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Abstract� We consider the Weighted Constraint Satisfaction Problem �W�CSP�
which is a fundamental problem in Arti�cial Intelligence and a generalization of im�
portant combinatorial problems such as MAX CUT and MAX SAT� In this paper�
we prove non�approximability properties of W�CSP and give improved approxima�
tions of W�CSP via randomized rounding of linear programming and semide�nite
programming relaxations� Our algorithms are simple to implement and experiments
show that they are run�time e�cient�

CR Classi�cation� Please add missing CR�classi�cation 			

Key words� Approximation algorithms� constraint satisfaction problem� random�
ized rounding�

�� Introduction

An instance of the Weighted Constraint Satisfaction Problem �W�CSP� is
de�ned by a set of variables� their associated domains of values and a set of
constraints governing the assignment of values to variables� Each constraint
is associated with a positive integer weight� The output is an assignment
which maximizes the weighted sum of satis�ed constraints�
W�CSP is a fundamental problem in Arti�cial Intelligence and Operations

Research� Many real�world problems can be represented as W�CSP� among
which are scheduling and timetabling problems� In scheduling for example�
our task is to assign resources to jobs under a set of constraints� some of
which are more important than others� Most often� instances are over�
constrained and no solution exists that satis�es all constraints� Thus� our
goal is to �nd an assignment which maximizes the weights of the satis�ed
constraints�
W�CSP is interesting theoretically because it is a generalization of several

key NP�optimization problems� A W�CSP instance has arity t i� all its con�
straints are de�ned on a set of t or less variables� It has domain size k i� the
sizes of all domains are k or less� When k � �� we get a generalization of the
maximum satis�ability problem �MAX SAT�� while the case of k � t � �
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is a generalization of the maximum cut problem �MAX CUT�� These prob�
lems are MAX SNP�complete� Papadimitriou and Yannakakis 
����
 proved
that for every MAX SNP�complete problem� there exists a constant c � �
within which the problem can be approximated in polynomial time� On the
other hand� Arora et al� 
���	
 proved that for every MAX SNP�complete
problem� there exists a constant d � � within which the problem cannot be
approximated in polynomial time unless P�NP� Hence� designing polyno�
mial time approximation algorithms to close the gap between constants c
and d is a key concern�
Recently� many surprising and interesting approximation results for MAX

CUT� MAX SAT and their variants have been obtained using randomized
rounding� The notion of randomized rounding was originally proposed by
Raghavan and Thompson 
����
� The key idea is to formulate a given opti�
mization problem as an integer program and then solve a polynomial�time
solvable relaxation� which is usually a convex mathematical program such as
a linear or semide�nite program� A semide�nite program seeks to optimize
a linear function of a symmetric matrix subject to linear constraints and the
constraint that the matrix be positive semide�nite �abbrev� PSD�� Given
the optimal fractional solution of the relaxation� the values of the fractional
solution are treated as a probability distribution and an integer solution is
obtained by rounding with respect to this distribution� This approach yields
a randomized algorithm� Using the method of conditional probabilities� one
can convert it into a deterministic algorithm which always produces a solu�
tion whose objective value is at least the expected value of the solution pro�
duced by the randomized algorithm� This method is implicitly due to Erd�s
and Selfridge 
����
 and clearly explained in the text of Alon and Spencer

���	
� The seminal work of Goemans and Williamson 
����
 demonstrated
that MAX CUT and MAX 	SAT can be approximated within a factor of
�������� by randomized rounding of semide�nite programming relaxations�

��� Related Work

Freuder 
����
 gave the �rst formal de�nition of PCSP which is a special
case of W�CSP having unit weights� Freuder and Wallace 
���	
 proposed
a polynomial time algorithm based on reverse breadth��rst search to solve
PCSP whose underlying constraint network is a tree� For the general PCSP�
they proposed a general framework based on branch�and�bound and its en�
hancements �see Wallace and Freuder 
����
 and Wallace 
����
�� Existing
heuristic methods include the connectionist architecture GENET by Tsang

����
 and guided local search by Voudouris and Tsang 
����
� However�
these algorithms may perform badly in the worst case�
Approximation algorithms are algorithms which have worst�case perfor�

mance bounds� Recent works in the approximation of W�CSP are as fol�
lows� Amaldi and Kann 
����
 considered the problem of of �nding max�
imum feasible subsystems of linear systems� Their problem may be seen
as unit�weight W�CSP where the domains are real numbers� They showed
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that their problem remains MAX SNP�hard even if the domains are bipolar
�speci�cally f�����g� and the constraints are restricted to binary inequal�
ities of certain forms� In Khanna et al� 
����
� one section is devoted to the
approximation of W�CSP of domain size 	 and �xed arity t� They showed
that it is approximable within a factor of ���t by a fairly sophisticated local
search technique� That ratio was very recently improved by Trevisan 
����

to ���t�� via randomized rounding of a linear program� Lau 
����
 con�
sidered W�CSP in terms of the arc�consistency property and obtained tight
approximation via local search� Feige and Goemans 
����
 recently proved
a ����� bound for W�CSP of domain size and arity 	�

