
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2004

On Semantic Caching and Query Scheduling for
Mobile Nearest-Neighbor Search
Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Wang-Chien LEE
Pennsylvania State University

Dik Lun LEE
Hong Kong University of Science and Technology

DOI: https://doi.org/10.1023/B:WINE.0000044026.38487.b2

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHENG, Baihua; LEE, Wang-Chien; and LEE, Dik Lun. On Semantic Caching and Query Scheduling for Mobile Nearest-Neighbor
Search. (2004). Wireless Networks. 10, (6), 653-664. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1091

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1023/B:WINE.0000044026.38487.b2
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Wireless Networks 10, 653–664, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Semantic Caching and Query Scheduling for Mobile
Nearest-Neighbor Search

BAIHUA ZHENG ∗
Singapore Management University, 469 Bukit Timah Road, Singapore 259756

WANG-CHIEN LEE
The Penn State University, University Park, PA 16802, USA

DIK LUN LEE
Singapore Management University, 469 Bukit Timah Road, Singapore 259756

Abstract. Location-based services have received increasing attention in recent years. In this paper, we address the performance issues
of mobile nearest-neighbor search, in which the mobile user issues a query to retrieve stationary service objects nearest to him/her. An
index based on Voronoi Diagram is used in the server to support such a search, while a semantic cache is proposed to enhance the access
efficiency of the service. Cache replacement policies tailored for the proposed semantic cache are examined. Moreover, several query
scheduling policies are proposed to address the inter-cell roaming issues in multi-cell environments. Simulations are conducted to evaluate
the proposed methods. The result shows that the system performance, in terms of cache hit ratio, query response time, cell-cross number
and cell-recross number, is improved significantly.

Keywords: location-based services, nearest-neighbor search, Voronoi Diagram, indexing technique, semantic caching, query scheduling,
roaming

1. Introduction

Owing to increasing demands from mobile users, Location-
Based Services (LBSs) have received a lot of attention in re-
cent years. Examples of queries for location-based services
include “find the nearest gas station from my current loca-
tion”, “find all the cinemas within 1 km radius”, “which buses
will pass by me in the next 10 minutes?”, and so on. While
data objects in the first two examples are stationary, those in
the last example are mobile. In this paper, we focus on queries
issued by mobile users on relatively static data objects, be-
cause they are the most common kind of queries in LBSs.
The movement of mobile clients presents many new research
problems for location-dependent query processing [3,11].

There are several technical issues involved with the im-
plementation of an LBS, which include locating the posi-
tion of a mobile user, tracking and predicting movements,
processing queries efficiently, and bounding location errors.
In this paper, we focus on the efficient processing of location-
dependent queries and, in particular, a sub-class of queries
called mobile nearest-neighbor (NN) search. A mobile NN
search is issued by a mobile client to retrieve stationary ser-
vice objects nearest to its user.1 It is an important function for
LBSs, but the implementation is difficult since the clients are

∗ Corresponding author.
E-mail: bhzheng@smu.edu.sg

1 A mobile client refers to the device used by a mobile user. When it does
not cause confusion, we sometimes use mobile client to refer to a mobile
user.

mobile and queries must be answered based on the clients’
current locations. If a client keeps moving after it issued a
query, the query result would continue to change in accor-
dance with the client’s movement. As such, it is difficult to
obtain results which are accurate with respect to the position
at which the user receives them.

Despite the fact that LBSs open up new research opportu-
nities, most of the on-going research work still concentrates
on traditional queries which return answers independent to
the locations of the query issuers. In other words, each data
object has only one set of attribute values in the server. If a
client caches a local copy of the data to improve performance,
the cached data become invalid only when the correspond-
ing copy in the server is updated. As for location-dependent
queries, a data object usually has multiple sets of attribute
values, each of which is valid only when the client is located
within a specific region. While mobile data caching and in-
validation for location-independent queries has been actively
pursued in the mobile computing research community, very
few work had been done on indexing and query processing
techniques for location-dependent queries.

