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ABSTRACT 

The objective of entity identification is to determine the correspondence between 
objective instances from more than one database. This paper  examines the problem at 
the instance level assuming that schema level heterogeneity has been resolved a priori. 
Soundness and completeness are defined as the desired properties of any entity-identifi- 
cation technique. To achieve soundness, a set of identity and distinctness rules have to 
be established for the entities in the integrated world. We then propose the use of 
extended key, which is the union of keys (and possibly other attributes) from the 
relations to be matched, and its corresponding identity rule to determine the equiva- 
lence between tuples from relations that may not share any common key. Instance level 
functional dependencies (ILFD), a form of semantic constraint information about the 
real-world entities, are used to derive the missing extended key attribute values of a 
tuple. Formal properties of ILFDs are derived. Results from a Prolog-based prototype 
entity-identification system are presented. 
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1. INTRODUCTION 

Database integration is the problem of taking two (or more) indepen- 
dently developed databases and resolving the differences between them to 
make them appear as one. The need for integration may arise due to new 
applications that span multiple databases (e.g., an organization may want 
an application that carries out an enterprise-wide analysis of operations) 
or due to the integration of operations of different organizations (for 
example, corporate mergers and acquisitions, or integrated billing, as in 
the case of U.S. West and AT&T). Two kinds of integration are possible: 

• Virtual Integration: A virtually integrated database is created on top of 
the component databases, usually by means of a common data model 
and integrated schema, while the components retain their identities 
and usage. The effort in federated autonomous databases is in this 
direction [14]. 

• Actual Integration: An  actually integrated database is created from the 
component databases. The original databases are discarded and the 
applications are migrated to the new integrated database [17]. 

In this paper, we focus our attention on the entity identification 
problem that can occur in both virtual and actual database integration. In 
a single database context, it is usually the case that an object instance can 
uniquely model a real-world entity. This property does not hold for 
multiple autonomous databases and the problem of entity identification 
therefore arises. Kent described this as the breakdown of the information 
model [8]. For example, when we add two object instances to a relation in a 
single database, the one-to-one correspondence between object instances 
and real-world entities assures that the two new object instances refer to 
distinct real-world entities. However, when the two object instances are 
added to relations in different databases, such one-to-one correspondence 
property may disappear. 

Pre-existing databases in most organizations are defined and populated 
by different people at different times in response to different organiza- 
tional or end-user requirements. Such independent development of 
databases often results in two databases capturing parts of the same 
real-world domain. Typically, when there is a need to provide integrated 
access to these related databases, relating the representations of the same 
real-world entity from the two databases is often difficult, if not impossi- 
ble, without specifying additional semantic information that resolves this 
ambiguity. 
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The rest of this paper is organized as follows. In Section 2, we describe 
the background of the entity-identification problem and give an example 
that motivates this research. We also give some brief comments on some 
existing approaches. In Section 3, we give a formal treatment of the 
problem and characterize soundness, completeness, and monotonicity as 
the desired properties of any entity-identification process. We then pro- 
pose a new approach in Section 4 and give a formal analysis in Section 5. 
Our entity identification prototype is described in Section 6. Conclusions 
are given in Section 7. 

2. BACKGROUND 

The task of integrating pre-existing autonomous databases has to re- 
solve the logical heterogeneity that arises when the participating databases 
are designed independently of one another [2]. Logical heterogeneity can 
occur at two levels, namely, schema level and instance level. The resolu- 
tion of schema level heterogeneity is known as schema integration. The 
resolution of instance level heterogeneity is known as instance integration. 

1. Schema Level: The meta-data information of the participating databases, 
equally applicable to all instances, are incompatible. The incompatibil- 
ity problems at this level include: 
• Domain  mismatch: T h e  domains of similar attributes are not compati- 

ble in structure or semantics. For example, the currency attribute in 
one relation being in U.S. dollars while the corresponding currency 
attribute in another relation is in yen is a case of semantic mismatch. 
An example of structural mismatch is the case when the name 
attribute in one relation has a data type of string while the name 
attribute in another relation is composed of three subattributes of 
string data type, namely, lastname, firstname, and middlename. 

• Schema mismatch: This problem arises when the schema structures 
and semantics of two databases are not compatible, for example, the 
Employee table in one database may correspond to a union of 
Part-time-employee and Full-time-employee tables in another 
database. 

• Constraint mismatch: The constraints specified in the participating 
databases may be incompatible. For example, a graduate school 
database may have the constraint of requiring all graduate students to 
have a cummulative GPA of greater than 3.0, whereas the computer 
science department database may have the constraint of requiring all 
graduate students to have a cumulative GPA of greater than 3.5. 



4 E.-P. LIM ET AL. 

2. Instance Level: The schemas are compatible in structure (attribute 
domains) and semantics (attribute meaning), but the instances corre- 
sponding to the same real-world entity have yet to be identified and 
merged. The two problems that occur at this level are: 
• Entity identification: This is the problem of identifying object instances 

from different databases that correspond to the same real-world 
entity. Related to the entity identification problem is the instance level 
homonym problem. Instance level homonyms occur when the same 
identifier is used for different real-world entities in different databases 
[12]. The instance level homonym problem is different from the 
homonym problems mentioned in most literature. Homonym prob- 
lems are often discussed at the attribute level where the meanings 
assigned to attribute names are different in two databases [3]. In 
general, there appears to be no fully automatic way to solve the 
instance level homonym problem [1]. 

• Attribute value conflict: Attribute value conflict arises when the at- 
tribute values in the two databases, modeling the same property of a 
real-world entity, do not match. This conflict may be caused by data 
scaling conflict, inconsistent data, or missing data [15] or even potential 
schema modeling errors. Data scaling conflict occurs when the 
domains of semantically related attributes use different units of 
measurement. Inconsistent data occur when semantically equivalent 
attributes have different values. Missing data refers to the situation 
when object instances modeling the same real world do not have the 
same set of attributes. It is clear that attribute value conflict resolu- 
tion can be performed only after the entity-identification problem has 
been resolved. 

Schema level homonym and synonym problems are usually resolved at 
the schema integration stage. In the case of actual database integration, 
the instance level problems must be resolved subsequently to complete the 
integration process. In the case of virtual database integration, the strate- 
gies and information required for resolving instance level problems have to 
be specified during design time, i.e., schema integration phase, but the 
actual processing only takes place during the query time. 

Resolving instance level ambiguities is a common problem existing in a 
federated database context. However, instance integration has not been 
discussed much in the literature. Most of the database integration research 
focuses on the schema integration problem. It is commonly believed that 
the instance integration can be easily performed after schema integration 
is completed. As we shall see in Section 2.1, it is not always easy to 
integrate object instances even when the schemas are compatible. In the 
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case of federated databases, participating database systems can continue to 
operate autonomously. Instance integration may have to be performed 
whenever updating is done on the participating databases. Because entity 
identification is the first problem to be tackled in instance integration, 
effective and efficient approaches to handle it are necessary. 

2.1. MOTIVATING EXAMPLE 

In the following, we show an example of the entity-identification prob- 
lem. Consider the relations R and S from databases DB~ and DB2, 
respectively, as shown in Table 1. Both relations contain tuples that 
describe restaurant entities in the real world. 

EXAMPLE 1 
Relation R has ( n a m e ,  street)  as its candidate key, whereas relation S 

has (name, city) as its candidate key. In this paper, candidate keys in 
relations are underlined. To integrate relations R and S, we first have to 
determine which tuples in R and S, respectively, describe the same 
restaurant entity in the integrated world. 

A popular approach of using a common candidate key for identification 
does not work because R and S do not share a common candidate key. 
The common key attribute, name, may suggest that the first tuple in R and 
the first tuple in S refer to the same restaurant entity because they have 
the same value, i.e., name = "VillageWok". Nevertheless, a careful analysis 
reveals that this conclusion may not be correct. For example, if we insert a 
tuple with n a m e  = "VillageWok" and s treet  = "Penn.Ave." into R, we will 
have a situation where one tuple in S can be matched with two tuples in 
R. It is not clear which of them is the correct one. 

On the other hand, if we were told that restaurant entities in the 
integrated world have unique combinations of name, street, and city 
attribute values, Wash.Ave. is only in city Mpls, and the restaurant owned 
by Hwang is only on Wash.Ave., we can safely conclude that the first tuple 
in R and the first tuple in S refer to the same restaurant entity. The 
insertion of a tuple with name ="Vil lageWok" and s t ree t="Penn .Ave ."  