��� Our Contributions

In this paper� we are concerned with the approximation of W�CSP with
binary constraints� although some of our results are shown to be easily ex�
tended to instances of higher arity�

This paper is organized as follows� Section 	 gives the de�nitions and
notations which will be used throughout the paper� In Section �� we give
non�approximability results via interactive proofs� We show that there exists
a constant t � � such that W�CSP of n variables cannot be approximated
within a factor of ����log n�

t
�which is stronger than ��polylog	n
�� We also

show that there exists a constant c � � such that for every k � �� W�
CSP of domain size k is not approximable within 	��k
c� In Section �� we
use the method of conditional probabilities to derive a linear�time deran�
domization scheme which is essentially a greedy algorithm parameterized
by the probability distribution� On uniform distribution� this scheme gives
an approximation ratio of ��k�� In Section �� we use randomized round�
ing of linear program relaxation to obtain a tight approximation ratio of
��k� This ratio can be generalized to ��kt�� for instances of arity t� thereby
generalizing Trevisan�s result� In Section �� we obtain higher ratios for in�
stances with domain sizes of 	 and �� based on rounding of semide�nite
program relaxation� We obtain a constant�approximation of ����� for the
case of k � �� Unfortunately� one cannot improve the ratio to more than
��� because the formulation is inherently weak� in the sense that� given
any pre�determined rounding scheme� we can construct an instance where
the expected weight of the derived assignment is no more than ��� times
the optimal value� The strength of the above algorithms is that� once the
linear�semide�nite programs have been solved� the rounding part can be de�
randomized in linear�time using the scheme proposed in Section �� Finally�
we extend the hyperplane�rounding method of Goemans and Williamson

����
 for the case k � � and derive a ratio of �������� where � depends on
the type of constraints� This o�ers a better bound than the ����� bound of
Feige and Goemans in some cases� and is simpler to implement� Derandom�
ization of this algorithm was recently proposed by Mahajan and Ramesh

����
�
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�� Preliminaries

Let V be a set of n variables indexed by � to n� Each variable takes a value
from the domainK � f�� � � � � kg� for a given constant k All results presented
in this paper also hold for variables having unequal�sized domains provided
that the maximum domain size is k� Let E � fC�� � � � � Cmg be a set of
binary constraints on V � Each constraint Cj is associated with�

� �j � 	j � the indices of variables related by Cj�

� Rj � a non�empty relation over K �K �i�e� a set of value pairs��

� wj � a positive integer weight�

Constraints of higher arity are de�ned analogously�

The Weighted Constraint Satisfaction Problem �W�CSP� is to �nd an
assignment 
 � V � K that maximizes the sum of the weights of satis�ed
constraints� A constraint Cj is said to be satis�ed i� 	
�j � 
�j 
 � Rj � i�e�
the assigned values are related by the relation� W�CSP can be represented
by a constraint graph G � 	V�E
 whose vertices and edges represent the
variables and constraints respectively�

We will use the following notations throughout the paper� Let W�CSP�k�
denote the class of instances with domain size at most k� Let W denote the
total weight of all constraints� Let cj be a Boolean predicate f�� � � � � kg �
f�� � � � � kg � f�� �g where cj	u� v
 � � if the pair 	u� v
 is an element of Rj�
Let sj � kRjk�k

� and s �
P

Cj�E wjsj�W � The quantity s is called the

strength �the weighted average strengths of all its constraints�� Note that
s � ��k� because every constraint relation contains at least � out of the k�

possible pairs�

A W�CSP instance is termed satis�able i� there exists an assignment which
satis�es all constraints simultaneously� A constraint is said to be ��consistent
i� there are at least two value pairs in the relation� Otherwise� it is said
to be ��consistent� Clearly� every ��consistent constraint is satis�ed by one
unique instantiation of its variables�

We say that a maximization problem P can be approximated within � �
c � � i� there exists a polynomial�time algorithm A such that for all input
instances y of P� A computes a solution whose objective value is at least
c times the optimal value of y �denoted OPT 	y
�� The quantity c is com�
monly known as the performance guarantee or approximation ratio for P�
Observe that the ratio is at most �� The ratio is absolute if we consider
the maximum possible objective value instead of OPT 	y
� In the case of
W�CSP for example� the maximum possible objective value is the sum of
edge weights� although the optimal value can be much smaller� Hence� the
absolute ratio is always a lower bound of �and therefore better bound than�
the performance guarantee�
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�� Non�Approximability of W�CSP

In this section� we give two non�approximability results for W�CSP� First�
by mimicking the proof of Feige and Lov�sz 
���	
� we show that W�CSP

is not approximable within a factor of ����log n�
t
factor for some constant

� � t � �� unless EXP�NEXP� Next� by extending the proof and using
the recent result of Raz 
����
� we show that for all � � �� there exists a
constant k depending on � such that W�CSP�k� cannot be approximated
within � unless P�NP�

��� Two Prover One Round Interactive Proof

In a two�prover proof system� two provers P� and P� try to convince a
probabilistic polynomial�time verifer V that a common input x of size n
belongs to a language L� V sends messages s and t respectively to P� and
P� according to a distribution � which is a polynomial�time computable
function of input x and a random string r� The provers return answers
P�	s
 and P�	t
 respectively without communicating with each other�

Definition �� A language L has a two�prover one�round interactive proof
system of parameters �� f�� f� 	abbreviated IP	�� f�� f�

 if� in one round of
communication�

	�
 	x � L� 
 P��P� Pr
	V�P��P�
 accepts x� � ��

	�
 	x �� L� 	 P��P� Pr�
	V�P��P�
 accepts x� � ��

	�
 V uses O	f�
 random bits� and

	

 the answer size is O	f�
�

Several results relating language classes to interactive proofs have ap�
peared recently� Particularly� we need the following properties�

��� �Feige and Lov�sz 
���	
� All languages in NEXP have IP���n� nq� nq��
for some constant q � ��

�	� �Fortnow et al� 
����
�Arora et al� 
���	
�Raz 
����
� For all L � NP �
there exists a constant � � c � � such that for every integer t � �� L
has IP���ct� t log n� t� �t is the number of parallel repetitions used in
Raz 
����
��

A two�prover one�round proof system can be modelled as a problem on a
two�player game G� Let S and T be the sets of possible messages� Hence�
the sizes of S and T are O	�O�f��
� A pair of messages 	s� t
 � S � T is
chosen at random according to probability distribution � and sent to the
players respectively� A strategy of a player is a function from messages to
answers� Let U and W be the sets of answers returned by the two players
respectively� whose sizes are O	�O�f��
� The objective is to choose strategies
P� and P� which maximizes the probability over � that V	s� t�P�	s
�P�	t


accepts x� Let the value of the game� denoted �	G
� be the probability of
success of the players� optimal strategy in the game G�
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��� Proof of Non�Approximability

We can formulate the problem of �nding the optimal strategy for the game
G as a W�CSP instance with a bipartite constraint graph as follows� The
set of nodes in the constraint graph is�

V � fxs � s � Sg
�

fyt � t � Tg�

Edges are given by�

E � f	xs� yt
 � �	s� t
 �� �g�

The domain of each xs �resp�� yt� is U �resp�� W �� For each edge 	xs� yt
 �
E� the corresponding relation contains exactly those pairs 	u� v
 such that
V	s� t� u� w
 accepts x� Finally� de�ne the weight of the constraint 	xs� yt
 �
E as the number of random strings on x which generate the query pair 	s� t

�i�e� the value �	s� t
 scaled up to an integer�� Since each variable must be
assigned exactly one value� the assignment of variables in S and T encodes a
strategy for the two players respectively� By de�nition� the scaled optimum
value of this W�CSP instance �i�e� optimal value divided by the total number
of random strings� is exactly �	G
 and hence the accepting probability of
the proof system�

Theorem �� There exists a constant � � t � � such that W�CSP of n
variables cannot be approximated within a factor of ����log n�

t

factor� unless
EXP � NEXP�

Proof� Consider an arbitrary language L in NEXP and an input x� By
the property of NEXP languages mentioned above� there is a two�prover
one�round proof system such that the acceptance probability re�ects mem�
bership of x in L� We can construct a W�CSP instance y with n � �jxj

q

�for some constant q � �� variables whose scaled optimal value is the ac�
ceptance probability� Suppose there is a polynomial time algorithm which
approximates y to ����log n�

t
factor� Then� if x � L� the solution value re�

turned by the algorithm is at least ���jxj
qt
and if x �� L� the optimal value

is less than ��jxj� Hence� by choosing t � ��q and applying the polynomial
time approximation algorithm to y� we obtain an exponential time decision
procedure for L� implying EXP�NEXP� �

Next� we consider the non�approximability of W�CSP with �xed domain
size k� The result is given by following theorem whose proof was suggested
by Trevisan through personal communication�

Theorem �� There exists a constant � � c � � such that for all k � ��
W�CSP	k
 cannot be approximated within 	��k
c� unless P�NP�

Proof� Consider an arbitrary language L in NP and an input x of size
n� First suppose the given k � �t� where t is a positive integer� By the
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property of NP languages mentioned above� a two�prover one�round proof
exists� which can be simulated by a W�CSP instance y with O	�t log n
 �
O	nt
 variables and domain size k� Suppose there is a polynomial time
which approximates y within 	��k
c for some � � c � �� Then� we have
again a gap in the acceptance probability� This enables us to determine
membership of x in polynomial time� implying P�NP� If k is not a power of
	� we let t be the smallest integer where �t � k� We can conclude similarly
that W�CSP�k� cannot be approximated within 	��k
c

�

� for some constant
� � c� � �� �

�� Method of Conditional Probabilities

In this section� we derive a linear�time greedy algorithm based on the method
of conditional probabilities� This algorithm will be used to derandomize the
randomized rounding schemes proposed in Sections � and ��

Consider an instance of W�CSP�k� of n variables� Suppose we are given
an n by k matrix � � 	piu
 such that all pi�u � 
�� �� and

Pk
u�� pi�u � �

for all � � i � n� If we assign a value u to each variable i independently
with probability pi�u� we obtain a probabilistic assignment whose expected
weight is given by�

�W �
X
Cj�E

wj�Pr
 Cj is satis�ed� �
X
Cj�E

wj

�
� X
u�v�K

cj	u� v
 � p�j �u � p�j �v

�
A �

Hence� there must exist an assignment whose weight is at least �W � The
method of conditional probabilities speci�es that such an assignment can be
found deterministically by computing certain conditional probabilities� The
following greedy algorithm performs the task�

Assign variables � to n iteratively� At the beginning of iteration i�
let �W denote the expected weight of the partial assignment where
variables �� � � � � i� � are �xed and variables i� � � � � n are assigned
according to distribution �� Let �Wu denote the expected weight
of that partial assignment with variable i �xed to the value u�
Assign value v to variable i maximizing �Wv�

From the law of conditional probabilities� we know�

�W �
kX

u��

�Wu � pi�u�

Since we always pick v such that �Wv is maximized� �W is non�decreasing
in all iterations� and the complete assignment has weight no less than the
initial expected weight� which is �W �
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Therefore� to obtain assignments of large weights� the key factor is to
obtain the probability distribution matrix � such that the expected weight is
as large as possible� In the following� we consider the most naive probability
distribution � the random assignment� i�e� for all i and u� we have pi�u � ��k�
By linearity of expectation �i�e� expected sum of random variables is equal

to the sum of expected values of random variables�� the expected weight of
the random assignment is given by�

�W �
X
Cj�E

wj � sj � s
X
Cj�E

wj �

That is� the expected weight is s times the total edge weights� implying
that W�CSP�k� can be approximated within absolute ratio s� Since each
constraint contains at least one value pair� this gives an absolute approxi�
mation ratio of ��k��
Time Complexity
We show how the conditional probabilities can be e�ciently computed�

�Wu can be derived from �W as follows� Maintain a vector r where rj stores
the probability that Cj is satis�ed given that variables �� � � � � i� � are �xed

and the remaining variables assigned randomly� Then� �Wu is just �W o�set
by the change in probabilities of satis�ability of those constraints incident
to variable i� More precisely�

�Wu � �W �
X

Cj incident to i

wj	r
�
j � rj


where r�j is the new probability of satis�ability of Cj � Letting l be the second
variable connected by j� r�j is computed as follows�

if l � i �i�e� l has been assigned�
then set r�j to � if 	
l� u
 � Rj and � otherwise

else set r�j to the fraction �fv � K � 	u� v
 � Rjg�k�

Clearly� the computation of each �Wu takes O	mik
 time� where mi is the
number of constraints incident to variable i� Hence� the total time needed
is O	

P
mik

�
 � O	mk�
� which is linear in the size of the input �assuming
that the constraint value pairs are explicitly listed��

�� Randomized Rounding of Linear Program

In this section� we present randomized rounding of linear program and an�
alyze its performance guarantee�

For every variable i � V � de�ne k Boolean variables xi��� � � � � xi�k such that
value u is assigned to i in the W�CSP instance i� xi�u is assigned to �� A
W�CSP instance can be formulated by the following integer linear program�
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�IP� � maximize
X
Cj�E

wj

�
� X
u�v�K

cj	u� v
zj�u�v

�
A

subject to zj�u�v � x�j �u for Cj � E and u� v � K �I��
zj�u�v � x�j �v for Cj � E and u� v � K �I	�X
u�K

xi�u � � for i � V �I��

xi�u � f�� �g for i � V and u� v � K �I��
� � zj�u�v � � for Cj � E and u� v � K �I��

Inequalities �I�� and �I	� ensure that zj�u�v is � only if x�j �u and x�j �v are
both �� Equation �I�� ensures that each W�CSP variable is assigned exactly
one value� Since the edge weights are positive and we are maximizing a
linear function of z� the inner sum of the objective function is � if Cj is
satis�ed and � otherwise�

Given �IP�� solve the corresponding linear programming problem �LP� by
relaxing the integrality constraints �I��� Let 	x�� z�
 denote the optimal
solution obtained� We propose the following rounding scheme�

assign u to variable i with probability �
�

�
x�i�u �

�
k

�
� for all i � V

and u � K�

This is a valid scheme since the sum of probabilities for each variable is
exactly � by equation �I���

Claim �� The expected weight of this probabilistic assignment is at least �
k

OPT 	IP
�

Proof� The expected weight of the probabilistic assignment is given by�

�W �
X
Cj�E

wj

�
� X
u�v�K

cj	u� v
 �
�

�
	x��j �u �

�

k

 �

�

�
	x��j �v �

�

k



�
A

�
X
Cj�E

wj

�
� X
u�v�K

cj	u� v
 �
�

�
	z�j�u�v �

�

k

�

�
A

where the inequality follows from �I�� and �I	�� By simple calculus� one can
derive that the minimum value of the function

f	z
 �
	z � �

k 

�

�z

in the interval 
�� �� is ��k at the point z � ��k� Hence� the expected weight

�W �
X
Cj�E

wj

�
� X
u�v�K

cj	u� v
 �
�

k
z�j�u�v

�
A �

�

k
OPT 	LP
 �

�

k
OPT 	IP
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which completes the proof� �

