriad. We are currently
implementing a temporary table creation and update facility in Myriad for applications in
order to better utilize the capabilities of Myriad. This will later be expanded to allow updates
to both the global and local tables.

In transaction management, Myriad research will address the issue of supporting restricted
transaction models for different kinds of specialized global applications. A restricted transac-
tion model may allow global serializability to be supported without sacrificin the autonomy
of local systems. In situations where global serializability is not strictly required, we will
examine the possibilities of using weaker correctness criteria for global transactions. Future
enhancements of the Myriad prototype will also include a dynamically adjustable timeout
mechanism for resolving global deadlock problems.

We have presented our experience in applying some software engineering techniques and
project management principles to the implementation of the Myriad prototype. We believe
our experiences and lessons learned will prove helpful to future system designers embarking
on similar ventures.

ACKNOWLEDGEMENTS

Kajal Claypool implemented the FQM and the Postgres gateway. Sharon Yang implemented
the FQA component. Satish Musukula implemented the Myriad user interface and schema
browser for the X Windows environment. They all contributed to the operational Myriad
system. We thank them all. We also thank Rome Laboratory of the US Air Force and
Honeywell, Inc. for their generous support, through contract F30602-91-C-0128, in the
course of developing the ideas that are embodied in Myriad. Specifically we would like to
thank Mr Satya Prabhakar, and Drs Jiandong Huang and James P. Richardson of Honeywell,
Inc., and Mr Mark Foresti of Rome Laboratory, for many fruitful discussions.

REFERENCES

1. G. Thomas, G. R. Thompson, C.-W. Chung, E. Barkmeyer, F. Carter, M. Templeton, S. Fox and B. Hartman,
‘Heterogeneous distributed database systems for production use’, ACM Computing Surveys, 22(3), 237–266
(1990).

2. C. Batini, M. Lenzerini and S. B. Navathe ‘A comparative analysis of methodologies for database schema
integration’, ACM Computing Surveys, 18(4), 323–364 (1986).

3. U. Dayal, Query Processing in Multidatabase Systems, Springer-Verlag, New York, 1985, pp. 81–108.
4. W. Litwin and A. Abdellatif, ‘Multidatabase interoperability’, IEEE Computer, 19(12), 10–18 (1986).
5. R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. Ketabchi, W. A. Litwin, A. Rafi and M-C. Shan, ‘The

Pegasus heterogeneous multidatabase system’, IEEE Computer, 24(12), 19–27 (1991).
6. O. A. Bukhres, J. Chen, W. Du and A. K. Elmagarmid, ‘Interbase: An execution environment for hetero-

geneous software systems’, IEEE Computer, 26(8), 57–69 (1993).
7. E.-P. Lim, J. Srivastava, S. Prabhakar and J. Richardson, ‘Entity identificatio problem in database

integration’, Proc. 9th IEEE Data Eng. Conf., 1993.
8. E.-P. Lim, J. Srivastava and S. Shekhar, ‘Resolving attribute incompatibility in database integration: An

evidential reasoning approach’, Proc. 10th IEEE Data Eng. Conf., 1994.
9. E.-P. Lim, J. Srivastava and S.-Y. Hwang, ‘An algebraic transformation framework for multidatabase

queries’, Distributed and Parallel Databases, An International Journal, to appear (1995).
10. A. P. Sheth and J. A. Larson, ‘Federated database systems for managing distributed heterogeneous, and

autonomous databases’, ACM Computing Surveys, 22(3), 183–236 (1990).
11. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price, ‘Access path selection in

a relational database management system’, In Proc. ACM SIGMOD Conference, 1979, pp. 23–24.
12. E.-P. Lim and J. Srivastava, ‘Query optimization/processing in federated database systems’, in Conference

of Information and Knowledge Management, 1993.
13. J. Martin, IDMS/R: Concepts, Design, and Programming, Prentice Hall, Englewood Cliffs, NJ, 1990.
14. D. Simonson and D. Benningfield ‘Ingres gateways: Transparent heterogeneous sql access’, Data Engi-

neering Bulletin, 13(2) (June 1990).
15. Y. Breitbart, A. Silberschatz and G. Thompson, ‘Update mechanism for multidatabase systems’, IEEE

Data Engineering, 10(3), (1987).
16. Y. Breitbart and A. Silberschatz, ‘Multidatabase update issues’, in Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1988.
17. C. Pu, ‘Superdatabases: Transactions across database boundaries’, IEEE Data Engineering, 10(3), (1987).
18. C. Pu, ‘Superdatabases for composition of heterogeneous databases’, in Proc. 4th Int. Conf. on Data