TABLE 1 

R S 

name street cuisine name city manager 

VillageWok Wash.Ave. Chinese VillageWok Mpls Hwang 
Ching Co.B Rd. Chinese OldCountry Roseville Libby 
OldCountry Co.B2 Rd. American ExpressCafe Burnsville Tom 
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into R does not cause any problem because we know that it is not the 
restaurant owned by Hwang. 

With this example, we illustrate that entity identification in general is 
not a trivial problem. In this paper, we investigate the use of extra 
semantic information to (at least partially) automate the entity-identifica- 
tion process. 

2.2. EXISTING APPROACHES 

The existing approaches to entity identification can be categorized as 
follows: 

1. Using key equivalence. Many approaches assume some common key 
exists between relations from different databases modeling the same entity 
type, e.g., Multibase [5, 7]. Because a key can be used for uniquely 
associating object instance with real-world entities, equivalence of values 
of the common key can be used to resolve the problem. This approach, 
however, is limited because the relations may have no common key, even 
though they might share some common key attributes, as shown in Exam- 
ple 1. 

2. User-specified equivalence. This approach requires the user to specify 
equivalence between object instances, e.g., as a table that maps local object 
ids to global object ids, i.e., the responsibility of matching the object 
instance is assigned to the user. This technique has been suggested for the 
Pegasus project [1]. Because the matching table can be very large, this 
approach can potentially be extremely cumbersome. Nevertheless, it is a 
general approach and can handle synonym and homonym problems. 

3. Use of probabilistic key equivalence. Instead of insisting on full key 
equivalence, Pu [13] suggested matching object instances using only a 
portion of the key values in the restricted domain. The name matching 
problem, as an instance of the key equivalence, has been addressed by 
matching the subfields of names. If most of the subfields in two given 
names match, the names are considered to be identical. Although this 
approach can produce a high confidence on the matching result, it is 
applicable only when common key exists between relations. The probabilis- 
tic nature of matching may also admit erroneous matching. 

4. Use of probabilistic attribute equivalence. Chatterjee and Segev pro- 
posed the use of all common attributes between two relations to determine 
entity equivalence [4]. For each pair of records from two relations, a value 
called comparison value is assigned based on a probabilistic model. Never- 
theless, in Section 2.1, we demonstrate that comparing common attribute 
values does not necessarily produce correct matching results. 
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5. Use of heuristic rules. Wang and Madnick attacked the problem using 
a knowledge-based approach [18]. A set of heuristic rules is used to infer 
additional information about the object instances to be matched. Because 
the knowledge used is heuristic in nature, the matching result produced 
may not be correct. 

From the above, we conclude that key equivalence is a well-accepted 
solution technique when it is applicable. Most entity-identification tech- 
niques have been proposed based on different assumptions of entity 
equivalence. The notion of correctness for entity-identification processes 
has not been well formulated. We also realized that most techniques do 
not handle cases when two object instances do not have a common 
candidate key. In this paper, we give a formal treatment on the entity-iden- 
tification problem. We propose the notions of soundness and completeness 
as the desired properties of an entity identification process. To achieve a 
sound identification result, we require identity rules and distinctness rules 
to be established. Extra knowledge, known as instance level functional 
dependency (ILFD), is used to match tuples in two relations that share no 
common candidate key. 

3. T H E  ENTITY-IDENTIFICATION PROBLEM 

3.1. PROBLEM FORMULATION 

The aim of entity identification is to determine the correspondence 
between object instances from multiple databases. To simplify the discus- 
sion, we assume that the data model used is relational and real-world 
entities of the same type can be represented as tuples in relations. Each 
relation is expected to have one or more candidate keys to uniquely 
identify its tuples. ~ Each key consists of one or more attributes called key 
attributes. Each tuple in a relation models some properties of a unique 
real-world entity. However, each real-world entity may be modeled by 
many tuples, provided that no two such tuples can be found in the same 
relation. 2 We also assume that the attribute values of tuples are accurate 
with respect to that of the corresponding real-world entities. 3 Two tuples 
from different relations are said to match if they model the same real-world 

1 If no key is defined, the entire attribute set of the relation can be treated as the 
key. 

z This assumption is often satisfied by relations in the existing databases. 
3Only the attribute values that are consistent with properties of the real-world 

entities can participate in the entity-identification process. 
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Record 
Instances 
in Relation R 

Real World Entities 

O 

i / ¢ , .. : 

: i \ 

o / / /  " io 
• ~ \ \  

; / 
(5/ 

a2 / 
/ 

©a3 

k, ~ b3 

0 
b2 

Record 
Instances 
in Relation S 

................ Correspondence between record instances and real-world entities 

Fig. 1. Relat ionship be tween real-world entit ies and tuples. 

entity, as illustrated by Figure 1. Relations R and S contain tuptes that 
represent a set of real-world entities. Because some real-world entities 
may not be modeled in either relation, e.g., e 4, we are only interested in 
the subset of real-world entities modeled by at least one of R and S. This 
subset is known as the integrated world. In the example, a 2 and b 3 match 
and a 3 and b 4 match. 

Related to the entity identification problems are the synonym and 
homonym problems. For example, different employee numbers assigned to 
the same employee in different relations is an example of the synonym 
problem, whereas the same employee number in two relations for different 
employees exemplifies the homonym problem. The synonym problem 
arises due to the fact that the attribute employee numbers in both 
relations are not semantically equivalent. Because semantically equivalent 
attributes can usually be determined at the schema integration stage [10, 
19], we assume that the synonym problem would have been resolved before 
entity identification was performed. Although the homonym problem may 
arise due to semantically unequivalent attributes, it can also be caused by 
the fact that the key of the relation is not the key in the integrated world. 
For example, let R be a relation that contains tuples describing restaurant 
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entities in Minneapolis and let S be another relation that contains tuples 
describing restaurant entities in St. Paul. Both relations have name as key. 
Nevertheless, name is not necessarily the key in the integrated set of 
restaurant entities because the same restaurant name may exist in both 
Minneapolis and St. Paul. 

To differentiate between value equivalence and entity equivalence, we 
use a = b to denote the former and a - b  to denote the latter from now on. 

3.2. SOUNDNESS AND COMPLETENESS OF THE 
ENT1TY-1DENTIFICA TION PROCESS 

The entity-identification process can be expressed as a three-valued 
function that takes a pair of tuples and returns "true" only if they refer to 
the same real-world entity, "false" only if they do not, and "unknown" 
otherwise. Based on the function values, all pair of tuples can be parti- 
tioned into three disjoint sets, namely, identical pairs, distinct pairs, and 
undetermined pairs. Those pairs evaluating to "true" or "false" can be 
represented in a matching table and a negative matching table, respectively. 
Because each tuple has a unique identifier in its relation, a matching 
(negative matching) table entry consists of the key values of the pair of 
tuples. Moreover, the record pairs in the matching table and negative 
matching table have to satisfy the following constraints. 

UNIQUENESS CONSTRAINTS. No tuple in either relation can be matched to 
more than one tuple in the other relation. 

CONSISTENCY CONSTRAINT. No tuple pair can appear in both the matching 
and negative matching tables. 

Consider two relations R and S, coming from different databases, both 
of which model real-world entities of type E. We call the conceptual 
matching table MTRs and the conceptual negative matching table NMTRs. 

In the following, we define soundness and completeness of entity 
identification. They are the desired properties to be achieved by the 
entity-identification process. 

DEFINmON (Soundness). Each record pair declared to be matching (not 
matching) indeed models the same (distinct) real-world entity. 

DEFINITION (Completeness). The entity-identification process returns a 
value of "matching" or "not matching", but not "undetermined", for all 
pairs of tuples. 

In reality, soundness and completeness of solutions to the entity-identi- 
fication problem are difficult to achieve. Nevertheless, at least the sound- 
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ness property must be achieved for an entity-identification process to be 
successful. In Figure 2, we illustrate a particular entity identification 
process that fails to satisfy the soundness property. 

