
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2008

Verifying Completeness of Relational Query
Answers from Online Servers
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Kian-Lee TAN
National University of Singapore

DOI: https://doi.org/10.1145/1330332.1330337

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PANG, Hwee Hwa and TAN, Kian-Lee. Verifying Completeness of Relational Query Answers from Online Servers. (2008). ACM
Transactions on Information and System Security. 11, (2), 1-50. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/778

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1330332.1330337
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

9

Verifying Completeness of Relational Query
Answers from Online Servers

HWEEHWA PANG
Singapore Management University
and
KIAN-LEE TAN
National University of Singapore

The number of successful attacks on the Internet shows that it is very difficult to guarantee the
security of online servers over extended periods of time. A breached server that is not detected
in time may return incorrect query answers to users. In this article, we introduce authentica-
tion schemes for users to verify that their query answers from an online server are complete
(i.e., no qualifying tuples are omitted) and authentic (i.e., all the result values are legitimate).
We introduce a scheme that supports range selection, projection as well as primary key-foreign
key join queries on relational databases. We also present authentication schemes for single- and
multi-attribute range aggregate queries. The schemes complement access control mechanisms
that rewrite queries dynamically, and are computationally secure. We have implemented the pro-
posed schemes, and experiment results showed that they are practical and feasible schemes with
low overheads.

Categories and Subject Descriptors: H.3 [Information Systems]: Information Storage and Re-
trieval; E.5 [Data]: Files

General Terms: Security

Additional Key Words and Phrases: query answer verification, secure database systems

H. Pang is partially supported by a research grant (C220/MSS5C002) from the Singapore Man-
agement University. K.-L. Tan is partially supported by a grant from the National University of
Singapore.
Authors’ addresses: H. Pang, School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902; email: hhpang@smu.edu.sg; K.-L. Tan, Department of Com-
puter Science, National University of Singapore, 3 Science Dr 2, Singapore 117543.

9: 2 · H. Pang and K.-L. Tan

Fig. 1. System model.

1. INTRODUCTION

The amount of content on the Internet has grown tremendously over the last
decade. So has the number of successful attacks on online servers. The types
of attack ranged from tampering of data, to unauthorized access of sensitive
information like credit card numbers and user passwords. The targets of the
attacks included government, large corporations, and even e-business sites
that we would expect to have been professionally administered and secured.
This shows that it is very difficult to guarantee the security of online servers
over extended periods of time.

In many organizations, data are created and maintained on a content man-
agement platform like Interwoven, before being deployed onto (remote) portal
servers. This architecture, as depicted in Figure 1, can be exploited to improve
data security as follows: the content manager can reside in a closed, secure
network to ensure the integrity of the master database. In addition, authenti-
cation information is built into the database, before it is deployed onto online
portal servers. With each query answer, the portal servers also generate an as-
sociated correctness proof from the authentication information. If any portal
server gets compromised and returns a wrong query answer, the user would
detect a mismatch with the accompanying correctness proof and be alerted.

In this paper, we consider a database that contains a table R〈K1, K2, . . . ,
Kd, S, A〉 with key attributes K1, K2, . . ., Kd, and A denotes the remaining
attributes. We further consider two classes of queries performed by the por-
tal servers: range selection

SELECT * FROM R WHERE P1

and range aggregate queries such as

SELECT SUM(S) FROM R WHERE P1 and P2 and . . . and Pc

Verifying Completeness of Relational Query Answers from Online Servers · 9: 3

Fig. 2. Example database.

Here Pi is a range predicate of the form αi ≤ Ki ≤ βi, also denoted as Ki[αi, βi].
Note that Ki’s are the search keys used by the queries, and are not necessarily
the primary keys of the table.

The objective is to devise authentication mechanisms that enable a user
to verify the correctness of a relational query answer generated by an online
server that is possibly compromised, without contravening any access control
rules on the database. The correctness of a query answer involves two aspects:

—Authenticity. All the values in the answer originated from the master data-
base; they have not been tampered with, nor have spurious records been
introduced. For example, for the HR executive’s query on the Employee ta-
ble in Figure 2, the query server indeed returns the answer {[005, A, 2000,
..], [002, C, 3500, ..], [001, D, 8010, ..]}, and not {[005, C, 2000, ..], [002, A,
3500, ..], [001, D, 8010, ..]} (the names in the first two records have been
swapped), nor {[005, A, 2000, ..], [002, C, 3500, ..], [001, D, 8010, ..], [009, X,
8050, ..]} (the last record is spurious).

—Completeness. Every record satisfying the query conditions is included in the
answer; (e.g., the answer {[005, A, 2000, ..] , [001, D, 8010, ..]} for the HR
executive’s query in Figure 2 is incomplete as [002, C, 3500, ..] is omitted.)

In addition, the authentication mechanisms should satisfy the following
requirements:

—Precision: Only records and attribute values that satisfy the conditions of
each query are returned. The motivation is to avoid contravening access
control rules on the database, which would become (part of) the query condi-
tions through query rewriting.

—Security: It is computationally infeasible for a portal server to cheat by gen-
erating a valid proof for an incorrect query answer.

—Efficiency: The procedure for the portal server to generate the proof for a cor-
rect (i.e., complete and authentic) query answer has polynomial complexity.
Likewise the procedure performed by the user to verify a query answer has
polynomial complexity.

9: 4 · H. Pang and K.-L. Tan

To the best of our knowledge, other than our earlier paper in Pang et al.
[2005], only the proposals in Devanbu et al. [2000] and Narasimha and Tsudik
[2006] address verification of query answer completeness for range selection
queries (but without concurrently enforcing access control rules as we will
explain in Section 3). Moreover, none of the existing authentication schemes
can handle range aggregate queries.

In this paper, we first introduce a range selection scheme that gener-
ates, for an ordered list of records [r1, r2, .., rn] and a query range [α, β],
cryptographic proof that the two records bordering the answer [ra, .., rb],
1 < a ≤ b < n indeed fall outside the query range, i.e., ra−1.K <
α and β < rb+1.K. The scheme is secure in the sense that it is
computationally infeasible for a breached portal server to devise such a
proof for an incorrect query answer. Thus, referring to the example
in Figure 2, our scheme would enable the portal server to return ex-
actly {[005, A, 2000, ..], [002, C, 3500, ..], [001, D, 8010, ..]}, and pro-
vide proof that the next record in the table has a higher salary than
stated in the query condition, without disclosing directly or indirectly
what that salary amount is. Building upon the above scheme, we then
present extensions for verifying general select-project queries, as well as
an important class of select-project-join queries involving primary key-foreign
key joins.

Following that, we present efficient authentication schemes for single- and
multi-attribute range aggregate queries. Our schemes are based on a hier-
archy of partial sums that satisfy range aggregate queries without requiring
information from records beyond the query range. We build authentication
capability in the partial sum hierarchy to facilitate verification that the an-
swer to a range aggregate query covers all and only the records in the query
range. The schemes are applicable to distributive and algebraic aggregates
[Gray et al. 1997] in general.

We have implemented the proposed schemes non-intrusively in a middle-
ware between the applications and the database server. Results from exper-
iments conducted to evaluate the performance of our schemes show that the
overhead is acceptable for the schemes to be of practical use.

Besides online servers that may become compromised over time, our au-
thentication mechanisms are also applicable to systems in which queries are
processed by untrusted servers, as in data publishing [Devanbu et al. 2000;
Pang et al. 2005], outsourced databases [Hacigü mü s et al. 2002, Damiani
et al. 2005a; Damiani et al. 2005b], and edge computing [Pang and Tan
2004].

This article is an extension of our earlier work on authenticated range se-
lection in Pang et al. [2005]. We have improved the scheme–the new scheme
incurs n/2 times less computation where n is the number of records in the
database table, and it ensures that brute-force attacks (by enumerating all
possible attribute values) are now infeasible. Our new scheme also goes be-
yond the earlier work in handling null query answers. In addition, this article
introduces new mechanisms for authenticating range aggregates and a perfor-
mance study.

Verifying Completeness of Relational Query Answers from Online Servers · 9: 5

The rest of this article is organized as follows. The next section describes
background on the system model and cryptographic primitives, while Section 3
covers related work. Section 4 introduces our scheme for authenticating range
selection queries; the analysis of the scheme is given in Section 5. Following
that, Sections 6 and 7 present our schemes for authenticating single- and
multi-attribute range aggregate queries, respectively. Section 8 describes the
implementation of the schemes, and presents results of a performance study.
Finally, Section 9 concludes the article.

2. BACKGROUND

This section begins by defining some cryptographic primitives that are used
in our solutions. Following that, we present the security threats in our sys-
tem model.

2.1 Cryptographic Primitives

Our proposed solution and much of the related work are based on the following
cryptographic primitives:

—One-way hash function. A one-way hash function, denoted as h(.), works
in one direction: it is easy to compute a hash value h(m) from a pre-image
m; however, it is hard to find a pre-image that hashes to a given hash value,
Examples include MD5 [Rivest 1992] and SHA [2001]. We will use the terms
hash, hash value, and message digest interchangeably.

—Digital signature. A digital signature algorithm is a cryptographic tool for
authenticating the integrity of a signed message as well as its origin. In
the algorithm, a signer keeps a private key secret and publishes the corre-
sponding public key. The private key is used by the signer to generate digital
signatures on messages, while the public key is used by anyone to verify the
signatures on messages. RSA [Rivest et al. 1978] and DSA [DSS 1991] are
two common signature algorithms.

—Signature aggregation. As introduced in Boneh et al. [2003], this is a multi-
signer scheme that aggregates signatures generated by distinct signers on
different messages into one signature. Signing a message m involves com-
puting the message hash h(m) and then the signature on the hash value.
To aggregate t signatures, one simply multiplies the individual signatures
so the aggregated signature has the same size as each individual signature.
Verification of an aggregated signature involves computing the product of all
message hashes and then matching with the aggregated signature.

—Merkle hash tree. We shall only explain the Merkle hash tree with the ex-
ample in Figure 3, which is intended for authenticating data values d1, .., d4;
a detailed definition can be found in Merkle [1989]. Each leaf node Ni is as-
signed a digest h(di), where h is a one-way hash function. The value of each
internal node is derived from its child nodes, (e.g., N12 = h(N1 | N2) where
| denotes concatenation). In addition, the value of the root node is signed.
The tree can be used to authenticate any subset of the data values, in con-
junction with a verification object (VO). For example, to authenticate d1, the

9: 6 · H. Pang and K.-L. Tan

Fig. 3. Example of a Merkle hash tree.

VO contains N2, N34 and the signed N1234. The recipient first computes h(d1)
and h(h(h(d1) | N2) | N34), then checks if the latter matches the signed N1234.
If so, d1 is accepted; otherwise, d1 or some of the digests leading up to the
root have been tampered with.

2.2 System and Threat Models

Figure 1 depicts our system model, which supports three distinct roles:

—The content manager maintains a master database, and deploys it with one
or more associated digital signatures (e.g., RSA [Rivest et al. 1978]) onto the
portal server.

—The portal server processes user queries, possibly after some query-rewriting
to comply with the access control rules on the database. In general, there
could be several portal servers, with some of them being situated remotely.
Since the portal servers are open for external access, they could become com-
promised over time and a breach may not be detected immediately. There-
fore the query answers that they supply to the user must be accompanied by
some “correctness proof”, derived from the database and signatures created
by the content manager.

—The user issues queries to the portal server. To verify the query answers
against their respective correctness proofs, the user obtains the public key
of the organization through an authenticated channel, such as a public key
certificate issued by a certificate authority.

There are several security considerations in the above model. Given that
the portal server may become compromised, one concern is privacy of the data.
Obviously, an adversary who gains access to the operating system or hardware
of the portal server may be able to browse through the database, or make il-
legal copies of the data. Solutions to mitigate this concern include encryption
(e.g., EFS, PGPdisk, Hacigü mü s et al. [2002], Li and Omiecinski [2005]) and
steganographic storage (e.g., Anderson et al. [1998], Pang et al. [2003], Drive-
Crypt), and are orthogonal to our work here.

Another concern relates to user authentication and access control, in speci-
fying what actions each user is permitted to perform. Those issues have been
studied extensively (e.g., Chokani [1992], Neuman and Tso [1994], Sandhu and

Verifying Completeness of Relational Query Answers from Online Servers · 9: 7

Samarati [1994]). Any query answer verification mechanism must not compro-
mise the access control policy.

Our primary concern addressed in this article is the threat that a compro-
mised portal server may return incorrect query answers to the users. An ad-
versary who is cognizant of the data organization of the online database may
attempt to make logical alterations to the data, thus inducing incorrect query
answers; an example is to illegally effect fund transfers between two accounts.
Even if the data organization is hidden, for example through data encryption
or steganographic schemes [Anderson et al. 1998; Pang et al. 2003], the ad-
versary may still sabotage the database by overwriting physical pages within
the storage volume. In addition, a compromised portal server could be made
to return incomplete query answers by withholding data intentionally. There-
fore mechanisms for users to verify the correctness of their query answers are
essential here.

3. RELATED WORK

Our primary concern in this article is to address the threat that a compromised
portal server may return incorrect answers to relational queries. As such, we
shall review only existing work on authenticating answers of SQL queries and
techniques for processing range aggregate queries.

3.1 Range Selection

Authenticating query answers from untrusted databases has been an active
area of research in the past few years. Here we shall review only those works
that include verification of the completeness of answers produced by range
selection queries. Many other works on query authentication like Mykletun
et al. [2004], Pang and Tan [2004], and Ma et al. [2005] are skipped because
they do not address the completeness concern, meaning they are unable to
detect if answers have been dropped by the query server.

In Devanbu et al. [2000], Devanbu et. al. proposed an authentication
scheme that builds a Merkle Hash Tree (MHT) over a sorted list of data.
For a range selection K[α, β] whose answer is [ra, .., rb], the server returns
[ra−1, ra, .., rb , rb+1] where ra−1.K < α ≤ ra.K, rb .K ≤ β < rb+1.K, together with
neighboring digests leading up to the root of the MHT. The MHT proves that
the records in the answer set are also contiguous in the database. The user
can verify that the answer is complete since the values bounding the answer
are also disclosed, though this may violate access control rules. This work was
extended in Devanbu et al. [2003] to multi-attribute range selections. The ex-
tended scheme builds an MHT over the first attribute, then expands each of
its leaf nodes into an MHT over the second attribute, and so on. Martel et al.
[2004] generalized the scheme to Search DAGs, which encompass multidimen-
sional range trees, tries, and skip lists. All of these schemes do not support
authentication of aggregates.

