
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2008

Linear Relaxation Techniques for Task
Management in Uncertain Settings
Pradeep VARAKANTHAM
Singapore Management University, pradeepv@smu.edu.sg

Stephen F. SMITH
Carnegie Mellon University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
VARAKANTHAM, Pradeep and SMITH, Stephen F.. Linear Relaxation Techniques for Task Management in Uncertain Settings.
(2008). Proceedings of the 18th International Conference on Automated Planning and Scheduling, ICAPS 2008, Sydney, September 14-18.
363-371. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1042

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Linear Relaxation Techniques for Task Management in Uncertain Settings

Pradeep Varakantham, Stephen F. Smith
Robotics Institute,

Carnegie Mellon University,
Pittsburgh, PA, 15213

{pradeepv,sfs}@cs.cmu.edu

Abstract

In this paper, we consider the problem of assisting a busy user
in managing her workload of pending tasks. We assume that
our user is typically oversubscribed, and is invariably jug-
gling multiple concurrent streams of tasks (or work flows) of
varying importance and urgency. There is uncertainty with re-
spect to the duration of a pending task as well as the amount
of follow-on work that may be generated as a result of ex-
ecuting the task. The user’s goal is to be as productive as
possible; i.e., to execute tasks that realize the maximum cu-
mulative payoff. This is achieved by enabling the assistant to
provide advice about where and how to shed load when all
tasks cannot be done.
A simple temporal problem with uncertainty and preferences
(called an STPPU) provides a natural framework for rep-
resenting the user’s current set of tasks. However, current
STPPU solution techniques are inadequate as a basis for gen-
erating advice in this context, since they are applicable only
in the restrictive case where all pending tasks can be ac-
complished within time constraints and our principal con-
cern is support in oversubscribed circumstances. We present
two techniques that are based on linear relaxation for solv-
ing the this oversubscribed problem. Given an ordering of
tasks, these algorithms identify which tasks to ignore, which
to compress and by how much, to maximize quality. We show
experimentally that our approaches perform significantly bet-
ter than techniques adapted from prior research in oversub-
scribed scheduling.

Introduction
Researchers have been developing automated personal as-
sistants in many walks of life, ranging from office environ-
ments (Chalupsky et al. 2001) to therapy planning (Lo-
catelli, Magni, & Bellazzi 1998) to disaster rescue scenar-
ios (Schurr & Tambe 2006). A key problem in most of these
domains is task management: users typically need to shuf-
fle between multiple concurrent streams of tasks of vary-
ing importance and urgency to meet deadlines, expedite task
outcomes, and maximize productivity. Task management
is challenging for several reasons: (a) there are numerous
un-controllable factors that influence how long a task will
take(variable complexity, varying user capability etc.), and
hence uncertainty is inherent to task duration; (b) tasks are

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

frequently not independent but instead situated within larger
workflows (e.g., accomplishing a project, scheduling a meet-
ing) that introduce various temporal dependencies between
tasks, (c) there is often uncertainty with respect to the set of
follow-on tasks that might be generated as a result of execut-
ing a given task; and (d) the utility of executing a task can
vary according to when it is done (e.g. preferrably before the
deadline) and how much time is spent on it. Because of all
of these factors, it can be quite difficult to accurately project
future workload over time, and even more difficult to decide
which subset of tasks to execute and how much time to de-
vote to each in circumstances where projected workload is
too great to accomplish within time constraints.

Task Management has been studied rather extensively in
the literature (Stumpf et al. 2005; Bellotti et al. 2005;
Chalupsky et al. 2001; Conley & Carpenter 2007). Some of
this work has focused on understanding the potential value
of automated support to human users, while other work con-
centrated on tracking task progress, recognizing task bound-
aries and managing task context. The majority of work
aimed at providing task management guidance has assumed
deterministic models and focused on task ordering, task al-
location and task delegation decisions. In contrast, our re-
search attempts to operate from a more realistic underlying
model that incorporates knowledge of both relevant tempo-
ral constraints on task execution (dependencies, deadlines)
and task uncertainty. Starting from this model, we focus
specifically on the problem of dealing with oversubscribed
situations, where the user has more to do than available time
will allow.

We model the task management problem as a scheduling
problem, i.e. as a problem of computing if and when each
task in the user’s list of pending tasks should be performed,
given known constraints. Hence, the quality of the advice
that is extracted (e.g., a reduced to do list) is directly propor-
tional to the quality of the schedule itself. We use a variation
of the Simple Temporal Problem with Preferences and Un-
certainty (STPPU) model (Rossi, Venable, & Yorke-Smith
2006) as a basic representation of the problem. STPPU is a
good fit for our problem because it simultaneously captures
temporal dependencies, durational uncertainty and prefer-
ences (i.e., quality profiles) over tasks.

However, existing approaches for solving STPPUs (Rossi,
Venable, & Yorke-Smith 2006) do not provide leverage in

an oversubscribed setting, since they provide no informa-
tion unless a complete solution is found. The objective in
an oversubscribed setting is to determine the best partial
solution - a schedule incorporating the subset of tasks that
maximizes overall solution quality. We provide two linear
(quadratic) programming based techniques that compute this
schedule given a task ordering.

Given the NP-hard complexity of this problem, our tech-
niques are primarily heuristic. However, with our first tech-
nique, we can establish provable guarantees on the solution
quality in restricted settings. To provide a complete frame-
work for providing task management advice and to exploit
opportunities arising at run-time, we couple the offline tech-
niques with an online re-scheduler, and empirically evaluate
their performance in a sample task management domain. We
compare performance to two baseline procedures represen-
tative of prior deterministic and reactive approaches to solv-
ing oversubscribed scheduling problems. Our techniques are
shown to consistently outperform these techniques and illus-
trate the potential power of an STPPU based approach.