Figure 2 depicts a scenario in which the attribute values (including the 
key values) of tuples are identical, but the records model two different 
real-world entities. If by using attribute value equivalence we conclude 
that tuples r 1 and s I match, soundness is violated. The above entity-identi- 
fication process fails because it could not recognize that database I and 2 
are modeling different subsets of the domain of real-world entities. To 
differentiate between the two tuples, we include an extra attribute in each 
relation to indicate the domain attribute of value "DBI" ,  i.e., r 1 = 
("Vi l lageWok","Chinese" ,"DBl") .  With the domain attribute, we can 
define assertions or semantic rules relevant to the entities modeled by a 
particular database. Note that a domain attribute may or may not be 
modeled in the integrated database depending on whether the source 
location information has to be made available to the user. 

To achieve soundness, all information used for entity identification 
must be correct with respect to the integrated world. Moreover, some 
identity and distinctness rules need to be established for entities in the 
integrated world. These rules are asserted by the database administrator 
(DBA) or a collaborative group of database administrators, who has a 
better understanding of the integrated domain of real-world entities. 
Advanced techniques in knowledge discovery may also suggest some iden- 
tity or distinctness rules that have been overlooked by the database 

I n t e g r a t e d  W o r l d  

Restaurant(name,street ,cuisine) 

e~ (VillageWok ,Wash .Ave. ,Chinese) 
l e2 

O ( VillageWok,Co.B2.Rd. ,Chinese) j 
/ 

equiv, attrib, value 

(villageWok,Chinese) illageWok,Chinese) 

R(name,cuisine) I [ S(name,euisine) 

D a t a b a s e  1 D a t a b a s e  2 

Fig. 2. Difficulties in guaranteeing soundness and completeness. 
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administrator. The entity-identification process should use this set of rules 
to determine matched and unmatched tuples. 

DEFINITION (Identity rule). An identity rule for the set of real-world 
entities E is of the form 

V e l , e 2 ~ E ,  P ( e l . A  l . . . . .  e l .Am,e2.B I . . . . .  e2.B,)--*(e,  =e2) ,  

where P is a conjunction of predicates on the attributes A1, . . . ,  Am, and 
B1 . . . .  , B n of e 1 and e 2, respectively. Each predicate is either of the form 
ei.attribute op ej.attribute or ej.attribute op value, where op ~ { =, <, >, 
~<, >/, =g}. Furthermore,  for each el.A ~ or e2.A ~ that appears in the 
predicates, P must imply el.A i =ez .A ~. 

E X A M P L E  
Let E denotes a set of restaurant entities. Consider the rules: 

r l :  Ve l, e 2 ~ E, (el.cuisine ="Chinese" )  A (e2.cuisine ="Chinese" )  

(e 1 -=e2). 
r2: Ve 1, e 2 EE ,  (e! .cuisine = "Chinese")  --+ (e I --- e2). 

r l  is an identity rule, but r2 is not because its antecedent does not imply 
e 2.cuisine = e 1.cuisine. 

Consider entities e l , e 2 c E .  The existence of A k as an identifying 
attribute can be captured by the identity rule 

V e , , e z ~ E ,  ( e l .A~=e2 .A~)  ~ ( e l - e 2 ) .  

Suppose e 1 and e 2 were modeled in relations R 1 and R 2, respectively, and 
attribute Ak was used as the key in both. The above identity rule then is 
used by the technique called entity identification by key equivalence. 

Similar to identity rules, a set of distinctness rules can be defined to 
determine unmatched tuples. 

DEFINITION (Distinctness rule). A distinctness rule for the set of real- 
world entities E is of the form 

Ve~,e2~E,  P(e1 .A 1 . . . . .  e l .Am,e2.Bl  . . . . .  e2 .Bn)- -~(e l~e2) ,  

where P is a conjunction of predicates on the attributes A~ . . . . .  Am, and 
B 1 . . . . .  B n of e I and e 2. Each predicate is either of the form el.attributed op 
ej.attribute or ei.attribute op value, where i~{1,2} and o p t { = ,  <, >, 
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~<, >~, ~}. Furthermore,  P must involve some attribute from each of e 1 
and e 2. 

E X A M P L E  

r3: Vel, e 2 ~ E, (e 1.speciality = "Mughalai")  A (e z.cuisine ~ "Indian")  --* 
(ej 4= e2). 

The above distinctness rule says that restaurant entity e 1 specialized in 
Mughalai food is not equivalent to the restaurant entity e 2 with non-In- 
dian cuisine. 

In general, it is necessary though not sufficient to enforce the 
identity/distinctness rules in the integrated world as constraints in the 
relations to be matched. For example, for the identity rule r l  to hold, we 
have to ensure that there is at most one Chinese restaurant in every 
relation modeling the restaurant entities. In other words, the uniqueness 
of tuple in a relation satistying the identity rule conditions must be 
observed. The above constraint is not sufficient because it does not ensure 
that whenever two Chinese restaurant records are added to relations in 
different databases, they refer to the same real-world restaurant. A com- 
mon means to achieve uniqueness for an identity rule, which contains only 
predicates of the form e l . A i = e 2 . A  i for 1 <~i<~m, is to treat a subset of 
A~ . . . . .  A m that appears in the relation as key. 

Similarly, for the distinctness rule r3 to hold, we have to ensure that for 
each relation modeling the restaurant entities, no non-Indian restaurant 
tuple can have specialty in Mughalai food. The above constraint is not 
sufficient because it is still possible to have two records across different 
databases both referring to the same real-world entity and both satisfying 
the constraints in each database, but they together violate the distinctness 
rule. 

To guarantee completeness, we require enough information to deter- 
mine whether every pair of tuples matches or not. This means that a 
complete set of identity (distinctness) rules, and a complete knowledge 
about the domain of real-world entities modeled by the relations may be 
needed. Such complete knowledge is often difficult, if not impossible, to 
obtain. To cope with incompleteness, an entity identification technique 
should allow the DBA to supply more information as more knowledge 
about the real-world is gained. 

3.3. MONOTON1C1TY OF E N T I T Y  IDENTIFICATION 

Given a set of identity/distinctness rules, entity identification can be 
viewed as a reasoning process which derives the conditions required by the 
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Matching Pairs ~Undetermined l 
Pairs 

Not Matchin 
Pairs 

Fig. 3. Three kinds of matching relationships. 

antecedents of the rules. To guarantee soundness of the entity-identifica- 
tion process, the technique used should be monotonic [11]. 

DEFINITION (Monotonic entity-identification technique). An entity- 
identification technique is monotonic if every pair of tuples determined by 
the technique to be matching/not matching remains so when additional 
information is supplied. 

Pictorially, we can visualize the relationships between pairs of tuples as 
the Venn diagram shown in Figure 3. 

If the entity-identification technique adopted is monotonic, the sets of 
matching pairs and non matching pairs will expand, whereas the set of 
undetermined pairs shrinks as more semantic information becomes avail- 
able. Completeness is achieved only when the undetermined set is empty. 

4. PROPOSED SOLUTION 

In this section, we propose a new approach to solve the entity-identifi- 
cation problem. Our approach differs from previous approaches in the 
following aspects: 

1. Our technique is developed under the assumption that a sound 
matching result is desired. For example, a company wanting to dismiss 
employees with sales performance below expectation requires matching 
between the employee records in one database and their performance 
records in another database. It is crucial that the set of matched records 
be correct; otherwise, some people may be wrongly fired. Our technique 
achieves soundness by using valid constraints about the integrated real- 
world to perform matching. Object instances are matched only when they 
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satisfy some identity rule. This is in contrast to some approaches that rely 
heavily on heuristics, or a probabilistic model. 

2. Our technique removes the requirement for a common key between 
relations to be matched. This offers a more general approach toward entity 
identification. 

3. Using a matching table to contain the result of entity identification, 
our technique does not exclude the use of other approaches to assert 
additional possible matching record pairs in the table. For example, it is 
possible for a knowledgeable user to add entries directly to the matching 
table. 

We define the concept of extended key and extended key equivalence. 
The extended key equivalence, as a kind of identity rule, can be used with 
instance level functional dependencies (ILFDs) to match tuples from two 
relations sharing no common candidate key. 

4.1. EXTENDED KEY EQUIVALENCE AND INSTANCE LEVEL 
FUNCTIONAL DEPENDENCIES 

In Section 2.2, we mentioned that key equivalence is a common ap- 
proach for entity identification by matching tuples from two relations, in 
the presence of a common candidate key. In the previous section, we 
showed that key equivalence is one kind of identity rule. An additional and 
often unstated assumption for key equivalence to work is that "the 
(common) candidate key continues to remain as a key for the unionized set 
of real-world entities." Key equivalence will not work when the relations to 
be matched do not have any common candidate key. As a result, we may 
have to use other kinds of identity rules to perform entity identification. 

