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Abstract from the situation of use. What is lacking in the traditional

systems is aawareness of the contexccording to [5],

Mobile context-aware recommender systems face unique [Context is defined as] any information that can be used
challenges in acquiring context. Resource limitations make to characterize the situation of an entity, where an entity can
minimizing context acquisition a practical need, while the be a person, a place, or an object relevant to the interaction
uncertainty inherent to the mobile environment makes miss-between the user and application, including the user and
ing context values a major concern. This paper introduces a application themselves. A system is context-aware if it uses
scalable mechanism based on Bayesian network learning incontext to provide relevant information and/or services to
a tiered context model to overcome both of these challengesthe user, where relevancy depends on the user’s task.
Extensive experiments on a restaurant recommender system It is recognized that the recommenders possess wide ap-
showed that our mechanism can accurately discover causalplications for mobile e-commerce, or-commerc§22, 24],
dependencies among context, thereby enabling the effectivand recent years have seen a growing interesintext-
identification of the minimal set of important contexts for a aware recommender syste(esy. [16], [1], [10], [9]). How-
specific user and task, as well as providing highly accurate ever, mobile context-aware recommendeseses certain
recommendations even when context values are missing. unigque challenges that remain to be addressed, particularly
with respect to the acquisition of contextual data.

. A key challenge is to accurately identify th@nimalset

1. Introduction of context important to a particular user for a particular task.
A recommendef20] is an application that ranks a set of Mobile devices suffer serious limitations in resources in-
available choices with respect to certain criteria. There cluding bandwidth and battery life. As such, by identifying
are many well-studied recommenders, such as within theand acquiring just the minimal set of context that are truly
information retrieval field, where criteria are submitted as important for recommendations to a particular user, mobile
gueries and the most relevant documents are recommendedievices can save on unnecessary context acquisition costs
Today, with the proliferation of e-services, recommenders and hence conserve their precious resources for other tasks.
are an actively researched area due to their obvious com- A second key challenge to the acquisition of context is
mercial values (e.g. [22], [10]), and have proven themselvesthat of frequently missing context element values. Within
as an important enabling technology behind the successeshe volatile mobile environment, lapses in context acquisi-
of major e-commerce sites like Amazon.com. tions occur due to various reasons such as failure to negoti-

Two main recommender techniques in use today are theate access control over protected information, intermittently
content-basednd thecollaborative filteringapproach [17],  faulty sensors, and also broken or unstable communication
although hybrid systems do exist [1]. These traditional ap- links. Explicit encoding of context dependencies is required
proaches do not take into account situational information, to enable mobile recommenders to maintain optimal predic-
and this seriously limits the relevance of their results. For tions even when crucial nuggets of information are missing.
instance, a user query to a restaurant recommender could be For the first challenge, a common approach in the litera-
“restaurants selling vegetarian foadA traditional recom- ture was to treat it asf@ature selectioproblem and to use
mender would simply check if vegetarian food is available, statistical techniques to identify the set of context elements
oblivious to the fact that the user would have preferred a to be retained [1]. Others like [24] suggested allowing users
nearer eating place because of the rain outside. Clearly, theo explicate their preferences via rules like¢ommend me
system’s recommendations are impeded by its detachmeng cafe based on location, but not pri¢e®ur earlier work



in optimizing context within recommender systems made pendencies among context parameters for a particular user
use of Support Vector Machines to identify the optimal con- and task. We now describe briefly Bayesian networks and
text for a specific recommendation task and user [29]. CaMML, and also some of the related prior work.