Task Management Problem
We formalize the task management problem as follows:
〈Γ, {Λτ}, {Υτ,τ ′}, {gκ,κ′}〉. Γ represents the set of pend-
ing tasks and τ represents a task in Γ. Λτ is the task model
for a task τ and is denoted by the tuple 〈κ, [lbτ , ubτ], zτ , fτ 〉:

1. κ denotes task type.

2. Desired task duration is selected from the interval
[lbτ , ubτ] (to maximize quality).

3. Duration uncertainty is specified by the random variable
zτ , with mean, µτ and deviation, στ . Its value is selected
by the environment from [µτ − στ , µτ + στ] at run-time.

4. Quality profile for a task is fτ (Xτ). It represents the qual-
ity obtained as a function of the effort (time spent on the
task by the user). Depending on the domain, the actual
quality profiles can be arbitrarily complex. However, it
has been shown extensively in machine learning (Taskar
2004) that generalized linear models1 represent complex
settings very well (Occam’s Razor principle offers a good
intuition). Hence, we assume linear profiles: fτ (Xτ) =
aXτ + b, where Xτ is task duration2. Note that our tech-
niques are also applicable in settings with (a) piecewise
linear and concave profiles (due to quality maximization)
: fτ (Xτ) = min{a1Xτ + b1, a2Xτ + b2, · · · }; and (b)
quadratic concave profiles: fτ (Xτ) = aX2

τ +bXτ +c. By
extension, quality dependencies amongst tasks can also be
captured using these generalized linear models.

1Learning these linear models has been studied quite exten-
sively (Taskar 2004) and we have a learning framework that ex-
tends the above work to learn quality profiles in our domain. In
fact, we are able to learn all the attributes in the task model.

2The key idea in our techniques is to model quality as a linear
(or quadratic) function of the features (could be task duration, time
of completion or any other feature). In our reference domain, the
feature that made most sense was time spent on task. For instance,
quality of a briefing (to the supervisor) is dependent on the time
spent on it (up to a certain limit)

Υτ, τ ′ denotes a temporal dependency between tasks τ and
τ ′: 〈γ, [lbτ,τ ′ , ubτ,τ ′]〉. γ represents the dependency type,
i.e. whether it is between the start of τ and start of τ ′ or start
of τ and end of τ ′ etc. These dependencies could either be
decision variables (controllable) or selected by the environ-
ment (uncontrollable) and can be used to capture deadline
constraints.

gκ,κ′ denotes the generate dependency between task
types, κ and κ′. It represents the probabilistic number of
tasks of type κ′ generated from executing a task of type κ
(e.g. “process an email” task generates a “schedule a group
meeting” task) .

The objective is to compute a schedule, which incorpo-
rates a subset of all tasks in Γ and does not violate any con-
straints, while maximizing quality.

STPPU and Modeling task management
The Simple Temporal Problem with Preferences and Un-
certainties (STPPU) model of (Rossi, Venable, & Yorke-
Smith 2006) is represented using the tuple (Ec, Eu, Cc, Cu),
where Ec represents the set of controllable events, Eu rep-
resents the set of un-controllable events (values set by the
environment), Cc is the set of controllable constraints, and
Cu is the set of uncertain or contingent constraints. Con-
straints in Cc are characterized by the tuple: 〈lbij , ubij , fij〉,
where fij represents the quality profile over the duration in-
terval [lbij , ubij], for the edge between controllable events
evi and evj . Alternatively, constraints in Cu are denoted by
〈lbij , ubij , pij〉, where evi ∈ Ec ∪ Eu, evj ∈ Eu and pij is
the probability density function over the interval [lbij , ubij].

The task management problem of the previous section
maps directly into this model. Each task τ is represented
by three events: two certain events, τs and τd, that repre-
sent the task’s start and desired end time; and one uncer-
tain event, τe that represents the actual end of τ . A cer-
tain constraint, 〈lbτ , ubτ , fτ 〉 is introduced to capture the
task duration (τs to τd link) and an uncertain constraint,
〈µzτ

− σzτ
, µzτ

+ σzτ
, P (zτ)〉 (where P (zτ) represents the

probability density function for zτ) is added to represent du-
rational uncertainty (τd to τe link). Generate dependencies
are not encoded directly in the STPPU model, but are instead
applied upfront to expand Γ to include expected tasks.

To enhance the scalability of our techniques, we augment
our basic representation of tasks in the extended task set Γ
with a higher-level representation of Γ where tasks of the
same type (e.g., email processing tasks associated with spe-
cific flagged messages) are aggregated into a single super
task (e.g., process flagged email), and we assume further that
all temporal dependencies between tasks of different types
can be expressed at the super task level. A given super task
is represented in the same manner as a base level task, with
corresponding composite duration constraints (both certain
and uncertain). 3

3Note that this abstract level of representation is not as restric-
tive as one might initially think, since multiple super tasks can be
introduced for different subsets of tasks of the same type for those
subsets that might more naturally be partitioned (e.g., sequences of
email tasks corresponding to different subject threads).

Computing how to reduce workload
As mentioned earlier, our goal is to compute a task sched-
ule that maximizes quality over some horizon. In the gen-
eral case, this requires solution to two inter-dependent prob-
lems: (1) establishing the order in which various tasks will
be performed (since the user can only perform one task at
a time) and (2) selecting which subset of tasks to elim-
inate (given that time constraints will typically not allow
execution of all tasks). In this section, we assume the ex-
istence of a task ordering procedure, and focus on solv-
ing the second problem: given a task sequence with as-
sociated constraints, quality profiles and durational uncer-
tainty, which tasks should be removed or shortened to max-
imize cumulative quality. Later in the paper, we intro-
duce a simple ordering procedure for purposes of experi-
mental evaluation and discuss the potential for exploiting
prior research in task ordering (e.g. (Smith & Cheng 1993;
Barbulescu, Whitley, & Howe 2004; Joslin & Clements
1999)) to obtain a better solution. Since the number of tasks
in the input sequence is discrete and quality profiles of tasks
are independent, solving this ”task shedding” problem re-
quires solving an integer optimization problem (0/1 knap-
sack) and hence is NP hard.