The following is an approach that uses relationships/equivalences be- 
tween key (and potentially nonkey) attributes to establish entity equiva- 
lence. 

Let R 1 and R 2 be relations (in different databases) that model (poten- 
tial subsets of) a set of real-world entities E. Let K 1 and K 2 be the keys 
of R1 and R2, respectively. We define the concepts of extended key and 
extended key equivalence as follows. 

DEFINITION (Extended key). The extended key (denoted by KEx t) is a 
minimal set of attributes, of the form K~ UK2U.4, needed to uniquely 
identify an instance of type E in the integrated real world, where .4 is a 
set of attributes of E in neither K 1 nor K2 .4 

4 The extended key will be used as the key of the integrated relation. If a common 
candidate key exists and key equivalence identity rule holds, we have KEx t =K~ =K 2. 
Quite often, we may have KE× t = K 1 U K 2. 
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Given an extended key KEx t, the corresponding identity rule, extended 
key equivalence is defined as follows. 

DEFINmON (Extended key equivalence). By its definition, the concept 
of extended key gives rise to an identity rule of the form 

Ve 1 , e 2 E E, ( e ~ . A  1 =ez.A1)  A "'" A ( e l . A k = e 2 . A k )  - - ) ( e , - - e 2 ) ,  

where KE, t=  ( A t , A  2 . . . . .  A k } .  

Extended key equivalence is an interesting identity rule in that it does not 
require constraints other than the key constraint to be enforced on the 
relations to be matched in order to guarantee that the tuples satisfying the 
matching condition are unique in their relations. 

EXAMPLE 2 
For example, in Table 2, R and S are two relations that model the 

real-world entity type Restaurant. Key equivalence is not applicable be- 
cause R and S do not share any common key. However, the domain of 
restaurant entities may have the extended key KEx t = (name, cuisine), with 
the corresponding extended key equivalence rule being: 

Ve I , e 2 E Restaurant ,  ( e I . n a me  = e 2 . n a m e )  A ( e 1 .cuisine = e 2 .cuisine) 

- (el =e2). 

Because relation S does not have the attribute cuisine, this rule is not 
directly applicable. However, if relation S could be extended to include 
this attribute, by using additional information perhaps, the rule could be 
used for entity identification. For example, if we know that every restau- 
rant specializing in Mughalai food should be an Indian restaurant, then we 
can conclude that the second tuple in R matches the tuple in S, as shown 
in Table 3. 

In this paper, we call this kind of semantic information instance level 
f unc t iona l  dependence  (ILFD). ILFDs can be used to derive the missing key 
attribute values that are required for using extended key equivalence. 

TABLE 2 

R S 

name  cuis ine  street name special i ty city 

TwinCities Chinese Wash.Ave.  TwinCit ies  Mughalai St. Paul 
TwinCities Indian Univ.Ave. 
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TABLE 3 

MTRs 

R.name R.cuisine S.name 

TwinCities Indian TwinCities 

Let relation R model (a subset of) the set of real-world entities E. 

DEFINITION (ILFD). An ILFD is a semantic constraint on the real-world 
entities. It is of the form 

V e ~ E ,  (e .A  I = a l )  A -.. A ( e . A n = a n )  ~ ( e . B = b ) ,  

where A 1 . . . . .  A n and B are attributes (possibly including the domain 
attributes) and a~ . . . . .  a n and b are the possible attribute values. 

We express the above ILFD as 

( E .A  1 = a l )  A "" A ( E . A .  =an)  ~ ( E . B  = b ) .  

For example, (Restaurant.speciality ="Mughala i" )  -o Restaurant.cuisine 
="Ind ian"  is used in Example 2, for entities of type Restaurant. 

In many ways, ILFDs are very similar to the functional dependencies 
(FDs) used in the database design process. Both are semantic constraints 
on the possible relations that can be valid instances of a relation scheme. 
For example, given a restaurant relation R(name, cuisine, speciality), the 
FD name -o cuisine means that pairs of tuples in R having identical name 
values must also have identical cuisine values. An ILFD speciality 
= "Sichuan" ~ cuisine = "Chinese" would mean that every tuple in R that 
has speciality as "Sichuan" must have cuisine as "Chinese". In fact, they 
look identical when the boolean conditions in ILFDs are replaced by 
propositional symbols. 

Nevertheless, FDs and ILFDs are still different in the following ways: 

• The implication sign ~ in an FD is read as "functionally determines," 
whereas the counterpart in an ILFD is the usual implication used in 
mathematical logic. 

• The antecedent and consequent of an FD are sets of attributes, 
whereas the antecedent and consequent of an ILFD are sets of 
propositional symbols with each set denoting the conjunction of its 
members. 

• Checking for violation of FDs involves at least two tuples whereas 
checking for violation of ILFDs involves only one tuple. 
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• FDs are typically useful in designing relation schemes that do not 
contain redundancy. This database design process is known as normal- 
ization. ILFDs are useful in deriving new properties of real-world 
entities from existing properties. 

It is assumed that all tuples modeling in the real world are consistent 
with the ILFDs. Not all attributes of a real-world entity are modeled as 
attributes in a relation. One or more keys, each consisting of one or more 
attributes, are selected to uniquely identify the entity in the relation. 

Moreover,  ILFDs can help to determine if a pair of tuples does not 
model the same real-world entity. The following proposition shows that 
each ILFD indeed corresponds to a distinctness rule. 

PROPOSITION 1. ( E . A  1 = a  1) A "'" A (E.A~ = a  n) --* (E .B  = b )  is an ILFD 
i fandonly  if  V e l , e z ~ E ,  (el .A 1 = a l ) A  ... A (el.A,, = a n ) A ( e 2 . B ~ b ) ~ ( e  1 
~ e  2) is a distinctness rule. 

Proof. (Only if) Suppose ( E . A  1 = a t) A .-. A (E.A~ = a,)  --* (E .B  = b) is 
an ILFD. Given any el ,e  2 ~ E ,  

(e  1 ~ e 2 )  --> [ ( ( e l , A  l = a l )  A " "  A(e,.A,,=a,,)) 

= , , )  A .-- A =.,))]. 

Applying the ILFD, we have 

(e, =e2)  ~ [ ( (e , .A ,  = a , )  A ... A(e,.A n =a , , ) ) , , - * . ( ez .B=b ) ] ,  

(e,-=e2) ~ [ - , ( ( e , . A ,  = a , )  A ... A (e,.A n =a, , ) )  V (e2.B=b)] ,  

(e, ~e2) v -~((e,.A, = a , )  A ..- A (el.A n =a, , ) )  v (e2.B=b).  

Therefore,  

( e l . A  1 = a l )  A --- A ( e l . A  n = a , )  A (e2 .B vab) --* (e, ~ e 2 ) .  

(If) Suppose we are given 

V e l , e z ~ E ,  ( e l . A t = a l ) A ' "  A ( e i . A  = a n ) A ( e 2 . B v ~ b ) - - , ( e i ~ e 2 ) .  

I~t t ing e - e  1 = e 2 ,  w e  get 

V e ~ E ,  ( e . A I = a l ) A . . .  A ( e . A  = a n ) A ( e . B v ~ b ) - ~ F A L S E .  

Therefore,  ( E . A  1 = a l ) A  -.. A ( E . A  n = a ~ ) - - * ( E . B = b ) i s  an ILFD. [] 
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TABLE 4 
Negative Matching NMTRs 

R.name R.cuisine S.name 

TwinCities C h i n e s e  TwinCities 

For example, the corresponding distinctness rule for the above ILFD 
example is 

re1, e 2 e Restaurant, ( e I .speciality = "Mughalai") 

A ( e 2 .cuisine 4= "Indian") ~ ( e, ~ e 2). 

Applying this rule to Example 2, we arrive at a pair of tuples that do not 
model the same real-world entity. This distinct pair is asserted in the 
conceptual negatiue matching table NMTRs as shown in Table 4. 