For the sgcond c_:hallenge, no e>'<isting work has consid-5 1 Bayesian Networks
ered modelling theénterdependencies among contdgt ) ) )
handling missing context values. By learning these interde- P&l [19] concisely defined Bayesian networks as follows.
pendencies, we can better understand and hence explain the Formally, Bayesian networks are directed acyclic graphs
behaviors of the system in terms of the interactions among" Which each node represents a random variable, or un-
context. This enables us to both readily identify the minimal Certain quantity, which can take on two or more possible

set of context parameters applicable to a particular user ang/@/U€s. The arcs signify the existence of direct causal in-
task. as well as to make use of the discovered context interfluences between the linked variables, and the strengths of

dependencies for compensating missing context values. these inflyences are quantified by conditiopal probabilities.
Our solution to this problem lies iBayesian networks Bayesian networks are also known Bslief Networks

A Bayesian network is a directed acyclic graph that encodessmce they are actually p'robat')ilistic' models that encode the
the complete causal dependencies among context variableg€Xtent to which each variable is believiecaffect and be af-

From this graph, we can interpret the dependencies bet\NeelfneCted by)thers. Knowledge ak_)out the depenqlencies among
a context like the Availability” of an item and the suitabil- 1€ key variables of any domain can be effectively modelled

ity or “score of that item. Thus, the minimal set of context as a s.ystem of connectgd nodes within the directed acyclic
that is important to a particular user and task would simply 9raphical model oBayesian NetworkThese causal depen-
be those that are directly connected to thedre node. In dencies are captured qualitatively by the network structure,
addition, encoded dependencies among context enable th@nd guantitatively by thbeliefsassociated with each node.

predictions on the outcome by using the available informa- _eckerman [8] highlighted that because the local distrib-
tion to estimate missing context. In contrary, most other ution functions in Bayesian networks were in fact classifica-

standard supervised learning techniques sucBexssion tion/regression models, Bayesian networks would be iden-

TreesandSupport Vector Machinggeld inaccurate predic- tical to classification/regression approaches given complete

tions when crucial inputs are missing as they do not encodedata for predictions. Heckerman cited work [6, 21] that ar-

these important context dependencies gued, either based on bias-variance analysis or via empiri-

As state-of-the-art Bayesian network learning schemesC@l Mmeans, that neither decision trees nor Bayesian networks

are slow when the number of context is large, we propose awould dramatically outperform the other. However, he also

learning mechanism that makes use of task-spauiiers agreed that Bayesian networks provided a natural model for

within a tiered context model to make learnitagter(learn- learning about and encoding the dependencies among input

ing from fewer observations effectively) and meealable variables. Indeed, our experiments showed that this unique

(handling more context parameters efficiently). With these feature made Bayesian networks suitable for handling miss-

. . .. ing context values in mobile context-aware recommenders.
enhancements, Bayesian network learning and prediction 9

provides a natural and integrated solution to the above chal- . Most prior work relied on Bayes'af‘ _net_works that were
lenges faced by mobile context-aware recommenders. either manually-crafted via expert elicitation or otherwise

. . . . translated from an existing model of the domain [7]. How-
In section 2, we provide an overview to the Bayesian net-

ever, because causal dependencies among context and also
yvorks, thepaMMLprogram [27] that we adopted for Iearn-. relative importance of context for a particular recommen-
ing Bayesian networks from observations, and also the prior

work that are related to this paper. In section 3. we resentdation task is user-specific, we need to adopt existing tech-
. IS paper. N P niques for automatically learning the network structure and
our two-tier context learning solution for resolving the key

. parameterizing the learned network based on observations.
challenges faced by mobile context-aware recommenders

. f - ~To this end, we identifie€aMML program [27] as a Suit-
We present in section 4 a restaurant recommender applica- prog [27]

. ; . able Bayesian network learning tool.
tion that implements our context learning model. Lastly, we y _ _ g _
present our experimental protocols and results in section 52.2. Learning Bayesian Networks withCaMML

and conclude with a discussion of future work in section 6. |n context-aware recommender systems, context values are
observed in an atemporal fashion from many sources. In ad-
dition, the models are likely to be more easily understood to
We chose Bayesian networks for modelling causal depen-be, not linear as i = a1 X1 +. .. ax X + U, but discrete
dencies within a context-aware recommender system due tar multinomial, where variables take on one out of a fixed,
their natural ability to address the key challenges as high-finite number of states e.g. the curremtathercan be ei-
lighted previously. In particular, we employed tGaMML therHot, Rainy, or Fine. Like past work that includes [12],
Bayesian network learning tool [27] to discover causal de- we found that the state-of-the-art automated causal discov-