In this section we present two techniques for solving this
oversubscribed STPPU problem. Both assume an overall
solution structure where the aggregate (super task) level
problem is first solved by relaxing the integer variables and
producing a continuous solution. If the problem is indeed
over-subscribed, this continuous solution will dictate some
amount of compression of one or more super task durations
and in each case this compression may actually entail shed-
ding of some fractional number of tasks (e.g., it may specify
that 2.5 tasks of a process-email super task originally com-
posed of 5 base tasks should be ignored). To compute the ac-
tual tasks that need to be shed, the technique is recursively
applied to the individual tasks within each super-task, em-
ploying the super task level solution as an overall deadline.
Since there are no dependencies, this is a simpler problem.
In essence, we are finding a solution to the relaxed problem
and then finding the nearest integer solution.

Both of the techniques we present solve the STPPU of-
fline. They output “policies” (along with the desired shed-
ding) for setting the values of executable time points (the
start and end time of tasks), which are contingent on oc-
currence of earlier uncertain events (duration uncertainty on
earlier tasks). We refer to the set of uncertain events or con-
tingent edges occurring before an executable event as its de-
pendency set. As the STPPUs are constructed based on ex-
pected set of tasks, the schedules computed at run-time need
to be modified to account for deviations from the expected
behavior.

Linear Policy Advice, LPA
In this technique, we impose a linear structure on policies
employed for setting values to the executable time points
in the STPPU. This idea was first used by (Lau, Li, & Yap
2006) to solve STNUs (Simple Temporal Network with Un-
certainty). In our case, this assumption is used to solve over-
subscribed STPPUs, a more challenging problem owing to

two factors: optimizing with respect to quality and oversub-
scription. We compute a (offline optimized) dynamically
controllable schedule (Vidal & Fargier 1999) (that incorpo-
rates a sub-set of tasks), because this schedule will be used
for advising a user and hence must be robust against uncer-
tainty.

A linear policy for an event (say starting event of task τ)
is characterized by the following equation:

tτs = cτ,s
0 +

∑
τ ′∈Dτ

cτ,s
τ ′ zτ ′ (1)

where tτs is the value assigned to the starting event of τ ,
Dτ is the dependency set of τ (same for starting and ending
events of a task), cτ,s

τ ′ are coefficients in the linear policy,
zτ ′ are random variables associated with contingent edges
in Dτ .

We need to determine coefficients, cτ,s
τ ′ , which will maxi-

mize the quality while not violating the temporal constraints.
Algorithm 1 provides the optimization problem for LPA.
The first key aspect of solving the oversubscribed STPPU
is being able to optimize with respect to quality. Since this
is offline optimization, we maximize the overall expected
quality (expectation over the durational uncertainty), i.e. the
sum of expected quality of all tasks. The expression for the
expected quality of a task, τ for a linear quality profile is
derived below:

E[fτ (Xτ)] =

∫
P (Dτ)fτ (Xτ)dDτ ,

where the integration is over the distribution of random
variables in Dτ . Furthermore, since durational uncertainties
of tasks are independent:

=

∫
za

P (za)...

∫
zk

P (zk)

∫
zl

P (zl)fτ (Xτ)dzldzk...dza

If the duration of a task is Xτ , then for linear quality
profiles (a and b are constants):

=

∫
za

P (za)...

∫
zk

P (zk)

∫
zl

P (zl)(aXτ + b)dzldzk...dza

Due to the linear policy assumption of eqn (1),
Xτ = tτd − tτs = cτ,d

0 − cτ,s
0 +

∑
τ ′∈Dτ

(cτ,d
τ ′ − cτ,s

τ ′)zτ ′ .

Thus, aXτ +b will be of the form ĉτ
0 +

∑
τ ′∈Dτ

ĉτ
τ ′zτ ′ .

=

∫
za

P (za)...

∫
zk

P (zk)

∫
zl

P (zl)(ĉ
τ
0 +

∑
τ ′∈Dτ

ĉτ
τ ′zτ ′)dzldzk...dza

Since
∫

zl
P (zl)dzl = 1 and

∫
zl

P (zl)zldzl = µzl

=

∫
za

P (za)...

∫
zk

P (zk)(ĉτ
0 + ĉτ

l µzl +
∑

τ ′∈{Dτ−{l}}

ĉτ
τ ′zτ ′)dzk...dza

=

∫
za

P (za)...(ĉτ
0 + ĉτ

l µzl + ĉτ
kµzk +

∑
τ ′∈{Dτ−{l,k}}

ĉτ
τ ′zτ ′)...dza

Proceeding this way, the end result is

E[fτ (Xτ)] = ĉτ
0 +

∑
τ ′∈Dτ

ĉτ
τ ′µzτ′ (2)

Similarly, for quadratic profiles, the overall result is of the
form

E[fτ (Xτ)] = ĉτ
0 +

∑
τ ′∈Dτ

(qτ
τ ′)2σ2

zτ
+

∑
〈τ ′,τ̃〉∈D2

τ ,τ ′ 6= ˜tau

rτ ′rτ̃µzτ′ µzτ̃ +
∑

τ ′∈Dτ

ĉτ
τ ′µzτ′ (3)

Equation 2 (or Equation 3) provides the objective func-
tion in the optimization problem used for solving an over-
subscribed STPPU (Line 2 in Algorithm 1), depending on
the type of quality profiles. In Equation 3, σ2

zτ
denotes the

variance of the durational uncertainty variable for task τ .
However, for piecewise linear and concave functions, ob-
taining the expression for (expected) optimal quality is dif-
ficult. Hence, we can employ upper/lower bounds on the
expected quality as the objective function and these can be
computed by using gradient and conjugate function informa-
tion corresponding to the quality profile and the probability
density function (Birge & Teboulle 1989).