Because the number of nonmatching RS pairs is usually much larger 
than that of matching RS pairs (because the maximum of matching pairs is 
the minimum of R and S sizes), our approach does not try to present all 
nonmatching RS pairs explicitly. Instead, we keep those R(S)  tuples not 
matched with any S(R) tuple as separate tuples in the integrated table, 
while merging the matching pairs into one. We denote the integrated table 
by TRs. Because R and S may not have all extended key attributes, NULL 
values may exist in the extended key attributes of TRs. As a result of this, 
we have to assign a new interpretation to the integrated table TRs. 

Within the integrated table TRs, a real-world entity can be modeled by 
more than one tuple. 5 A TRs tuple can possibly match another TRs tuple 
provided they have no conflicting nonnull values in their extended key. 

Given tables R and S, and the matching table MTRs, the integrated 
table TRs can be expressed using relational operations. Let K R and K s be 
the keys of tables R and S ,  respectively. The integrated table TRs can be 
expressed as MTRsM ~RR~4r, S, where ~ denotes the full outer-join 
operator. 

4.2. MATCHING TABLE CONSTRUCTION 

Let R and S be two relations that model the same real-world entity 
type E, with K R and K s as their respective keys. Let KEx t be an extended 

5 In this case, it is at most two. 
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R S 

name cuisine street name speciality county 

TwinCities Chinese Co.B2 TwinCities Hunan Roseville 
TwinCities Indian Co.B3 TwinCities Sichuan Hennepin 
It'sGreek Greek FrontAve. It'sGreek Gyros Ramsey 
Anjuman Indian LeSalleAve. Anjuman Mughalai Mpls. 
VillageWok Chinese Wash.Ave. 

key, with the missing key attributes in R and S as KExt_ R and KExt_ s, 
respectively, i.e., 

KExt - R = KExt -- KR, 

KExt s = K E x t - K s .  

The matching table, MTRs, is constructed as follows: 

• Extend relation R, to R', with attributes KExt_ R and set the missing 
attribute values of each tuple to be NULL.  The extended relation S' 
is derived analogously. 

• Apply the available ILFDs to derive the values for KEx t R and 
KExt_ s for each R' and S' tuple. 

• For each pair of R' and S' tuples that have identical nonnull values 
for KEx t, append ( R ' . K R , S ' . K  s )  to the MTRs  table. 

E X A M P L E  3 (Matching table construction) 
Let R and S be relations that model the real-world Restaurant  entities 

as shown in Table 5. Suppose we have the extended key {name, cu i s ine ,  
spec ia l i ty}  and its corresponding extended key equivalence rule: 

Ve I , e 2 ~ E,  ( e 1 . n a m e  = e 2 . n a m e ) / X  ( e I .cuisine = e 2 .cuis ine)  

/x ( e 1 .speciality = e2 .speciali ty)  

--*(e I ~e2) .  

Let the following be the available ILFDs: 

I 1: ( Restaurant .  speciali ty = "Hunan")  --* ( Restaurant .cu is ine  
= "Chinese"). 

I2: (Restaurant. speciality ="Sichuan")  --* (Restaurant.cuisine 



20 E.-P. L I M  E T  AL. 

= "Chinese") .  
I3: (Restaurant.speciality = "Gyros")  ~ (Restaurant.cuisine = "Greek") .  
I4: (Restaurant.speciality = "Mughala i" )  ~ (Restaurant.cuisine 

= "Indian") .  
I5: (Restaurant.name = "TwinCities") A (Restaurant.street = "Co.B2")  

(Restaurant. speciality = "  Hunan") .  
I6'. (Restaurant.name = "Anjuman" )  A (Restaurant.street 

= "  LeSalleAve.")  ~ (Restaurant. speciality = "  Mughalai").  
I7: (Restaurant.street = "FrontAve ." )  ~ (Restaurant.county = "Ramsey") .  
I8: (Restaurant.name = " I t ' sGreek" )  A (Restaurant.county = "Ramsey" )  
(Restaurant.speciality = "Gyros") .  

The following is a derived ILFD:  

I9: (Restaurant.name = " I t ' sGreek" )  A (Restaurant.street = "FrontAve." )  
( Restaurant. speciality = "  Gyros").  

The extended relations R'  and S' are shown in Table 6. The  matching 
table MTRs is shown in Table 7. 

The number  of  ILFDs  useful to a relation and their format  heavily 
depend on the database domain.  In some cases, there may be few I L F D s  
that can be useful to the database relations, and the attributes involved in 
their consequent  and antecedents  may vary widely. There  are also cases in 
which a large number  of  I L F D s  are useful to some relations and their 
formats  are uniform. For  the second category of  useful ILFDs,  it may be 
storage efficient to store the ILFDs  are relations. 6 For  example, the ILFDs  
I1, I2, I3, and I4 in Example 3 can be stored in a relation as shown in 
Table 8. 

Let  IM~,y) denote  the I L F D  table that involves attributes £ and derives 
attr ibute y. Given tables R and S, let R ' s  attributes be r~ . . . . .  rp and let 
S 's  attributes be s 1 . . . . .  Sq. Let the missing key attributes in R be Yl . . . . .  Ym 

6 ILFDs  of the form (E .AI  = a l ) A  "" A ( E . A n = a n ) ~ ( E . B = b )  can be s tored in 

the re la t ion  schema I L F D ( A 1 ,  A2 . . . . .  An, B). 

T A B L E  6 

R r S ~ 

name cuisine speciality street name speciality cuisine county 

TwinCities Chinese Hunan Co.B2 TwinCities Hunan Chinese Roseville 
TwinCities Indian NULL Co.B3 TwinCities Sichuan Chinese Hennepin 
lt'sGreek Greek Gyros FrontAve. lt 'sGreek Gyros Greek Ramsey 
Anjuman Indian Mughalai LeSalleAve. Anjuman Mughalai Indian Mpls. 
VillageWok Chinese NULL Wash.Ave. 
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R.name R.cuisine S.name S.speciality 

TwinCities C h i n e s e  TwinCities Hunan 
It'sGreek Greek It'sGreek Gyros 
Anjuman Indian Anjuman Mughalai 

and the missing key attributes in S be z l . . . . .  z n. Given a key missing 
attribute Yi ( z )  in R (S), there may be several ILFD tables that can be 
used to derive y~ (zi), each using different original attributes of R. Let 
them be IM(r;1,yi) . . . . .  IM(r;u,y,) (IM~s;l.z,) . . . . .  IMcs,,, z,)). 

The matching table MTns can be obtained as a series of relational 
expressions as shown below. Essentially, the set of relational expressions 
first derives the missing extended key attribute values for records in R and 
S. Using each IM~r:j.k,) (IM~s;j.~)), a relation named R jy, (S~,) containing 
the original R (S) key and the missing extended key attribute ys ( z )  is 
computed. Combining all R~s (Sis), we obtain Ry~ (Sz) that contains key 
attributes of R (S) as well as the missing extended key attribute y~ (zs). R 
(S) is subsequently extended with all y;s (z~s) by a series of outer joins. 
Finally, the extended relations R' and S' are joined over the extended key 
KEx t to obtain the matching table MTns: 

For each Yi, 1 ~< i ~< m, 

R~i: KRI~ I (R[~r[ 1 IM(r~l,yi)), 

R~,: H (R~X~r,'~lM(r;2,yi)) 
KR ~ 

TABLE 8 

ILFD table IM(specialitv,cuisine) 
speciality cuisine 

Hunan Chinese 
Sichuan Chinese 
Gyros Greek 
Mughalai Indian 
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for each z~, 1 4 i ~< n, 

Ryi= H (RMr;ulM(r;u,yi)), 
gR,y i 

U 

<,=UR~, ,  
j=l 

R' =R~KR Ry I [~KR "'" ~KR Ry ; 

Zi [ 
Ks ,  zi 

s2= ,~s z (sN,2 m,s~2z,,). g i 

s'= H ( s % m ~ .  .... ,) z i 
K S , zi 

0 Sz, = S~, 
j = l  

S ' : S  [~Ks S z l  D~Ks " "  ~<]Ks S z . ,  

MTRs: I-I (R't~KEx, S'). 
KR, Ks 

Figure 4 depicts the overall entity-identification process of using ILFD 
tables. The entity-identification process reads in R and S relations, derives 
their extended key, and generates the integrated table TRS. 

t 
I E.,i,, I. ~ 

Identitlcation~-] ~'a~i~es I 

Fig. 4. Entity identification using ILFD tables. 
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5. F O R M A L  P R O P E R T I E S  OF ILFDS 

In this section, we explore the properties of  ILFDs and describe their 
relationship to functional dependencies (FDs). We establish an ILFD 
theory similar to the FD theory. The latter has been addressed in most 
database textbooks [16]. To simplify subsequent discussion, we adopt the 
notation shown in Table 9. By limiting our discussion to the set of ILFDs 
pertaining to a specific entity set E, we can eliminate E from the ILFD 
definition and represent an ILFD as 

( ( A  1 = a l )  A "'" A ( A  m =am)  ) --) ( B  = b ) .  