Li et al. [2006] extended the MHT approach to an Embedded Merkle B-tree
(EMB-tree). The EMB-tree constructs an embedded MHT over the data within
each page, then an upper MHT over the root digests of the embedded MHTs.

9: 8 · H. Pang and K.-L. Tan

Only the upper MHT is materialized; the intra-page MHTs are reconstituted
on-the-fly during VO computation. Experiments showed that EMB-trees sup-
port query processing very efficiently.

Deviating from the MHT approach, we developed a signature chain scheme
that verifies the completeness of answers of range queries [Pang et al. 2005].
The scheme embodies two key ideas: first, each tuple is given a signature de-
rived from its own digest and those of its left and right neighbors, so it is not
possible to omit a tuple from the answer while still satisfying the neighbors’
signatures. To reduce computation and traffic overheads, signatures of the
result tuples can be aggregated. Second, a mechanism for verifying the bound-
ary conditions was provided. In Cheng et al. [2006], we combined the signature
chain with a spatial index structure for authenticating multi-attribute range
selections. That authentication scheme is still unable to handle aggregates. In
addition, the signature chain is computationally expensive and may be suscep-
tible to brute-force attacks to reveal the tuples bounding the answers, as we
will explain in the course of developing the solution in Section 4. The present
paper offers an improved scheme that is secure and more efficient.

Another recent work is Narasimha and Tsudik [2006], which ad-
dresses completeness of range selection queries, projections, joins, and set
operation queries. The solution proposed there is also based on signature ag-
gregation and chaining. That work also does not address the simultaneous en-
forcement of access control rules on the database, neither does it handle range
aggregation.

3.2 Range Aggregates

There have been several studies on efficiently evaluating range aggregate
queries, particularly in the context of OLAP systems. However, they are not
directly applicable to our system model, as they either leak extra information
or they do not support authentication of query answers.

The classic HAMS scheme in Ho et al. [1997] for OLAP range sum works
as follows. Consider a data cube with d dimensions, and nj elements along
dimension j. S[i1, i2, ..., id] denotes the value in cell [i1, i2, ..., id], and Region(l1 :
h1, l2 : h2, ..., ld : hd) denotes the d-dimensional space bounded by l j ≤ i j ≤ h j

along every dimension j. HAMS uses a d-dimensional array P of size n1 × n2 ×

... × nd to store precomputed prefix sums:

P[x1, x2, ..., xd] = SUM(0 : x1, 0 : x2, ..., 0 : xd)

=

x1
∑

i1=0

x2
∑

i2=0

...

xd
∑

id=0

S[i1, i2, ..., id]

At runtime, any range sum can be computed from P as:

SUM(l1 : h1, l2 : h2, ..., ld : hd) =
∑

∀x j∈{l j−1,h j}

{(

d
∏

i=1

s(i)

)

× P[x1, x2, ..., xd]

}

,

∀ j ∈ {1, 2, ..., d}

Verifying Completeness of Relational Query Answers from Online Servers · 9: 9

where

s(j) =

{

1 if x j = h j

−1 if x j = l j − 1.

For example, when d = 2, the range sum is obtained as: P[h1, h2] − P[h1, l2 −

1] − P[l1 − 1, h2] + P[l1 − 1, l2 − 1].
The HAMS scheme produces overheads and query answer sizes that are

proportional to 2d. Moreover, 2d − 1 of the prefix sums in the answer relate to
records that are outside of the query scope, and thus constitute data leakage.
Subsequent extensions to the prefix sum approach, (e.g., Chun et al. [2001]
and Geffner et al. [2000]), have focused on reducing update overheads but
not authentication considerations. Similarly, aggregate trees exist for spatial
and spatio-temporal databases, (e.g., aR-tree [Papadias et al. 2001], aRB-tree
[Papadias et al. 2002] and BA-tree [Zhang et al. 2002]); again, authentication
of the aggregate result is not addressed.

The existing work that is most relevant to this paper is Przydatek et al.
[2003], which describes an authentication scheme for sensor networks in which
aggregators are entrusted with summarizing sensor data for a home server. In
the specific case of an “average” operation, the aggregator A commits to the
sensor data collection, then reports its average x to the home server H. In
addition, A sorts the sensor data and commits to the sorted list as well. H then
tests whether the two lists contain the same elements through sampling. If the
test succeeds, A sends to H the frequency count of each sensor value (or each
range of values). Finally, H computes the average directly from the frequency
counts, and compares it with x. This solution does not address our problem
of aggregate authentication: (1) Our system model includes a secure content
manager that can certify the dataset. There is no necessity, nor is it practical
to maintain two lists of the dataset for counterchecking. (2) The frequency
counts constitute a histogram of the data distribution. For a large dataset, the
histogram has to be pregenerated, and that allows a breached query server to
determine the maximum error it can introduce while eluding detection. (3) A
large dataset is likely to reside on disk, in a series of physical blocks. Spot
checks against the sorted list generate random I/Os and are expensive.

4. RANGE SELECTION QUERIES

We begin this section by elaborating on why access control imposes the preci-

sion requirement described in the Introduction. Following that, we introduce
our signature chain scheme for authenticating range selection queries.

4.1 Access Control Requirement

Access control has been an integral mechanism in commercial database sys-
tems. At the most rudimentary level, access control may be defined on entire
tables or columns. To achieve finer-grained control on which records can be
accessed by which users, in theory it is possible to create views for specific
user groups. However, this approach is not scalable to large numbers of user
groups. Instead, modern database systems support fine-grained access control
by dynamically modifying the user queries.

9: 10 · H. Pang and K.-L. Tan

An example is the Virtual Private Database (VPD) feature of Oracle’s 9iR2
DBMS [Oracle VPD 2002]. VPD encodes the authorization policy into func-
tions defined on each relation. Those functions, in conjunction with the
user/application context, are used to generate where clause predicates to be
appended to the user query before it is executed. The added predicates ensure
that the user receives only those records in the table or view that are permitted
by the authorization policy.

The above practice of dynamically rewriting user query points to the need
for a solution that generates correctness proof for range queries, without di-
vulging extra information like boundary records.

4.2 Basic Signature Chain Scheme

4.2.1 Problem Definition. Suppose the content manager has a sorted list of
records R = [r1, .., rn], each record having the fields 〈K, A〉 where K is the sort
key such that L < K < U for some lower bound L and upper bound U, and
A denotes the remaining record attributes. (If the key allows duplicate val-
ues, the records can be disambiguated by appending a replica number, so that
the ri.K|repl# values are distinct.) Now a user submits a query (to the portal
server) for the records that have key values between α and β, i.e., σα≤r.K≤β(R).
The server needs to prove to the user that the answer Q = [ra, .., rb] is correct.

In our proposed range selection authentication scheme, each record has an
associated digital signature that is used to verify that the answer Q for a query
is complete. The following two conditions together ensure completeness:

—Contiguity. Each pair of successive entries in Q also appear consecutively in
R. This can be checked by making the signature of each record in R depen-
dent on the key value of its immediate left and right neighbors.

—Correct boundaries. ra and rb are the first and last records, respectively, in
R that satisfy the query condition. Conceptually, we make the signature of
ra dependent on h(ra.K − ra−1.K) where h is an additive hash function such
that h(x + y) = h(x) ◦ h(y) for some operator ◦. To prove ra−1.K < α without
disclosing ra−1, the portal server returns h(α − ra−1.K), and the user then
combines it with h(ra.K − α) to obtain h(ra.K − ra−1.K) for matching with the
signature. As long as h(x) for x ≤ 0 is either undefined or computationally
infeasible to derive, the portal server would not be able to cheat by returning
a legitimate h(α − ra−1.K) if in fact ra−1.K ≥ α. A similar technique enables
the verification of rb+1.K > β.

Furthermore, to check the authenticity of the query answer, the attribute val-
ues of each record ri in R also contribute to its signature. We detail below a
scheme for integer keys; generalization to other attribute types is addressed in
Section 4.5.

4.2.2 Preparation. To simplify the solution, the content manager inserts
two boundary records r0 and rn+1, where r0.K = L and rn+1.K = U,so the
sorted list becomes R = [r0, r1, .., rn,rn+1]. We assume that L and U are known
to everyone.

Verifying Completeness of Relational Query Answers from Online Servers · 9: 11

As explained earlier, for checking boundaries ra−1.K < α and rb+1.K > β,
the record signature has to incorporate the output of an additive hash function
on the difference between ra.K and ra−1.K, and between rb .K and rb+1.K. Un-
fortunately, there is as yet no known algebraic function satisfying the additive
property for which there is no simple way to derive the inverse function h(x)
for x ≤ 0. The existence of the inverse function allows a breached server to
return h(α − ra−1.K) and h(rb+1.K − β) even for ra−1.K ≥ α and rb+1.K ≤ β, thus
breaking the security of our scheme.

In the absence of a suitable algebraic function, we have to use an iterative
hash function instead. Thus, the content manager creates the signature for
record ri, 1 ≤ i ≤ n, as:

sig(ri) = s(h(hri.K−ri−1.K(ri−1) | hri+1.K−ri.K(ri+1) | MHT(ri))) (1)

where s is a signature function using the portal’s private key, hx(ri) applies a
collision-resistant hash function h on (the concatenation of) all the attribute
values of record ri iteratively for x times, and MHT(ri) is the root digest of the
Merkle hash tree over the attributes (including K) of ri. The MHT enables
the record to be authenticated, even when some attributes are omitted from
the result.

By using all the record attributes in the input argument for the hash func-
tion, a brute-force enumeration of all possible arguments would incur a cost in
the order of 2|r|, where |r| is the record size in bits. At current hardware speed,
|r| = 1,024 bits would be sufficient to render the brute-force attack computa-
tionally infeasible. In case the actual attributes total less than 1,024 bits, we
could simply pad each record with a randomly generated string, at the expense
of some storage overhead.

Furthermore, for the boundary records r0 and rn+1:

sig(r0) = s(hr1.K−L(r1))

sig(rn+1) = s(hU−rn.K(rn))

Equation (1) has two important differences from our earlier formulation in
Pang et al. [2005]. Previously, we had defined the leftmost component as
hU−ri−1 .K−1(.); on the average, that incurs (U − L)/2 iterative hashing opera-
tions. The current formulation, hri.K−ri−1.K(.), requires only (U − L)/n iterative
hashes where n is the number of records in the database table. From the sec-
ond component, hri+1.K−ri.K(.), we realize a similar saving. Another difference
is that in equation (1) the iterative hash functions are applied on ri−1 and ri+1,
rather than on ri itself; the significance of this will become evident shortly after
we describe the operations carried out in verifying sig(ra) and sig(rb).

4.2.3 Query Processing. Along with the query answer Q = [ra, .., rb], the
server returns the associated record signatures, and intermediate digests
hα−ra−1.K(ra−1) and hrb+1.K−β(rb+1).

4.2.4 Answer verification. Finally, the user checks the signature of each
record in Q as follows.

9: 12 · H. Pang and K.-L. Tan

For sig(ra):

(1) Hash the intermediate digest hα−ra−1.K(ra−1), (ra.K − α) more times to pro-
duce hra.K−ra−1.K(ra−1).

(2) Compute hra+1.K−ra.K(ra+1) from the value of ra and ra+1 in Q.

(3) Compute MHT(ra) from the attribute values of ra in Q.

(4) Check whether:

s−1(sig(ra)) ?= h(hra.K−ra−1.K(ra−1) | hra+1.K−ra.K(ra+1) | MHT(ra))

where s−1(.) decrypts its argument with the portal’s public key. If so, ra is
indeed the first record that satisfies α ≤ r.K, and ra has not been tampered
with; otherwise the answer Q is wrong.

For sig(ri), a < i < b :

(1) Compute hri.K−ri−1.K(ri−1) from the value of ri−1 and ri in Q.

(2) Compute hri+1.K−ri.K(ri+1) from the value of ri and ri+1 in Q.

(3) Compute MHT(ri) from the attribute values of ri in Q.

(4) Check whether:

s−1(sig(ri)) ?= h(hri.K−ri−1.K(ri−1) | hri+1.K−ri.K(ri+1) | MHT(ri))

For sig(rb):

(1) Compute hrb .K−rb−1.K(rb−1) from the value of rb−1 and rb in Q.

(2) Hash the intermediate digest hrb+1.K−β(rb+1), (β − rb .K) more times to pro-
duce hrb+1.K−rb .K(rb+1).

(3) Compute MHT(rb) from the attribute values of rb in Q.

(4) Check whether:

s−1(sig(rb)) ?= h(hrb .K−rb−1.K(rb−1) | hrb+1.K−rb .K(rb+1) | MHT(rb))

We can now explain why the iterative hash functions are applied to ri−1 and
ri+1 in equation (1). If the first iterative hash function there is applied on ra
instead, the server would have to return the intermediate digest hα−ra−1.K (ra) to
enable the user to check against sig(ra). As the user knows the value of α, and
as ra is returned to the user as part of the query answer, the user can simply
see how many times he has to hash ra to get a match with the intermediate
digest hα−ra−1 .K(ra), and from there calculate ra−1.K. Thus the key value of ra−1
is compromised. Similarly, the key value of rb+1 would be compromised if the
iterative hash function is applied on rb rather than rb+1 as in equation (1). This
is exactly why our earlier scheme in Pang et al. [2005] is susceptible to brute-
force attack; the new formulation in this paper eliminates that vulnerability.

4.3 Null Query Answer

As we will show in the completeness analysis shortly, with the basic signature
scheme above the portal server cannot drop some valid values or introduce
tampered values without being detected by the user. However, we still need
extra provisions for checking null query answers. These provisions necessitate

Verifying Completeness of Relational Query Answers from Online Servers · 9: 13

a shadow table for each data table, and should be enabled only if users demand
proof for null query answers.

