
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2008

K-Sketch: A 'kinetic' sketch pad for novice
animators
Richard C. DAVIS
University of California, Berkeley, rcdavis@smu.edu.sg

Brien Colwell
University of Washington

James A. Landay
University of Washington

DOI: https://doi.org/10.1145/1357054.1357122

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
DAVIS, Richard C.; Colwell, Brien; and Landay, James A.. K-Sketch: A 'kinetic' sketch pad for novice animators. (2008). CHI '08:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Florence, Italy, April 5-10, 2008. 413-422. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/738

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1357054.1357122
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

K-Sketch: A “Kinetic” Sketch Pad for Novice Animators
Richard C. Davis Brien Colwell, James A. Landay

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720
rcdavis@eecs.berkeley.edu

Computer Science and Engineering
DUB Group, University of Washington

Seattle, WA 98195
xcolwell@gmail.com, landay@cs.washington.edu

ABSTRACT
Because most animation tools are complex and time-
consuming to learn and use, most animations today are
created by experts. To help novices create a wide range of
animations quickly, we have developed a general-purpose,
informal, 2D animation sketching system called K-Sketch.
Field studies investigating the needs of animators and
would-be animators helped us collect a library of usage
scenarios for our tool. A novel optimization technique
enabled us to design an interface that is simultaneously fast,
simple, and powerful. The result is a pen-based system that
relies on users’ intuitive sense of space and time while still
supporting a wide range of uses. In a laboratory experiment
that compared K-Sketch to a more formal animation tool
(PowerPoint), participants worked three times faster,
needed half the learning time, and had significantly lower
cognitive load with K-Sketch.

Author Keywords
Animation, sketching, pen-based, informal user interfaces.

ACM Classification Keywords
H5.m. H5.2 [Information interfaces and presentation]: User
Interfaces - Graphical user interfaces.

INTRODUCTION
Research into “easy” animation has produced many new
tools and techniques in recent years. Some support specific
tasks, such as studio-quality production [5, 17], classroom
examples or exercises [1, 12]. Others have less specific
tasks in mind [14, 19, 20, 22]. Unfortunately, no tool is fast
enough for sketching ideas, simple enough for novices, and
powerful enough to handle a wide variety of tasks.

Borrowing ideas from informal interfaces [7, 11] and
demonstration-based animation systems [2], we have
developed an informal, 2D animation system called K-
Sketch, the “Kinetic” Sketch Pad. K-Sketch is a pen-based
system that relies on users’ intuitive sense of space and time
while still supporting a wide range of uses. K-Sketch
animations are often rough, but they are still useful in
informal situations and as prototypes of formal animations.

The goal of this project has not been to design novel
interaction techniques but rather to focus on high-level
choices about tool features. Thus, we conducted field
studies to find out how an informal animation tool might be
used and whether or not it could be made general-purpose.
From these interviews with nineteen animators and would-
be animators, we compiled a library of 72 usage scenarios
for an animation system. In an earlier workshop paper [4],
we presented preliminary results from this fieldwork. Here,
we analyze these results in more detail and describe a novel
optimization technique that enabled us to make K-Sketch’s
interface simultaneously fast, simple, and powerful.

Our evaluations show that K-Sketch has come a long way
toward accomplishing its goal. In a laboratory experiment
that compared K-Sketch to a more formal novice animation
tool (PowerPoint), participants worked three times faster,
needed half the learning time, and reported significantly
lower cognitive load with K-Sketch. Participants also
reported that K-Sketch felt easier and faster, that they were
no less comfortable showing their animations to others, and
that they were significantly more comfortable creating
animations in front of others using K-Sketch.

We begin by reviewing our interviews with animators and
with non-animators. This is followed by an analysis of the
library of usage scenarios we collected and a description of
our interface optimization technique. We then present K-
Sketch and the evaluations we conducted. We close with
related work, conclusions and future work.

INTERVIEWS WITH ANIMATORS
Since many novice animators wish to do what experienced
animators do, we began our field studies by interviewing
eight experienced animators to see how an informal tool
would fit in their work process. Six participants were
professional animators (1 with Flash, 5 with other media)
with an average of 10 years of experience. One of these also
taught animation. The other two animators were Computer
Science graduate students with much less experience who
produced animated conference presentations. Though the
range of participants was broad, commonalities did emerge.

Interviews were structured around the following questions:
• Describe the steps in your work process. Give more detail

on the early stages and the parts that involve sketching.
• What hardware/software tools do you use in your work?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

During the interviews, we recorded how participants go
about the various steps in their process, collecting sketches,
photographs, animations, and video of the animators at
work whenever possible. There was variety in the
animators’ work processes. One artist did much of her work
in clay with stop-motion photography, but produced early
versions of her work with drawings that were animated in
Adobe AfterEffects. Several other artists worked with
similar tools, though some drew out all frames by hand (as
in traditional, cel-based animation). Our two students took a
vastly different approach, coding their animations in Slithy
[24], an animated presentation language.

Six mentioned prototypes as a key step in their process.
Traditional animators begin prototyping with paper
sketches, then move to animated “character sketches” or
other short timing tests, and then move to storyboards.
Then, many animators build videos (which some call
“animatics”) that show storyboard frames in sequence with
rough timing and sound tracks. Animatics are important for
the animators’ creative processes, but they are also an
important tool for communicating project status to clients.

Other participants had different approaches to prototyping.
Animator 7 was so experienced with Flash that she was
often able to mock up animations directly in the tool after
only a few sketches. Animator 4 worked exclusively in
Slithy and was so proficient that he sometimes skipped the
storyboarding phase entirely. Animator 5 was less
proficient in Slithy, however, and expressed a need to do
more prototyping, though he was not sure how.