Each (A i = a  i) or ( B = b )  can be treated as a propositional symbol. As a 
result, we can transform an ILFD into a formula in propositional logic 
shown below: 

( P1 A "" APm) ~ Q .  

the above formula, Pi denotes ( A  i =a i) and Q denotes (B---b). Similar 
to functional dependencies, two or more ILFDs with identical antecedent 
conditions can be combined into one formula as follows: 

( (P ,  A "" APm) ~ Q , )  A ... A (( P, A ... APm) "--~Qn) 

---(P, A "" APm) - ~ ( Q ,  A ... A Q,,). 

In the remainder  of this paper,  we assume that the information about 
an entity set can be represented as a relation. Each tuple in the relation 
represents an entity and each attribute of  the tuple represents a property 
about the corresponding entity. Because all relations mentioned in this 

TABLE 9 

Notation 

Symbols Meaning 

P, Q, R, etc. Propositional symbols 
X, Y, Z, etc. Conjunction of propositional symbols 
A, B, C, etc. Attributes 
a, b, c, etc. Constants 
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section model sets of entities, we shall use the terms relation and entity set 
interchangeably. 

We say that a relation R satisfies ILFD X ~  Y if for every possible tuple 
r ~ R ,  such that X holds, it is also true that Y holds in r. We say that a 
relation R violates ILFD X ~ Y iff R does not satisfy the ILFD. 

Although ILFDs can be modeled using propositional logic, it can also 
be modeled in first order logic as program clauses [9]. ILFDs are defined 
for a specific relation modeling an entity set. Their first order logic 
representation always involves only one predicate symbol. In this case, 
representing ILFDs using propositional logic can make the ILFD reason- 
ing process simpler. 

5.1. COMPARING ILFDS WITH FDS 

In Section 4.1, we describe the similarities and differences between 
ILFDs and FDs. The relationship between FDs and ILFDs can be seen 
from the following proposition: 

PROPOSITION 2. I f  for  each combination o f  calues a~ . . . . .  a m in the do- 
mains o f  A 1 . . . . .  A m ,  respectic, ely, there is an ILFD ((A l = a  1) A ... A (A, ,  = 
am))--+((B j = b l ) A  "" A(Bn=b~) )  that holds in the relation R,  then the 
F D { A I , . . . ,  Am}  ~ { B  1 . . . . .  Bn} also holds in R. 

Proof. Suppose we are given all ILFDs of the form ( ( A l = a  l) A ... A 
( A m = a m ) ) - - + ( ( B l = b l ) A  ... A ( B n = b , ) ) ,  such that each ILFD corre- 
sponds to a combination of A 1 . . . . .  A m values. Now given any two tuples, 
t 1 and t e from R, if t~ and t 2 agree in their A t , . . . ,  A m values, by the 
appropriate ILFD, we can infer that t~ and t: also agree in their B~ . . . . .  B, .  
Therefore,  the FD {A1 . . . . .  Am) ~ (B l . . . . .  B,} holds in R. [] 

Notice that the converse of the above theorem is not necessarily true 
because FDs do not suggest particular values for the attributes involved. 
Based on the similarity between FDs and ILFDs, we develop an ILFD 
theory analogous to that of FDs. 

5.2. ARMSTRONG'S AXIOMS FOR IFLDS 

Let F be a set of ILFDs for relation scheme R modeling a set of 
related real-world entities and let P--+ Q be an ILFD. P--+ Q is said to be 
inferred from F, i.e., F ~ P ~ Q, iff every tuple r in R that satisfies the 
ILFDs in F also satisfies P ~ Q. 
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DEFINmON. The closure of a set of ILFDs F, denoted by F +, is the set 
of ILFDs that are logically implied by F; i.e., 

F + = { P - - - , Q [ F ~ ( P ~ Q ) } .  

As in the case of FDs, the set of inference rules for ILFDs can be 
defined. Because this set of rules is similar to Armstrong's  axioms for FDs, 
we call them Armstrong's  axioms for ILFDs. 

1. Reflexivity. F ~ ( ( X  l/x ... A X m ) - * ( X  I A "'" AXe)), where m ~n. IL- 
FDs of this form are known as tric, ial ILFDs because they hold in any 
entity set and do not depend on F. 

2. Augmentation. Let X, Y, and Z be conjunction of propositional 
symbols. Now, if F ~ ( X ~ Y ) ,  then F ~ ( ( X A Z ) ~ ( Y A Z ) ) .  

3. Transitivity. Let X, Y, and Z be conjunction of propositional sym- 
bols. Now, if F ~ ( X ~ Y )  and F ~ ( Y ~ Z ) ,  then F ~ ( X ~ Z ) .  

LEMMA 1. Armstrong's axioms for ILFDs are sound. 

Proof. To prove that Armstrong's  axioms for ILFDs are sound, we need 
to prove that if X ~ Y is deduced from F using the axioms, then X - *  Y is 
true in any relation in which the ILFDs of F are true. 

It is obvious that the reflexivity axiom is sound because we cannot have a 
relation with a tuple in which X holds but some subset of X does not 
hold. 

To prove that the augmentation axiom is sound, suppose we have a 
relation r that satisfies X ~  Y, and yet there is a tuple a in r such that 
X A Z holds in a but YA Z does not. Because both Z and X must hold in 
a ,  it must be the case that Y does not. However, this contradicts the initial 
assumption of X ~  Y. Therefore,  the augmentation axiom is sound. 

To prove that the transitiuity axiom is sound, suppose we have a relation 
r that satisfies X--*Y and Y---,Z, but there is a tuple a in r such that X 
holds but Z does not hold. Because Z does not hold for a ,  neither must Y. 
Similarly, we conclude that X does not hold for a.  However, this contra- 
dicts the initial assumption that X holds for a.  Therefore,  the transitivity 
axiom is sound. [] 

E X A M P L E  
Let R (A ,B ,C)  be a relation scheme and F={(A=al ) - -* (B=bl ) ,  

(B=bl)---,(C=cl)}.  Let P, Q, and R denote A = a l ,  B=bl ,  and C=cl ,  
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respectively. Now, F + -- {P ~ P ,  Q ~ Q, R ~ R ,  (P  A Q) ~ P ,  (P  A Q) ~ Q, 
( P A R ) ~ P ,  ( P A R ) - , R ,  ( Q A R ) ~ Q ,  ( Q A R ) ~ R ,  ( P A O A R ) - - , P ,  (P 
A Q AR)--*Q, (P A Q A R ) ~  R,...}. 

Notice that from the above three basic axioms, several other inference 
rules on ILFDs can be derived, as shown below. 

LEMMA 2. 

1. Union Rule. {X ~ Y, X ~ Z} ~ X ~ (Y  A Z). 
2. Pseudotransitivity Rule. {X--* Y, (WA Y) ~ Z} ~ (WA X )  ~ Z. 
3. Decomposition Rule. If  X--* (YA Z)  holds, then X ~ Z holds. 

The proof is similar to that in FDs. 

DEFINITION (Closure of a set of proposition symbols). Let F be a set of 
IFLDs and let X be a set of proposition symbols. The closure of X with 
respect to F, denoted by X~, is the set of proposition symbols A such that 
X ~ A  can be deduced from F by Armstrong's axioms for ILFDs. 

Having defined the above terms, we are now ready to prove the 
important theorem about Armstrong's axioms for ILFDs. 

THEOREM 1. Armstrong's axioms are sound and complete. 