Case 1: Q = ∅ because β < r1.K.
To prove that Q is correct, the portal server returns sig(r0) and the interme-

diate digest hr1.K−β(r1). The user hashes the intermediate digest (β − L) more
times to produce hr1.K−L(r1). If and only if it matches s−1(sig(r0)), β is smaller
than r1.K and the null answer is correct.

Case 2: Q = ∅ because rn.K < α.
To prove that Q is correct, the portal server returns sig(rn+1) and the inter-

mediate digest hα−rn.K(rn). The user hashes the intermediate digest (U − α)
more times to produce hU−rn.K(rn). If and only if it matches s−1(sig(rn+1)), α is
larger than rn.K and the null answer is correct.

Case 3: Q = ∅ because ri.K < α ≤ β < ri+1.K for some 1 ≤ i < n.
A straightforward first attempt for proving Q in this case is for the portal

server to return the signature sig(ri), the digest hri.K−ri−1.K(ri−1), the interme-
diate digest hri+1.K−β+α−ri.K(ri+1), and the digest MHT(ri). The user will hash
the intermediate digest (β − α) more times to derive hri+1.K−ri.K(ri+1), then check
against the signature sig(ri). Unfortunately, the portal server could just as
well supply the signature and digests for any 1 ≤ j < n, i 6= j, such that
r j+1.K − r j.K > β − α, and the user verification would still succeed. Thus the
first attempt is not secure.

To handle the present case securely, we need to introduce a shadow table T =
[t1, .., tn−1], each shadow record ti comprising a key K and a signature. ti.K is set
to any value in between those of data records ri and ri+1, i.e., ri.K < ti.K < ri+1.K

for 1 ≤ i < n. The signature of ti is computed as:

sig(ti) = s(h(hti.K−ri.K(ri) | hri+1.K−ti.K(ri+1) | h(ti.K))) (2)

For integer domain, we simply leave sig(ti) undefined whenever ri.K = ri+1.K

or ri.K + 1 = ri+1.K. The reason is that those conditions are incongruent with
ri.K < α ≤ β < ri+1.K.

Along with the query answer, the portal server returns ti.K, sig(ti), and the
following digests:

if (β ≤ ti.K), then
return hα−ri.K(ri), hβ−ri.K(ri) and hri+1.K−ti.K(ri+1);

else if (ti.K ≤ α), then
return hti.K−ri.K(ri), hri+1.K−α(ri+1) and hri+1.K−β(ri+1);

else // α < ti.K < β

return hα−ri.K(ri) and hri+1.K−β(ri+1);

Finally, the user combines the digests and checks whether they match the
signature:

s−1(sig(ti)) ?= h(hti.K−ri.K(ri) | hri+1.K−ti.K(ri+1) | h(ti.K)) (3)

Specifically, the digests are combined as follows:

if (β ≤ ti.K), then
hash hα−ri.K(ri) (ti.K − α) times to get hti.K−ri.K (ri), then check equation (3);

9: 14 · H. Pang and K.-L. Tan

hash hβ−ri.K(ri) (ti.K − β) times to get hti.K−ri.K(ri), then check equation (3);
else if (ti.K ≤ α), then

hash hri+1.K−α(ri+1) (α − ti.K) times to get hri+1.K−ti.K(ri+1), then check
equation (3);
hash hri+1.K−β(ri+1) (β − ti.K) times to get hri+1.K−ti.K(ri+1), then check
equation (3);

else // α < ti.K < β

hash hα−ri.K(ri) (ti.K−α) times to get hti.K−ri.K(ri), hash hri+1.K−β(ri+1) (β−ti.K)
times to get hri+1.K−ti.K(ri+1), then check equation (3).

4.4 Generalization to SPJ Queries

Having presented the signature chain scheme for range selection queries, we
now show that the scheme extends to other relational operations, specifically
projection and some subclasses of join. Queries with range selections on mul-
tiple attributes can be supported by constructing a signature chain on the con-
catenated attribute values. An alternative is to combine the signature chain
with a spatial index structure; we have studied this approach in Cheng et al.
[2006].

4.4.1 Multipoint Queries. So far, we have considered range selection where
the result tuples occupy a contiguous range within the table. In the case of
a query that contains selection attribute(s) other than K, (e.g., “SELECT *
FROM Emp WHERE Salary < 10000 AND Dept = 1” on the table in Figure 2),
or a query with multiple WHERE clauses on the sort key, the answer could
comprise several distinct intervals of records. We call this a multipoint query.

In general, the answer for a multipoint query can be treated as a range
of contiguous records on K, some of which satisfy the query conditions while
others should be filtered out. Consider a filtered record ri within the result
range, (e.g., [002, C, 3500, 2, ..]) in Figure 2.

—Case 1. The access control policy permits the user to see ri. The portal server
returns the attribute value(s) that fails the query condition, (i.e., “ri.Dept =
2” in the above example, plus the key value “ri.Salary = 3500”) and digests
for the remaining attribute values of ri. This enables the user to match the
signatures of ri−1, ri and ri+1 using equation (1). The overhead of this solution
is proportional to the number of filtered records.

—Case 2. The access control policy prohibits the user from seeing ri, so his
query is rewritten to filter out ri. Unlike Case 1, here the portal server
cannot return any of the actual attributes of ri. One solution is to intro-
duce additional columns to the table, one column for each user group in
the access model to indicate whether individual records are visible to that
user group.
For example, consider an access model with user clearance levels of “secret,”
“confidential,” and “unclassified.” Three binary attributes would be added
to the example table in Figure 2 to indicate whether each record can be
seen by users with “secret,” “confidential,” and “unclassified” clearances, re-
spectively. Furthermore, an artificial ordinal attribute is introduced as the

Verifying Completeness of Relational Query Answers from Online Servers · 9: 15

sort key in place of Salary; the ordinal key preserves the record ordering on
Salary, but hides the actual Salary figures. Now, for a filtered record ri that
is shielded from a user with only “confidential” clearance, the portal server
could return “ri.confidential = No”, plus the ordinal key value and digests
for the other attributes of ri. The user can then compute equation (1) for
matching with the signatures of ri−1, ri and ri+1. This solution reveals the
total number of records that fall within the result range on K, but hides the
actual attribute values of the filtered records.

4.4.2 Selection-Projection Queries. These queries involve the projection op-
eration πK,A1,..,A p

(R) = {〈r.K, r.A1, .., r.A p〉 | r ∈ R} where A i’s are attributes of
relation R, sorted on K.

The projection operation can filter out any or all of the attributes of R, except
for K which the user needs in order to test the query result for completeness.
Unlike the scheme in Devanbu et al. [2000], we do not want the portal server
to return to the user any attribute values in the result tuples that should be
filtered out, so as to avoid disclosing sensitive columns and compromising ac-
cess control rules. Another reason is that some of the omitted attribute values
could be very large, (e.g., BLOBs), so sending them to the user would incur
space and transmission overheads unnecessarily.

Our scheme allows unwanted attribute values to be removed at the portal
server. Since MHT(r) in equation (1) is defined as the root digest of a Merkle
Hash Tree on the attribute values of record r, the portal server can provide the
digest in place of the actual value for those attributes that are projected out,
so the user can still compute MHT(r) without the actual values.

Another issue to consider here is the handling of duplicates in the result
Q. For some queries, the user may want to retain the duplicates, (e.g., for
the computation of SUM and AVG). For other queries, the user may require
the portal server to perform duplicate elimination by specifying the keyword
DISTINCT. In the former case, the MHT(r) component in equation (1) enables
the user to uniquely identify each duplicate, so the portal server cannot omit
some duplicates without being detected. In the latter case where duplicates are
not needed, our scheme still requires the portal server to present MHT(r) and
the signature sig(r) for each eliminated duplicate r to enable all the signatures
for Q to be checked. Admittedly, this discloses the number of data records
underlying each result tuple, which may be undesirable in some situations.

4.4.3 Selection-Projection-Join Queries. These queries involve the join op-
eration R 1C S where C is a condition of the form A i 2 A j, A i, and A j are
attributes of relations R and S respectively, and 2 ∈ {=, 6=,<,≤,>,≥}.

Our scheme uses signatures on the key attribute of a relation to generate
proof of the completeness of query results from that relation. Therefore the
scheme may not work for ad-hoc joins on arbitrary attributes in general. How-
ever, primary key-foreign key joins, an important class of join operations, can
be supported as follows.

Consider R.A i = S.A j, where A i is a foreign key attribute in R and A j is
the corresponding primary key in S. Referential integrity constraint mandates

9: 16 · H. Pang and K.-L. Tan

that every instance in R.A i must have a matching entry in S.A j. Consequently,
joining with S.A j in itself does not cause any instance in R.A i to drop out of
the query result, so we need only deal with selection operations on R.A i or
S.A j. This can be achieved by ordering R on A i at the content manager’s
master database, and constructing signatures for this sort order. After a join
operation, the user checks the completeness of the result with respect to R.A i,
possibly taking into account any selection conditions on R.A i or S.A j, as with
Select-Project queries.

Another class of joins that can be supported is R.A i ≤ S.A j, where complete-
ness of the join result can be checked using the techniques presented earlier:

—Let the first entry in the ordered R partition of the join result be min(R.A i),
and the last entry in the ordered S partition be max(S.A j).

—Verify that the R partition contains all r ∈ R satisfying L < r.A i ≤

max(S.A j).
—Verify that the S partition contains all s ∈ S satisfying min(R.A i) ≤ s.A j < U.

4.5 Generalization to Other Attribute Types

4.5.1 Floating Point Attributes. To extend our signature chain beyond the
integer domain, we observe that a floating point attribute t is represented as a
mantissa tm and an exponent te (t = tm ∗ 2te), where 0.5 ≤ tm < 1 or −1 < tm ≤
−0.5. The inequality t ≥ c for some value c = cm ∗ 2ce translates to one of the
following conditions:

—cm < 0 ≤ tm;

—(cm < 0) and (tm < 0) and ((te < ce) or ((te = ce) and (tm > cm))); or

—(cm ≥ 0) and (tm ≥ 0) and ((te > ce) or ((te = ce) and (tm > cm))).

Floating point attributes can thus be supported with two signature chains, on
the integer mantissa and on the integer exponent.

4.5.2 Character String Attributes. Another common attribute type in rela-
tional databases is the character string. Equality match for character strings,
e.g., name = “John Smith”, can be supported easily, by hashing the string value
to an integer digest before applying the signature chain on the digest. In con-
trast, ad-hoc prefix matches, e.g., name ≥ “John*”, entail sorting the table on
that string attribute, and building a signature chain on each character posi-
tion; the attribute in each record can then be compared with the string value
given in the query, character by character.

4.5.3 When to Build Signature Chains. In theory, a relation could have
several signature chains, one on each sort order of the relation. As the signa-
ture chains incur storage and update overheads, they should be applied dis-
creetly, on only the interesting sort orders (as defined by the WHERE clauses
in expected queries for which correctness proofs are needed). This is analogous
to building indexes only on interesting sort orders, rather than all attribute

Verifying Completeness of Relational Query Answers from Online Servers · 9: 17

permutations of a table. At a finer granularity, it is possible to design the
portal server and client software to skip the proof generation and verification
protocol for selected queries that do not require proofs, even when an underly-
ing signature chain is available.

5. ANALYSIS OF SIGNATURE CHAIN SCHEME

5.1 Completeness Analysis

The inclusion of MHT(ri) in the record signature sig(ri) ensures that the record
content is authentic. Hence we need only consider whether the contiguity and
boundary criteria are enforced properly by our authentication scheme. We now
examine the various cases where a compromised server may attempt to violate
those two criteria, and show in each case how the attempt at cheating cannot
succeed:

—Case 1. The portal server omits a qualified record ra−1 that satisfies ra−1.K ≥

α. Since α − ra−1.K ≤ 0, hα−ra−1.K(ra−1) is undefined, and it is computationally
infeasible for the portal server to find a replacement to which the user can
further hash (ra.K − α) times to get hra.K−ra−1.K(ra−1).

—Case 2. The portal server omits a qualified record rb+1 that satisfies rb+1.K ≤

β. Similar to Case 1.

—Case 3. The portal server claims that rn.K < α and returns Q = ∅. Here
the portal server is supposed to return sig(rn+1) and hα−rn.K(rn) so that the
user can derive hU−rn.K(rn). If in fact rn.K ≥ α, the portal server would not
be able to produce hα−rn.K(rn) as it is undefined or computationally infeasible
to derive.

—Case 4. The portal server claims that r1.K > β and returns Q = ∅. Similar
to Case 3.

—Case 5. The portal server claims that ri.K < α ≤ β < ri+1.K for some i and re-
turns Q = ∅. In this case, the portal server is supposed to return some digests
corresponding to the shadow record ti, along with its signature. If it is not
true that ri.K < α ≤ β < ri+1.K, the required digests hα−ri.K(ri)/ hri+1.K−α(ri+1)
and hβ−ri.K(ri)/ hri+1.K−β(ri+1) would be undefined or computationally infeasible
to produce.

—Case 6. The portal server returns Q = [ra, .., ri, r j, .., rb] where i + 1 < j;
in other words, the entries in Q are not contiguous in R and one or more
entries between ri and r j are omitted. The query answer causes the user
to use hr j.K−ri.K(r j), rather than the correct hri+1.K−ri.K(ri+1), in checking sig(ri).
This cannot succeed, otherwise there is a collision in the collision-resistant
hash function h.

—Case 7. Q = [ra, .., ri, r j, rk, .., rb] but r j 6∈ R; in other words, the portal server
introduces a spurious entry in the query answer. To deceive the user, the
portal server would need a valid signature for r j, which can only be generated
by the content manager.

9: 18 · H. Pang and K.-L. Tan

Fig. 4. Reduction in hash operations.

5.2 Complexity Analysis

The overheads for transmitting and verifying a signature for every ri ∈ Q
can be very large, especially if the communication bandwidth or processing
capability of the user is limited. To lighten these overheads, the portal server
can combine the signatures associated with individual entries in the answer Q
into one aggregated signature, using the techniques proposed in Boneh et al.
[2003]. This optimization also helps the user to cut down to just one signature
verification operation per query answer. Thus the primary cost consideration
now is the number of hashing operations during verification.