At some point in each interview, we described possible
designs for a rough animation tool, suggested ways that the
animator might be able to use such a tool in their work
process, and noted their reactions. Most were interested in
such a tool as a prototyping aid. Animator 8 also expressed
interest in using such a tool for finished works. Animator 3
taught animation classes for children and said that our
demonstration-based approach matched very closely with

children’s intuition. Her students frequently “act out” the
actions of characters in front of the camera.

These interviews show that informal animations can play an
important part in the development of more formal
animations. In the following section, however, we will see
that many novices do not require a formal end result.

INTERVIEWS WITH NON-ANIMATORS
As our project progressed, we encountered many people
who did not create animations but were looking for fast,
easy ways to create them. To better understand their needs,
we recorded these conversations in a structured way. We
recorded interviews with people who met these criteria:

1. They must describe animations they wish to create in
sufficient detail for us to create them.

2. There must be a plausible reason why they do not already
produce the animations they describe.

3. The animations must support a specific task.
4. There must be a plausible reason why the animation is

necessary to accomplish that task.

We believed these criteria would lead us to people who
could give us a clear picture of the needs of inexperienced
animators. Table 1 describes those who met our criteria.
Most of the participants were teachers (or education
students), engineers, or scientists seeking to explain a
concept. Some teachers did not know where to find
animations that fit their needs, and others wanted to
customize the animations that they found. Participant 1
wanted her students to produce animations as a
visualization exercise. Participant 8 wanted animations to
entertain and motivate her students. Engineers and scientists
were seeking to explain ideas in small, informal meetings
(as in Figure 1). Participant 4 wanted to visualize a set of
dance moves before directing dancers (Figure 2).

Most of our participants did not know how to go about
creating the animations they envisioned. Only two
(Participants 3 and 4) knew of useful domain-specific
animation tools, but their need did not justify the effort
required to learn these tools. Some participants believed
general purpose animation tools would be prohibitively
complex. Teachers had trouble devoting lesson planning
time to learning or using these animation tools. Participant
1 was concerned that her students would waste studying
time learning to use animation tools. Participants who
worked in science and engineering said that the need for an
animation would arise suddenly in meetings, and there was
no hope of creating an animation at the last minute.

These interviews further convinced us that there is a need
for informal animation tools that require very little time to
learn or use. However, as the next section shows, our
participants described a wide variety of usage scenarios,
presenting us with a considerable design challenge.

LIBRARY OF USAGE SCENARIOS
As we looked more closely at the tasks suggested by our
potential users, we saw a wide variety of subject matter,

Occupation Domain Animation Descriptions
1. Education Student Biology Student exercise: meiosis

2. Education Student Physics Planetary motion

3. Mech. Eng. Prof. Eng. Gears, molecular shifting

4. CS Grad. Student Dance Contra dance moves

5. Chemistry Prof. Chem. Particle collisions, rusting
reaction, battery reaction

6. Researcher Eng. Machine tread motion

7. Math Instructor Math Cantor set construction

8. Reading Tutor Reading Fun animations to motivate

9. Aeronautical Eng. Eng. Robot arm following a path

10. Manager Eng, Box sliding into casing

11. Researcher Geology Etalon noise

Table 1: Summary of interviews with non-animators.

level of complexity, and usage contexts. It seemed that the
complexity of general-purpose tools might be necessary. In
hopes that we could identify a small set of capabilities that
would still support a wide range of animations, we gathered
task scenarios into a library for deeper analysis.

Each scenario contains a description of objects and actions
as well as a detailed description of the user and goal.
Currently, the library includes 16 scenarios from non-
animators and 27 scenarios from animators. Animator 3
also gave us 22 animations produced by children in her
class. Many of these were rough animations. Finally, we
created 7 scenarios that were significantly different from
any in our library, giving 72 scenarios total.

In the remainder of this section, we discuss the patterns that
emerged in these scenarios, starting with the users.

User and Goal Categories
All users fell into one of the following five categories. Each
title is followed by the number (and percentage) of
scenarios with a user in this category.

Amateurs: 31 (43%). These users are undertaking small
creative tasks that may not involve animation directly.
Amateur animators would use an informal animation tool to
tell short stories, solve a problem, or share an idea.

Artists: 24 (33%). These users are undertaking larger
creative tasks that involve animation. They would use
informal animation to try out new ideas quickly, to prepare
animated storyboards, and to share these with clients.

Teachers: 11 (15%). These users are working to impart
knowledge to their students. It is likely that animation will
be used to explain a dynamic concept, or to make course
material more engaging. Education research is conclusive in
showing these uses have positive educational impact [16].

Students: 1 (1%). These users have a teacher who has
asked them to create an animation as a learning exercise.
This class of users may be growing [21].

Professionals: 5 (7%). These are knowledge workers who
are working on a variety of complex tasks. They may use an
animation tool to explain a concept to a colleague, think
through a problem, or prototype a more formal presentation.

When we look at users’ goals in these scenarios, a similar
picture emerges. Prototyping is the goal in 35% of
scenarios, and nearly all of these scenarios come from
artists. Amateurs wanted to Entertain others (21%) or just
Doodle for themselves (21%). Explaining (21%) was

usually the goal of teachers and professionals. Finally, two
scenarios had a goal of Thinking through some problem.

Informality can be useful in all of the above situations, and
most categories of users can benefit from reduced learning
time. Of the above categories, all but “Artists” have very
limited time to learn about animation tools. This is why
reducing learning time has been a major focus of our work.

Animation Operations
We now turn our attention to the more challenging problem
of analyzing the content of each animation. Each animation
tool provides a set of operations for specifying animation,
and the complexity of a tool is determined by the number of
operations and how the interface supports each one.