In this paper, we propose an elegant indexing mechanism
to support mobile nearest-neighbor search. The index is based
on the Voronoi Diagram (VD) [7]. To the best of the authors’
knowledge, this is the first time that VD is used as the basis
for developing indexes for LBSs in mobile environments. In
addition, to enhance access efficiency of the system, we pro-
pose a semantic caching scheme, which stores along with a
data object the valid spatial scope of the data object. Since



654 ZHENG, LEE AND LEE

the cached data could become invalid due to user mobility,
we propose three cache replacement policies which estimate
the potential utilization of the cached data items based on
their spatial scopes and other spatial properties such as ve-
locities. Moreover, we extend our study to a multi-cell envi-
ronment, where a client has the freedom to roam across dif-
ferent cells served by different base stations. By observing
the fact that some clients may leave the cell before they re-
ceive the answers for the queries they issued in the cell, we
propose several query scheduling schemes for the servers to
provide fair service opportunities to all users. Finally, we con-
duct a simulation to evaluate the performance of the proposed
schemes with respect to cache hit ratio, query response time,
cell-cross number and cell-recross number. The simulation
result demonstrates that the proposed methods improve sys-
tem performance significantly.

In addition to identifying and exploring technical problems
facing the development of an LBS, the contribution of this
study is four-fold:

• An index based on Voronoi Diagram to support mobile
nearest-neighbor search.

• A semantic caching scheme to address issues of access ef-
ficiency and user mobility.

• Three cache replacement policies tailored for location-
dependent semantic caching.

• Four query scheduling schemes for roaming problem in
multiple cell environments.

The rest of this paper is organized as follows. Section 2
provides a brief review of the related work. A Voronoi Di-
agram based index is introduced in section 3. The seman-
tic caching support for LBSs, along with cache replacement
policies for semantic cache, is described in section 4. The
roaming problem in multi-cell environments and four query
scheduling schemes are discussed in section 5. We present
the simulation model for performance evaluation and the re-
sult in section 6 and section 7, respectively. Finally, section 8
concludes our work and points out future research directions.

2. Related work

It is clear that many research issues explored in this paper
have been pursued in different contexts. A brief summary of
related work is given as follows.

2.1. Voronoi Diagram

Voronoi Diagram (VD) is a traditional data structure in com-
putational geometry [7]. While it has been employed in simi-
larity search in multimedia databases recently [5,6], it is use-
ful for many spatial applications [7], which include:

• Nearest-neighbor queries. Given a point set P and a query
point q , determine the closest point in P to q .

• Facility location. Suppose that a new grocery store is to
be opened in an area with several existing, competing gro-
cery stores. One natural method to ensure the new store’s

business is to locate the new store as far away from the old
ones as possible.

• Path planning. Imagine a cluttered environment through
which a robot must plan a path. In order to minimize the
risk of collision, the robot may like to stay as far away
from all obstacles as possible.

The VD for n objects on a plane can be constructed
at O(n log n) complexity using a simple sweep algorithm.
However, the maintenance cost is high, especially for high-
dimensional space, thus hindering the application of the VD
structure for complex and dynamic datasets. In this pa-
per, we focus on the application of the VD technique to
nearest-neighbor search in LBSs. These applications have
low-dimensional space and mostly static service objects,
making VD a promising indexing method for supporting
nearest-neighbor search.

2.2. Caching techniques

The client cache stores frequently used information so that
queries can be answered without connecting to a server. In
addition to answering queries promptly, the cache may still
be able to answer some queries when a connection can not be
established.

• Traditional caching. A cache stores frequently accessed
data in the mobile client in order to save wireless band-
width and improve access efficiency. Some early work on
mobile client caching can be found in [1,4]. For location-
dependent information, such as local traffic information,
cached data need to be validated when the client changes
location. Xu et al. proposed a bit-vector approach to iden-
tifying the valid scope of the data and investigated a couple
of advanced methods for caches invalidation [19].