2. Background



ery learning method for addressing such problems is imple-to an item of interest. More recent works include the papers
mented in the tooCaMML [27], largely developed by Wal- by Ji et al. [11, 10] that learns Bayesian network as a cus-
lace, who inventetlinimum Message Leng{MML) [26]. tomer model from customer shopping history data, such that
The authors ofCaMML explained in [14] that, rather —€ach item or network node represents one particular kind of
than using orthodox statistical significance tests such as thecommodity. Real-time recommendation of items could then
x2-test to examine variables for conditional independence, be based on probabilistic inference in combination with the
CaMML learns causal structure by stochastically searchinglast known shopping action of a customer.
over the entire spacfh} of causal models or hypotheses, Past efforts that suggested the automatic learning of
aiming at finding the modél that maximizes a MML pos-  Bayesian network from data had simply taken each poten-
terior metric. The MML posterior metric used @®aMML tial item of interest as a network node, and then applied
is defined asPyar(h) = e~ Ivmr(h) | for Iy (h) = the learned model directly for recommendations. They had
logN'!'=>", logpi—zj log(1 — p;), whereN isthe number  used the Bayesian network to learn the associations among
of variables im, p; reflects the prior probability for directed  the items, which could be goods that were sold by a cer-
arci, < indexes the arcs presentinand; indexes the pos-  tain store. We note that such an approach (e.g. [16, 11, 10])
sible arcs absent frofn. Chapter 8 of [14] has more details suffers from a problem known aparsity where the num-
on the MML metrics for learning discrete causal structures. ber of observations is far too few compared to the size of
In brief, as described in the accompanying manual [23], items to be considered. More importantly, all these previous
the CaMML employs aVletropolis algorithmto sample the ~ Work did not consider learning and exploiting the important
space of all possible models subject to specified constraintsunderlying user-specific dependencies among context. As
For each model thaEaMML visits on its sampling walk ~ such, they were neither able to identify the minimal context
through the real model space, it computes a representativéet nor handle missing context values.
simplification and counts only on these representative mod- . .
els to overlook trivial model variations of no statistical sig- 3. A Context Model for Effective Learning
nificance. The MML posterior probability of each of these The context elements eligible for consideration within the
representative models is taken to be the sum of MML pos- recommender systems are often too numerous for effective
teriors of its members. This total posterior value, that is |earning to be feasible. In addition, within the mobile envi-
estimated via the above Metropolis sampling process, ap-ronment, individual context elements could be acquired in
proximates the probability that the true model actually lies g dynamic process that involves rapidly-changing avenues
within the MML equivalence class of that model. The best due to the constant flux in the availability of context sources,
model is therefore chosen as the one representative modein essential characteristic of the popular service-oriented
with the highest MML posterior. For details of the sampling context frameworks described in e.g. [13] and [30]. To re-
process as implemented @aMML, please refer to [27]. solve this need for a small, practically-manageable set of
learning parameters, we adopt the idea of defimiogain-
specific markersa practice popular within clinical research.
Among prior works that applied Bayesian networks in the A markeris any benchmark that is considered by the sys-
area of context-aware computing, a recent paper by Gu etem designer to be suitable for evaluating a set of items.
al. [7] explicitly proposed the application of Bayesian net- For instance, a marker for a restaurant recommender could
work for dealing with uncertain context, by adding depen- be “Is restaurant open during the visit?as it is a relevant
dency and probability markups to the W3C Web Ontology concern of that system’s typical users. In clinical research
Language QWL) specification and translating their manu- especially, it is common to define a fixed set of markers for
ally defined context ontology into the form of a Bayesian tasks such as evaluation of new drugs. We have built upon
network. This and other prior researches were motivated bythis useful concept and focused our learning on a small, de-
the highly-efficient probabilistic reasoning capability of the fined set of possibly-important markers, instead of learning
Bayesian networks in addition to their graphical superiority directly on the potentially overwhelming pool of context.
in representing causal relations among context. Indeed, the  Wiith reference to our context model in Figure 1,igem
use of Bayesian networks in context-aware systems showgefers to one of the many choices that an application is de-
great promises in many meaningful applications such as thesigned to rank and recommend, e.g. an available restaurant.
robotic aid for the elderly blind by Lacey et al. [15]. In this context model, an upper tier that is concerned with
Similarly, the application of Bayesian networks in rec- recommendation considerations includitegn markerval-
ommender system is not new. In [2], a model-based proba-ues andtem scoreis clearly separated from a lower tier that
bilistic approach for collaborative filtering recommendation deals with bottuser contexainditem attributes User con-
was proposed that explored the learning of Bayesian net-text include more abstract context such as a certain user’s
work from transaction data, with each node corresponding preference for cleanliness, as well as relatively more direct