Algorithm 1 LPASOLVER({µzτ
}, {σzτ

})
1: variables: cτ,s

τ ′ , cτ,d
τ ′ , δτ ;∀τ ∈ Γ, τ ′ ∈ {0} ∪Dτ

2: max
∑

τ∈Γ fτ (Xτ) + P(δ)
3: s.t.
4: ∀τ ∈ Γ
5: Xτ = cτ,d

0 − cτ,s
0 +

∑
τ ′∈Dτ

(cτ,d
τ ′ − cτ,s

τ ′)µzτ′

6: lbτ ≤ cτ,d
0 − cτ,s

0 +
∑

τ ′∈Dτ
(cτ,d

τ ′ − cτ,s
τ ′)(µzτ′ ±σzτ′)+

δ̃τ ≤ ubτ

7: lbτ,τ̃ ≤ cτ̃ ,s
0 − cτ,e

0 +
∑

τ ′∈Dτ

⋂
Dτ̃

(cτ̃ ,s
τ ′ − cτ,e

τ ′)(µzτ′ ±
σzτ′) ≤ ubτ,τ̃

8: δ̃τ = δτ +
∑

τ ′∈Γ gτ ′,τδτ ′

The second challenge involved in solving an oversub-
scribed STPPU is handling the oversubscription. We ad-
dress this by providing a simple yet effective technique: in-
troducing slack variables, δ which ensure that the duration
constraints (reason for oversubscription) are never violated
(line 6). These slack variables are additional variables intro-
duced into the optimization problem to allow task duration
constraints to be relaxed (if necessary) to find a solution. If a
slack variable is assigned a non-zero value, a corresponding
amount of task shedding is implied. From the set of all pos-
sible feasible solutions, slack variables are assigned values
that maximize the objective function.

A key design parameter is the penalty term, P(δ) in line 2
of Algorithm 1. The role of this term is to ensure that shed-
ding happens (i.e. δ variables assigned a value greater than
0) only when no solution exists for the optimization problem
of Algorithm 1. Furthermore, based on its design, this term
can be used to compute a high quality solution with mini-
mum shedding. Due to the generate dependencies, shedding

a task can result in duration compression of other tasks and
this is captured through the constraint on line 8.

Addressing the first two challenges yields a STPPU
solver, albeit one that is not entirely optimized. This is due
to presence of zτ ′ terms in line 5 and 6 of Algorithm 1.
Constraints in lines 5 and 6 are to be satisfied only at the
extremes of the random variable, i.e. µzτ

± σzτ
. In a “non-

oversubscribed” STPPU, this is fine. However, in an over-
subscribed STPPU where shedding of tasks is performed,
the uncertainty interval [µzτ − σzτ , µzτ + σzτ] should be
appropriately shortened to account for the task compression,
i.e. [µzτ−σzτ−q1τδτ +q2τδτ , µzτ +σzτ−q1τδτ−q2τδτ],
where q1τ and q2τ are constants that capture the mapping
between the mean and deviation of the current durational
uncertainty (after shedding) and the original duration un-
certainty, i.e. corresponding to the entire set of expected
tasks. It should be noted that these constants are sufficient
to represent the mapping, because they are multiplied with
the task compression factor (δτ). However, such a modifica-
tion would introduce non-linearity in Algorithm 1, because
there will be terms that are a product of variables (cτ ′ and δτ)
on lines 5 and 6. To avoid this non-linearity, we introduce
an iterative technique (Algorithm 2) that calls Algorithm 1
repeatedly until convergence.

Algorithm 2 ITERATIVESOLVER()

1: δ ← INITIALIZE(), δ̂ ← -1
2: µ̂zτ

= µzτ
, σ̂zτ

= σzτ
,∀τ ∈ Γ

3: while NOTEQUAL(δ, δ̂) do
4: δ̂ = δ
5: 〈V, δ〉 = LPASOLVER({µ̂zτ

}, {σ̂zτ
})

6: for all τ ∈ Γ do
7: δτ = δτ+δ̂τ

2
8: µ̂zτ = µzτ − q1τ ∗ δτ

9: σ̂zτ = σzτ − q2τ ∗ δτ

In Algorithm 2, INITIALIZE() function is used to set the
initial values for the δ variables. The initial values are es-
sentially the minimum possible values for existence of a so-
lution. They are generally set to zero, however in severely
oversubscribed scenarios, these values are obtained by solv-
ing a simple set of linear equations involving durational un-
certainties of tasks. In Algorithm 2, we fix the mean (µ̂zτ

)
and deviation (σ̂zτ

) variables and find a solution (using LPA-
SOLVER()), i.e. the expected quality and the δ values (which
indicate the amount of shedding required). Subsequently,
based on the δ values, the mean and deviation variables are
updated and a second call to LPASOLVER is made. This
process continues until the δ variables are equal (or within
a small number ε) of the δ̂ variables (check performed by
NOTEQUAL() function), at which stage the optimal linear
policy is achieved. The δ̂ variables correspond to the tasks
for which uncertainty was not accounted for.

Proposition 1 Algorithm 2 converges to a linear policy so-
lution that has the highest expected quality.