• Semantic caching. A semantic cache stores data and a se-
mantic description of the data in the mobile client [12].
The semantic description enables the cache to provide
partial answers to queries which do not match the cache
data exactly. As such, wireless traffic can be reduced and
queries may be answered in a disconnected mode. This
characteristic makes a semantic cache an ideal scheme
for location-dependent queries. A cache method was pro-
posed in [13]. A tuple S = 〈SR, SA, SP, SL, SC〉 was used
to record data in the local client. SR and SA are, respec-
tively, the relationships and the attributes in S; SP is the
selection conditions that data in S satisfy; SL is the bound
of the location; and SC represents the actual content of S.
When a query is received by the client, it is trimmed into
two disjointed parts: a probe query that can be answered
by some cached data in the client, and a remainder query
that has to be transmitted to the server for evaluation.

2.3. Continuous queries

A location-dependent query becomes difficult to answer when
it is submitted as a continuous query. For example, a client
in a moving car may submit the query: “Tell me the room



ON SEMANTIC CACHING AND QUERY SCHEDULING FOR MOBILE NEAREST-NEIGHBOR SEARCH 655

rates of all the hotels within a 500 meter radius from me”
and would like to receive updated information continuously
in order to find a cheap hotel. Since the client is moving, the
query result becomes time-sensitive in that each result corre-
sponds to one particular position and has a valid duration be-
cause of location dependency. The representation of this du-
ration and how to transmit it to the client are the major focuses
of Continuous Queries (CQs). Sistla et al. employed a tuple
〈S, begin, end〉 to bound the valid time duration of the query
result [16,17]. Based on this method, they also developed two
approaches to transmitting the results to the client: an imme-
diate approach and a delayed approach. The former transmits
the results immediately after they are computed. Thus, some
later updates may cause changes to the results. The latter
transmits S only at time begin, so the results will be returned
to the client periodically, thus increasing the wireless network
traffic. To alleviate limitations of the above two approaches,
Periodic Transmission, Adaptive Periodic Transmission, and
Mixed Transmission were proposed [9,10].

2.4. Roaming

Roaming is a very important property of mobile computing
systems. To allow mobile users roam from cell to cell without
interrupting on-going communication and services, hand-off
must proceed transparently. Research on supporting hand-
off in wireless communication networks has been studied ex-
tensively [2,8,18]. However, handoff methods at the query
processing level have not been addressed.

For location-based services, a client may have to resubmit
an unfinished query when it roams into a new cell, because the
answer returned may become invalid in the new cell. How-
ever, some mobile clients may happen to stay near the cell
boundaries and frequently roam across cell boundaries, while
some other clients may cross several cells in a short period
of time. These clients may have to wait for a long time for
the requested information if the submitted queries have to be
resubmitted again every time they enter new cells. Thus, the
starvation problem associated with roaming clients has to be
addressed when implementing a location-based service. To
the best of our knowledge, no prior work had considered this
problem.

3. VD-based index for mobile nearest-neighbor search

In this section, we present the concept of VD-based index and
describe the processing of mobile NN search. We assume that
a mobile client knows its position through, say, GPS. Thus,
when a client issues a query, its current position and velocity
can be submitted along with a timestamp.

3.1. Voronoi Diagram

A Voronoi Diagram records information about the closest re-
gions corresponding to a set of geometric points. Let P =
{p1, p2, . . . , pn} be a set of points in the plane (or in any

Figure 1. Voronoi Diagrams.

Figure 2. Semantic cache in Voronoi Diagrams.

n-dimensional space). Each of the points is called a site.
V(pi), the Voronoi cell for pi , is defined as the set of points q

in the plane such that dist(q, pi) < dist(q, pj ) where i �= j .
That is, the Voronoi cell for pi consists of the set of points for
which pi is the unique nearest site:

V(pi) = {
q | dist(q, pi) < dist(q, pj ), ∀j �= i

}
. (1)

As shown in figure 1, all the points in the shadowed re-
gion, Area1, have the same nearest fixed point, namely, O1.
In the context of mobile NN search, a Voronoi cell represents
the spatial area within which the corresponding Voronoi site
is the valid answer to any NN search issued within the cell.
The readers should also note that the enclosing square in the
figure represents the geographical region monitored by a base
station. It is referred to as a cell or a wireless cell.