2.3. Related Work Utilizing Bayesian Networks
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context like weather. Thi#em markervalues are derived the score value for an item, based on the current observa-
by comparing the observed user context values with eachtions or finding, involved performing the following steps.
item’s attribute values. Thi#em scoreis then a measure

of the suitability of individual item of interest as computed Step 1 Present finding to the network, without score value.

based on these derived marker values. .
Step 2 Allow network to update beliefs of values for score.

3.1. Learning Bayesian Network from Observations

Step 3 Identify the score value with highest updated belief.
We developed a two-tier strategy for learning the pro- P fy g P

posed context model. Firstly, the minimal set of markers oy details of the algorithm used within Netica for exact
that are important to a user can be identified via Bayesiangeneral probabilistic inference in a compiled Bayesian net-
network learning on the upper tier. Then, we retain just this work, known asmessage passing in a join tree of cliques

minimal set of markers and their_corresponding subsgt Ofplease refer to the software’s documentations [18].
relevant user context and item attributes for a final learning.

This would yield a Bayesian network that is truly person- 3-3- Online Leaming
alized to that user, since it encodes the interdependenciegVe can improve the prediction accuracies by making the
among context that are important specifically to that user. network learn from the last correct answer as soon as the
Our context model provides us with a great flexibility to user’s choice was known after each test prediction. In other
analyze the dependencies among system variables at multiwords, each time after the learned network makes a pre-
ple levels - not only both at tHewer levelprocess of marker  diction, which is a best-effort one since the network has no
abstraction and at thieigher levelprocess of scoring, but  prior knowledge of the correct answer, we feed back into the
also at across-levelprocess where integrated learning can network that same example now with the correct answer as
involve any relevant subset of user context, item attributes,well. We can then instruct the network to revise its learned
markers, as well as the score variable. In this way, our con-conditional probabilities based on this new “training” case.
text model helps to improve scalability as thereisnoneedto  We observed the prediction accuracy rates of our learned
learn on the entire large set of potentially important context networks both with and without this improvisation applied,
and attributes. In addition, since we do not model individ- and our results confirmed that the accuracies for each test
ual items as separate network nodes, we manage to trade data-set had either stayed equal (if the accuracy was already
complex, inflexible model of the associations among items close to 100%), or had increased noticeably after we in-
for a compact, explanatory model of the user-specific de-troduced case-by-case learning. We note that this case-by-
pendencies among context, allowing our learned network tocase learning strategy implements our adaptive learning ap-
be used to score new items without having to relearn. proach where, given each set of context values, we make a