Proof. δ and δ̂ correspond to tasks that have to be eliminated

and the tasks for which uncertainty is not accounted for by
the LPASOLVER() respectively. This proposition involves
proving two sub-parts:
(a) Convergence: If δ is high, δ̂ is low and vice versa. This is
because, one uses up the free time obtained by the increase
in the value of the other. The values of these variables es-
sentially represent the interval within which the optimal so-
lution (shedding) lies. Since ITERATIVESOLVER performs
a binary search over this interval, δ and δ̂ will become equal
(or at least come within a small value, ε of each other) af-
ter some number of iterations. Thus, the execution exits the
“WHILE” loop on line 3 of Algorithm 2.
(b) Optimality of the solution: At convergence, δ and δ̂ are
equal. Thus, the interval only contains one element and
since the interval should contain the optimal solution, δ rep-
resents the optimal shedding required. Furthermore, since
each call to LPASOLVER() maximizes expected quality over
all linear policies, we obtain the optimal (expected) linear
policy at convergence.
Hence proved. �

A deficiency of the LPA algorithm is the linear policy as-
sumption. To address this deficiency we introduce an algo-
rithm that can compute “any degree polynomial” policies in
the next section.

Sample based Learning of Policies, SLP
Similar to LPA, this technique computes dynamically con-
trollable policies for the executable time points. At a higher
level, there are two key steps to this technique: (a) Sample
the durational uncertainty of tasks and compute the maxi-
mum quality solution corresponding to every sample; and
(b) Using regression, generalize to policies from the solu-
tions for the specific samples. There are two differences
between SLP and LPA. First, SLP can be used to compute
higher degree polynomial policies, whereas LPA can be used
to compute only linear policies. Second, the objective func-
tion of the optimization problem in LPA is maximizing ex-
pected quality, while in SLP, it is maximizing the actual so-
lution quality for a specific sample of the durational uncer-
tainty.

Algorithm 3 SLP-SOLVER()
1: SORTOBSEVENTS({τe})
2: for all i ≤ |Γ| do
3: Ei ← GETAFFECTEDEVENTS(1 · · · i)
4: Mi ← GETSAMPLES(1 · · · i)
5: for all j ≤ |Mi| do
6: Si[Ei,Mi

j]
+← GETSOLSAMPLE(S,Mi

j))
7: CONSTRUCTSOLUTIONPOLICIES(S, degree)

Algorithm 3 provides the pseudo-code for SLP. As men-
tioned earlier, the first key step is to compute the solutions
for the samples (lines 1-6). These solutions are computed
one uncertain event at a time. We compute dynamically
controllable solutions and hence the time for an executable
event will only depend on values of uncertain events in its
dependency set. Therefore, we initially sort the uncertain

events (line 1, SORTOBSEVENTS()) in ascending order of
their temporal distances from the starting event. Then, we
start with the first uncertain event and compute solutions (for
all samples of the uncertain edge), S1, for executable events
(E1) that are affected (only) by that uncertain event (lines
3-6 of Algorithm 3). GETSAMPLES() returns all the sam-
ples associated with a set of uncertain events. After that, we
compute solutions (S2) for executable events (E2) affected
(only) by the first two uncertain events4 and so on.

Algorithm 4 GETSOLSAMPLE(S,Mi
j)

1: max
∑

τ∈Γ fτ (Xτ) + P(δ)
2: variables: {τd}, {τs}, {δτ}
3: s.t.
4: ∀τ ∈ Γ
5: Xτ = S |Dτ |[τd,Mi

j]− S |Dτ |[τs,Mi
j], if |Dτ | < i

6: Xτ = τd − τs, if |Dτ | ≥ i

7: lbτ ≤ τd − τs + δ̃τ ≤ ubτ

8: lbτ,τ̃ ≤ τ ′s − {τd + zτ} ≤ ubτ,τ̃ , if |Dτ | > i
9: lbτ,τ̃ ≤ τ ′s − {τd +Mi

j [τe]} ≤ ubτ,τ̃ , if |Dτ | ≤ i

10: δ̃τ = δτ +
∑

τ ′∈Γ gτ ′,τδτ ′

Algorithm 4 defines the optimization problem used for
computing the solution for a specific sample (GETSOLSAM-
PLE()). Solving this optimization problem yields time val-
ues for executable events, which are affected by the uncer-
tain events in consideration. In similar vein to LPA, SLP
employs slack variables, δ that provide the task compres-
sion/shedding values. The objective of this optimization
problem is to maximize the sum of the quality obtained from
all the tasks and a penalty for reduction in task load, P(δ)
(line 1). This optimization is constrained by duration con-
straints, temporal and generate dependencies between tasks
(lines 7-10). If τe is part of the uncertain events in consider-
ation, the value of zτ is retrieved fromM (line 9), otherwise
it is set to µzτ

± σzτ
(line 8). Similarly, if the solution for

some of the executable events was already computed for a
sample, then it is retrieved from S (line 5).

The second key aspect of SLP (Algorithm 3) is that poli-
cies are learned from the individual solutions using regres-
sion (line 7). The policies are computed one executable
event at a time. MDτ denotes the set of samples corre-
sponding to the uncertain events in dependency set, Dτ (for
an executable event corresponding to task τ). SDτ speci-
fies the value for the executable event for each sample of the
uncertain events in its dependency set. Let the polynomial
policy matrix be specified by Π. Then,

MDτ Π = SDτ ⇒ Π = ((MDτ)TMDτ)−1(MDτ)TSDτ

(4)

Since we already know MDτ and SDτ , Π can be solved
using equation 4 above. Based on the degree of the poly-
nomial desired, the structure of these matrices changes. A

4Since the uncertain events are temporally sorted, no executable
event can have only the last r (> 0 and < i) of the i events in its
dependency set.

minor issue with this approach is that regression can occa-
sionally have learning errors, i.e. it can generate policies that
may not satisfy all the temporal constraints. This can be rec-
tified by making local modifications to the schedule during
run-time to fix errors.

Whereas the computational complexity of LPA is polyno-
mial, SLP is exponential in the number of uncertain nodes in
the STPPU, primarily because of the exponential number of
samples. Even though SLP is exponential, because it solves
smaller optimization problems and because there are fewer
super tasks (in general), the runtime performance is compa-
rable to that of LPA.