Since Voronoi Diagram has been studied for a long time in
computational geometry, data structures for storing a Voronoi
Diagram and efficient point location methods for locating a
point in a region are available [7]. We use the trapezoidal
mapping algorithm to map a given point to a Voronoi cell.
Figure 3(a) shows the final trapezoidal map after decom-
position, and figure 3(b) depicts the corresponding index.
There are three kinds of nodes in the index: x-nodes (the
circles) recording the x-coordinate of a vertex, y-nodes (the
hexagons) recording a line segment, and leaf nodes (the rec-
tangles) pointing to the trapezoids. Given a query point p, the



656 ZHENG, LEE AND LEE

(a)

(b)

Figure 3. Index construction using trapezoidal map.

search process begins at the root node and terminates when
a leaf node is reached. At an x-node, we determine if p

lies to the left or to the right of the vertical line using the
x-coordinate stored. At an y-node, we determine if p lies
above or below the line segment stored. For a point lying in
trapezoid E, the search path is: v2, v3, s2, v5, E.

3.2. Basic data structures

A location-based service can construct a Voronoi Diagram for
a particular type of service facility (e.g., restaurants). Given
the position of a mobile client, an NN search can be answered
by first finding the Voronoi cell in which the mobile client
is located and then returning the corresponding Voronoi site
(i.e., the restaurant) as the closest service facility to the mobile
client. To facilitate the search, a VD-based index structure has
to be maintained at the server.

Efficient disk-resident indexing methods for point loca-
tion have been proposed [20]. In this paper, we use three
basic data structures to record the constructed Voronoi Dia-
gram. The first one is edge, denoted by 〈id, x1, y1, x2, y2〉,
which is used to record the edge id and the endpoints of
an edge. The second one is service object, which records
the position of a Voronoi site and its bounding edges. It is
represented by a tuple 〈id, x, y, number, list〉, where x and
y are the coordinates of the site, number is the number of
edges bounding this site, and list is the list of ids of all the
edges. The last one is edge_service, which records the infor-

mation between the service objects and the edges using a tuple
〈edge_id, serv_object_id1, serv_object_id2〉. It provides pre-
dictive information to the moving client regarding the time
when it would reach the next nearest service. id1 and id2 are
the sites above and below this edge, respectively.

3.3. Discussion

The construction and maintenance cost of VD is high, espe-
cially when the dimension of the space is high or the number
of the objects is large. However, it is not an issue for LBSs,
because they return service facilities based on their physical
locations. As such, the search space is only two-dimensional.
Furthermore, each base station only maintains the VD for the
service facilities under its coverage, the number of objects in-
dexed by a VD is small. Coupled with the fact that service
facilities are not updated frequently, VD is an attractive in-
dexing method that provides fast retrieval for a popular class
of queries, namely, NN search.

4. Semantic caching

In this section, we introduce a semantic cache technique tai-
lored for location-dependent information. By providing the
spatial scopes of the data objects, mobile NN search can be
answered efficiently using the semantic cache. In addition,
if the velocity of mobile user is known, the duration within
which the returned answer is valid can also be estimated.

4.1. Semantic circles

Given a Voronoi Diagram and the mobile client’s location p,
we can identify the Voronoi cell containing p and obtain a
maximal circle, centered at p, within the cell. We call the
circle a semantic circle because it represents the valid scope
of an answer to a mobile NN search. In other words, the re-
turned nearest service information remains valid as long as
the mobile user falls within the associated semantic circle.
An example of semantic circle is shown in figure 2. When
the client later submits the same query and its location falls
within one of the semantic circles associated with the data
object, the cached value can be returned as the answer.