Following the tradition of informal tools [7, 11], we wanted
our interface to match users’ intuition as closely as possible.
As part of our analysis of each animation, we noted how a
user might intuitively express the events that took place.
We found many different ways to express events, but over
time they fell into a relatively small number of categories.
These categories can serve as the primitive language
elements, or operations, of an informal animation tool.

After a detailed analysis of the 72 usage scenarios in our
library, we defined the following 18 animation operations:

Translate, Rotate, Scale: Common, simple operations.

Set Timing: Specify the speed and acceleration of a
motion, rather than moving it at a constant speed.

Move Relative: Add a motion on top of another, so that the
new motion is relative to the old motion’s reference frame.

Appear, Disappear: An object appears or disappears. We
count them separately because some tools support only one.

Trace: Animate a line over time, as if traced by a pen.

Repeat Motion: Repeat an event sequence.

Copy Motion: Move an object in the same way or a way
similar to another object.

Define Cels: Create alternate appearances for an object, as
in traditional 2D animation cels.

Morph: Turn one object into another over time.

Physically Simulate: Move objects as in “real life.”

Interpolate: Define the start and end states of a change and
animate the transition between the two.

Figure 2: Sequence of contra dance moves (non-animator 4).

Figure 1: Construction equipment tread motion (non-
animator 6). The tread traces out the red line as it moves.

Move Forward/Back: Change the stacking order of
objects, so objects that were covered up are now uncovered.

Deform: Stretch an object out of its current state.

Move Limb: Define object skeleton & move a segment.

Orient to Path: Translate an object while pointing it in the
direction it is moving.

In addition to these 18 animation operations, we defined
five variants of Translate, Rotate, Scale, and Set Timing,
but we do not discuss them here, because they added little
to our analysis. We also defined eight other operations that
are fairly orthogonal to the operations above (Repeat
Playback, Add Scene, and Play Sound) or common to
graphical editors (Occlude, Zoom, Copy Object, Import, and
Define Background). These also added little to our analysis,
and we assume that all would be present in a product.

This left us with 18 animation operations to choose from.
The length of this list helps to explain why general-purpose
animation tools are so complex, and it was a major design
obstacle for us. We knew that we could not support all
operations, but we lacked a method for choosing between
them. This led us to develop a new analysis and
optimization technique, described in the following section.

INTERFACE OPTIMIZATION
Our goal was to make K-Sketch fast enough to accomplish
most tasks in minutes or seconds, simple enough for
novices to learn after a short demonstration, but powerful
enough to handle most of the scenarios in our library. We
expressed this as an optimization problem, maximizing the
number of animations we support (powerful), while
minimizing the number of steps needed to complete a task
(fast) and the number of animation operations available
(simple). This led us first to enumerate all the possible ways

of representing each animation in the library. We then built
an optimization program that computes small, fast, and
powerful operation sets and displays them to help a design
team understand the tradeoffs.

For each animation in our library, we enumerated the
“features” that a user would have to represent to accomplish
their goal. For each feature, we listed one or more
“approaches” to representing that feature and noted the
operations required by each approach. We can then say that
a set O of operations “supports” scenario S if all the
features of S can be represented with one or more
approaches for which all operations are contained in O.

Not all approaches are equivalent. Preference was given to
those that gave the best results for the task and that could be
performed the most quickly and easily. Subsequent
approaches might produce animations that are less precise,
but acceptable. If an approach required the user to perform
more work than the preferred approach, we noted the
number of extra steps. For example, if an animation had
two objects that moved along curved paths, each of which
could be approximated by 4 straight paths, then using
straight paths would result in 8-2 = 6 extra steps.

Given this data, our goal was to compute the minimal sets
of animation operations that would support every size
subset of scenarios. We computed these results with a
Python script that tested every combination of animation
operations against combinations of sufficiently fast feature
approaches. The definition of “sufficient” was configurable.
We considered several possibilities, but decided that
approaches with four or fewer extra steps were acceptable.

We ran the script with these options on a 2.8 GHz Intel
Xeon CPU with 2 GB RAM, and after 18 minutes, it
produced the results in Table 2. There are many solutions in

Scenarios Supported 10
0%

99
%

97
%

94
%

93
%

90
%

86
%

83
%

79
%

75
%

68
%

51
%

46
%

36
%

28
%

21
%

15
%

Num. of Operations 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Translate * * * * * * * * * * * * * * * * *
Scale * * * * * * * * * * * * * * *
Rotate * * * * * * * * * * * * * *
Set Timing * * * * * * * * * * * * * *
Move Relative * * * * * * * * * * d d * *
Appear * * * * * * * * * * * *
Disappear * * * * * * * * * * * *
Trace * * * * * * * *
Repeat Motion * * * * * * *
Copy Motion * * * * * *
Define Cels * * * * * *
Morph * * * * *
Physically Simulate
Interpolate *
Move Forward/Back * * *
Deform
Move Limb *
Orient To Path *

Table 2: The data produced by our interface optimization technique (simplified). Each column shows the minimal sets
of operations that would support the percentage of scenarios at the top. If an operation is needed in all minimal sets, a

dark gray box appears in its cell. Light gray boxes show those operations that are in some, but not all minimal sets.

this table, but the visualization helps us to identify clear
trends. The operations toward the top are clearly more
important than those toward the bottom, which helps us to
optimize the user interface for the more common cases.

We set our target for K-Sketch aggressively at 80% of
scenarios. Because our method finds only operation sets
that allow tasks to be completed quickly, we can “support”
more scenarios than commercial tools such as Flash (56%)
and PowerPoint (39%), which have slower precision-
focused operations. We can reach 79% by providing the
operations Disappear and above in the table plus two of the
following: Trace, Repeat Motion, Copy Motion, and Define
Cels. We chose Trace and Copy Motion, since they fit
naturally into our design idea. We also included Orient to
Path to bring us over 80%, because it also fit naturally.