Experimental Results
In this section we evaluate the performance of our algo-
rithms in comparison to two baseline deterministic proce-
dures representative of prior approaches to oversubscribed
scheduling problems in other domains: an online, reactive
procedure and an off-line search-based procedure. We first
motivate and summarize these baseline procedures. Next
we introduce a run-time re-scheduling procedure to allow
off-line scheduling procedures to take advantage of opportu-
nities when actual numbers of generated tasks deviate from
expected. We then briefly summarize the set of test problems
and experimental design assumptions. Finally, we describe
the results of the set of experiments performed.
Benchmark Algorithms: In recent years, there has been a
surge of algorithms for solving deterministic oversubscribed
scheduling problems. One broad class has focused on solv-
ing the combined ordering and shedding problem using off-
line search techniques (e.g., (Barbulescu, Whitley, & Howe
2004; Kramer & Smith 2003; Frank et al. 2001)). Other
work (e.g.,(Gallagher, Zimmerman, & Smith 2006)) has em-
phasized on-line reactive techniques for ordering and drop-
ping tasks as circumstances change. Neither class of tech-
niques is directly applicable to our task management prob-
lem, whose features combine uncertainty in both task dura-
tions and future task load with oversubscription. At the same
time, we can define representative baseline variants for each
of these classes to analyze the relative advantage that our
STPPU solving techniques can provide over deterministic
counterparts.

We define a greedy online procedure by modifying the re-
cently developed technique of (Gallagher, Zimmerman, &
Smith 2006) to incorporate our more general notion of qual-
ity profile and incrementally update its schedule as new tasks
are generated over time (thus accounting for uncertainty in
future task load). To define a heuristic off-line procedure, we
take a different approach (due to the complexity of augment-
ing prior techniques to take uncertainty in future task load
into account). We define a deterministic version of LPA as
our second baseline algorithm, by modifying the procedure
to assume expected value for durational uncertainty and con-
sider the duration for the task that yields the highest quality.

One important difference between the heuristic off-line
procedure just defined and the above mentioned techniques
for deterministic oversubscribed scheduling is that the for-
mer assumes that a task order is given as input (as do LPA
and SLP). For the experiments reported below, we use a

simple topological sort as an ordering heuristic for all three
off-line procedures. Note however, that the introduction of
a better task ordering will benefit any of these procedures.
Heuristic techniques for computing task orderings such as
precedence constraint posting (Smith & Cheng 1993),
squeaky wheel optimization (Joslin & Clements 1999) and
genetic algorithms (Barbulescu, Whitley, & Howe 2004) can
be coupled with our oversubscribed STPPU solving tech-
niques to provide the same leverage that they do in deter-
ministic domains.
Run-time re-scheduler To account for unexpected situa-
tions at run-time, we introduce a run-time re-scheduler to
operate in conjunction with all three off-line approaches.
These deviations arise because of: (a) Deviations from ex-
pected load: Fewer or more tasks than the expected set of
tasks can be generated at run-time. (b) Learning errors in
SLP (as noted earlier). To handle such situations, the run-
time re-scheduler modifies the schedule locally using: (a)
Idle waiting: if no task can be scheduled currently, an idle-
wait is introduced until there is no constraint violation; or
(b) Scheduling shed tasks: If fewer tasks were generated
(than the expected number of tasks that was planned for),
then the free time is utilized opportunistically by schedul-
ing the best subset of previously eliminated tasks that do not
violate any constraints; or (c) Advancing start time: In (b)
above, if no task can be scheduled, then the next scheduled
task is moved to an earlier start time without violating any
constraints. This will make free time available later.
Experimental Setup: Our work is motivated by a larger
project aimed at developing an expert assistant for plan-
ning a conference, and our evaluation focuses on instances
of the task management problem that arise in this setting.
As in most urban office settings, tasks in this domain typ-
ically originate from EMails (e.g., ”find a larger room for
the keynote talk”) and there are 10 basic types of tasks (cor-
responding to different aspects of the conference planning
problem) with temporal and generate dependencies between
them.

For the experiments described below, we generated 40
test problems in which the number of task types were var-
ied from 5-10, and the total number of tasks were varied
between 50-200. For all problems, the durations of tasks,
quality profiles and durational uncertainty were generated
randomly in accordance with domain parameters. Since new
tasks are generated at run-time according to a probabilistic
model, the quality accumulated for any problem is an aver-
age over 25 runs. We ran the four approaches: greedy on-
line, heuristic off-line, LPA and SLP (with 2nd degree poly-
nomial policies) on all problem instances. The run-time re-
scheduler was used in conjunction with all the approaches.
The results presented in this section are statistically signifi-
cant with t-test value less than 0.01. Since quality is being
plotted, better performance is indicated by higher values.
Results: Our first set of results, Figure 1 show the perfor-
mance comparison between LPA, SLP, greedy online and
heuristic off-line algorithms on the suite of 40 problems. We
varied the average number of tasks generated from executing
a task from 0-4. Figure 1(a) provides results for problems
where the average number of tasks generated was between 0

0

400

800

1200

1600

2000

1 2 3 4 5 6 7 8 9 10

Problems

 Q
u

a
li
ty

 A
c

c
u

m
u

la
te

d
GreedyOnline HeuristicOffline LPA SLP

0

500

1000

1500

2000

2500

11 12 13 14 15 16 17 18 19 20

Problems

Q
u

a
li
ty

 A
c

c
u

m
u

la
te

d

GreedyOnline HeuristicOffline LPA SLP

0

500

1000

1500

2000

2500

3000

21 22 23 24 25 26 27 28 29 30

Problems

Q
u

a
li
ty

 A
c

c
u

m
u

la
te

d

GreedyOnline HeuristicOffline LPA SLP

0

500

1000

1500

2000

31 32 33 34 35 36 37 38 39 40
Problems

Q
u

a
li
ty

 A
c

c
u

m
u

la
te

d

GreedyOnline HeuristicOffline LPA SLP

Figure 1: Quality comparison for ‘average number of tasks generated’ between (a) 0 and 1; (b) 1 and 2 (c) 2 and 3 (d) 3 and 4.

and 1, in Figure 1(b) the number of tasks generated was be-
tween 1 and 2, and so on. Run-time for SLP was on the order
of 10-20 seconds, while LPA and heuristic off-line were in
the order of 1-5 seconds. Greedy took less than 1 second
for its online processing. To provide an idea of the oversub-
scription in these problems, around 10%-60% of the tasks
were scheduled. In all four graphs, X-axis denotes the prob-
lems and Y-axis denotes the quality obtained at run-time.