There are clearly more than one way of representing the
valid spatial scope of a cached item. One possibility is to rep-
resent the exact shape of the Voronoi cell corresponding to
the cached item. Another possibility is to use the maximal in-
scribe circle of the Voronoi cell. The tradeoff is between the
storage overhead and the accuracy of the representation, and
the cache performance. For instance, the exact representation
obviously requires more computational time, cache space,
and wireless bandwidth for its transmission. On the other
hand, the maximal inscribe circle will produce cache misses
for queries issued outside the circle. A separate study on
the various representations had been presented elsewhere [21]
and thus is not repeated here. We choose the semantic circle
in this paper because it is compact and is able to predict the
next nearest service based on the user’s movement.



ON SEMANTIC CACHING AND QUERY SCHEDULING FOR MOBILE NEAREST-NEIGHBOR SEARCH 657

With the assumption that the client moves in the original
velocity, the time that it departs the current cell can be ap-
proximated and the next cell that it will reach can be detected.
For example, the dashed line in figure 2 represents the mobile
user’s expected trajectory obtained from the velocity of the
user, which is denoted using the line with an arrow. The dis-
tance of this trajectory divided by the speed is the time that
the mobile user leaves her current Voronoi cell. After that du-
ration, the correct nearest service facility should be O4, rather
than O1.

To support semantic caching, the server returns an answer
to a mobile NN search, along with the semantic circle (i.e.,
radius) of the returned data object, its predicted valid time du-
ration, and the next nearest service facility. For example, an
answer of 〈O1, r1, t1,O2〉 means that the current nearest ser-
vice facility is O1, the radius of its semantic circle is r1, this
answer is supposed to be valid in the next t1 seconds, and af-
ter that duration the next nearest service facility is O2. There
is no need to transmit the center of a semantic circle, where
the query was issued. In the case where a client changes its
velocity after it submitted a query, the prediction (i.e., valid
duration and next nearest service facility) may not be accu-
rate. In order to avoid a false prediction, the client’s maxi-
mum speed can be used. Within the time duration obtained
by dividing the radius of the semantic circle by the maximum
speed, the returned answer is guaranteed to be valid. With
this scheme, the client can determine the valid duration con-
servatively. However, accurate prediction of the next nearest
service facility is not guaranteed, since the direction of the
client’s movement is unknown.

In our proposed semantic cache, we store the tuple
〈P.x, P.y, radius,O1〉 in the client cache, where O1 is a data
object, P.x and P.y denote the center of the semantic cir-
cle associated with O1, and radius is the radius of the circle.
The readers should note that the cache may contain several
semantic circles corresponding to a data object.

Considering one type of service facilities, e.g., restaurants,
if a mobile client issues a query from a location within one
of the semantic circles it caches, the nearest service facility
within the circle is returned locally, without connecting to the
server. In other cases, the query is submitted to the server and
a new tuple is cached after the result is obtained.

In a wireless communication environment, the avail-
able bandwidth is limited compared to the wired networks.
A dominant factor to access latency is the network latency
over the wireless link. Thus, an approach to improving ac-
cess latency is to reduce the number of transmissions over the
wireless link. Caching techniques have been shown to be an
effective way to reduce network transmissions. In simulation
results shown later, it will be observed that the hit ratio of se-
mantic caching scheme proposed in this paper is much higher
than that of other existing schemes. A lot of queries can be
answered at a client’s cache without making connections to
the base station. Consequently, the average length of service
queue can be decreased, which, in turn, improves the average
access latency of the clients waiting in the queue.

4.2. Query processing

Taking the semantic caching concept introduced earlier, the
following summarizes the steps taken by both a client and the
server to process a mobile NN search:

1. When a query is issued by a mobile client, the local cache
is checked to see if semantic circles corresponding to the
current location of the client and the requested service fa-
cility type can be found. If not, proceed to step 3; other-
wise, go to step 2.

2. If there is a matching service facility data object with a
valid semantic circle, the data object is retrieved locally.
Go to step 5.

3. The current location of a client and its velocity are sub-
mitted along with the query to the server. The server will
first locate this client in the Voronoi Diagram index, find
the data object of the nearest service facility based on the
client’s query, and compute a semantic circle to be associ-
ated with the data object. Proceed to the next step.

4. Based on the velocity of the client and radius of the seman-
tic circle obtained in the previous step, the time interval for
the client to reach another Voronoi cell is obtained. Pro-
ceed to the next step.