For each sig(ri) in the answer verification procedure in Section 4.2.1, step
3(a) incurs an average of (U − L)/n iterative hash operations, where n is the
number of records in the database table; likewise step 3(b) incurs (U − L)/n
iterative hash operations on the average. In fact, each ri.K in the query answer
contributes to sig(ri−1) as hri.K−ri−1.K (ri.K) and to sig(ri+1) as hri+1.K−ri.K(ri.K), so
the computation of the two digests can be shared. This cuts the combined
number of hash operations for steps 3(a) and 3(b) for each sig(ri) to between
(U − L)/n and 2(U − L)/n. Assuming a fan-out of 2 for the Merkle hash tree,
step 3(c) requires another 2 p − 1 hash operations, where p is the number of
record attributes. Therefore the expected total number of hash operations is
at most (b − a + 1)(2(U − L)/n + 2 p − 1).

5.3 Reduction in Hashing Operations

For large key domains like LONG integers, 2(b − a + 1)(2(U − L)/n + 2 p − 1)
hash operations could amount to significant computation overheads. To reduce
these overheads, we observe that in general any number δ ∈ [0, U − L) can be
represented by a polynomial:

δ = δ0 + δ1.B + δ2.B
2 + .. + δm.Bm

with number base B > 1 and m ≥ ⌈logB(U − L)⌉. For example, B = 2 yields
the binary representation, and B = 10 gives the decimal representation. If
0 ≤ δi < B, ∀ 0 ≤ i ≤ m, we say the polynomial is the canonical representation
of δ.
This observation can be exploited to optimize our authentication scheme, as
depicted in Figure 4: The content manager replaces hra.K−ra−1.K (ra−1) in

Verifying Completeness of Relational Query Answers from Online Servers · 9: 19

equation (1) with h(hδt,0(ra−1|0) | hδt,1(ra−1|1) | .. | hδt,m(ra−1|m)), where δt = ra.K −

ra−1.K = δt,0 + δt,1.B + δt,2.B
2 + .. + δt,m.Bm, ra−1|1 concatenates record ra−1

with the number 1, and so on. After executing a query, the portal server re-
turns m + 1 intermediate digests hδe,0(ra−1|0), hδe,1(ra−1|1), .., hδe,m(ra−1|m) where
δe = α − ra−1.K = δe,0 + δe,1.B + δe,2.B

2 + .. + δe,m.Bm. Let δc = ra.K −

α = δc,0 + δc,1.B + δc,2.B
2 + .. + δc,m.Bm; the user then hashes hδe,0(ra−1|0)

a further δc,0 times, hδe,1(ra−1|1) another δc,1 times, and so on, to produce
hδt,0(ra−1|0), hδt,1(ra−1|1), .., hδt,m(ra−1|m).

To illustrate, suppose δt = ra.K − ra−1.K = 5555, δc = ra.K − α = 1 +
2 × 10 + 3 × 102 + 4 × 103; so, δe = δt − δc = α − ra−1 = 4 + 3 × 10 +
2 × 102 + 1 × 103. The portal server returns the digests h4(ra−1|0), h3(ra−1|1),
h2(ra−1|2), h1(ra−1|3). Upon receiving them, the user further hashes h4(ra−1|0)
once to produce h5(ra−1|0), h3(ra−1|1), twice to produce h5(ra−1|1), etc. With that,
the user computes h(h5(ra−1|0) | h5(ra−1|1) | h5(ra−1|2) | h5(ra−1|3)) in place of
h5555(ra−1), and from there confirms that ra−1 < α as before.

There is a complication, though. Suppose the query condition is such that
δc = ra.K − α = 2828. The portal server now gets δe = α − ra−1.K = 2727,
and the above procedure produces h15(ra−1|0), h4(ra−1|1), h15(ra−1|2), h4(ra−1|3),
corresponding to the noncanonical representation 5555 = 15+4×10+15×102+
4 × 103. In general, this complication arises if ∃ 0 ≤ i ≤ m such that δt,i < δc,i.
To enable the user to succeed with the verification, the content manager would
have to produce digests corresponding to the noncanonical representations too.
Unfortunately, there are up to 2m noncanonical representations in the worst
case. Clearly, this overhead is unacceptable.

To limit the number of noncanonical representations that must be sup-
ported, we observe that while the user knows only the value of δc, the portal
server has access to both δt and δc. Thus the portal server can return digests
corresponding to certain preferred noncanonical representations of δe in order
to influence the representation of δt that the user derives. Referring to our
running example, if the portal server returns digests corresponding to the rep-
resentation δe = 7 + 12 × 10 + 6 × 102 + 2 × 103 instead, the user would derive
final digests corresponding to 5555 = 15 + 14 × 10 + 14 × 102 + 4 × 103.

Definition 1. For any δ ≥ 0, a representation δ = δ0 +δ1.B+δ2.B
2 + ..+δm.Bm

is valid if δi ≥ 0, ∀ 0 ≤ i ≤ m.

Definition 2. Given δt ≥ 0, let its canonical representation be δt = δt,0 +
δt,1.B + δt,2.B

2 + .. + δt,m.Bm, 0 ≤ δt,i < B. We define m preferred noncanonical
representations:

iδt =

(δt,0 + B) + (δt,1 + B − 1).B + .. + (δt,i + B − 1).Bi

+ (δt,i+1 − 1).Bi+1 + δt,i+2.B
i+2 + .. + δt,m.Bm for 0 < i < m

(δt,0 + B) + (δt,1 − 1).B + δt,2.B
2 + .. + δt,m.Bm for i = 0

Note that some of the m representations may not be valid. For example, for
the canonical representation δt = 3 + 2 × B + 0 × B2 + 3 × B3, 1δt is not valid
because δt,2 − 1 < 0.

9: 20 · H. Pang and K.-L. Tan

Fig. 5. Signature construction.

LEMMA 1. For any 0 ≤ δc ≤ δt with canonical representation δc = δc,0 +
δc,1.B + δc,2.B

2 + .. + δc,m.Bm, 0 ≤ δc,i < B, there exists a valid representation
imaxδt, imax is the largest i where δt,0 + .. + δt,i.B

i < δc,0 + .. + δc,i.B
i holds, such that

δe = imaxδt − δc has a valid representation δe = δe,0 + δe,1.B + δe,2.B
2 + .. + δe,m.Bm

with δe,i ≥ 0.

PROOF. Since the coefficients of the canonical representations satisfy 0 ≤

δt,i < B and 0 ≤ δc,i < B, we must have:

• 0 ≤ δe,i = (δt,i + B) − δc,i < 2B for i = 0,

• 0 ≤ δe,i = (δt,i + B − 1) − δc,i < 2B − 1 for 1 ≤ i ≤ imax,

• 0 ≤ δe,i = (δt,i − 1) − δc,i < B − 1 for i = imax + 1,

• 0 ≤ δe,i = δt,i − δc,i < B for imax + 1 < i ≤ m

Therefore δe is a valid representation with 0 ≤ δe,i < 2B.
The lemma allows the system to support only the canonical representation

of δt, plus m preferred noncanonical representations iδt, 0 ≤ i < m, as defined
above. We thus arrive at the following implementation scheme.

5.3.1 Signature Construction by the Content Manager. (Figure 5): During
creation and update of the sorted table R = [r0, r1, .., rn, rn+1] (recall r0 and rn+1

are fictitious records), the content manager derives the signature for each new
entry ri as follows:

—Starting with the m noncanonical representations jδt and the canonical rep-
resentation δt = δt,0 + δt,1.B + δt,2.B

2 + .. + δt,m.Bm of δt = ri.K − ri−1.K, the con-
tent manager computes a digest for each valid noncanonical representation:

h(δt) = h(hδt,0(ri−1|0) | .. | hδt,m(ri−1|m))

h(jδt) = h(hδt,0+B(ri−1|0) | hδt,1+B−1(ri−1|1) | .. | hδt, j+B−1(ri−1| j) |

hδt, j+1−1(ri−1| j + 1) | hδt, j+2(ri−1| j+ 2) | .. | hδt,m(ri−1|m))

Verifying Completeness of Relational Query Answers from Online Servers · 9: 21

Fig. 6. Completeness verification.

For an invalid representation jδt where δt, j+1 − 1 < 0, hδt, j+1−1 is undefined, so
we drop it from the computation of the digest:

h(jδt) = h(hδt,0+B(ri−1|0) | hδt,1+B−1(ri−1|1) | .. | hδt, j+B−1(ri−1| j) |

hδt, j+2(ri−1| j + 2) | .. | hδt,m(ri−1|m))

—Next, a Merkle Hash Tree (MHT) is built over the m noncanonical repre-
sentations of δt. The root digest of the MHT is concatenated with the digest
of the canonical representation, then hashed to produce a digest in place of
hri.K−ri−1.K(ri−1).

—hri+1.K−ri.K(ri+1) is derived using a similar procedure, while MHT(ri) is com-
puted from the content of ri.

—The signature of ri is now generated using equation (1).

5.3.2 Completeness Verification between Portal Server and User. (Figure 6,
in which the items in italicized, bold font are transmitted by the portal server
to the user): To verify the result Q = [ra, ra+1, .., rb] for query condition α ≤ r ≤

β, the user checks the signature sig(ri) for each ri ∈ Q, which in turn requires
hri.K−ri−1.K(ri−1) and hri+1.K−ri.K(ri+1) for a ≤ i ≤ b . To compute hra.K−ra−1.K(ra−1)
(see Figure 6(a)):

—The portal server utilizes its knowledge of α, ra−1 and ra to compute the
canonical representations of δt = ra.K − ra−1.K and δc = ra.K − α.

—If δt,i ≥ δc,i ∀i,

—1t is equated with the canonical representation of δt.

9: 22 · H. Pang and K.-L. Tan

—Return the root digest of the MHT over the noncanonical representations
of δt.
otherwise,

—Starting from the largest i where δt,0 + .. + δt,i.B
i < δc,0 + .. + δc,i.B

i holds,
increment imax until the noncanonical representation imaxδt is valid. 1t is
equated with imaxδt. A valid imaxδt must exist because δt ≥ δc.

—Return the digest of the canonical representation of δt, as well as the
digests in the MHT covering those representations of δt that are not used
as 1t. There are ⌈log2m⌉ such digests.

—The coefficients in the polynomial representation for δe = α − ra−1.K is then
calculated as: δe,i = 1t,i−δc,i. The portal server computes m+1 intermediate
digests for hδe,i(ra−1|i), 0 ≤ i ≤ m, and returns them to the user.

—Upon receiving the digests, the user first determines the canonical represen-
tation of δc = ra.K − α, then hashes each of the hδe,i(ra−1|i) digests δc,i more
times to derive h1t,i(ra−1|i).

—Next, the user concatenates them and derives the digest h(1t). If 1t is the
canonical representation, h(1t) is then combined with the MHT root digest
from the portal server to produce hra.K−ra−1.K(ra−1). If not, h(1t) is combined
with the MHT digests to derive the root digest, and then with the digest for
the canonical representation to produce hra.K−ra−1.K(ra−1).

Computation of hrb+1.K−rb .K(rb+1) is carried out similarly. All the remaining di-
gests are derived as illustrated in Figure 6(b). For example, for hri.K−ri−1.K(ri−1),
a < i ≤ b :

—The portal server returns the root digest of the MHT over the noncanonical
representations iδt of δt = ri.K − ri−1.K.

—With the query results ri−1 and ri, the user generates the m + 1 digests
hδt, j(ri−1| j), and combines them into a single digest for the canonical repre-
sentation of δt. This digest is then concatenated with the root digest of the
MHT from the portal server to produce hri.K−ri−1.K(ri−1).

With this optimization, the number of hash operations required by the user
verification procedure is reduced to (b − a+ 1)[logB(2(U − L)/n) + 2 p− 1], where
p is the number of attributes.

5.4 Cost Analysis

Having presented our authentication mechanism, we now analyze the over-
heads that it introduces for range selection queries. We begin by quantifying
the communication overhead, before looking at the incremental computation
cost. We shall focus on the costs involving the user, who shoulders most of the
runtime authentication load and is likely to be the resource-constrained party
in the system.

The parameters used in the analysis are summarized in Table I, in which
the values for Chash and Csign are obtained from Rivest and Shamir [2001]. For
computation costs, we model only hashing and signature verification; other

Verifying Completeness of Relational Query Answers from Online Servers · 9: 23

Table I. Cost Parameters

Parameter Meaning Default

Chash Computation cost of a hash operation 50 µsec
Csign Computation cost for verifying a signature 5 msec
Cuser Total computation cost incurred by the user –
Mdigest Size of a hash/digest (bits) 128
Msign Size of a signature (bits) 1024
Muser Total size of authentication information sent to the

user
–

Mr Size of a result record (bytes) –
B δ = δ0 + δ1.B + .. + δm.Bm –
m m = logB(U − L) –

operations like concatenation are assumed to be negligible relative to Chash

and Csign. (The hashing operations here involve one-way hash functions like
SHA [2001], which are much costlier than simple hash functions used in, say,
typical database hash indices.)

5.4.1 Communication from Portal Server to User. The authentication in-
formation that the portal server transmits to the user includes the following
components:

—Digests for computing hra.K−ra−1.K(ra−1) in equation (1) include the m + 1 in-
termediate digests corresponding to the polynomial representation for hδe ,
⌈log2m⌉ digests in the MHT covering the representations of δt = ra.K −ra−1.K

that are not selected, plus one digest for the canonical representation in the
worst case (if a noncanonical representation iδt is used). The traffic amounts
to [m + 2 + ⌈log2m⌉] × Mdigest.

—Likewise, digests for computing hrb+1.K−rb .K(rb+1) amount to [m+2+⌈log2m⌉]×
Mdigest.

—Digests for computing hri.K−ri−1.K(ri−1), a < i ≤ b , and hri+1.K−ri.K(ri+1), a ≤ i <

b . For each of them, the portal server sends the root digest of the MHT over
the noncanonical representations of δt. This amounts to 2(b − a) × Mdigest.