Engineering, 1988.
19. A. K. Elmagarmid and W. Du, ‘A paradigm for concurrency control in heterogeneous distributed database

system’, In Proc. 6th Int. Conf. on Data Engineering, 1990.
20. Y. Leu and A. K. Elmagarmid, ‘A hierarchical approach to concurrency control for multidatabases’, in

Proc. 2nd Int. Symposium on Databases in Parallel and Distributed Systems, 1990.
21. D. Georgakopoulos, M. Rusinkiewicz and A. Sheth, ‘Serializability of multidatabase transactions through

forced local conflicts’ in Proc. 7th Int. Conf. on Data Engineering, 1991.
22. S. Mehrotra, R. Rastogi, H. F. Korth and A. Silberschatz, ‘The concurrency control problem in mul-

tidatabases: Characteristics and solutions’, in Proc. ACM SIGMOD Int. Conf. on Management of Data,
1992.

23. R. K. Batra, M. Rusinkiewicz and D. Georgakopoulos, ‘Decentralized deadlock-free concurrency control
method for multidatabase transactions’, in Proc. 12th Int. Conf. on Distributed Computing Systems, 1992.

24. S.-Y. Hwang, J. Huang and J. Srivastava, ‘Concurrency control in federated databases: A dynamic ap-
proach’, in Proc. 2nd Int. Conf. on Information and Knowledge Management, 1993.

25. J. Huang, S.-Y. Hwang and J. Srivastava, ‘Concurrency control in federated database systems: A perfor-
mance study’, in Proc. 7th Int. Conf. on Parallel and Distributed Computing Systems, Las Vegas, Nevada,
1994.

26. J. Huang, S.-Y. Hwang and J. Srivastava, ‘Distributed forward optimistic concurrency control for federated
database systems’, Technical Report, Honeywell Technology Center, 3660 Technology Drive, Minneapolis,
Minnesota, 1992.

27. W. Du and A. Elmagarmid, ‘Quasi serializability: A correctness criterion for global concurrency control
in interbase’, in Proc. 15th Int. Conf. on Very Large Data Bases, 1989.

28. S.-Y. Hwang, J. Srivastava and J. Li, ‘Transaction recovery in federated autonomous databases’, Distributed
and Parallel Databases, An International Journal, 2(2), 151–182 (1994).

29. Y. Breibart, W. Litwin and A. Silberschatz, ‘Deadlock problems in a multidatabase environment’, in Proc.
COMPCON, 1991.

30. P. Scheuermann and H. Tung, ‘A deadlock checkpointing scheme for multidatabase systems’, in Proc.
2nd Int. Workshop on Research Issues on Data Engineering: Transaction and Query Processing, 1992.

31. S.-Y. Hwang, J. Srivastava and J. Huang, ‘Incorporating admission control into concurrency control in
federated databases’, Technical Report 93-56, Dept. Computer Sci., Uuniversity of Minnesota, MN, 1993.

32. W. Richard Stevens, Unix Network Programming, Prentice Hall, Englewood Cliffs, NJ, 1990.
33. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 1983.
34. B. S. Tjan, L. Breslow, S. Dogru, V. Rajan, K. Rieck, J. R. Slagle and M. O. Poliac, ‘A data-flo graphical

user interface for querying a scientifi database. in 1993 IEEE Symposium on Visual Languages, Norway,
August 1993, IEEE Computer Society, pp. 49–54.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-1995

	Myriad: Design and implementation of a federated database prototype
	Ee Peng LIM
	San-Yih HWANG
	Jaideep SRIVASTAVA
	Dave CLEMENTS
	M. GANESH
	Citation

	INTRODUCTION
	Software development
experience

	FEDERATED DATABASE INTEGRATION
	Framework
	Integrating local schemas
	Example

	Global schema mapping
	Loosely-coupled versus
tightly-coupled FDBSs

	SYSTEM ARCHITECTURE
	Design principles

	SYSTEM IMPLEMENTATION
	Query processing and
optimization
	Gateway
	Federated query manager
(FQM)
	Federated query agent
(FQA)

	Transaction management
	Concurrency control
	Recovery
	Deadlock handling

	Communication subsystem
and process management
	Application tools

	IMPLEMENTATION AND TESTING
EXPERIENCE
	Software engineering
principles
	Lessons learned
	Implementation status

	PROJECT MANAGEMENT AND
SCHEDULE
	Team organization
	Code walkthrough
	Group communication
	Documentation process
	Project schedule
	Code distribution
	Experience

	CONCLUSIONS AND FUTURE
DIRECTIONS
	ACKNOWLEDGEMENTS
	REFERENCES