These results demonstrate the advantage of producing
schedules with an explicit model of uncertainty and prefer-
ence relative to purely reactive and offline heuristic search
based approaches. Both SLP and LPA outperformed the
greedy approach in 95% (38/40) of the problems and the
overall average quality obtained by SLP and LPA across
all problems was approximately 89% and 67% better than
greedy respectively. Furthermore, LPA and SLP dominated
the heuristic off-line approach in 90% (36/40) and 95%
(38/40) of the problems respectively. With respect to overall
average quality, SLP and LPA obtained 52% and 35% better
than the heuristic off-line procedure. In the few cases (2/40)
where the reactive procedure performed marginally better
than SLP and/or LPA (problems 26 and 40), the average
number of tasks generated was either 2-3 or 3-4. Since, both
SLP and LPA base their solutions on the expected number
of tasks, these results may simply reflect the fact that there
is higher chance of deviation from expected behavior when
more new tasks are generated. With respect to the STPPU
techniques, SLP outperformed LPA 97% of the time (39/40).
The dominance of SLP over LPA could be attributed to two
reasons: (a) second order polynomial policies employed by
SLP; and (b) the objective function (actual quality in SLP as
opposed to expected quality in LPA).

Our second set of results (Figure 2) illustrate the impact of
uncertainty on the performance of the different algorithms.
X-axis indicates the percentage of durational uncertainty
(relative to the task durations) and Y-axis indicates the qual-
ity accumulated. For this experiment, we varied only the
durational uncertainty while keeping the rest of the parame-
ters fixed. There is an interesting trend in the performance of
the algorithms. At low levels of durational uncertainty (0%-
20%), LPA dominates all the other algorithms and its per-
formance gradually decreases as uncertainty increases. On
the other hand, SLP is dominated by LPA for low values of
uncertainty and as uncertainty increases (20% - 100%), it

600

1200

1800

0 20 40 60 80 100

Uncertainty Percentage

Q
ua

lit
y

A
cc

um
ul

at
ed

GreedyOnline HeuristicOffline
LPA SLP

Figure 2: Comparison of solution quality as uncertainty is
increased

dominates all the other algorithms. Heuristic off-line proce-
dure has a similar performance graph to LPA, however, at
lower levels of uncertainty, it fares poorly.

750

760

770

780

790

0 1 2 3 4 5

Risk Level

S
o

lu
ti

o
n

 Q
u

a
li

ty

840

880

920

960

1000

1040

0 1 2 3 4 5 6

Risk Level

S
o

lu
ti

o
n

 Q
u

a
li
ty

Figure 3: Solution quality vs Risk in (a) LPA; (b): SLP.

Figure 3 shows the results of our third experiment de-
signed to examine the effect on solution quality of taking a
more aggressive approach to hedging against durational un-
certainty. Both SLP and LPA were modified to operate with
a parameterized risk level, which specifies the fraction of the
durational uncertainty that is to be planned for. Risk level 0
corresponds to planning for the entire interval of durational
uncertainty, while risk level 5 corresponds to not planning
for uncertainty at all (and reacting to it at run-time). Al-
though there is no general trend in solution quality as the

0

800

1600

2400

LPA SLP LPA SLP LPA SLP LPA SLP LPA SLP

1 2 3 4 5

Problems and Methods

Q
ua

lit
y

A
cc

um
ul

at
ed

Heuristic Best

Figure 4: Quality accumulated with SLP and LPA based on
the ordering heuristic

risk level is increased, it is clearly the case that planning for
the entire uncertainty (risk level 0) provides a solution that
is better than not planning at all for uncertainty (risk level
5).

Finally, our last set of results show the opportunity for
future work in this area. As mentioned earlier, we employ
a simple heuristic for introducing ordering dependencies in
case of resource conflicts. Figure 4 illustrates the quality
difference between the best ordering and the current order-
ing on some of the smaller problems (where we were able to
generate all possible orderings). As expected, we obtained
higher solution quality in all the five cases (with both SLP
and LPA) with the best ordering heuristic. Investigating the
impact of various task ordering heuristics (developed for de-
terministic problems) in task management domains remains
an area for future work.

Related Work
There has been substantial research in scheduling under un-
certainty, scheduling with preferences/quality and oversub-
scribed scheduling, but none of this work has considered all
three problems simultaneously.

Beck et al (Beck & Wilson 2007) provide solutions for
scheduling with durational uncertainty in job shop schedul-
ing. STNU (Simple Temporal Network with Uncertainty)
framework developed by Vidal et al. (Vidal & Fargier 1999)
is an extension of the STN (Simple Temporal Network)
model by Dechter et al (Dechter, Meiri, & Pearl 1991),
models the uncertainty present in task durations. (Mor-
ris & Muscettola 2005) provide a polynomial time solution
for computing dynamically controllable solutions to STNU
(Simple Temporal Networks with Uncertainty). (Lau, Li, &
Yap 2006) present techniques for probabilistic controllabil-
ity of STNU, i.e. allowing for probabilistic violation of con-
straints. Hence, it provides solutions for some cases where
a dynamic controllable solution does not exist. However, it
cannot handle problems where there is a need to eliminate
tasks (i.e., oversubscribed settings).