—The digests MHT(ri.A), a ≤ i ≤ b , are also returned. The traffic for all the
result entries amounts to (b − a + 1) × Mdigest.

—The aggregated signature, derived from the individual signatures for the
result entries. The size of this signature is Msign.

The total traffic to the user is, therefore:

Muser = [2m + 5 + 3(b − a) + 2⌈log2m⌉] × Mdigest + Msign (4)

Figure 7 plots the user traffic overhead, defined as Muser/ ResultSize where
ResultSize = q × Mr, against the result record size Mr for various number of
result entries q. The parameters Mdigest and Msign are set to their default values
of 128 bits and 1,024 bits, respectively. The figure shows that the traffic over-
head reduces very quickly as q grows beyond one, as the cost of the aggregated
signature is amortized over more result entries. This reduction stabilizes at
around q = 5, at which point the per-entry overhead falls within 25% for Mr ≥

512 bytes.

9: 24 · H. Pang and K.-L. Tan

Fig. 7. User traffic overhead.

From equation (4), we also observe that the space overhead incurred by
our proposed solution is linear in the result size (i.e., b − a). This compares
favorably with the previous scheme in Devanbu et al. [2000] that enables ver-
ification of result completeness for range selection; the space overhead of their
scheme grows linearly to the query result, as well as logarithmically to the
underlying database.

5.4.2 Computation Overhead on the User. The computations performed by
the user in authenticating the query results include:

—Derivation of hra.K−ra−1.K(ra−1). This entails hashing the m+1 intermediate di-
gests corresponding to the selected representation for δt = ra.K −ra−1.K, each
of which requires up to B additional hashes. In the worst case (where the se-
lected representation is noncanonical), the resulting digest is then combined
with the digests in the MHT over the noncanonical representations, and the
digest for the canonical representation to get the first component in equa-
tion (1), which requires ⌈log2m⌉+1 hashes. Evaluation of equation (1) incurs
another hash. The computation cost amounts to [B(m+1)+⌈log2m⌉+2]×Chash.

—Similarly, derivation of hrb+1.K−rb .K(rb+1) incurs [B(m+ 1) + ⌈log2m⌉+ 2]×Chash.

—Derivation of hri.K−ri−1.K(ri−1), a < i ≤ b , and hri+1.K−ri.K(ri+1), a ≤ i < b . For
each of them, the user first computes the m + 1 digests corresponding to
the canonical representation for δt, each requiring up to B hashes. Next,
combining the m+ 1 digests incurs another hash. This incurs 2(b − a)(B(m+
1) + 1) × Chash in all.

—Evaluation of equation (1) incurs a hash for each result record. The compu-
tation for all the result entries thus amounts to (b − a + 1) × Chash.

—Derivation of aggregated digest, then matching with the aggregated signa-
ture, costing Chash + Csign.

The total computation cost incurred by the user is:

Cuser = [(b − a)(2B(m + 1) + 3) + 2B(m + 1) + 2⌈log2m⌉ + 6] × Chash + Csign (5)

Verifying Completeness of Relational Query Answers from Online Servers · 9: 25

Fig. 8. User computation overhead.

Since m = ⌈logB(U − L)⌉ is a tunable parameter, Cuser can be minimized by
choosing a B (or, equivalently, an m) value such that y = (b − a)(2B(m + 1) +
3) + 2B(m + 1) + 2⌈log2m⌉ + 6 is minimum. It can be shown that this occurs

at 2 < B < 3 where dy

dB
= 0. To illustrate, Figure 8 plots B against Cuser for

different result sizes q = b − a + 1. Therefore, if computation overhead at the
user is the performance bottleneck in a deployed system, B can be set to 2 or 3
depending on the actual range [L,U].

With B = 2, m = logB232 = 32 if the key is an integer, for example. Using the
default values for Chash and Csign from Rivest and Shamir [2001], equation (5)
reduces to Cuser = 6.75(b − a) + 12.4 milliseconds. Thus, Cuser is roughly 12.4
milliseconds, 681 milliseconds and 6.76 seconds for result sizes of 1,100, and
1,000 records, respectively, which is not excessive especially as the user device
can start to verify the initial result tuples while the remaining result values
are being transmitted.

5.4.3 Database Updates. Having evaluated the overheads for verifying
query answers, we now consider the impact of our proposed scheme on up-
date operations.

To enable the portal server to produce completeness proof for query answers
at runtime, the content manager has to pregenerate signatures on each at-
tribute or group of attributes that are expected to participate in the query con-
ditions. This is analogous to creating B+-trees on those attributes to facilitate
efficient query processing. In fact, for performance reasons our scheme may be
incorporated into the B+-tree, by storing the signatures for each record along
with its pointer in the leaf node of the B+-tree.

Suppose the proposed scheme is indeed implemented as a data structure like
the B+-tree. According to equation (1), each record update affects the signature
of the record itself, and its left and right neighbors. This is conceptually similar
to updating a doubly-linked list. Since a B+-tree node typically contains hun-
dreds of entries, most of the time the three affected signatures would reside
within the same node, so there is no additional I/O or (page) locking overhead.
In the worst case, the affected signatures would span only two adjoining leaf
nodes. Hence the update overheads incurred by our scheme are significantly

9: 26 · H. Pang and K.-L. Tan

Table II. Notation

Parameter Description

n # records in the database table
q # records in the query range
f Fan-out factor of partial sum hierarchy

less than Merkle Hash Tree schemes (e.g., Devanbu et al. [2000], Pang and Tan
[2004]) that need to propagate every update up to the digest of the root node,
which becomes a locking contention hot spot. Therefore, the scheme in this
paper is more appropriate for databases that experience non-negligible update
activities.

6. SINGLE-ATTRIBUTE RANGE AGGREGATE

In this section, we extend the signature chain scheme in the previous sections
to authenticate single-attribute range aggregate queries of the form SELECT
SUM(S) FROM R WHERE α ≤ K ≤ β. We first present our solution for the
range sum query, and discuss extension to other aggregation functions at the
end of the section. Support for GROUP BY is discussed in Section 6.3.

We assume that a user who has access rights to pose an aggregate query
over a given range of records, α ≤ K ≤ β, is also allowed to aggregate over any
sub-interval within [α, β]. By extension, the user can access the underlying
record values that contribute to the aggregate. However, the user chooses not
to retrieve the underlying data directly due to resource considerations, e.g.,
because the user device is resource-constrained or to minimize network traffic.
Instead, the user relies on the portal server to compute the aggregate. Ob-
viously, this approach makes sense only if the cost of verifying the aggregate
answer is much lower than the cost of retrieving the underlying data for user
inspection. In the case where the user is not authorized to inspect the under-
lying data, a trusted intermediary has to be enlisted to produce the correct
aggregate result, or to verify the correctness of the answer produced by the
portal server.

6.1 Partial Sum Hierarchy

At one extreme, a range aggregate query could be satisfied by returning all
the underlying record values. After verifying that the returned values are au-
thentic and complete, using a range selection authentication mechanism (e.g.,
Devanbu et al. [2000], Pang et al. [2005]), the user then computes the aggre-
gate herself. With this approach, the network transmission and client compu-
tation are proportional to q, the number of records in the query range. These
overheads are very high, considering that the user desires just a single aggre-
gate value.

From the user’s perspective, ideally the portal should return a single cer-
tified value for the aggregate query. This is possible if the content manager
precomputes and signs every range aggregate. Without prior knowledge of the
query range, the content manager has to materialize all n! possible range ag-
gregates for a table of n records. Clearly, the computation and storage over-
heads are prohibitive. As a compromise, we propose for the portal server

Verifying Completeness of Relational Query Answers from Online Servers · 9: 27

Fig. 9. Partial sum hierarchy with f = 2.

to return a list of certified partial sums corresponding to partitions of the
query range.

Our solution requires the content manager to materialize a hierarchy of
partial sums over the records, as Figure 9 demonstrates. The size of the query
answer can be reduced by returning partial sums corresponding to the largest
partitions that together cover the query range. The partial sum hierarchy
that has to be maintained by the content manager and the portal server has
approximately 2n − 1 nodes.

Let us now consider the number of values that are returned to the user. We
shall call the smallest subtree in the partial sum hierarchy that encompasses
the query range the covering subtree. We first consider the case where the left
boundary of the query range is aligned with the leftmost record of the covering
subtree, (e.g., the range selection 1 ≤ K ≤ 6 on the data set in Figure 9).
Here the first 22 records are aggregated into a partial sum 10, and the next
21 records are aggregated into another partial sum 11. Denote the binary

representation of the query answer size q as q =
∑⌊log2q⌋

i=0 b i · 2i, b i = 0 or 1.
Starting from i = ⌊log2q⌋ down to 0, from the left boundary of the query range
towards the right, 2i records in the query range are aggregated into a partial

sum if b i = 1. Thus the number of returned partial sums is
∑⌊log2q⌋

i=0 b i, and
is at most ⌊log2q⌋ + 1. The case where the right boundary of the query range
is aligned with the rightmost record of the covering subtree (e.g., the range
selection 3 ≤ K ≤ 8 on the data set), is similar to the first case. If both the
left and right boundaries of the query range are not aligned with the edges of
the covering subtree, the query range is decomposed into up to 2(⌊log2

q
2⌋ + 1)

partitions and hence partial sums. For example, for the range selection 2 ≤

K ≤ 7, the query answer comprises the datum 2, the partial sums 7 and 11,
followed by the datum 7.

The partial sum hierarchy can be generalized to have a fan-out of f > 1
(i.e., each node in the hierarchy aggregates f child nodes). With this gen-

eral scheme, the partial sum hierarchy contains approximately fn−1
f−1

nodes.

Figure 10 illustrates a partial sum hierarchy with n=16 and f=4. Consider
again the case where the left boundary of the query range is aligned with the
leftmost record of the covering subtree (e.g., the range selection 2 ≤ K ≤ 13 on
the data set in Figure 10). Denote the query answer size q with the polynomial

q =
∑⌊log f q⌋

i=0 b i · f i, 0 ≤ b i < f . Starting from i = ⌊log f q⌋ down to 0, from the
left boundary of the query range towards the right, b i · f i records in the query

9: 28 · H. Pang and K.-L. Tan

Fig. 10. Partial sum hierarchy with f = 4.

range are aggregated into b i partial sums. Hence the number of partial sums
returned is

partial sums =

⌊log f q⌋
∑

i=0

b i (6)

and at the most there are

max # partial sums = (f − 1) · (⌊log f q⌋ + 1) (7)

partial sums in the query answer. If both the left and right boundaries of the
query range are not aligned with the edges of the covering subtree, the query
range is decomposed into up to 2(f −1)(⌊log f

q

2
⌋+ 1) partial sums. For example,

for the range selection 8 ≤ K ≤ 29, the query answer size comprises the record
value 8, the partial sums 52 and 84, followed by the record values 26 and 28.

Equation (7) confirms that our approach of producing partial sums scales
better than returning the underlying record values to the user directly, which
would have generated query answer sizes that are proportional to q.

In terms of query answer size, it would appear that a smaller f is better.
For example, for q=10 and assuming both boundaries of the query range are
not aligned with the edges of the covering subtree, the worst case answer size
is 6 and 12, for f =2 and f =4 respectively. Besides query answer size which
determines transmission cost and user computation cost, I/O cost at the portal
server also plays a role in the choice of f . We will study the trade-offs in the
selection of f through experiments in Section 8.

For single-attribute aggregates, the classic prefix sum approach [Ho et al.
1997] requires only two prefix sums to produce an aggregate result. For exam-
ple, an aggregate of record a to record b is derived by subtracting prefix sum
a − 1 from prefix sum b . This is obviously much cheaper than our partial sum
hierarchy. The drawback is that the prefix sum a − 1 pertains to data that are
beyond the query range, and hence violates our precision requirement.

6.2 Certifi ed Partial Sum Hierarchy

Having introduced the partial sum hierarchy for computing range aggregates,
we now address how to build authentication information into the scheme.
There are two primary considerations for proving the correctness of a range
aggregate result–each returned partial sum is an accurate aggregation of the

Verifying Completeness of Relational Query Answers from Online Servers · 9: 29

Table III. Attributes of Child Pointer pi in the Partial Sum Hierarchy

Parameter Description Size

ptr Points to a sub-partition within pi (Bytes) 4
Kl Key value of the leftmost record covered by pi (Bytes) 4
Kh Key value of the rightmost record covered by pi (Bytes) 4
Dl Digest from applying a one-way hash function h on the first record in

partition pi (Bytes)
16

Dh Digest from applying h on the last record in pi (Bytes) 16
psum Partial sum of the records covered by pi (Bytes) 8
sign Signature for pi (Bytes) 128

Total pointer size (Bytes) 180

records in its scope, and together the returned partial sums cover all the
records in the query range.

Since the content manager is secure in our system model, the content
manager can generate a signature for each partial sum based on its value.
Whenever a partial sum is returned to the user, the portal server produces
the associated signature to prove that it has not been tampered with. Besides
the value of the partial sum, we also include in the signature computation the
record immediately below and the record immediately above the scope of the
partial sum (i.e., using the signature chain concept introduced in Section 4).
This enables the user to confirm that the partial sums in a query answer
provide continuous coverage of the query range, by simply checking that the
record just above the scope of one partial sum is indeed the first record in the
next partial sum. The detailed formulation is as follows.

Given a set of records, each having the attributes 〈K, S, A〉 where K is the
key attribute for the range selection, S is the attribute to be aggregated, and
A denotes the remaining record values. Sort the records on K, then construct
a partial sum hierarchy over the records. (The construction algorithm will be
given shortly.) Every partition in the hierarchy has up to f child pointers pi,
each with the attributes listed in Table III.

The signature for each partition, pi.sign, is precomputed by the content
manager for distribution to the portal server along with the data, using the
formula:

pi.sign = s(h(hpi.Kl−pi.rl.K(h(pi.rl)) | pi.Kl | pi.Kh | pi.psum |

hpi.rh.K−pi.Kh(h(pi.rh)))) (8)

where s signs its argument with the organization’s private key, and hx(y)
hashes y iteratively for x times. Furthermore, pi.rl and pi.rh are the records
immediately below and above the coverage of pi, respectively. For example,
for the partition anchored at node 52 in Figure 10, the records below and
above its coverage are 8 and 18 respectively, so its signature is derived as
s(h(h10−8(h(8)) | 10 | 16 | 52 | h18−16(h(18)))) (assuming for simplicity that each
record contains only its key value, i.e., ri = ri.K).