This technique is general enough for a variety of domains.
Our optimization program has exponential complexity and
is impractical for large numbers of operations, but it
parallelizes easily. The technique should not be used to
compute one “optimal” solution, because designers’
intuitions may reasonably conflict with computed results
(as in our choice to support Orient to Path).

K-SKETCH: THE “KINETIC” SKETCH PAD
K-Sketch currently supports all ten desired animation
operations: Translate, Scale, Rotate, Set Timing, Move
Relative, Appear, Disappear, Trace, Copy Motion, and
Orient to Path. Also recall that our analysis assumed the
presence of eight other operations. Of these, we currently
support only Repeat Playback and Copy Object. The others
are straightforward to add and have little research value.

The K-Sketch user interface appears in Figure 3. The design
is intended for pen-based computers and is visually divided

into three parts: a tool bar on top, a drawing canvas in the
center, and time controls on the bottom. We assume the
presence of a physical “Alternate” button that users operate
with their non-dominant hand to access alternate modes.
We allow Tablet PC bezel buttons, handheld remote
controls, and keyboard keys to be Alt. buttons. This form of
mode switching has been shown to be effective [13].

K-Sketch models animation as a sequence of editing steps
over time. By default, any edit operation that the user
performs happens instantaneously at the current time index
and is visible from that time forward. Drawing and erasing
are treated as any other edit, and this is how K-Sketch
provides the Appear and Disappear animation operations.
To record an animation, users perform these edit operations
while time is advancing. When they do this, their edits are
recorded in real time as they are performed. The following
sections describe these editing and time control features and
show how they support the remaining animation operations.

Selecting and Manipulating Objects
Objects are selected in K-Sketch by drawing a loop around
them while holding the Alt. button. If 60% of a stroke lies
inside the selection loop, it is selected and rendered in
outline (as is the plane in Figure 3). Individual strokes can
be selected by holding the Alt. button and tapping on them.

When an object is selected, a manipulator (Figure 3e)
appears on top of it. This manipulator is designed for pen
interaction, and it allows objects to be animated in a variety
of ways, depending on where the user touches it (see Figure
4). A similar manipulator appears in Integrated
Manipulation [9]. Tracking Menus [6] are also similar, but
they follow the pen instead of hovering over selected
objects. Whenever strokes are edited with this manipulator,
they are implicitly grouped so that they can be easily
selected in the future.

Using the manipulator inserts an instantaneous change into
the animation at the current time. If the user holds the Alt.
button when the pen touches the manipulator, time
advances as long as the pen touches the screen, allowing
edits to be recorded over time. This is how K-Sketch
supports Translate, Rotate, Scale, and Orient to Path.
Because the timing of these motions is taken directly from
the user’s pen movement, this supports Set Timing as well.

The manipulator initially appears centered, axis-aligned on
the selected strokes. If users wish to move or rotate the
manipulator relative to a selected object, they can use the
object’s context menu, which is accessed through a button

Figure 3: K-Sketch User Interface. (a) New, Open, Save,
Export Flash, and Cut/Copy/Paste buttons, (b) Undo/Redo

and Pen/Eraser buttons, (c) Repeat Playback, Record
Drawings, Show Motion Paths, and Speed buttons, (d)

Options, Help, and Full Screen buttons, (e) Object
Manipulator, (f) Context Menu button, (g) Motion Path,

(h) Go/Stop button, (i) Time slider bar, (j) Nudge
Forward/Go to End buttons.

(b)
(c)

(f)

(i)
(j)

(a) (d)

(g)

(h)

(e) Figure 4: Object Manipulator control zones.

that appears just below the manipulator (Figure 3f). This
allows users to rotate objects about a different center, scale
them non-uniformly along different axes, or grab the
manipulator in more convenient places.

Coordinating Motions
There is no difference between recording and playing in K-
Sketch–edits to a playing animation are recorded, and this
means that all objects move simultaneously when time
advances. Users must rely on their intuitive sense of timing
to coordinate the motion of objects, but K-Sketch provides
three features to assist them: motion paths, a global speed
control, and ghosts. Figure 5 shows some of these features
in action as a user coordinates the collision of two particles.

Motion paths (Figure 3g) are pen traces that appear
whenever the user records an edit with the object
manipulator. These paths can help users coordinate
movements by showing where objects will go in the future.
The line is rendered solid for that portion of the motion that
has already occurred and dashed for that portion that is yet
to come. A motion path is visible whenever its object is
visible. If the canvas becomes too cluttered, the user can
turn motion paths off through a button in Figure 3c.

If objects are moving too fast for users to respond to them,
they can slow down the animation through the Speed button
(Figure 3c). This button shows a slider allowing users to
speed up or slow down the global clock. The speed is
initially 100%, and ranges from 2% to 50x.

Ghosts (Figure 5g) are transparent views of objects that
appear at the moment in time when an object is erased to
help users remember where it was. They are useful for
coordinating the position of a drawing that replaces another,
such as the explosion in Figure 5h. Ghosts can also appear
under the pen when adding relative motion (see below).

Overwriting and Adding Motions
Users can modify an existing motion path by going back in
time and demonstrating the motion over again. By default,
new motions overwrite existing motions. Any existing
motion that was in progress is truncated, and any motions
that started during the new motion are removed. Motions
that end before or start after the new motion are unaffected.