The STPP (Simple Temporal Problem with Prefer-
ences) (Khatib et al. 2001) models scheduling problems
with semi-convex utility preference functions over task du-

rations. Khatib et al (Khatib et al. 2001) also discuss
computation of scalable solutions to STPPs. STPPU (Sim-
ple Temporal Problems with Preferences and Uncertainty)
(Rossi, Venable, & Yorke-Smith 2006) is a model that ex-
tends STPPs to account for uncertainties. Polynomial time
solutions for computation of dynamically controllable so-
lutions to STPPUs were provided by (Rossi, Venable, &
Yorke-Smith 2006).

As discussed earlier, several search procedures have
been developed to solve oversubscribed scheduling prob-
lems (Frank et al. 2001; Kramer & Smith 2003; Barbulescu,
Whitley, & Howe 2004) , by making deterministic model-
ing assumptions. Other work (Gallagher, Zimmerman, &
Smith 2006) has emphasized online techniques that treat un-
certainty reactively.

Conclusion
In this paper, we have taken steps toward the development
of tools for assisting busy users in managing their workload.
Our approach is to model the task management problem as
an oversubscribed scheduling problem; and to generate so-
lutions that provide explicit advice on which tasks to ignore
and de-emphasize if time is short. Given the uncertainty as-
sociated with task execution in this domain, we employ a
variant of STPPU to model the scheduling problem. Since
existing STPPU solution approaches are designed to com-
pute complete solutions and are not applicable in oversub-
scribed situations, we introduced two new techniques for
solving an over-subscribed STPPU. The key idea in these
techniques is to introduce slack variables, which get as-
signed task compression values when no complete solution
exists. Experimental results demonstrate the performance
advantage of these offline planning techniques (running in
conjunction with a run-time re- scheduler) over a purely re-
active and a heuristic search approach, which are typical of
the usual approaches for handling oversubscribed settings.

Acknowledgements This research was sponsored in part
by the Department of Defense Advanced Research Projects
Agency (DARPA) un- der contract #NBCHD030010 and by
the CMU RObotics Institute.

References
Barbulescu, L.; Whitley, D. L.; and Howe, A. E. 2004.
Leap before you look: An effective strategy in an oversub-
scribed scheduling problem. In American Association of
Artificial Intelligence.
Beck, C. J., and Wilson, N. 2007. Proactive algorithms for
job shop scheduling with probabilistic durations. Journal
of Articial Intelligence Research 28:183–232.
Bellotti, V.; Ducheneaut, N.; Howard, M.; Smith, I.; and
Grinter, R. 2005. Quality versus quantity: Email centric
task management and its relation with overload. Human-
Computer Interaction Journal 20:89–138.
Birge, J., and Teboulle, M. 1989. Upper bounds on the ex-
pected value of a convex function using gradient and con-

jugate function information. Mathematics of Operations
Research 14(4).
Chalupsky, H.; Gil, Y.; Knoblock, C.; Lerman, K.; Oh,
J.; Pynadath, D.; Russ, T.; and Tambe, M. 2001. Elec-
tric Elves: Applying agent technology to support human
organizations. In Innovative Applications of Artificial In-
telligence Conference, 51–58.
Conley, K., and Carpenter, J. 2007. Towel: Towards an
intelligent to-do list. In AAAI Spring Symposium.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence Journal 49:61–95.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001.
Planning and scheduling for fleets of earth observing satel-
lites. In Proceedings of the 6th International Symposium
on Artificial Intelligence, Robotics, Automation and Space.
Gallagher, A.; Zimmerman, T.; and Smith, S. 2006. Incre-
mental scheduling to maximize quality in a dynamic envi-
ronment. In International Conference on Automated Plan-
ning and Scheduling.
Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research
10:353–373.
Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001.
Temporal constraint reasoning with preferences. In Inter-
national Joint Conference on Artificial Intelligence.
Kramer, L., and Smith, S. 2003. Maximizing flexibility:
A retraction heuristic for over-subscribed scheduling prob-
lems. In International Joint Conference on Artificial Intel-
ligence.
Lau, H.; Li, J.; and Yap, R. 2006. Robust controllability of
temporal constraint networks under uncertainty. In Inter-
national Conference on Tools with Artificial Intelligence.
Locatelli, F.; Magni, P.; and Bellazzi, R. 1998. Using un-
certainty management techniques in medical therapy plan-
ning: A decision-theoretic approach. In Applications of
Uncertainty Formalisms.
Morris, P., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In International Joint Conference
on Artificial Intelligence.
Rossi, F.; Venable, K. B.; and Yorke-Smith, N. 2006.
Uncertainty in soft temporal constraint problems: a gen-
eral framework and controllability algorithms for the fuzzy
case. Journal of Artificial Intelligence Research 27:617–
674.
Schurr, N., and Tambe, M. 2006. Using multiagent teams
to improve the training of incident commanders. In Au-
tonomous Agents and Multi Agent Systems, Industry Track.
Smith, S., and Cheng, C. 1993. Slack-based heuristics for
constraint satisfaction scheduling. In American Associa-
tion of Artificial Intelligence.
Stumpf, S.; Bao, X.; Dragunov, A.; Dietterich, T.; Her-
locker, J.; Johnsrude, K.; Li, L.; and Shen, J. 2005. The
tasktracer system. In American Association of Artificial In-
telligence.

Taskar, B. 2004. Learning structured prediction models:
A large margin approach. Technical Report: Stanford Uni-
versity.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artifi-
cial Intelligence 11(1):23–45.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2008

	Linear Relaxation Techniques for Task Management in Uncertain Settings
	Pradeep VARAKANTHAM
	Stephen F. SMITH
	Citation

	tmp.1532508248.pdf.IcEQW