3.2. Predictions Using Learned Bayesian Network best-effort prediction and then learn from the user’s choice.

For predictions, we feed in the observed values of the nec-4' A Restaurant Recommender Application

essary user context and item attributes, and allow the beliefSVe demonstrate the advantages of our context model via a
of the marker values and in turn those of the item score to berestaurant recommender naméR 1" (as it is our second
updated. We can then read off the most probable score valugestaurant recommender after our first one in [29]). This
of each item and recommend the highest-scoring ones.  application is capable of learning automatically from obser-
We employed thé\etica-JAPI [18] to make predictions  vation data the underlying causal dependencies among pa-
on scorewith the networks learned from data. Applying rameters as a Bayesian network, and thereafter predicting
the belief updating mechanism within this APl to make pre- on a score for each restaurant using the learned network.
dictions is straightforward once CaMML was instructed to Figure 2 shows the context model BfR_I1. We iden-
store the learned network in the Netica format. Predicting tified twenty-six user context, thirty restaurant attributes,



and twenty-one markers. In a typical mobile recommender,
the number of context are much greater than the number of
markers, so our advantage of not learning on all the con-
text becomes even more significant in practice. Examples
of user context defined wera/athet, which described an
aspect of the user’s situation, andéanlinesy an aspect of
the user’s preferences. Restaurant attributes includat “
egory and “isCleari. The markers were defined to reflect
task-relevant concerns like whether a restauranbjehed
during visit'. A total of fifteen restaurants were modelled.
Each marker was defined as a boolean variable. For ex-
ample, a restaurant was either “opened” or “not opened” at
the stated time of visit. We developed a software simulator
that generated cases spanning across the possible values of
context while adhering to a user-specific causal model. In
each recommendation cycle, user context values and restau-
rant attribute values were compared via internal heuristics
to determine if a certain marker should take on a valug of
(“satisfied) or 0 (“not satisfied) for each of the restaurants.
Examples of the internal heuristics for deriving a par-
tial set of the defined markers are given in Heuristics M3,
M11 and M12, where the prefixedS” and “UP.” refer
to a user situationand auser preferenceontext respec-
tively, whilst “RA” references aestaurant attribute Fig-
ure 3 shows the defined causal dependencies corresponding
to each marker. Based on the derived marker values, we
then computed scores for ranking the restaurants. Super-
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4 »
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(c) Causal Dependencies for M12

Figure 3. Dependencies for M3, M11 and M12

Table 1. User Preference Rules and Models

vised learning to discover the underlying Bayesian network
from the observations was then performed usdaMML.

Heuristic M3

if RA.attireRequirement“formal” then
if US.attire==formal” then valueof(M3)="yes;
else ifUS.attire==casual” then valueof(M3)="na";
else ifRA.attireRequirement‘none” then
valueof(M3)="yes;

userAttirelsAppropriatéM3)

Heuristic M11 matcheslsAirConditionedPréM11)

if UP.cleanliness="yes” then
if RA.isClear="yes” then valueof(M11)="yes;
else ifRA.isClear="no" then valueof(M11)="no";
else ifUP.cleanliness="dunCare” then
valueof(M11)="yes;

Heuristic M12  isOfDesiredCategor{M12)

if UP.categorg=RA.categoryhen
valueof(M12)="yes;
elsevalueof(M12)="no";

By comparing Figure 2 to our context model in Figure 1,
it is clear that ouRRIl application fully implemented our

User Preference Rule Causal Model
1 M3, M11, M12 Model 1
2 M5, M10, M12, M15 Model 2
3 M10, M12, M14 Model 3
4 M5, M10, M12, M21 Model 4
5 M3, M5, M12 Model 5

set of context to minimize acquisition costs, and maintain-
ing a high degree of predictive accuracy in scenarios with
missing context values, can indeed both be effectively re-
solved through the learning of context interdependencies.