For a range aggregate query, the returned answer contains a list of parti-
tions {pa, pa+1, .., pb}, each having the format 〈Kl, Kh, Dl, Dh, psum, sign〉. We
choose to return Dl and Dh in place of the actual records to minimize trans-
mission and storage overheads.

9: 30 · H. Pang and K.-L. Tan

In verifying each partition pi in the query answer, the user checks whether:

s−1(pi.sign) ?= h(hpi.Kl−pi−1 .Kh (pi−1.Dh) | pi.Kl | pi.Kh | pi.psum |
hpi+1.Kl−pi.Kh (pi+1.Dl)) (9)

where s−1 decrypts the given signature with the organization’s public key.
The first term in equation (8), hpi.Kl−pi.rl.K(h(pi.rl)), matches the first term

in equation (9), hpi.Kl−pi−1 .Kh (pi−1.Dh), only if the record just below pi’s coverage
(pi.rl) is the same record that hashes to pi−1.Dh, otherwise there is a collision in
the collision-resistant hash function h. This proves that partition pi’s coverage
begins right after the preceding partition pi−1 in the query answer. Likewise,
the last term hpi+1.Kl−pi.Kh (pi+1.Dl) in equation (9) is for verifying that pi’s cov-
erage ends just before the subsequent partition pi+1 in the query answer.

Besides ensuring contiguous coverage of the query range by the partitions
in the answer, the user will also want to ascertain that the first partition pa
in the answer starts from the first qualifying record. Equivalently, the record
immediately below pa should have a smaller key value than the query range,
(i.e., pa.rl.K < α). This is achieved by having the portal server return an inter-
mediate digest hα−pa.rl.K(h(pa.rl)), which the user then hashes pa.Kl − α more
times to produce the first term in equation (9). Since the intermediate digest
is defined only for a positive number of iterations of h, pa’s signature can be
matched only if indeed pa.rl.K < α. Similarly, the portal server can prove that
the record immediately after the last partition pb satisfies pb .rh.K > β.

In proving that the query answer covers the query range completely, we
have to be careful that the proof does not leak information about records be-
yond the query range. In particular, the intermediate digest hα−pa.rl.K(h(pa.rl))
should not compromise pa.rl. Since α originated from the user, h(pa.rl) should
not be released also to the user, otherwise the user can deduce pa.rl.K by count-
ing the number of times that h(pa.rl) needs to be hashed in order to match the
intermediate digest.

6.3 Query Processing using the Partial Sum Hierarchy

6.3.1 Aggregate with range predicate. A single-attribute range sum has
the form SELECT SUM(S) FROM R WHERE α ≤ K ≤ β. This query is
processed by traversing down the root of the partial sum hierarchy, along pro-
gressively finer partitions that contain the query range, till we reach the cov-
ering subtree. Recall that the covering subtree is the smallest subtree in the
partial sum hierarchy that encompasses the query range K[α, β]. For example,
for the range selection 8 ≤ K ≤ 29 on the data set in Figure 10, we traverse
from the root (4160) to reach the partial sum (272) that anchors the covering
subtree. The partial sums (52 and 84) within the covering subtree aggregate
the records in the middle of the query range. To complete the query answer,
we iteratively retrieve record values or partial sums, on the next level down
the hierarchy, that aggregate the records toward the left and right boundaries
of the query range. In our current example, this step elicits the record values 8
on the left, and 26 and 28 on the right. Together, the retrieved records values
and partial sums effectively form a “canopy” over the query range.

Verifying Completeness of Relational Query Answers from Online Servers · 9: 31

6.3.2 Aggregate with GROUP BY. This query has the form SELECT
SUM(S) FROM R GROUP BY K. The result comprises a list of sums, one for
each ki ∈ K. Each sum, in turn, is made up of a list of record values and partial
sums, as with a range sum query over [ki, ki]. The user needs to verify that the
last record in the scope of a sum is the immediate neighbor of the first record
in the scope of the following sum, using equation (9). Queries with GROUP BY
or range selection on more than one attribute are treated as multi-attribute
aggregates, to be discussed in Section 7.

6.3.3 Signature Aggregation. The overheads of transmitting and verifying
a signature for every partial sum in the answer for a range aggregation can
be very large. Instead, the portal server can combine the signatures for the
individual partial sums into one aggregated signature, using techniques in
Boneh et al. [2003], so that there is only one signature verification per query
answer. Our performance study implements this optimization.

6.4 Data Organization

As shown in Table III, each child pointer in the partial sum hierarchy has the
attributes 〈ptr, Kl, Kh, Dl, Dh, psum, sign〉, with a total length of 180 bytes.
If these attributes are stored within the partial sum hierarchy, each node can
only hold at most 22 child pointers, assuming a typical block size of 4 Kbytes.
A table containing just 10 million records would thus generate a partial sum
hierarchy with a height of 6.

An alternate data organization is to store all the pointer attributes outside
of the partial sum hierarchy, in a separate PtrAttr file. With this organization,
the partial sum hierarchy can be simplified to a conventional B+-tree, in which
each node is augmented with an offset into the PtrAttr file where the attribute
values of the node’s child pointers are located. Assuming 4 bytes each for the
file offset, child pointers and key values in a tree node, a 4-Kbyte block allows
a fan-out f of around 510. Thus a table with 10 million records requires only
a B+-tree height of 3, half of the height for the previous organization where
the attribute values are stored within the hierarchy. In actual deployment,
the realizable I/O savings could be even higher, as the top two layers of the
tree/hierarchy are usually buffered. In addition, we can exploit the following
observations to optimize the structure of the PtrAttr file, with the aim of re-
ducing the number of random I/Os in favor of sequential I/Os:

(1) If the partial sum for a subtree in the hierarchy is utilized, no descen-
dant partial sums/record values within that subtree will be retrieved by
the same query. The converse is also true. For example, in the answer
{8, 52, 84, 26, 28} for the range aggregate over 8 ≤ K ≤ 29 in Figure 10,
there is no ancestor-descendant relationship between the result entries. It
is therefore not beneficial to cluster together attribute values belonging to
ancestor and descendant nodes.

(2) Within any node along the canopy over the query range, several of the par-
tial sums are likely to be required for the query answer for example, {52,
84} and {26, 28}. For this reason, the attribute values of child pointers

9: 32 · H. Pang and K.-L. Tan

Fig. 11. Data organization.

within the same node should be stored contiguously so that they can be re-
trieved through sequential I/Os, and the PtrAttr file can be structured as a
series of buckets that are 176 f bytes each. (Excluding the child ptr which
remains in the partial sum hierarchy, the remaining attributes in Table III
have a combined size of 176 bytes.) With this layout, insertions and dele-
tions to a node propagate only to the corresponding bucket in the PtrAttr

file; there is no need for sophisticated file management like compaction
and shifting of file content. There is also the additional advantage that we
only need to allocate one file offset for each tree node, so the concomitant
reduction in fan-out f is negligible.

(3) The canopy over a query range contains nodes along the boundaries of ad-
jacent subtrees. For example, {. . . 32, 784 . . .}, {. . . 116, 784 . . .} and {. . .
272, 784 . . .} are all possible canopies in Figure 10. It may therefore be
tempting to try to store adjacent nodes consecutively. However, without
prior knowledge of the workload, there is no objective basis to choose be-
tween alternative pairings, (e.g., whether 32, 116, or 272 should be selected
to precede 784).

Figure 11 shows an order-2 B+-tree and the associated PtrAttr file for the
example in Figure 10.

6.5 Extension to Other Aggregation Functions

Our partial sum hierarchy has application beyond the SUM function. Gray
et al. [1997] defined three classes of aggregation functions: Distributive

Verifying Completeness of Relational Query Answers from Online Servers · 9: 33

aggregates can be computed by aggregating the partial aggregates on parti-
tions of the dataset, and include COUNT, SUM, MIN, and MAX. Algebraic
aggregates are derived from a scalar function of distributive aggregates. For
example, AVG can be expressed as SUM / COUNT. In contrast, holistic aggre-
gates like MEDIAN cannot be computed through a divide-and-conquer strat-
egy on the underlying dataset.

Our authenticated partial sum hierarchy applies to distributive aggregates
and algebraic aggregates in general, by simply substituting the SUM function
with the desired aggregation function. The solution does not extend to holistic
aggregates, however.

7. MULTI-ATTRIBUTE RANGE AGGREGATE

Having presented the authentication scheme for single-attribute aggregate op-
erations, we now extend the solution to multi-attribute aggregate queries.

Suppose the master database has a sorted list of records R = [r1, ..., rn], each
record having the fields 〈K1, ..., Kd, S, A〉 where K1 to Kd are the attributes
involved in the range selection or GROUP BY clauses, S is the attribute to
aggregate over, and A denotes the remaining record values.

Now a user submits a query of the form SELECT SUM(S) FROM R WHERE
P1 and P2 and ... and Pd, or SELECT SUM(S) FROM R GROUP BY K1, K2,
..., Kd. The portal server needs to prove that its answer is authentic and
complete, while keeping the answer precise. For simplicity, we focus on the
SUM operator and range selections σαi≤r.Ki≤βi

(R), 1 ≤ i ≤ d. The treatment
of GROUP BY clauses can be extended from range selection, as discussed in
Section 6.3. Generalization to other aggregation functions is deferred to the
end of the section.

7.1 Authentication Scheme

Like the single-attribute context, our multi-attribute solution builds a partial
sum hierarchy into a multi-dimensional index structure. In this paper, we
adopt the KDB-tree [Robinson 1981]. The KDB-tree partitions the data space
recursively, such that after a split the subregions contain roughly the same
number of data points. Moreover, each split is perpendicular to one of the
dimensions. Regions associated with nodes at the same level in the tree are
disjoint, and together they cover the entire data space. At the lowest level,
data points are grouped into leaf nodes. The KDB-tree is balanced like the
B-tree, so it has the advantage of being insensitive to the data distribution.
Figure 12 illustrates a KDB-tree over two-dimensional data, together with the
partial sum associated with each node.

With our KDB-tree cum partial sum hierarchy (KDB+PS), we intend to con-
struct an answer for a multi-attribute aggregate, by assembling partial sums
over the largest possible hypercubes inside the query scope, plus partial sums
for smaller hypercubes and records at the fringe of the query scope. In general,
the larger hypercubes would tend to correspond to nodes that are higher up the
KDB+PS tree. The detailed construction is as follows.

9: 34 · H. Pang and K.-L. Tan

Fig. 12. KDB-Tree cum Partial Sum Hierarchy over a 2-dimension data set.

7.1.1 Construction. Each node in the KDB+PS tree has the structure
〈scope, psum, sign, numChild, {child}∗〉, where scope demarcates the hyper-
cube covered by that node and consists of d sets of lower and upper bounds,
psum aggregates the S values of all the records within the scope, sign is the
node signature, numChild indicates the number of child nodes/records leading
from that node, and {child}∗ are pointers to the child nodes/records. In the
case of an internal node,

sign = s(h(scope | psum)) (10)

whereas for a leaf node,

sign = s(h(scope | h(psum) | numChild)) (11)

Moreover, each record r = 〈k1, .., kd, s, a〉 within a leaf node with the scope
〈[l1, u1], ..., [ld, ud]〉 has the signature:

sign = s(h(hk1−l1 (r′) | hu1−k1 (r′) | . . . | hkd−ld(r′) | hud−kd(r′))) (12)

where r′ = k1 | ... | kd | s | h(a).

7.1.2 Query Processing. Given an aggregate query, the portal server
searches the KDB+PS tree from the root node towards the records in the leaf
nodes, comparing each node with the query scope:

(1a) If the scope of the node is contained within the query scope, its 〈scope,
psum〉 are pushed into the query answer, its signature is “added” to

Verifying Completeness of Relational Query Answers from Online Servers · 9: 35

an aggregated signature [Boneh et al. 2003], and the search along that
path ends.

(1b) If the scope of the node is disjoint from the query scope, the search along
that path terminates.

(1c) If the node is an internal node and its scope partially overlaps the query
scope, the search goes down one level to each child of the node in turn.

(1d) If the node is a leaf and its scope partially overlaps the query scope, its
〈scope, h(psum), numChild〉 are pushed into the query answer, and its
signature is “added” to the aggregated signature. For each record r in
that leaf node,

—if r falls within the query scope, the record values 〈k1, ..., kd, s, h(a)〉 are
pushed into the query answer.

—if r is beyond the query scope because one of its key values is below
the corresponding lower bound of the query scope, i.e., ki < αi for some
1 ≤ i ≤ d, the portal server pushes the intermediate digest hαi−ki(r′),
and the rest of the huj−k j(r′) and hk j−l j(r′) digests for this record, into the
query answer. Since the intermediate digest hαi−ki(r′) is defined only for
αi−ki > 0, it is computationally infeasible to generate this intermediate
digest if in fact ki ≥ αi.

—if one of the key values of r is above the corresponding upper bound of
the query scope, i.e., ki > βi for some 1 ≤ i ≤ d, the portal server pushes
hki−βi(r′), and the rest of the huj−k j(r′) and hk j−l j(r′) digests for this record,
into the query answer.

At the end of this process, the query answer contains a series of 〈scope,
psum〉 from the internal nodes, 〈scope, h(psum), numChild〉 from the
leaf nodes, digests for records in those leaf nodes, and an aggregated
signature.

Upon receiving the query answer, the user tests whether the scopes in
the answer cumulatively cover the query scope, and whether the compo-
nents of the answer match the aggregated signature:

(2a) For each record r in the answer that has a key value below the corre-
sponding lower bound of the query scope, i.e., ki < αi for some 1 ≤ i ≤ d,
the user hashes the intermediate digest, hαi−ki(r′), (ui − αi) more times to
derive hui−ki(r′); ui is the upper bound along dimension i of the leaf node
that contains r. The computed hui−ki(r′) is then combined with the rest of
the huj−k j(r′) and hk j−l j(r′) digests received from the portal server, to obtain
the overall record digest.