Users may not always wish to overwrite motions, however.
To support the Move Relative animation operation, it is
necessary to add a motion on top of an existing motion. For
example, a rolling wheel might be created by translating the
wheel and then adding a rotation motion that occurs
simultaneously in a new reference frame. It is easy for
novices to imagine adding motions in this way, but we
found that performing such an operation can be difficult if
users must add motions in a particular order or explicitly
specify the added motion’s reference frame.

Our solution is to use heuristics to predict the reference
frame that users intend to modify and to provide a
correction interface when our prediction is incorrect. When
only one reference frame exists, new motions overwrite
existing motions. When multiple reference frames exist, the
new motion overwrites existing motions of the same type
(e.g. translates overwrite translates). If the user does not
like the result of adding a motion, she can select “Fix Last
Motion” in the context menu. This displays animated
thumbnails of the resulting animations from all possible
reference frame choices and allows the user to intuitively
pick the correct one.

In practice, the correction interface is quite fast. For most
animations, it is needed only once for each new reference
frame. Because few animations in our studies required more
than three reference frames, this list is usually short. Also,
since most relative motions fall into a few types, we are
often able to put the most likely alternative first in the list.

Figure 5: Creating a particle collision animation from non-animator 5 with K-Sketch

STOP

GO GO STOP GO

GO GO GO

(a) Select left particle by
circling it while
holding Alt. button.

(b) After the object manipulator
appears, hold the Alt. button
and prepare to drag.

(c) Alt-drag makes animation
“go”. Manipulator hidden.
Motion path shown.

(d) Drag stops and manipulator
appears. Tap outside
manipulator to de-select.

(e) Rewind, draw & select
right particle, hold Alt.
button, & prepare to drag.

(f) Positron moves as electron
is dragged. Time collision
by hand.

(g) Erasing hides particles.
Objects that disappear are
shown as ghosts.

(h) Draw an explosion where
the particles disappeared.

Cut, Copy, and Paste
K-Sketch also provides the standard editing controls Cut,
Copy, and Paste (Figure 3a), and these can be used to
perform the Copy Motion animation operation. When an
object is selected, users can click “Select Motions” in the
context menu to select the motions applied to that object.
When motions are selected, a Copy command will copy
them to the clipboard. When another object is selected, a
Paste command will apply those motions to the new object.

Recording Drawings
Users can perform the Trace animation operation in K-
Sketch by pressing “Go” and drawing a line. The
appearance of the line will be animated over time as would
any other edit operation. However, users cannot hold the
Alt. button to advance time as they do with the object
manipulator, because this button is used for drawing
selection loops. Instead, K-Sketch provides a “Record
Drawings” mode (Figure 3c) that advances time whenever
the pen touches the screen for a draw or erase operation.

Simplified Time Navigation Controls
Instead of a complex timeline that shows the history of
every moving object separately, K-Sketch compresses time
navigation into a single slider with an iconic overview of
history (Figure 3i). Every edit event adds a tic mark at that
moment in history (Figure 6a). When an object is selected,
the slider highlights the edits related to that object (Figure
6b). Users can move through time by dragging the slider
thumb or by tapping on either side of the thumb, which
jumps to the next event. There are also buttons (Figure 3j)
that jump to the beginning and end of the animation and
that “nudge” time forward and back by 1/15th of a second.

Users can tweak the start or end time of a motion by sliding
the edit history tics along the timeline. By default, moving
an event also moves any others that occur after it, but
holding the Alt. button allows an event to be moved
independently. The order of events is always preserved.

Simplified Recording Controls
Instead of using standard “VCR-like” recording controls
with recording, playing, and stopped modes, we chose to
limit K-sketch to two modes (going and stopped) controlled
with a single button (Figure 3h). We did this to reduce the
number of controls and the possibility of confusion between
playing and recording modes. It is possible, therefore, for a
user to play an animation and wait for an appropriate time
before manipulating an object. As long as the animation is
going, the edit will be recorded over time.

Implementation
K-Sketch is implemented in C#. The implementation makes
heavy use of the Piccolo.NET graphical interface toolkit
[3], which we modified to use the ink collection, rendering,
and selection methods provided by the Microsoft.Ink API.
K-Sketch totals 67 classes with 28,000 lines of code, plus 7
classes with 3,900 lines of code added to Piccolo.NET.

EVALUATIONS
We conducted three small user studies with K-Sketch as
part of an iterative design process. These studies helped us
to refine K-Sketch’s recording controls and selection
controls in numerous ways. They also helped us refine our
support for the Trace animation operation and demonstrated
the need for a global speed control. These studies also
convinced us that novices could use K-Sketch to do real-
world tasks after about 30 minutes of practice.

These user tests were helpful, but we needed a comparative
evaluation with another tool to evaluate our claim that K-
Sketch makes animation more accessible to novices. In our
first attempt at such an evaluation, the first author produced
10 animations from our field studies with both K-Sketch
and Flash. This user was a K-Sketch expert, but was also
quite experienced with Flash. In this evaluation, most
animations took 4–8 times longer to produce with Flash.

We believed these results to be promising, but we knew that
the system needed to be evaluated with true novices. Also,
we realized that Flash is a poor tool for comparison,
because it is too complex for novices. For these reasons, we
planned a larger laboratory experiment that compared K-
Sketch to an animation tool for novices.

Laboratory Experiment
We decided to compare K-Sketch to Microsoft PowerPoint
and focus on the advantages of informality. PowerPoint has
powerful “Custom Animation” features targeted at allowing
novices to make animated presentations. The tool provides
most of the animation operations provided by K-Sketch; but
is missing Trace and Orient to Path, and its support for Set
Timing is limited. It is a good example of a formal, general-
purpose animation tool for novices.