5. Experimental Validation

By causal dependengcwe mean that a variabl cause®r
affects Y(denoted asX — Y”, or “Y is dependent on”X

if changes in the observed value X¥fbring about changes

to our beliefs for values of. We now describe two sets

of experiments that illustrate the feasibility of our Bayesian
network approach towards modelling causal dependencies
in a typical context-aware recommender system Rigell .

5.1. Learning Minimal Set of Important Markers

The first set of experiment verified that the minimal set of
context truly important to a certain user could be effective
recovered in the Bayesian network learned from observa-
tion data alone. To generate observation data, we defined a
set ofuser preference rule® represent different user logics

proposed model. We now describe a series of experimentsn considering markers when scoring restaurants, and a set

onRRII to show that the two context acquisition challenges
in mobile recommenders, namely identifying the minimal

of user-specific causal modedtating the causal interdepen-
dencies among the corresponding important contexts.



The user-specific preference rules and their correspond-
ing causal models are listed in Table 1. For biser 1, the
three markers ofuserAttirelsAppropriatg “ matcheslsAir-
ConditionedPref and “isOfDesiredCategoty labelled as
“M3”, “M11" and “M12’ respectively, were equally impor-
tant. The score for each restaurant was thus computed as

No. of Important Markers with Value “1”

score= No. of Important Markers

The causal models were defined on user context and not
on system markers so as to aptly represent a certain logical
user’s consistent preferences. Model 1 is illustrated below.

Model 1 Causal Dependencies Among Context for User 1

if UP.category=="“cafe” then
US.attire= “casual”;
UP.ventilation= “aircon” ;

else if UP.category=="“club” then
US.attire= “formal” ;
UP.ventilation= “aircon” ;

else if UP.category==“canteen” then
US.attire= “casual”;
UP.ventilation= “nonAircon”;

else if UP.category=="“dunCare” then
US.attire= “dunCare”;
UP.ventilation= “dunCare”;

For each rule, we learned usi@@MML from a set of a
thousand observations, and retained only markers that were
directly linked to thescorenode in the resulting network.
We then learned again on the same set of examples but with
all other markers removed. This process was repeated until
a learned model had all the markers directly linked to score.

From our first round of learning using CaMML on the
one-thousand-sample training set corresponding to User 1,
we obtained the Bayesian network shown in Figure 4(a).
On the right-hand side of this figure, we see that only the
four markers of M3, M11, M12 and M18 were connected
to score. To verify if all these four markers were really im-

M3 ——( 18 )
(b) Bayesian Network Discovered in Round 2
(M12

S

i score )
A

-

(M1

_
(M3 )

(c) Bayesian Network Discovered in Round 3

Figure 4. Discovered Bayesian Networks

Table 2. Minimal Set Learning Performance

User Round Recall Precision F-measure
1 1 1.00 0.75 0.86
2 1.00 1.00 1.00
2 1 1.00 0.67 0.80
2 1.00 1.00 1.00
3 1 1.00 0.50 0.67
2 1.00 1.00 1.00
1 1.00 1.00 1.00
1 1.00 0.60 0.75
2 1.00 1.00 1.00

The performance of learning for the modelled user rules

portant, we retained just these four markers and score andyre given in Table 2. We observed that the learned Bayesian
performed a second round of learning. From the resulting networks consistently yielded a F-measure of 100% by the

network in Figure 4(b), only M3, M11 and M12 (the three gecond round for users 1, 2, 3 and 5, while a 100% measure
on the left) were directly connected to the score node. We a5 obtained after just one round of learning for our user 4.

therefore retained only score and these three nodes for ougjowever, logically, we expect the causal arcs to paiom

third round of confirmation learning. The resulting network  each of the important marketsscore, but in all the learned

of Figure 4(c) shows thatll the three important markers

specific to the first user were directly connected to score.
For performance metrics, we adopted Freneasurain-
der the following definitions.