(2b) For each record r in the answer that has a key value above the corre-
sponding upper bound of the query scope, i.e., ki > βi for some 1 ≤ i ≤ d,
the user hashes the intermediate digest, hki−βi (r′), (βi − li) more times to
derive hki−li (r′); li is the lower bound along dimension i of the leaf node
that contains r. The computed hki−li (r′) is then combined with the rest of
the huj−k j (r′) and hk j−l j (r′) digests received from the portal server, to obtain
the overall record digest.

9: 36 · H. Pang and K.-L. Tan

(2c) For each record r that is within the query scope, compute the overall
record digest from its values.

(2d) The above record digests, the 〈scope, psum〉 pairs for the internal nodes,
and the 〈scope, h(psum), numChild〉 triplets for the leaf nodes together
should match the aggregated signature.

If both of the above tests succeed, the user can proceed to add up the partial
sums and record values in the answer to derive the desired query aggregate.

7.2 Information Leakage

With our multi-attribute range aggregate scheme, the only extra information
returned in a query answer are (1) the scope of the leaf nodes in the answer,
which may extend beyond the query scope; and (2) the number of records in
each leaf node in the answer. For records in those leaf nodes that are outside
of the query scope, only digests of the form ha(r′) are disclosed. It is not feasible
for the user to perform a brute-force attack to recover any record content from
those digests. Therefore our scheme preserves the confidentiality of records
that are external to the query scope.

7.3 Data Organization

As explained above, whenever the scope of an internal node of the KDB+PS
tree partially overlaps the query scope, the search proceeds to all the child
nodes of that internal node. We decide to keep the scope, partial sum, and
numChild attributes with each child pointer within the parent node, so that
child nodes that do not overlap the query scope can be skipped over directly
without generating separate random I/Os. Therefore, in our implementation,
each node of the KDB+PS tree corresponds to a physical block that stores the
node signature as well as pointers for several child nodes, each child pointer
having the format 〈scope, psum, numChild, childPtr〉 where childPtr indicates
the location of the physical block for that child node.

For a d-dimension space, a scope is represented as a pair of lower and upper
bounds per dimension, with a total size of 2ḋ integers or 8d bytes. In addition,
psum requires double integer space of 8 bytes assuming that the S attribute of
the underlying records is an integer, while numChild and childPtr take up 4
bytes each. The total size needed for each child pointer within a node/block is
thus 8d + 16 bytes. With 4-KByte blocks, the fan-out of the KDB+PS tree can

be up to ⌊
4096−sign

8d+16 ⌋, where sign is the signature size.

7.4 Extensions

Our approach of incorporating partial sums into a KDB-tree has been em-
ployed before, for example in the BA-tree in Zhang et al. [2002]. The au-
thentication provisions in our KDB+PS scheme can therefore be applied easily
to the BA-tree, as well as other space partitioning index structures like the
Quadtree [Samet 1984]. Extension to data partitioning index structures, such
as aR-tree [Papadias et al. 2001] and aRB-tree [Papadias et al. 2002], is not
so straightforward though. Since data partitioning structures capture only

Verifying Completeness of Relational Query Answers from Online Servers · 9: 37

Fig. 13. Application architecture.

occupied regions in the index space, proving completeness is a challenge–how
to prove whether an aggregate result accounts for all the data partitions within
the query range. Our earlier work in Cheng et al. [2006] addressed this chal-
lenge for range selection using R-trees, but that scheme does not extend to
range aggregates. We intend to do a thorough study in the future on how to
add aggregate authentication capability to different multidimensional index
structures.

Finally, our authenticated KDB+PS tree applies to distributive and
algebraic aggregation functions [Gray et al. 1997] in general, by simply
substituting the SUM function with the desired aggregation function (e.g.,
COUNT, MIN, and MAX).

8. EXPERIMENTS

This section describes one way to implement the authentication mechanisms
introduced earlier. Our implementation targets applications that use JDBC.
Obviously, other application architectures may necessitate different implemen-
tation techniques, but that is beyond the scope of this paper. Following that,
we present experiment results obtained with our implementation.

8.1 Application Architecture

A common database application architecture contains the following: (1) The
user interacts with an application program (possibly with a GUI). (2) The ap-
plication program invokes APIs of a JDBC driver. (3) The JDBC driver calls
the native (proprietary) database driver. (4) The database driver passes the
query to the database server. Our implementation uses Oracle Database 10g
as the server.

To authenticate the query answer generated by the portal server, we need
to effect some minor changes to the database architecture. The modified archi-
tecture is depicted in Figure 13:

(1) Assuming that the source of the application program is available, we mod-
ify it to pass its query to our authentication client driver instead of invok-
ing the JDBC driver. Alternatively, we can override the JDBC classes if
the application program cannot be modified directly.

9: 38 · H. Pang and K.-L. Tan

Table IV. Resource and Workload Parameters

Parameter Description Default

CPUSpeed Clock speed of Pentium-4 CPU (GHz) 3
MemSize DDR-400 memory (Gbytes) 2
BuffSize Buffer allocation per partial sum hierarchy

(Mbytes)
2

DiskSize Size of EIDE disk – 7200 rpm, 8 MB cache
(Gbytes)

160

BlkSize Physical block size (Kbytes) 4
NetSpeed Network speed (Mbps) 100

n # records in database table 10 mil
RecSize Record size (bytes) 512
q # records in query range 100000
f Fan-out factor of partial sum hierarchy 500

(2) The authentication client driver passes the query to the authentication
server running on the portal server. The authentication server then for-
mulates an accompanying query to pull data for composing verification in-
formation for the user query, and passes both queries to the JDBC driver.

(3) When the JDBC driver returns the answers, the authentication server cre-
ates the verification information, and sends it with the query answer to the
authentication client.

(4) The authentication client driver verifies the query answer and returns it
to the application program, or signals an error if the verification fails.

Moreover, we rewrite the application program to offer users an option to
enable/disable authentication. If the application program cannot be modified,
authentication can be turned on by default in the authentication client for all
queries and databases.

Since our authentication driver sits on top of the JDBC driver, there is no
need for any database vendor to modify the DBMS (except to optimize per-
formance); there is also no need for a new query standard. During deploy-
ment, the authentication client could be rolled out alongside the application
program, possibly using one of the standard enterprise application deployment
platforms like Tivoli.

8.2 On Single-Attribute Aggregates

8.2.1 Experiment Set-up. For the experiments, we install the modified ap-
plication architecture in Section 8.1 on a pair of PCs. The resource parameters
of the PCs are listed in Table IV.

Algorithms: One objective of the experiments is to understand the trade-offs
between various configurations of our partial sum hierarchy scheme. In par-
ticular, we wish to evaluate the integrated partial sum hierarchy with binary
branching (iPSH-2) versus the maximum fan-out of 22 (iPSH-22) allowed by
the default parameter settings in Table IV, and also the integrated partial
sum hierarchy versus the partial sum hierarchy with separate PtrAttr file
(PSH-PA).

Verifying Completeness of Relational Query Answers from Online Servers · 9: 39

Another objective that we wish to achieve is to profile the cost of proving
completeness and maintaining precision in the range aggregate results, (i.e.,
of avoiding disclosure of record values or partial sums that are beyond the
query range). For this reason, we select the HAMS scheme in Ho et al. [1997]
as baseline. Recall that HAMS reveals the prefix sum of the entries below
the query range. Moreover, HAMS does not provide any proof that the correct
prefix sums are returned (e.g., that the lower prefix sum indeed aggregates
right up to the record immediately below the query range).

Detailed configuration of the various schemes, with the default parameter
settings in Table IV, are as follows:

(1) iPSH-2: For f=2, the partial sum hierarchy has a height of 24. Each node
has a size of 180 f=360 bytes (see Table III), so 2 Mbytes of allocated buffer
space is sufficient to cache 5825 nodes, or the top 12 layers of the partial
sum hierarchy.

(2) iPSH-22: For f=22, the partial sum hierarchy has a height of 6. Each node
has a size of 180 f=3,960 bytes, so 2 Mbytes of buffer space is sufficient to
cache 529 nodes, or the top two layers of the partial sum hierarchy.

(3) PSH-PA: With the pointer attributes in a separate PtrAttr file, the partial
sum hierarchy can support f=510 as explained in Section 6.4. This leads
to a tree height of only 3. Moreover, 2 Mbytes of buffer can hold the top
two layers of the partial sum hierarchy, so physical I/Os are generated only
for queries that require one or more partial sums in the leaf nodes. Each
bucket in the PtrAttr file has a size of 176 f=89760 bytes, or 22 × 4-Kbyte
blocks. Retrieving all the partial sums in a node of the partial sum hier-
archy thus generates one random I/O followed by 21 sequential I/Os to the
associated bucket. To realize the benefits of sequential I/Os, the PtrAttr file
is created in a raw disk partition.

(4) HAMS: For one-attribute aggregates, we implement the HAMS scheme as
a B+-tree on the sort keys, constructed over a data file that holds pairs of
record key and prefix sum. The prefix sum of record i aggregates the values
of record 1 up to record i. With 4 bytes per record key and per pointer, the
B+-tree can support approximately f=510. Thus 10 million records lead to
a tree height of 3, with the top two layers fitting into 2 Mbytes of buffer.

Performance Metrics. The primary metrics that we use to measure the var-
ious range aggregate schemes are: (1) server retrieval time, and (2) query an-
swer size, which determines network transmission and user computation costs.

8.2.2 Baseline Experiment. At the end of Section 6.1, we deduced that a
partial sum hierarchy with a small fan-out produces smaller query answers
than a corresponding partial sum hierarchy with a large fan-out. Our baseline
experiment is designed to study the trade-offs in selecting the fan-out. We
run 10,000 range aggregate queries over randomly selected intervals of the
database, according to the default experiment settings in Table IV. Figures 14
and 15 show the average query answer size and server I/O time, respectively,
for the various schemes.

9: 40 · H. Pang and K.-L. Tan

Fig. 14. Baseline – answer size.

Fig. 15. Baseline – I/O time.

HAMS incurs at most 4 random I/Os per query–one leaf node retrieval plus
one data file access for the prefix sum from the first record up to the record just
below the query range, and another two I/Os for the prefix sum from the first
record up to the last record in the query range. The query answer contains two
prefix sums (8 bytes each) with their corresponding key values (4 bytes each),
and a 128-byte signature.

Results for the 3 PSH schemes confirm that a smaller fan-out in the partial
sum hierarchy indeed leads to smaller query answers. However, a larger fan-
out means there are fewer nodes in the partial sum hierarchy, and thus fewer
random I/Os during query processing. This is evident in the lower retrieval
time of iPSH-22 relative to iPSH-2.

As for PSH-PA, detailed measurements show that its strategy of clustering
neighboring partial sums indeed produces fewer random I/Os and more se-
quential I/Os than iPSH-22. Unfortunately, PSH-PA’s large fan-out leads to a
much larger number of partial sums being returned in the query answer, to
the extent that it overwhelms the savings from sequential I/Os.

Overall, the best-performing scheme for this experiment is between iPSH-2
and iPSH-22, depending on the relative significance of network transfer time
(as determined by the query answer size) versus server retrieval time. With a

Verifying Completeness of Relational Query Answers from Online Servers · 9: 41

Fig. 16. DB size – answer size.

Fig. 17. DB Size – I/O time.

fast network speed of 100 Mbps, server retrieval time dominates, so iPSH-22
is superior. iPSH-2 becomes the preferred choice only for network speed below
100 kbps.

8.2.3 Sensitivity to Database Size. In the second experiment, we investi-
gate the sensitivity of the schemes to the database size. Here we set n = 1,
10, 100 and 1000 million records, and keep the other experiment parameters
at their default values in Table IV. The results are summarized in Figures 16
and 17.

Referring to equation (7), the number of partial sums in the query answer
is bounded by (f − 1) · (⌊ log2q

log2 f
⌋ + 1). Any increase in the query range q is thus

magnified by a factor of f−1
log2 f

, meaning that a larger fan-out is more sensitive

to q. With a fixed query selectivity, q is proportional to n. Thus iPSH-2 demon-
strates the smallest growth among the 3 PSH schemes, while PSH-PA with the
largest fan-out deteriorates the fastest. This is confirmed in Figure 16. Again,
iPSH-22 is the best for network speed higher than about 120 Kbps, and iPSH-2
is preferable for slower networks.

9: 42 · H. Pang and K.-L. Tan

Fig. 18. Query selectivity – answer size.

Fig. 19. Query selectivity – I/O time.

8.2.4 Sensitivity to Query Selectivity. Our next experiment aims to inves-
tigate the sensitivity of the various schemes to the query selectivity. We fix
all the experiment parameters at their default settings in Table IV, except for
the query size q which is varied from 1% to 90% of the database. Figures 18–
20 show the resulting average query answer size, server I/O time, and client
processing cost respectively.

For the same reasons as in the previous experiment, PSH-PA suffers the
worst increase in query answer size as query selectivity grows, followed by
iPSH-22. iPSH-2’s answer size is almost unchanged, while HAMS’ is constant.
However, all 4 schemes are still cheaper than returning the underlying record
values directly, which would have generated a query answer size in excess of
400KB even for q = 1% of the records.

In terms of server retrieval time, iPSH-2 and iPSH-22 incur significant
penalties initially. This is because their hierarchies contain more levels and
nodes in the lower levels cannot be cached in the buffer, so a larger query
range induces more random I/Os. The increase in penalty tapers off gradu-
ally, however, as larger query ranges reach the upper levels of the partial sum

Verifying Completeness of Relational Query Answers from Online Servers · 9: 43

Fig. 20. Query selectivity – client processing time.

hierarchies that are buffered. In contrast, PSH-PA slows down very gradually,
as the increase in the number of partial sums in the query answer introduces
sequential (rather than random) I/Os.

As expected, the client processing cost is proportional to the query size.
Among the proposed schemes, iPSH-2’s smaller answer size results in the low-
est client processing, while PSH-PA is the worst because of the larger answer
size. We also note that the client processing time for iPSH-2 and iPSH-22 is
below 1 sec, even when more than 90% of the database is aggregated over. This
low processing cost shows the practicality of our authentication scheme.