Proof. Armstrong's axioms are sound from Lemma 1. Therefore,  only 
completeness is left to be proved. Let F be a set of ILFDs and suppose 
X ~ Y cannot be inferred from the axioms, but is satisfied by all instances 
of relation R. This means that Y is not in X[ .  Let r be an instance of R 
such that all propositional symbols in X [  are true, but all other proposi- 
tional symbols are false. This relation r certainly satisfies the axioms. For 
X ~  Y to hold, Y must be true in R, i.e., Yc_X ÷. This contradicts the fact 
that X ~  Y cannot be inferred from the axioms. Therefore,  Armstrong's 
axioms are sound and complete. [] 

Similar to the closure of a set of FDs, the closure of a set of ILFDs is 
expensive to compute. This is because the closure of a set of ILFDs may 
contain a huge number of ILFDs that can be inferred from the original 
ILFD set. 

On the other hand, computing the closure X~ of a set of propositional 
symbols X with respect to a set of ILFDs F is relatively easier. Essen- 
tially, the algorithm for computing X~ is the same as that for computing 
the closure of a set of attributes with respect to a set of FDs. 



ENTITY IDENTIFICATION IN DATABASE INTEGRATION 27 

6. IMPLEMENTATION OF ENTITY-IDENTIFICATION 
TECHNIQUE USING ILFDS 

In this section, we describe a Prolog implementation of our proposed 
entity-identification technique. 7 Prolog was chosen because its basic con- 
structs allow us to easily represent both the ILFDs and the source 
relations. Furthermore, its well-known operational semantics guarantees 
that the result obtained for a Prolog program is always a logical conse- 
quence of the axioms contained in the program. 

Our implementation stores the source relations and ILFDs as facts and 
rules, respectively. By allowing the user to specify the extended key, our 
system dynamically creates the rule that defines the matching table. Using 
the matching table, the integrated relation can be constructed. Every time 
an extended key is specified by the user, our system verifies that it does 
not violate the soundness criteria of the matching result. That is, there 
should not be a tuple from one source relation being matched to more 
than one tuple from the other source relation. 

In the following, we describe our systems using Example 3 of Section 
4.2. A complete listing of the Prolog program is given in the Appendix. 

6.1. REPRESENTATION OF RELATIONS AND ILFDS 

Instead of storing each tuple in the source relation as a Prolog fact, we 
assign a unique id to the tuple and store it as multiple facts. Each of these 
facts contain a binary predicate that relates the tuple id to an attribute. By 
representing a tuple as facts with binary predicates, we provide the 
flexibility of augmenting the tuple with additional attributes. Moreover, 
the representation of ILFDs becomes straightforward. For example, the 
first tuple in relation R, 

("TwinCit ies" ,"Chinese","Co.B2") ,  

has been represented as 

r_rname( r l,  twincities ) , 

r_ cui( r 1, chinese), 

r_str( r l ,  co_B2) .  

7 The Prolog interpreter we used is the SB-Prolog System, Version 3.0 [6]. 
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The ILFD 

( Restaurant.speciality = "Hunan" )  ~ ( Restaurant.cuisine = "Chinese")  

is represented as the Prolog rule 

s_cu i (  Rid, chinese) : - s_spec(  Sid, hunan ) , !. 

A cut (!) is given at the end of an ILFD to prevent other ILFDs from being 
used once the former ILFD has successfully derived the attribute value. 
Note that the tuple id, other than being used for relating the attributes 
belonging to the same tuple in a source relation, does not participate in 
the actual entity-identification process because ILFDs and extended key 
do not use the tuple id as an identifying attribute. 

6.2. REPRESENTATION AND REASONING WITH MISSING INFORMATION 

Our system uses NULL values to represent missing information in both 
the matching table and the integrated table. In the entity-identification 
process, tuples from the source relations may have some missing extended 
key attributes. For example, the speciality attribute of the entity modeled 
by the R-tuple ("TwinCities","Indian","Co.B3") cannot be derived by any 
given ILFD. Missing information must also be captured in the integrated 
table because source relations may model different sets of entities. If a 
tuple from a source relation does not match any tuple from the other 
source relation, the missing attributes are represented as NULLs. In our 
prototype system, NULL values are assigned as the default values for 
those attributes whose values are neither given as facts nor derivable from 
the ILFDs. Because the Prolog interpreter searches for usable rules in a 
top down manner, we implemented the default NULL values by asserting 
them only after all ILFDs have failed to assign the non-NULL values. For 
example, the following two assertions can be found below all the source 
relation assertions and ILFDs: 

r_spec( Rid, nul l ) ,  s_cu i (  Sid, nul l ) .  

Because a NULL value is represented as an ordinary symbol in our system, 
extra care must be taken when NULL values are involved in equality tests, 
as in the rule defining the matching table. In this case, we do not want a 
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NULL value to be equated with another NULL value. Hence, we imple- 
mented a n o n _ n u l l _ e q  predicate that only holds for comparison between 
non-NULL values. 

6.3. DESCRIPTION OF ENTITY-IDENTIFICATION PROCESS 

Having specified the source relations as Prolog facts and the ILFDs as 
rules, our system allows the users to specify an extended key dynamically 
and generates the rule defining the matching table. 

To specify an extended key, the command setup_extkey can be invoked. 
The setup_extkey invocation lists the candidate attributes for the ex- 
tended key and asks the user to select some of all of them as the extended 
key. Candidate attributes are those that are common among the source 
relations and have been asserted to be semantically equivalent. In our 
system, we assume that such information has been supplied a priori. The 
following shows how the setup_extkey is invoked. To improve the read- 
ability, all user responses have been written in italics. 

I ? -  se tup_extkey .  
[0] Name: (r_name,s_name) 

[i] Spec: (r_spec,s_spec) 

[2] Cui: (r_cui,s_cui) 

Please input the no. of keys: 3 

Please input the keys: 

key i=0 

key 2=I 

key 3=2 

The new definition for the matching table : 

matchtable(R name,R cui,S_name,S_spec) -- 

r name(R, R name) ,s name(S, S name) , 

r spec(R,R_spec) ,s spec(S, S spec) , 

r cui(R, R cui) ,s cui(S, S cui) , 

non_null eq(R_name,S_name) , 

non_null_eq (R_spec, S_spec) , 

non_null eq (R cui, S cui) . 

Message: The extended key is verified. 

yes 

Once the extended key is selected, a new rule defining the matching 
table is created. Due to the difficulty of constructing rules using Prolog, a 
small C program (getkey) is written to create the rule defining the 
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matching table. Each time a new extended key is specified, our system 
displays the rule defining the matching table. It also verifies that no tuple 
from a source relation is matched with more than one tuple from another 
relation in the new matching table. If an anomaly occurs, a warning 
message is displayed. 

I ? -  setup_extkey. 
[0] Name: (r_name,s_name) 

[i] Spec: (r_spec,s_spec) 

[2] Cui: (r cui,s_cui) 

Please input the no. of keys: ] 

Please input the keys: 

key i=0 

The new definition for the matching table : 

matchtable (R_name, R_cui, S_name, S_spec) • - 

rname(R,R_) ,s-name(S,S name) , 

r_spec(R,R_spec) ,s_spec(S,S_spec) , 

r_cui(R,R_cui) ,£_cui(S,S_cui) , 

non_null_eq(R name, S name) . 

Message: The extended key causes unsound matching 

result. 

yes 

With the availability of a rule defining the matching table, the user can 
invoke printmatchable and print_integ_table to display the matching 
table and the integrated table respectively. For example, if we have 
selected {Name, Spec, Cui} as our extended key, the display of matching 
table and integration table is 

I ?-pnnt_mamhmb&. 

matching table 

r_name r_cui s_name s_spec 

anjuman indian anjuman mughalai 

itsgreek greek itsgreek gyros 

twincities chinese twincities hunan 
yes 

I ? -  p r i n t _ i n t e g _ t a b l e .  
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7. CONCLUSION 

In this paper, we address the entity-identification problem, an instance 
level problem, in integrating pre-existing autonomous databases. We for- 
mulate entity identification as a matching problem and identify desirable 
properties, i.e., soundness and completeness, for an ideal entity-identifica- 
tion technique. In order to integrate instances from several autonomous 
databases, most existing approaches assume that the original relations 
have at least one common candidate key, and key equivalence is a valid 
identity rule. By using the extended key equivalence identity rule and 
semantic information such as instance level functional dependencies 
(ILFD), we are able to relax these restrictions and allow relations with no 
common candidate key to be integrated. Such semantic information can be 
supplied either by database administrators during schema integration or 
through some knowledge acquisition tools. The applicability of our ap- 
proach has been demonstrated using an example. We have also described 
an implementation of our entity-identification technique using Prolog. 