The above analysis is tight� In fact� the above rounding scheme is best
possible with respect to the �IP� formulation� as can be shown by considering
a W�CSP instance in which all constraints are full relations �i�e� contain all
possible value pairs�� Then� the optimal solution is the sum of weights
W � On the other hand� a feasible solution of the linear program where all
variables are equal to ��k has objective value kW �
The above formulation and rounding scheme can be extended in a straight�

forward manner to handle instances of arbitrary arity t� In this case� we

assign variable i the value u with probability �
t

�
x�i�u �

t��
k

�
�

The rounding step can be derandomized in linear�time using the greedy
method proposed in Section �� Hence�

Theorem �� For any �xed t� W�CSP	k
 of arity t can be approximated
within an absolute ratio of �

kt�� �

This ratio is almost the best that we can hope for in light of Theorem 	�

�� Randomized Rounding of Semide	nite Program

In Section �� we saw that a linear programming relaxation gives a perfor�
mance ratio of ��k� Is it possible to improve this ratio for small domain
sizes� such as k � �� �� In this section� we present improved approximation
via semide�nite programming�

��� A Simple Rounding Scheme

Consider an instance of W�CSP�k�� Formulate a corresponding quadratic
integer program �Q� as follows� For every variable i � V � de�ne k decision
variables xi��� � � � � xi�k � f�����g such that i is assigned value u in the W�
CSP instance i� xi�u is assigned to  � in �Q��

�Q� � maximize
X
Cj�E

wjfj	x


subject to
X
u�K

x�xi�u � �	k � �
 for i � V �I��

xi�u � f�����g for i � V and u � K
x� � ��

In this formulation� fj	x
 �
�
�

P
u�v cj	u� v


�
� � x�x�j �u

� �
� � x�x�j �v

�
en�

codes the satis�ability of Cj and hence the objective function gives the
weight of the assignment� Equation �I�� ensures that every W�CSP vari�
able gets assigned exactly one value� The reason for introducing a dummy
variable x� is so that all terms occurring in the formulation are quadratic�
which is necessary for the subsequent semide�nite programming relaxation�
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The essential idea of the semide�nite programming relaxation is to coa�
lesce each quadratic term xixj into a matrix variable yi�j� Let Y denote the
	kn��
� 	kn��
 matrix comprising these matrix variables� The resulting
relaxed problem �P� is the following�

�P� � maximize
X
Cj�E

wjFj	Y 


subject to
X
u�K

y��iu � �	k � �
 for i � V

yiu�iu � � for i � V and u � K �I��
y��� � �
Y symmetric PSD�

Here� Fj	Y 
 � �
�

P
u�v cj	u� v
	� � y�ju��jv � y���ju � y���jv
�

This semide�nite program can be solved in polynomial time within an
additive factor �see Alizadeh 
����
�� By a well�known theorem in Linear
Algebra� a t� t matrix Y is symmetric positive semide�nite i� there exists a
full row�rank matrix r � t �r � t� X such that Y � XTX �see for example�
Lancaster and Tismenetsky 
����
�� One such matrix X can be obtained in
O	t�
 time by an incomplete Cholesky�s decomposition� Since Y has all ��s
on its diagonal �by inequality �I���� the decomposed matrix X corresponds
precisely to a list of t unit�vectors X�� � � � �Xt which are the t columns of X�
Furthermore� these vectors have the nice property that the inner product
Xc �Xc� � yc�c�� Henceforth� for simplicity� we will regard that the program
�P� returns a set of vectors X �instead of matrix Y � as the solution�

We propose the following randomized approximation algorithm for the
case of k � � �which can also be used for k � � as shown later��

�� �Relaxation�
Solve the semide�nite program �P� to optimality �within an additive
factor� and obtain an optimal set of vectors X��
	� �Rounding�
Construct an assignment for the W�CSP instance as follows�

Assign value u to variable i with probability ��
arccos�X�

�
�X�

i�u
�

� �

The Rounding step has the following intuitive meaning� the smaller the
angle between X�

i�u and X�
� � the higher the probability that the value u

would be assigned to i� Since the vector assignment is constrained by the
equation X�

� �X
�
i���X�

� �X
�
i�� � � for all i� the sum of angles between X�

� and
X�
i�� and between X�

� and X�
i�� must be ��� degrees �or ��� Thus� the sum

of probabilities of assigning values � and 	 to i is exactly �� implying that
the assignment obtained is valid� Furthermore� the variable x� is always
assigned ���
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Before proving the performance guarantee� we present a technical lemma�

Lemma �� For all unit vectors a� b and c� b � c � cos	arccos	a � b
�
arccos	a � c

�

Proof� The vectors a� b and c span a unit ��D sphere� Since the vectors
have unit length� the angles between the vectors �denoted 
	
� are equal in
cardinality to the distance between the respective endpoints on the sphere�
Using the form of triangle inequality on spherical distances �see for example�
O�Neill 
����
�pages ��������� we get�


	b� c
 �j 
	a� b
� 
	a� c
 j �

Since the cosine function is monotonically decreasing in the range 
�� ��� the
lemma follows� �

Claim �� The expected weight of this probabilistic assignment is at least
������ OPT 	Q
�

Proof� The expected weight of the probabilistic assignment is given by�

�W �
X
Cj�E

wj

�
�X
u�v�K

cj	u� v


�
��

arccos	X�
� �X

�
�j �u


�

	�
��

arccos	X�
� �X

�
�j �v




�

	�
A

Let p �
arccos�X�

�
�X�

�j�u
�

� � and q �
arccos�X�

�
�X�

�j�v
�

� � One can show that

	�� p
	�� q
 � ����� 
cos	p� � q�
 � cos	p�
 � cos	q�
 � ��

in the range � � p� q � � by graph plotting� By Lemma �� the right�hand�
side is at least

�����
h
X�
�j �u �X

�
�j �v �X�

� �X
�
�j �u �X�

� �X
�
�j �v � �

i
�

Hence�

�W �
�����

�

X
Cj�E

wj

�
�X
u�v�K

cj	u� v

h
X�
�j �u �X

�
�j �v�X�

� �X
�
�j �u�X�

� �X
�
�j �v� �

i�A

which is equal to ����� �OPT 	P
� �

The above analysis is almost tight� because one cannot achieve a ratio
better than ���� This can be shown by considering a W�CSP instance in
which all constraints are full relations� Here� the optimal solution is W �
while a feasible solution of the relaxation �P� where all vectors Xi�u are
equal and orthogonal to X� has objective value �W �
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For the case of k � �� the technical di�culty is in ensuring that the
probabilities of assigning the three values to each variable sum up to exactly
�� Fortunately� by introducing additional valid inequalities� it is possible to
enforce this condition� which we will now explain�
Call two vectors X� and X� opposite if X� � �X�� The following lemma

provides the trick�

Lemma �� Given 
 unit vectors a� b� c� d� if

a � b� a � c� a � d � �� �����

b � a� b � c� b � d � �� ���	�

c � a� c � b� c � d � �� �����

d � a� d � b� d � c � �� �����

then a� b� c and d must form two pairs of opposite vectors�

Proof�
�
� 
	�
 � 	�
 � 	�
� 	�
� gives�

a � b � c � d�

Similarly� one can show that a � c � b � d and a � d � b � c� This means that
they form either two pairs of opposite vectors or two pairs of equal vectors�
Suppose we have the latter case� and w�l�o�g�� suppose a � b and c � d�
Then� by ���� a � c � a � d � ��� implying that we still have two pairs of
opposite vectors 	a� c
 and 	b� d
� �

Thus� for k � �� we add the following set of �n valid equations into �Q��
For all i�

x�	xi�� � xi�� � xi��
 � ��

xi��	x� � xi�� � xi��
 � ��

xi��	x� � xi�� � xi��
 � ��

xi��	x� � xi�� � xi��
 � ��

By Lemma 	� the corresponding relaxed problem will return a set of vec�
tors with the property that for each i� there exists at least one vector
�X � fXi���Xi���Xi��g which is opposite to X� while the remaining two are

opposite to each other� Noting that � � arccos�X�� 	X�
� � �� the sum of prob�

abilities of assigning the other two values to i is exactly �� Thus� we have
reduced the case of k � � to the case of k � �� The following result follows
after derandomization via the method of conditional probabilities�

Theorem �� W�CSP	�
 can be approximated within ��
���

Note that this ratio is an improvement over the linear programming bound
of ������
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��� Limits of Simple Rounding

The above formulation is inherently weak� We prove by adversary arguments
that� with the the above formulation� regardless of the randomized rounding
scheme we choose� there exists a W�CSP�	� instance such that the expected
weight of the solution is no more than ��� times the optimal weight�
Let S be the set consisting of two constraint relations f	�� �
� 	�� �
g and

f	�� �
� 	�� �
g� De�ne W�CSPS to be the collection of W�CSP�	� instances
whose constraints are drawn from the set S�

Lemma �� Let �X be the set of vectors f �X�g
S
f �Xi�u � i � V � u � Kg such

that all �Xi�u�s are equal and orthogonal to �X�� Then� �X is an optimal
solution for the relaxed problem 	P
 associated with any instance of W�CSPS�

Proof� Consider an arbitrary instance of W�CSPS � For any feasible
solution X of the relaxed problem �P�� the objective value is�

�

�

X
Cj�E

wj

�
� X
u�v�f���g

cj	u� v

h
� �X� �X�j �u �X� �X�j �v �X�j �u �X�j �v

i�A
which is no greater than the total weight W since X� � Xi�� � �X� � Xi��

for all i� On the other hand� �X is a feasible solution of �P� whose objective
value is exactly W � �

Lemma �� Let fpi�ug be a �xed probabilistic distribution� There exists an
instance in W�CSPS such that the expected weight of the assignment is no
more than ��� times the optimal weight�

Proof� Construct the following W�CSPS instance� Let the constraint
graph be a simple chain connecting n variables� For each constraint Cj

connecting variables i and l� let umax �resp� umin� be the value in f�� �g
such that pi�u is the larger �resp� smaller� quantity� ties broken arbitrarily�
Let vmax and vmin be de�ned similarly for pl�v� De�ne the constraint relation
of Cj to be f	umax� vmin
� 	umin� vmax
g� which is an element of S� Now� one
can verify by simple arithmetic that the expected weight of the solution is
at most ��� times the sum of weights� On the other hand� there exists an
assignment which can satisfy all constraints simultaneously� �

Theorem �� Using the above semide�nite formulation� W�CSP cannot be
approximated by more than ��� regardless of randomized rounding scheme�
even for k � ��

Proof� Given a randomized rounding scheme� let fpi�ug be the �xed prob�

ability distribution associated with the �xed set of vectors �X� By Lemma ��
we can construct at least one instance I in W�CSPS for which the proba�
bilistic assignment has expected weight no more than ��� times the optimal
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and by Lemma �� �X is an optimal solution of the corresponding relaxed
problem �P� of I� The theorem follows if we suppose that �X is returned by
the Relaxation step of the algorithm� �

��� Rounding via Hyperplane Partitioning

Several combinatorial problems such as MAX 	SAT� MAX CUT and MAX
DICUT are special cases of W�CSP�	� having various types of constraints�
Feige and Goemans recently showed that these problems are approximable
within the ratios of ������ ����� and ����� respectively� What is nice about
their approach is that� given a W�CSP�	� instance� which contains con�
straints of mixed types� the approximation ratio guaranteed by the round�
ing scheme for the most di�cult type of constraints holds simultaneously for
all constraints� Hence� they obtained an approximation ratio of ����� for
W�CSP�	��
The analysis of Feige and Goemans suggests that ��consistent constraints

�i�e� DICUT constraints in their terminology� make the problem harder
to approximate� This leads us to consider a form of parameterized ratio�
namely� if we know that the instance contains a weighted fraction t � � of
��consistent constraints �and � � t of 	�consistent constraints�� can we do
better� The approach taken by Feige and Goemans seems to suggest that
even if the given instance has just one �or very few� DICUT constraint� we
have to reduce the ratio from ����� downto ������
Goemans and Williamson 
����
 proposed a nice rounding scheme for ap�

proximating MAX 	SAT� This scheme can be adopted to give a parame�
terized bound for W�CSP�	� which we will now present� The strength of
Goemans and Williamson�s approach lies in its simplicity� Moreover� it does
not involve computation of trigonometric functions �which are heavily used
in the rounding scheme of Feige and Goemans�� thereby eliminating preci�
sion issues in implementation�
Since the domain has only two values� we can directly use the decision

variable xi � f�����g to indicate which value �false�true� is assigned to
variable i� Introduce an additional variable x�� The value of x� will de�
termine whether �� or �� will correspond to true in the W�CSP instance�
Model a given instance of W�CSP by the following quadratic program�

Q� maximize
X
i�l

wjfj	x


subject to xi � f�����g for i � V
S
f�g

where fj	x
 encodes the satis�ability of Cj� Table I gives the function fj
associated with all �� possible constraint relations� We may conveniently
ignore those constraints which contain all pairs because they are always
satis�ed� From the table� we see that �Q� can be expressed as�

Q�� maximize
X
i�l


ail	�� xixl
 � bil	� � xixl
� cil�
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Table I� The �rst four columns indicate whether each of the four value pairs� namely
�������� �������� �������� �������� is an element of the relation� For simplicity of
notation� we assume that constraint Cj relates the variables i and l�

��� ��� ��� ��� fj�x�p p p p
not a constraintp p p � �

�
��� � x�xi� � �� � x�xl� � ��� xixl��p p � p

�

�
��� � x�xi� � ��� x�xl� � �� � xixl��p � p p

�

�
���� x�xi� � �� � x�xl� � �� � xixl��

� p p p
�

�
���� x�xi� � ��� x�xl� � ��� xixl��p p � � �

�
�� � x�xi�p � p � �

�
��� x�xi�p � � p

�

�
�� � xixl�

� p p � �

�
�� � xixl�

� p � p
�

�
��� x�xl�

� � p p
�

�
�� � x�xl�p � � � �

�
��� � x�xi� � �� � x�xl� � �� � xixl�� ��

� p � � �

�
��� � x�xi� � ��� x�xl� � �� � xixl�� ��

� � p � �

�
���� x�xi� � �� � x�xl� � �� � xixl�� ��

� � � p
�

�
���� x�xi� � ��� x�xl� � �� � xixl�� ��

� � � � not a constraint

subject to xi � f�����g for i � V
S
f�g

where the coe�cients ail� bil and cil are non�negative�

Consider the following rounding scheme proposed in Goemans and
Williamson 
����
 based on hyperplane partitioning�

�� �Rounding�
Let r be a unit�vector chosen uniformly at random�
Construct an assignment x for �Q�� as follows�
For each i � �� � � � � n� if r �X�

i � �� then set xi � �� else set xi � ���
	� �Normalizing�
Construct an assignment for the given W�CSP instance as follows�
If x� � �� then return x as the assignment
else �x� � ��� return x with all values �ipped as the assignment�

In the Rounding step� a random hyperplane through the origin of the unit
sphere �with r as its normal� is chosen and the variables are partitioned
according to those vectors that lie on the same side of the hyperplane� Intu�
itively� the distance between any two vectors gives a sense of how di�erent
their values will be in the W�CSP instance� In the extreme case� if the two
vectors are opposite� then their corresponding values will always be di�erent�
The Normalizing step is needed to undo the e�ect of the additional variable
x� in case it is set to ��� More precisely� variable i is assigned �� if xi � x�
and �� otherwise� as in the case of Goemans and Williamson 
����
�
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Let �W be the expected weight of the assignment returned by the algorithm�

Claim �� �W � �

�
�X

i�l

ail	��X�
i �X

�
l 
 �

X
i�l

bil	� �X�
i �X

�
l 


�
A�

X
i�l

cil�

where � � ���������

The proof is a direct extension of that given in Goemans and Williamson

����
� For the sake of completeness� it is given as follows� Let the function
sgn	
 return the sign ����� of its argument� In Goemans and Williamson

����
� it has been shown that� for any two vectors X and Y � the probability

that sgn	r �X
 � sgn	r �Y 
 �resp� sgn	r �X
 �� sgn	r �Y 
� is �� arccos�X�Y �
�

�resp� arccos�X�Y �
� �� Furthermore� the following inequalities were proved� for

all �� � 
 � ��

��
arccos	



�
�

�

�
	� � 

 and

arccos	



�
�

�

�
	�� 

�

Hence� by linearity of expectation�

�W � �
X
i�l

ailPr
sgn	r �X
�
i 
 �� sgn	r �X�

l 

�

�
X
i�l

bilPr
sgn	r �X
�
i 
 � sgn	r �X�

l 

�
X
i�l

cil

� �
X
i�l

ail



arccos	X�

i �X
�
l 


�

�
��
X
i�l

bil



��

arccos	X�
i �X

�
l 


�

�
�
X
i�l

cil

� �
X
i�l

	ail	��X�
i �X

�
l 
 � bil	� �X�

i �X
�
l 

�

X
i�l

cil�

From this claim� it follows that two subclasses of W�CSP�	�� namely� ��
consistent instances and satis�able instances have approximation ratio ��
The �rst case follows from the observation that 	�consistent contraints have
no constant terms �i�e� cil�� For the second case� we can iteratively satisfy all
��consistent constraints by uniquely �xing the values of their variables� The
remaining constraint graph is 	�consistent and still satis�able� and hence
approximable within ��

Now� consider an instance y which contains 	�consistent constraints plus
a weighted fraction of t ��consistent constraints� The latter introduces neg�
ative constant terms which will inevitably reduce the approximation ratio�
However� observe that each coe�cient cil is at most half times the weight
of the constraint between i and l and therefore the total contribution of the
negative constant terms is at most �

� tW �
Let � be the ratio of the optimal value to the total weight �i�e� � �

OPT 	y
�W �� Hence�

�W � �

�
�X

i�l


ail	��X�
i �X

�
l 
 � bil	� �X�

i �X
�
l 
� cil�

�
A� 	�� �


X
i�l

cil
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�



� �

	�� �
t

��

�
OPT 	y


Thus� we obtain a bound of � � �����t
�� � From Section �� we learned that

the naive random assignment gives an expected weight of at least sW � ��t
�W �

thus giving a ratio of 	��t
���� which is a good bound for small �� Balancing
the two bounds� we obtain the approximation ratio for W�CSP�	� instances
having a fraction of t ��consistent constraints as�


t � min
���t�	�����



max



�� t

��
� � �

	�� �
t

��

��
�

Numerically� the ratios �to three signi�cant digits� are summarized as fol�
lows�

t 
t
���� �����
���� �����
���� �����
���� �����
���� �����
���� �����

t 
t
���� �����
���� ����	
���� ����	
���� �����
���� ����	
���� �����

Furthermore� we observe that our ratios breakeven with the ratio �����
of Feige and Goemans at t 
 ����� Moreover� we claim a ratio of ����� for
W�CSP�	� by a simple extension of Goemans and Williamson�s technique�
The above algorithm can be derandomized via the technique of Mahajan

and Ramesh 
����
� Unfortunately� that technique cannot be e�ciently im�
plemented to date In fact� we were told by Mahajan that the worst�case
time complexity of the derandomized algorithm is O	n
�
!�


� Conclusion

We have given new results for the approximation of the Weighted CSP �W�
CSP�� There remains much room for improving the performance guarantee�
especially for small domain sizes� Particularly� we believe that the �����
ratio can be improved with better formulation� Hardness results are also
interesting to explore� Trevisan 
����
 has shown that for any arity t �
��� W�CSP�	� is not approximable within ��bt	��c unless P�NP� But what
about the case t � ��
It would also be interesting to experiment with the proposed techniques�

Recently� Goemans and Williamson 
����
 applies semide�nite programming
to �nd approximate solutions for the Maximum Cut Problem� Their com�
putational experiments show that� on a number of di�erent types of random
graphs� their algorithm yields solutions which are usually within �" from
the optimal solution� In the same vein� we conducted experiments com�
paring the proposed simple rounding of semide�nite programs with existing
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approaches� Our implementation indicates that our approach is run�time
e�cient� It can handle problems of sizes beyond what enumerative search
algorithms can handle� and thus is a candidate for solving large�scale real�
world problem instances�
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