Recall= No. of Important Markers Connected to Score
Number of I'mportant Markers

raimnn— No. of Important Markers Connected to Score
Precision= No. of Markers Connected to Score

2(Recall)(Precision)

F-measure= (Recall)+ (Precision)

networks, the arcs pointeditwardfrom score instead. This
was because the learned network and the logically-expected
network werestatistically equivalenf4], i.e. they had the
sameskeleton(undirected graph) and-structures(nodes
that are the children of two non-adjacent parents) [25].

Dai et al. [4] pointed out that according to Chickering in
[3], statistically equivalent models cannot be distinguished
on the basis of observational data alone. Therefore, we can
say that the discovery of a statistically equivalent model is
as good as the discovery of the actual explanatory causal



Table 3. Prediction Accuracies (%): average ac-
curacy of 5<2-fold cross-validationComplete when
data is completevlissing with one context missing

(a) Learning and Predicting Using Only the Upper Tier

Figure 5. Full Bayesian Network for User 1

User Bayesian Network (%) Decision Tree (%)
Complete  Missing Complete  Missing
model in our experiments, since we are learning Bayesian 1 100 76.8 100 76.8
networks from just the observation data. Our results show > 100 805 100 775
that our approach is indeed effective in identifying the min- 3 100 705 100 66.3
imal set of context that were important to a particular user. 4 100 86.2 100 68.6
5.2. Predictions with Missing Context Values 5 100 798 100 759
. . Avg. 100 78.8 100 73.0
In our second set of experiments, we employed the min-
imal sets of important markers identified in our earlier ex- (b) Learning and Predicting Using a Cross-Tier Approach
periments to verify that the prediction accuraciesscore User Bayesian Network (%) Decision Tree (%)
remained high under scenarios with missing context values. — —
. Complete  Missing Complete  Missing
For each user, we prepared the same earlier set of a thou-
sand observations to perform & 2-fold cross-validation. 1 100 100 100 78.4
In each round of the validation, five-hundred observations 2 100 100 100 81.7
were used for learning of the causal dependencies, while the j 188 188 188 ?‘7‘-2
remaining observations were used for testing of prediction 5 100 100 100 +75

accuracy on score. Within each fold, we learned a Bayesian
network on the training set consisting of just the score vari-  Avg. 100 100 100 76.0
able and the minimal set of markers together with their cor-
responding user context and restaurant attributes. Predic- Table 3(b) summarizes the accuracies when the impor-
tions on the test set were then performed using the Netica-lant context and restaurant attribute values from the same
API. In all our predictions using the learned Bayesian net- examples were incorporated for learning. A sample network
works, we did not use case-by-case revision of beliefs whenlearned for User 1 is shown in Figure 5. Clearly, Bayesian
predicting on the test samples so as to reflect the true accuranetworks and decision trees performed equally well when
cies after learning on just the five-hundred training samples.data was complete, i.e. when no context value was missing,
In each of the validation fold, prediction accuracies were but we observe that Bayesian network significantly outper-
recorded for the baseline scenario where all the context datdéormed decision tree to maintain a strong 100% prediction
were available, as well as under imperfect scenarios whereperformance under the scenarios of missing context values.
a particular context value (and hence its dependent marke
value) were missing in all of the five-hundred test samples.
We compared the results to the corresponding prediction acMobile context-aware recommenders face operational con-
curacies achieved using tldd.8 decision treelassifier as  straints in context sensing and acquisition. As such, they
implemented in th&Vekaknowledge analysis tool [28], us- present unique key challenges, among which is the need to

r6. Conclusion and Future Work

ing the default options within thExplorer GUI of Weka minimize the context to be acquired, and to handle missing
We first investigated if the learned networks comprising context appropriately so as to maintain accurate predictions.
just the minimal set of markers and the score (i.e.upeer We proposed applying Bayesian network learning to dis-