Entity identification is a major task to be dealt with in database 
integration. In processing a federated database query, entity identification 
has to be performed whenever the information about real-world entities 
exists in different databases. Our ongoing research is developing mecha- 
nisms to do so. 

APPENDIX A: A PROLOG IMPLEMENTATION OF THE 
PROPOSED ENTITY-IDENTIFICATION TECHNIQUE 

The following is a listing of the Prolog program that implements our 
entity identification technique. 

/* 

Entity Identification Example -- (Restaurant) 

*/ 

/* 

*/ 

Table R (name, cuisine, street) 

r_name(rl,twincities) . 

r_cui(rl,chinese). 

r_str(rl,co B2) . 
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r name(r2,twincities). 

r_cui(r2,indian). 

r_str(r2,co_B3) . 

r name(r3,itsgreek). 

r_cui(r3,greek) . 

r_str(r3,front ave) . 

r_name(r4,anjuman). 

r_cui(r4,indian) . 

r_str(r4,1e_salle_ave). 

r_name(r5,villagewok) . 

r_cui(rS,chinese). 

r_str(r5,wash_ave). 

/* Table S (name, speciality, county) 

*/ 

s_name(sl,twincities 

s_spec(sl,hunan). 

s_cty(sl,roseville). 

s_name(s2,twincities 

s_spec(s2,sichuan). 

s_cty(s2,hennepin) . 

s_name(s3,itsgreek) . 

s_spec(s3,gyros) . 

s_cty(s3,ramsey) . 

s_name (s4, anjuman) . 

s _ spec ( s 4, mugha i a i ) . 

s_cty (s4, minneapolis 

/* ILFDs 

*/ 

s_cui(Sid,chinese) :- s_spec(Sid,hunan),!. 

s_cui(Sid, chinese) :- s_spec(Sid, sichuan),!. 



34 E.-P. LIM ET AL 

s cui(Sid,greek) :- s spec(Sid,gyros),!. 

s cui(Sid, indian) :- s spec(Sid,mughalai ,l. 

r spec(Rid,hunan) -- 

r_name(Rid,twincities),r str(Rid,co_B2), 

r spec(Rid,mughalai) -- 

r name(Rid,anjuman),r str(Rid, le salle_ave),[. 

r_cty(Rid,ramsey) :- r str(Rid, front ave), !. 

r_spec(Rid, gyros) -- 

r_name(Rid, itsgreek),r_cty(Rid,ramsey), 1. 

r spec(Rid,null) . 

s_cui(Sid,null). 

/* Extended Relations */ 

rr(Name,Cui,Spec,Str) 

r spec(Rid,Spec) . 

ss(Name,Cui,Spec,Cty) 

:- r_(Rid,Name),r cui(Rid,Cui), 

r_str(Rid, Str), 

:- s(Sid,Name), 

s spec(Sid, Spec), 

s cty(Sid,Cty), 

s_cui(Sid,Cui). 

/* Integrated Relation */ 

/* oldrs is more general since it does not concern 

abt resolution between common attributes */ 

rs(RName,RCui,RSpec,SName,SCui,SSpe<RStr,SCty) -- 

matchtable(RName,RCui,SName,SSpec), 

rr(RName,RCui,RSpec,RStr), 

ss(SName,SCui,SSpec,SCty). 

rs(RName,RCui,RSpec,null,null,null,~tr,null) -- 

rr(RName,RCui,RSpec,RStr), 

not matchtable(RName,RCui .... ). 

rs(null,null,null,SName,SCui,SSpec,mll,SCty) -- 

ss(SName,SCui,SSpec,SCty), 

not matchtable( .... SName,SSpec). 



ENTITY IDENTIFICATION IN DATABASE INTEGRATION 35 

/* Verification of Extended Key */ 

length([],0). 

length([X I Xs],N+I) :- length(Xs,N). 

if then else(P,Q,R) :- P,!,Q. 

if_then else(P,Q R) :- R. 

non_null_eq(A,B) :- non A-null, not B-null, A=B. 

matched_R_keys(A B) :- matchtable(A,B,C,D) . 

matched_S_keys(C D) :- matchtable(A,B,C,D). 

correct :- bagof([A,B],matched_R_keys(A,B),Ml), 

setof([C,D],matched_R_keys(C,D),M2), 

bagof([E,F],matched S keys(E,F),M3), 

setof([G,H],matched_S_keys(G,H),M4), 

length(Mi,Nl),length(M2,N2),length(M3,N3), 

length(M4,N4), 

NI=N2, N3=N4. 

acknowledge :- name(X, '~essage: The extended key is 

verified. ''),print(X),nl. 

warning :- name(X, '~essage: The extended key causes 

unsound matching result. ''),print(X),nl. 

verify :- if_then else(correct,acknow~dge,warning) . 

/* Setup Extended key */ 

sstup_extkey :- not(system( ~etkey ')), 

abolish(matchtable,4), 

consult(extkeyeq),verify. 

/* Print the Extended R & S Tables */ 

print_RRtable :- setof([A,B,C,D] rr(~B,C,D),RRRecs), 

nl,prtRRhdg,printreclist RR~cs) . 

print SStable :- setof([A,B,C,D] ss(~B,C,D),SSRecs), 

nl,prtSShdg,printreclist SS~cs) . 
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/* Print the Matching Table */ 

print_matchtable :- 

setof([A,B,C,D],matchtable(A,B,C,D),MatchRecs), 

nl,prtmatchtabhdg,printrecl~t(MatchRecs) . 

/* Print the Integrated Table */ 

print_integ_table :- 

setof([A,B,C,D,E,F,G,H],rs(~B,C,D,E,F,G,H) 

ntegRecs), 

nl,prtintegtabhdg,printrecl~t(IntegRecs) . 

/* Print Utility */ 

prtRRhdg :- name 

prlnt_ar 

prlnt_ar 

prlnt_al 

print al 

prlnt_al 

prlnt_al 

(X '%xtended R table ''), 

(30,X),nl, 

(30,- ............... ),nl, 

(15,r_name), 

(15,r cui), 

(15,r_spec), 

(15,r str),nl, 

name(Z, ' .......... ),print al(15,Z) 

print_al(15,Z), 

print_al(15,Z),print al(15,Z),nl. 

prtSShdg :- name 

prlnt_ar 

print_ar 

print_al 

print_al 

print_al 

print_al 

(X '~xtended S table ''), 

(30 X),nl, 

(30 ................ ),nl, 

(15 s_name), 

(15 s cui), 

(15 s spec), 

(15 s_cty),nl, 

name(Z, ' .......... ),print al(15,Z) 

print al(15,Z), 
print al(15,Z),print_al(15,Z),nl. 

prtmatchtabhdg :- name(X, '~atching table ''), 

prlnt_ar(30,X),nl, 

prlnt_ar(3O,- ................ ),nl, 

print al(15,r_name) 
prlnt_al(15,r cui), 

prlnt_al(15,s name) 
prlnt_al(15,s_spec) nl, 

name(Z, ' .......... ),print al(15,Z), 
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print_al (15, Z) , 
print al(15,Z) ,print al(15,Z) ,nl. 

prtintegtabhdg : - name(X, ''integrated table ''), 

prlnt_ar(30,X),nl, 
prlnt_ar 
prlnt_al 
print_al 
print_al 
prlnt_al 

print_al 
print_al 
print_al 
print_al 
name(Z,' 
print_al 
print_al 
print_al 
print_al 

print_al 

(30 
(15 
(15 
(15 

(15 
(15 
(i5 
(15, 

. . . . . . . . . . . . . . . .  

r_name 

r_cui) 
r_spec 
s_name 

s_cui) 
s_spec 
r_str) 

(15,s_cty),nl, 
, . . . . . . .  ,r) i 

(15,Z),print_al(15,Z 

(i5,Z), 
(15,Z),print_al(15,Z 
(15,z), 
(15,Z),print_al(15,z 

nl, 

,nl. 

printrec([]) :- nl. 

printrec([A I Alist]) -- 
print_al(15,A),printrec(Alist) . 

printreclist([]) :- nl. 
printreclist([X I Xlist]) -- 
printrec(X),printreclist(Xlist) . 
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