Method
Our study was a within-subjects comparison of PowerPoint
and K-Sketch. Participants completed a practice task
followed by two experimental tasks with one tool, and then
repeated the process for another tool. Our independent
variables were the tool used and the task performed, and
both were counterbalanced across participants. The tasks
were simplified versions of tasks from our field studies, a
particle collision (Figure 5) and a dance maneuver (Figure
2). We chose these because both require multiple objects to
be in motion simultaneously, the tools support the required
operations, and pilot tests showed they could be completed
in a 4 hour session. The practice task was designed to teach
users everything needed to complete the experimental tasks.

Our primary dependent variable was the time to complete
each task. Also, after each task we asked participants to fill

(a)

(b)

Figure 6: Edit history feedback. (a) Main feedback (b)
Local feedback for selected object.

out two questionnaires asking how comfortable they would
be showing their animation to others or creating it in front
of others. We knew comfort was likely to be different
depending on the audience. Therefore, for each situation
(showing or creating), we asked the question for eight
different audiences (no audience, 1 colleague in a meeting,
10 colleagues in a meeting, 1 student while tutoring, 30
students in a class, 300 students in a class, 30 professionals
watching a presentation, 300 professionals watching a
presentation). Responses were on a seven-point scale
(1=extremely uncomfortable, 7=extremely comfortable).

There were also three variables dependent on tool only.
After using each tool, participants took the NASA TLX
cognitive load self assessment [8]. We also asked
participants for subjective feedback on both tools at the end
of the experiment. We asked how easy it was for them to
work with both tools (7-point scale, 1=Very Easy, 7=Very
Hard) and how fast they were at operating both tools (7-
point scale, 1=Very Fast, 7=Very Slow).

Each task was an animation that participants needed to
create. Participants viewed these animations in the
QuickTime player, allowing them to replay and scan
through the animation as much as they wished. These
animations were formal so that participants could form a
clear mental picture of the task as quickly as possible. To
create a sense of time pressure, participants were instructed
before each task to complete the task as quickly as possible.
The instructions stressed that participants did not have to
make the animations look perfect, and that it was more
important for them to work quickly than it was to reproduce
objects or their motions precisely. They were required,
however, to keep the sequence of events the same.

Participants learned to use each tool during the practice task
by working through an 8–10 page written tutorial that
showed them how to use the tool to complete the practice
task. They were allowed to keep this tutorial as a reference
during the experimental tasks. During the experimental
tasks, participants were asked to avoid asking for help
unless they were stuck, and the experimenter intervened
only when necessary to keep things moving.

Participants
We recruited 18 participants through a poster that called for
people who are “interested in creating animation but have
never done so.” Of these, two were discarded from our
analysis because they could not complete the tasks in the
time available. Of the remaining 16, seven were men, and
nine were women. Nearly half were students, and the others
worked as artists, technology professionals, teachers, or
dental assistants. Participants rated themselves “fair” in
drawing skills using a 5-point rating scale (M = 3.22, SD =
0.88). On a 7-point scale, they rated themselves somewhat
experienced with PowerPoint (M = 3.19, SD = 1.52) and
very inexperienced with Tablet PCs (M = 1.44, SD = 0.89).

Participants also reported a sporadic desire to create
animations, another obstacle to gaining expertise with

complex tools. Most reported a desire to create animations
once a year (n = 6), although some wished to make them
once per week (n = 3). The purpose of these animations
varied, including new works of art and animations for a
company web site. Participants had little or no experience
with PowerPoint Custom Animation (11 had none, 5 had 1–
5 hours) or other animation tools (11 had none, 5 had 5–30
hours). On a 7-point scale (1=disagree strongly, 7=agree
strongly), participants agreed somewhat that they were
discouraged from creating animations. They were more
discouraged by the time required (M = 5.23, SD =1.54) than
by the complexity of animation tools (M = 4.43, SD = 1.83).

Results
Test sessions took between 2½ and 4½ hours to complete.
We limited our interaction with participants during
experimental tasks, but it was sometimes necessary. 7
participants (44%) needed help 1–5 times to finish tasks
with PowerPoint, and one needed help twice to finish a task
with K-Sketch. Help was given in gradual stages, to limit
interaction as much as possible.

Table 3 shows the means and standard deviations for all our
dependent variables. Measures 2-5 were analyzed with pair
wise t-tests, and the others were analyzed in a 2 (K-Sketch
vs. PowerPoint) x 2 (Task A vs. Task B) within-subjects
analysis of variance. To account for multiple tests of
significance, we used a per-comparison alpha level of .007
for each t-test (we used a Bonferroni correction of .05/7 =
approximately .007) to determine statistically significant
effects. For ease of interpretation, p-values are reported.

Except for “Comfort Sharing”, all the differences shown in
the table are statistically significant. The time to complete
experimental tasks was about three times lower with K-
Sketch than with PowerPoint (F1,15=24.28, p<.001). There
was no other significant interaction on completion time.
Participants needed about half as much time to complete the
practice task with K-Sketch (t15=-5.687, p<.001).

As the subjective measures in rows three and four of Table
3 show, participants thought K-Sketch felt faster (t15=-
4.869, p<.001) and easier (t15=-4.667, p<.001) than
PowerPoint. Row five shows that the NASA Task Load
Index was about two times higher for PowerPoint than for
K-Sketch (t14=-5.443, p<.001).

K-Sketch PowerPoint
 M SD M SD
1. Task Time (min.) 6.76 4.30 19.57 12.24
2. Practice Time (min.) 26.36 4.80 43.52 11.36
3. Fast? (1–7, 1 = fastest) 2.75 1.39 4.50 1.10
4. Easy? (1–7, 1 = easiest) 2.13 1.36 4.25 0.78
5. NASA-TLX (1–100) 32.0 18.1 56.7 15.9
6. Comfort Sharing (1–7) 5.17 1.25 4.89 1.30
7. Comfort Creating (1–7) 5.46 1.14 4.10 1.35

Table 3: Dependent variables with means & std. deviations.
Results in bold are statistically significant.