Overall, iPSH-22 is still the best performer, with iPSH-2 starting to outper-
form the rest only when the network speed falls below 100-150 Kbps.

8.2.5 Observations. The experiments highlight that, on one hand, a higher
fan-out in the partial sum hierarchy produces larger query answers, and is
more susceptible to variations in the query scope and database size. On the
other hand, small fan-outs suffer from poor server retrieval time. Overall,
iPSH-22 strikes the best balance at high network speeds, while slow networks
favor iPSH-2.

8.3 On Multi-Attribute Aggregates

To evaluate the performance of our proposed KDB+PS scheme, we run it on
the same system and experiment parameters as in Section 8.1 and Table IV,
except that here the records are mapped into multidimensional space. The
results are summarized in Figures 21 to 27.

8.3.1 Experiment Results. For the first experiment, we fix n=10 million,
d=3, and study our scheme’s sensitivity to the query scope. We vary the query
scope size from 1 record to 20,000 records. Here we observe an interesting
cyclicality in the results in Figures 21 and 22. As the query scope increases, it
overlaps more leaf nodes and hence the number of records in those leaf nodes
that have to be proven to be irrelevant, as well as the I/Os in retrieving them,
both go up. Beyond a certain threshold, however, the query scope becomes
large enough to envelop an internal node of the KDB+PS tree. When this

9: 44 · H. Pang and K.-L. Tan

Fig. 21. Query scope – answer size.

Fig. 22. Query scope – I/O time.

happens, a large portion of the query answer is captured by the partial sum
of that one internal node, thus reducing the answer size and I/O time at once.
This pattern is repeated at regular intervals as the query scope grows further.

Next, we fix d=3 and the query scope to contain ten records, while vary-
ing the database size. Figures 23 and 24 show that increasing database
size has no observable impact on the query answer size. In contrast, the
I/O time of KDB+PS increases gradually because the tree grows deeper with
larger databases.

Turning our attention to our scheme’s sensitivity to the number of dimen-
sions, we fix n=10 million and the query scope to contain ten records, while
varying the number of dimensions. The results, depicted in Figure 25, show
that the answer size increases exponentially. This is due to two factors: (1)
The number of hypercubes corresponding to leaf nodes that the query scope
overlaps grows exponentially with the number of dimensions. (2) The size of
the “scope” attribute in the child pointer is proportional to the dimensional-
ity. With a higher number of dimensions and hence larger child pointers, the

Verifying Completeness of Relational Query Answers from Online Servers · 9: 45

Fig. 23. DB size – answer size.

Fig. 24. DB size – I/O time.

Fig. 25. Dimensionality – answer size.

9: 46 · H. Pang and K.-L. Tan

Fig. 26. Dimensionality – I/O time.

Fig. 27. Dimensionality – client processing time.

fan-out of the KDB+PS tree shrinks, so each leaf node contains more records.
Consequently, there are more records in the hypercubes overlapping the query
scope, for which the portal server needs to provide digests to prove that they
are not part of the query answer.

Next, we examine Figure 26. For d=2, the average number of records per
leaf node is less than the query answer size, and we observe that the query
scope often overlaps 3 hypercubes along a dimension. For d=3, each leaf node
contains more records than the query answer size, so the query scope overlaps
only 1 or 2 hypercubes along each dimension almost all the time. Thus the
portal server incurs significantly fewer I/Os to retrieve the overlapped hyper-
cubes. Beyond this point, the number of overlapped hypercubes per dimension
cannot lower any further, and the overall number of overlapped hypercubes
again increases with the dimensionality.

From Figure 27, we observe that (1) the client computation cost is
negligible–at 6 dimensions, the authentication costs no more than 40 millisec-
onds. Thus, our scheme is practical. (2) As in the single-attribute case, the
client processing time grows with the returned answer size. (3) For d = 3, the

Verifying Completeness of Relational Query Answers from Online Servers · 9: 47

Fig. 28. 1-D versus multi-D – answer size.

Fig. 29. 1-D versus multi-D – I/O time.

lower cost (relative to d = 2) follows from the low overlap between the query
scope and the hypercubes.

Across the three experiments, HAMS consistently produces very compact
query answers. However, its I/O time grows exponentially with the dimension-
ality. We also have had to provision huge storage spaces as HAMS’ storage
overhead is roughly proportional to nd. Again, we emphasize that HAMS does
not support authentication of query answers.

Finally, Figures 28 and 29 compare KDB+PS with the single-dimensional
iPSH-2 and iPSH-22. (We leave out PSH-PA which has been shown to be in-
ferior to iPSH-2 and iPSH-22, and HAMS which does not support authentica-
tion.) The figures indicate that, while KDB+PS produces comparable answer
sizes as iPSH-22, the former incurs significantly higher I/O costs. Therefore,
the iPSH schemes are superior for single-attribute aggregate queries.

8.3.2 Observations. The experiments show that, in the course of en-
abling authentication, KDB+PS incurs larger transmission and verification
overheads compared to HAMS. While KDB+PS is less I/O intensive than

9: 48 · H. Pang and K.-L. Tan

HAMS, it is still more expensive than the iPSH schemes for single-attribute
aggregates.

9. CONCLUSION

In this article, we present schemes for authenticating relational range selec-
tion, as well as single- and multi-attribute range aggregate query answers
generated by online servers that may become compromised over time. The
schemes enable each query answer to be checked for completeness (i.e., all
records within the query range contribute to the answer) and authentic-
ity (i.e., the correct values are returned). The schemes do not disclose more
data than necessitated by the query conditions, hence they do not contravene
access control mechanisms that rewrite queries dynamically. Moreover, the
schemes are computationally secure and introduce low query processing and
update overheads.

ACKNOWLEDGMENT

We thank the reviewers of this paper for their valuable comments and sugges-
tions. We would like to acknowledge Arpit Jain and Krithi Ramamritham who
codeveloped an early version of the authentication scheme for range selection.

REFERENCES

ANDERSON, R., NEEDHAM, R., AND SHAMIR, A. 1998. The Steganographic file system. In Infor-

mation Hiding, 2nd International Workshop. Portland, OR. D. Aucsmith Ed.

BONEH, D., GENTRY, C., LYNN, B., AND SHACHAM, H. 2003. Aggregate and verifiably encrypted
signatures from bilinear maps. In Proceedings of Advances in Cryptology (EUROCRYPT’03),
E. Biham Ed., Lecture Notes in Computer Science, Springer-Verlag. 416–432.

CHENG, W., PANG, H., AND TAN, K.-L. 2006. Authenticating multi-dimensional query results in
data publishing. In Proceedings of the 20th Annual IFIP WG 11.3 Working Conference on Data

and Applications Security.

CHOKANI, S. 1992. Trusted Products Evaluation. Comm. ACM 35, 7, 64–76.

CHUN, S.-J., CHUNG, C.-W., LEE, J.-H., AND LEE, S.-L. 2001. Dynamic update cube for
range-sum queries. In Proceedings of the International Conference on Very Large Data Bases

(VLDB’01). 521–530.

DAMIANI, E., DI VIMERCATI, S. D. C., FORESTI, S., JAJODIA, S., PARABOSCHI, S., AND SAMA-
RATI, P. 2005a. Metadata management in outsourced encrypted databases. In Proceedings of the

2nd VLDB Workshop on Secure Data Management (SDM’05).

DAMIANI, E., DI VIMERCATI, S. D. C., FORESTI, S., SAMARATI, P., AND VIVIANI, M. 2005b.
Measuring Inference Exposure in Outsourced Encrypted Databases. In Proceedings of the 1st

Workshop on Quality of Protection.

DEVANBU, P., GERTZ, M., MARTEL, C., AND STUBBLEBINE, S. 2000. Authentic data publication

over the Internet. In 14th IFIP Working Conference in Database Security. 102–112.

DEVANBU, P., GERTZ, M., MARTEL, C., AND STUBBLEBINE, S. 2003. Authentic data publication

over the Internet. J. Comput. Secur. 11, 291–314.

DRIVECRYPT. Secure hard disk encryption. http://www.drivecrypt.com.

DSS. 1991. Proposed federal information processing standard for digital signature standard

(DSS). Federal Register 56, 169, 42980–42982.

EFS. Encrypting file system for windows 2000. http://www.microsoft.com/windows2000/

techinfo/howitworks/security/encrypt.asp.

GEFFNER, S., AGRAWAL, D., AND ABBADI, A. E. 2000. The dynamic data cube. In Proceedings of

the International Conference on Extending Database Technology (EDBT’00). 237–253.

Verifying Completeness of Relational Query Answers from Online Servers · 9: 49

GRAY, J., CHAUDHURI, S., BOSWORTH, A., LAYMAN, A., REICHART, D., VENKATRAO, M.,
PELLOW, F., AND PIRAHESH, H. 1997. Data Cube: A relational aggregation operator gener-
alizing group-by, cross-tab, and sub-totals. J. Data Min. Knowl. Discov. 1, 1, 29–53.

HACIGÜMÜS, H., IYER, B. R., LI, C., AND MEHROTRA, S. 2002. Executing SQL over encrypted
data in the database-service-provider model. In Proceedings of the ACM International Confer-

ence on Management of Data (SIGMOD’02). 216–227.

HO, C.-T., AGRAWAL, R., MEGIDDO, N., AND SRIKANT, R. 1997. Range Queries in OLAP data
cubes. In Proceedings of the ACM International Conference on Management of Data (SIG-

MOD’97). 73–88.

LI, F., HADJIELEFTHERIOU, M., KOLLIOS, G., AND REYZIN, L. 2006. Dynamic authenticated
index structures for outsourced databases. In Proceedings of the 25th ACM International Con-

ference on Management of Data (SIGMOD’06). 121–132.

LI, J. AND OMIECINSKI, E. R. 2005. Efficiency and security trade-off in supporting range queries
on encrypted databases. In Proceedings of the 19th Annual IFIP WG 11.3 Working Conference

on Data and Applications Security.

MA, D., DENG, R. H., PANG, H., AND ZHOU, J. 2005. Authenticating query results from untrusted
servers. In Proceedings of the 7th International Conference on Information and Communications

Security.

MARTEL, C., NUCKOLLS, G., DEVANBU, P., GERTZ, M., KWONG, A., AND STUBBLEBINE, S. 2004.
A general model for authenticated data structures. Algorithmica 39, 1, 21–41.

MERKLE, R. 1989. A certified digital signature. In Proceedings of Advances in Cryptology

(Crypto’89), Lecture Notes in Computer Science. vol. 0435. 218–238.

MYKLETUN, E., NARASIMHA, M., AND TSUDIK, G. 2004. Authentication and integrity in out-
sourced databases. In Proceedings of the Network and Distributed System Security Symposium.

NARASIMHA, M. AND TSUDIK, G. 2006. Authentication of outsourced databases using signature
aggregation and chaining. In Proceedings of the 11th International Conference on Database Sys-

tems for Advanced Applications, (DASFAA’06), 420–436.

NEUMAN, B. AND TSO, T. 1994. Kerberos: An authentication service for computer networks. IEEE

Comm. 32, 9, 33–38.

ORACLE VPD. 2002. The virtual private database in Oracle9ir2: An Oracle technical white paper.
http://otn.oracle.com/deploy/security/oracle9ir2/pdf/vpd9ir2twp.pdf.

PANG, H., JAIN, A., RAMAMRITHAM, K., AND TAN, K.-L. 2005. Verifying completeness of rela-
tional query results in data publishing. In Proceedings of the ACM International Conference on

Management of Data (SIGMOD’05). 407–418.

PANG, H. AND TAN, K. 2004. Authenticating query results in edge computing. In IEEE Interna-

tional Conference on Data Engineering. 560–571.

PANG, H., TAN, K., AND ZHOU, X. 2003. StegFS: A Steganographic file system. In Proceedings of

the 19th International Conference on Data Engineering. Bangalore, India, 657–668.

PAPADIAS, D., KALNIS, P., ZHANG, J., AND TAO, Y. 2001. Efficient OLAP operations in spatial
data warehouses. In Proceedings of the 7th International Symposium on Spatial and Temporal

Databases. 443–459.

PAPADIAS, D., TAO, Y., KALNIS, P., AND ZHANG, J. 2002. Indexing spatio-temporal data ware-
houses. In IEEE International Conference on Data Engineering. 166–175.

PGPDISK. http://www.pgpi.org/products/pgpdisk/.

PRZYDATEK, B., SONG, D., AND PERRIG, A. 2003. SIA: Secure information aggregation in sensor
networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor

Systems, (SenSys’03). 255–265.

RIVEST, R. 1992. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities Board.

RIVEST, R. AND SHAMIR, A. 2001. PayWord and MicroMint: Two simple micropayment schemes.
In http://theory.lcs.mit.edu/ rivest/RivestShamir-mpay.pdf.

RIVEST, R., SHAMIR, A., AND ADLEMAN, L. 1978. A method for obtaining digital signatures and
public-key cryptosystems. Comm. ACM 21, 2, 120–126.

9: 50 · H. Pang and K.-L. Tan

ROBINSON, J. 1981. The K-D-B-Tree: A search structure for large multidimensional dynamic
indexes. In Proceedings of the ACM International Conference on Management of Data (SIG-

MOD’81). 10–18.

SAMET, H. 1984. The Quadtree and Related Hierarchical Data Structures. ACM Comput. Surv. 16,

2, 187–260.

SANDHU, R. AND SAMARATI, P. 1994. Access Control: Principles and Practice. IEEE Comm. 32, 9,
40–48.

SHA. 2001. Secure hashing algorithm. National Institute of Science and Technology. FIPS 180-2.

ZHANG, D., TSOTRAS, V. J., AND GUNOPULOS, D. 2002. Efficient aggregation over objects with
extent. In Symposium on Principles of Database Systems (PODS ACM SIGACT-SIGMOD-

SIGART’02). 121–132.

Received June 2006; revised February 2007; accepted August 2007

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2008

	Verifying Completeness of Relational Query Answers from Online Servers
	Hwee Hwa PANG
	Kian-Lee TAN
	Citation

	TIS00165.dvi