tier in our context model) were already sufficient to handle cover the underlying context dependencies that are specific
missing context values. Through a series gP5fold cross- to a particular user and recommendation task. To enable
validations, we observed the predictions on score when alla fast and scalable learning of the network from data, we
context were available, and when the important contextspresented a context model involving the abstraction of user
(and hence their corresponding dependent markers) wentontext and item attributes into a more manageable set of
missing one at a time. The results are shown in Table 3(a).markers. By first learning on these small set of markers to
Both Bayesian network and decision tree suffered more thanidentify the user-specific considerations, we can then pin-
20% drop in accuracy with missing context values, suggest-point the optimal set of context and attributes from which
ing that the important context and their user-specific depen-we can learn a predictive model that effectively captures the
dencies had to be captured directly in our learning process.interdependencies among these important parameters.



Through a series of experiments conducted on a restau-[10] J. Ji, C. Liu, J. Yan, and N. Zhong. Bayesian Networks
rant recommender based upon our proposed context model, Structure Learning and Its Application to Personalized Rec-
we validated that our system can indeed accurately recover ~ ommendation in a B2C Portal. rocs of WI 2004pages
the dependencies among context to yield a clear graphical " 179,—;8;] 'E%Efomp‘étif gcﬁmety, gelpten%ber 2004. s
model of the problem, so that we were able to readily iden- (111 J-Ji: Z.Sha, C. Liu, and N. Zhong. Online Recommendation
. o . . Based on Customer Shopping Model in E-Commerce. In
tify the minimal set of context important to a particular user

" . Procs of WI 2003pages 68—74, Canada, October 2003.
and tas_k' In add't'on* we showed that b_ecause Bayesian nety; 5] k. Karimiand H. J. Hamilton. Discovering Temporal/Causal
works |ntr|nS|caII3_/ en_code t_he corre_la_tlons among context, Rules: A Comparison of Methods. IRrocs of Al 2003
our approach maintained high predictive accuracies even in pages 175-189, 2003.
scenarios when the necessary context values were missing[13] J. W. Koolwaaij and P. Strating. Service Frameworks for

Although Bayesian networks demonstrated superior per- Mobile Context-Aware Applications. IfProcs of eChal-
formance in handling missing context values, the interde- E”gei 2%03 \:jVoArkEhg’)\lﬁorl]o?na,étaly, QCtOAb?_;_Z_O??-t i
pendencies is not so interpretable compared with the logic [*41 K. B. Korband A. €. NicholsonBayesian Artificial Intelli-
learned by a decision tree. Due to its interpretabilifigti- gence CRC Press, 2003.

. y ” b . p [15] G. Lacey and S. MacNamara. Context-Aware Shared Con-
sion treescan provide explanation fonteractionsbetween trol of a Robot Mobility Aid for the Elderly Blind Robotics
variables. For instance, suppose an induced tree splits on Research19(11):1054—1065, November 2000.

“weathef, which can either bedood’ or “bad’. We may [16] O.Madaniand D. DeCoste. Contextual Recommender Prob-

see that for bad weathet, “location’ yields the highest lems. InProcs of UBDM 2005pages 86-89, August 2005.
entropy reduction, but not so fogbod weathet. Although [17] P. Massa and B. Bhattacha_rjee. Using T_rust in Recom-
decision trees are useful generally for explaining up to just mender Systems: An Experimental Analysis. Rrocs of

} ; ; i g iTrust 2004 pages 221-235, 2004.
three-way interactions, such an ability is useful for answer [18] Norsys Software Corporation. Netica-J: Java Netica API.

ing important questions likel$ location important to that Retrieved June 2005, http://www.norsys.com/netica-j.html.
user when weather is good/bdd™ is therefore our inten-  [19] J. PearlProbabilistic Reasoning in Intelligent Systems: Net-
tion to explore in future, among other issues, the automatic works of Plausible InferenceMorgan Kaufmann, 1989.
extraction of similar explanations from a Bayesian network. [20] P. Resnick and H. R. Varian. Recommender SysteDasn-
munications of the ACM0(3):56-58, 1997.
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