To compare participants’ comfort showing their animations
to others and creating them in front of others, we first
averaged each participant’s responses across all eight
possible audiences. The values shown at the bottom of
Table 3 are the means and standard deviations of these
averages. Oddly, participants were slightly more comfort-
able showing their K-Sketch animations to others, but this
difference was not significant (F1,15=.82, n.s.), and there
was no other significant interaction. We then considered
each possible audience separately, but still found no
significant differences between tools on comfort showing
animations. However, participants were significantly more
comfortable creating animations in front of others with K-
Sketch than they were with PowerPoint (F1,15=14.88,
p=.002). There was no other significant interaction on
comfort creating animations.

When asked what they liked or disliked about K-Sketch, six
participants said they liked using the pen, five commented
that it was simple or easy to learn, and four said that it felt
natural or intuitive. However, eleven participants
commented that K-Sketch needed more tools for creating
and editing precise graphics as in PowerPoint. When asked
what they liked or disliked about PowerPoint, four
participants said they liked PowerPoint’s similarity to tools
they were familiar with, and four said they liked the
presence of precise graphical tools. On the other hand,
seven disliked the fact that PowerPoint felt complicated or
“technical”, four said it was time-consuming or tedious, and
three said it was inflexible or too structured.

Discussion
These results show that K-Sketch’s simple interface has
strong benefits. Experimental tasks took an average of one-
third the time with K-Sketch. Participants’ complaints about
the complexity of PowerPoint indicate a major cause. Many
participants were confused by PowerPoint’s timeline and by
its many menu options for timing control. By contrast, K-
Sketch required less cognitive load, and participants felt
that it was easier and faster. Participants found K-Sketch’s
simplified timeline to be more accessible than
PowerPoint’s, and we were pleased to see many
participants manipulating events in K-Sketch’s timeline,
even though this was only briefly mentioned in the tutorial.
The simplicity of K-Sketch’s interface also meant less
practice time was needed before tasks could be performed.

The benefits of informality are also evident in these results.
The goal of informal interfaces is to allow deferring of
details, but the results of this study show that informality
can help participants to defer details when lack of time
requires them to do so. The impulse to perfect in
PowerPoint seemed involuntary. Participants were asked
repeatedly to work fast and avoid making objects or
motions perfect, but participants still spent time perfecting
PowerPoint animations, which contributed to longer task
time. The roughness of K-Sketch animations, on the other
hand, probably contributed to the fact that K-Sketch felt
easier and faster. It is also noteworthy that the extra time

participants spent on PowerPoint tasks was not sufficient to
make them more comfortable showing their animations to
others. (Also note that this last result comes in spite of
participants’ mediocre self-rating of their drawing skills.)

Finally, we believe these results hint that spontaneous
animation may become a practical medium in collaborative
environments. Participants were more comfortable creating
animations in front of others with K-Sketch, and their
cognitive load was much lower.

RELATED WORK
We now look at work related to K-Sketch in the
applications of animation, in informal interfaces, and in
animation systems that use sketching and demonstration.

Applications of Animation
The most helpful animation research indicates when and
how to use animation effectively. Rieber described
conditions under which animation aids learning of concepts
involving motion or trajectory [18]. Others explain why
many animations fail to communicate effectively, and note
that interactive playback control is important [23]. We have
taken these results into account by designing K-Sketch to
support the use cases that these researchers envision.

Informal Interfaces
In seeking a way to make animation more accessible to
novices, we have taken inspiration from previous work in
informal sketching tools [7, 11, 15]. The great insight of
these systems is that much of the complexity of
conventional design tools comes from their focus on precise
details. When these details can be ignored or deferred,
design tool interfaces can be much simpler.

Sketching and Demonstration in Animation
Sketching has often been used to simplify the animation
process. Much of this prior work is geared toward
producing highly polished final results. For example,
sketched motion paths [17] have been used to direct the
motion of 3D figures. Others have automatically generated
animated movements of polished 2D character sketches [5].
K-Sketch is less concerned with polish and more concerned
with accomplishing animation tasks quickly and easily.

There have been other efforts to apply sketching to rough
animation. Alvarado used sketched annotations to generate
imprecise animations of mechanical systems [1]. MathPad2
generates animations from sketches of figures and
mathematical equations [12]. These systems are valuable in
certain domains, but K-Sketch attempts to be useful across
many domains. KOKA [20] is a general-purpose animation
tool that supports 17% of our scenarios. It defines a visual
language for animation, which we avoid, because visual
languages are difficult for novices to learn. Living Ink [19]
is another general purpose animation tool which supports
51% of our scenarios. It uses static motion path sketches to
generate motion and has a stack-based metaphor for
combining motions that may be confusing for novices.

Our system is most similar to systems that use timing in
addition to the spatial extent of strokes or gestures. Genesys
[2] was the first system to use sketching for both creating
objects and demonstrating motion. K-Sketch brings these
ideas to novices and addresses open questions, such as
which operations to support, how to select between
operations, and how to navigate through time.

Most current work in animation demonstration simplifies
the process of creating expressive motion for articulated
figures [22] or deformable objects [10]. RaceSketch [14] is
much more similar to K-Sketch than any other project listed
here. It supports 25% of our scenarios with the operations
Appear, Translate, Orient to Path, Set Timing, and Deform.
It also provides a novel technique for timing refinement, but
we believe a global speed control is sufficient and easier to
apply in many cases. All of these projects contribute fast
interaction techniques, but none share our goal of
optimizing for both simplicity and power. Our analysis
suggests that the costs of some techniques may outweigh
the benefits. For example, Table 2 shows that the Deform
operation is less important than others, and most rough
tasks can do without expressive articulated figures.

CONCLUSIONS AND FUTURE WORK
We have presented K-Sketch, an informal animation
sketching system for novice animators. Our efforts to
reduce the complexity of animation tools while supporting a
wide range of tasks caused us to carefully analyze the
requirements of 72 usage scenarios. The resulting system
relies on users’ intuitive sense of space and time and allows
tasks to be accomplished quickly and with little learning.

This paper makes the following contributions:
• The implementation of a novel tool, K-Sketch, that helps

novices quickly create 2D animations.
• A novel optimization technique for designing an interface

that is simultaneously fast, simple, and powerful.
• A laboratory experiment showing the benefits of K-

Sketch over a more formal animation tool for novices,
including a reduced task time by a factor of three.

In the near future, we plan to run another evaluation similar
to the one reported here but with one-fifth as many
participants and five times more experimental tasks to more
fully demonstrate the generality of our tool. K-Sketch is
available at k-sketch.org.
ACKNOWLEDGMENTS
This work has been supported by NSF Grants 0080562,
0205644, and 0742877. We also thank Elizabeth Sanders
for help with statistical analysis, Cy Khormaee, Matt Davis,
and Arpi Shaverdian for K-Sketch deployment and testing
help, and John Canny for his continuing support.

REFERENCES
1. Alvarado, C. and Davis, R. Resolving Ambiguities to Create a

Natural Sketch Based Interface. In Proc. IJCAI '01, 1365-71.
2. Baecker, R. Picture-Driven Animation. In Proc. AFIPS Spring

Joint Computer Conference, 34 (1969), 273-288.

3. Bederson, B.B., et al. Toolkit Design for Interactive Structured
Graphics. IEEE Transactions on Software Engineering 30,8
(2004), 535-546.

4. Davis, R.C. and Landay, J.A. Informal Animation Sketching:
Requirements and Design. In Proc. 2004 AAAI Fall
Symposium on Making Pen-Based Interaction Intelligent and
Natural (2004), 42-48.

5. Di Fiore, F. and Van Reeth, F. A Multi-Level Sketching Tool
for ‘Pencil-and-Paper’ Animation. In Proc. 2002 AAAI Spring
Symposium on Sketch Understanding (2002), 32-36.

6. Fitzmaurice, G., et al. Tracking menus. In Proc. UIST '03,
ACM Press (2003), 71-79.

7. Gross, M.D. and Do, E.Y. Ambiguous intentions: a paper-like
interface for creative design. In Proc. UIST '96, 183-192.

8. Hart, S.G. and Staveland, L.E., Development of the NASA-
TLX (Task Load Index): Results of Empirical and Theoretical
Research, in Human Mental Workload, P.A. Hancock and N.
Meshkati, Eds. Elsevier, 1988. 139-177.

9. Honda, M., et al. Integrated Manipulation: Context-Aware
Manipulation of 2D Diagrams. In Proc. UIST '99, 159-160.

10. Igarashi, T., et al. As-rigid-as-possible Shape Manipulation. In
Proc. SIGGRAPH '05, ACM Press (2005), 1134-1141.

11. Landay, J.A. and Myers, B.A. Sketching Interfaces: Toward
More Human Interface Design. IEEE Computer 34,3 (2001),
56-64.

12. LaViola, J.J. and Zeleznik, R.C. MathPad²: A System for the
Creation and Exploration of Mathematical Sketches. In Proc.
SIGGRAPH '04, ACM Press (2004), 432-440.

13. Li, Y., et al. Experimental Analysis of Mode Switching
Techniques in Pen-based User Interfaces. In Proc. CHI '05,
ACM Press (2005), 461-470.

14. Moscovich, T., Animation Sketching: An Approach to
Accessible Animation, Unpublished Master's Thesis, C. S.
Department, Brown University, 2001.

15. Newman, M.W., et al. DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer
Interaction 18,3 (2003), 259-324.

16. Park, O. and Hopkins, R. Instructional Conditions for Using
Dynamic Visual Displays: A Review. Instructional Science 21
(1993), 427-448.

17. Popović, J., et al. Motion Sketching for Control of Rigid-body
Simulations. ACM Trans. Graph. 22,4 (2003), 1034-1054.

18. Rieber, L.P., Computers, Graphics, and Learning. Brown and
Benchmark, Madison, WI, USA, 1994. 144-170.

19. Rogers, B. Living Ink: Implementation of a Prototype
Sketching Language for Real Time Authoring of Animated
Line Drawings. In Proc. Eurographics 2006 Workshop on
Sketch-based Interfaces and Modeling (2006), 115-122.

20. Takahashi, S., et al. A New Static Depiction and Input
Technique for 2D Animation. In Proc. 2005 IEEE Symposium
on Visual Languages & Human-Centric Computing, 296-98.

21. Tatar, D., et al. Handhelds Go to School: Lessons Learned.
IEEE Computer 36,9 (2003), 30-37.

22. Thorne, M., et al. Motion Doodles: An Interface for Sketching
Character Motion. In Proc. SIGGRAPH '04, 424-431.

23. Tversky, B., et al. Animation: Can it Facilitate? International
Journal of Human-Computer Studies 57 (2002), 247-262.

24. Zongker, D.E. and Salesin, D.H. On Creating Animated
Presentations. In Proc. 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 298-308.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2008

	K-Sketch: A 'kinetic' sketch pad for novice animators
	Richard C. DAVIS
	Brien Colwell
	James A. Landay
	Citation

	Microsoft Word - 2008-CHI-K-Sketch_v11.doc