5. A result is returned to the client.

6. After the client receives the result from the server, a new
tuple is inserted into the client cache.

4.3. Cache replacement policies

Although there are various reasons for the cached copy of
a data object to become invalid, such as data update at the
server, expiration of some time-sensitive data, and so on, we
only consider invalidity caused by client movements. An in-
teresting aspect of location-based cache invalidation is that
when the user has moved out of a semantic circle, it does
not mean that the semantic circle has to be removed from the
cache. This is because the user may re-enter the region cov-
ered by the semantic circle and thus the cached item is valid
again.

However, with the limited cache memory in mobile clients,
cache replacement is a major issue. When the cache is full,
policies have to be employed to select a cache tuple for re-
placement. We observe that the size of a semantic circle may
correlate to the utilization of the corresponding cached data.
Thus, we develop new cache replacement policies which take
the areas of the semantic circles into consideration. To the
best of our knowledge, this is the first attempt that considers
area as a major factor in the design of a cache replacement
policy.

Furthest Away Replacement (FAR) is a well-known cache
replacement policy for location dependent semantic
cache [13]. It introduced the concept of moving direction as
a factor for cache replacement. According to the client’s ve-
locity, all the data records in the cache can be divided into



658 ZHENG, LEE AND LEE

Figure 4. An example of FAR.

two sets. One contains all the objects that are in the direc-
tion of the client’s movement, named “in” set. The other con-
tains the rest of objects, named “out” set. The FAR strategy
first replaces the victims from the “out” set according to their
distances from the query client. Figure 4 depicts an exam-
ple. Circles mean semantic circles stored in the client’s cache,
q means the query point, and the arched line means the mov-
ing direction of the client. Although o4 is close to the client,
it is in the reverse to the client’s moving direction and is
grouped into the “out” set with o5. All the others are in the
same direction of the client’s movement and are grouped into
“in” set. According to the distance metric, o5 is the final vic-
tim since it is farther away from the client than o4.

In this paper, we propose three new cache replacement
policies, namely Area, Dist, and AID, and later compare them
with LRU and FAR. In the following, lost refers to the replace-
ment metric used to choose a victim.

Area. This policy considers the areas of the semantic cir-
cles. When the cache is full, the data object with the smallest
semantic circle is replaced. The reasoning behind this policy
is that the data object with a small valid area is less likely to
be accessed than the other data objects. Therefore, its replace-
ment is expected to have small impact on the cache hit ratio.
Here, losti = areai .

Dist. This policy takes distance between the center of a se-
mantic circle and the client’s current position into consider-
ation. A data object with longest distance from the client is
least likely to be accessed for NN search. Thus, it is the best
candidate to be replaced. Here, losti = 1/disti .

Area-Inverse-Dist (AID). Based on both area and distance,
this policy is a hybrid of area and dist policies. Here, losti =
areai/disti .

In the above policies, the cached data object that has the
smallest lost score is to be replaced. With the assumption that
all the data objects have the same size, we only consider one-
by-one replacement.

5. Query scheduling for cross-cell roaming

Roaming is a very important property of mobile computing
systems. For location-independent queries, the server may

continue to process the query even when the client who issued
the query has left the cell, because the answer obtained is still
valid in the new cell and can be forwarded to the client there.
For mobile NN search, however, the forwarded answer is usu-
ally invalid due to location change. Consequently, a client
needs to resubmit the query to the new base station in order to
obtain the correct answer. In this scenario, mobile clients who
move around the borders of the cells or go across cell bound-
aries frequently may have to wait for a long time to finish a
query (assuming that our clients are all persistent and finish
a query only after the needed data is provided). In order to
avoid the starvation problem, we propose the following query
scheduling schemes.

Naive. This scheme is used to serve as the bottomline for
performance comparison. The server answers the query based
on FCFS. When a client needs some information, it submits a
query to its base station and then waits for the answer. Once
the client detects that it has arrived a new cell before obtaining
the requested information, it resubmits the same query to the
new base station. This procedure is repeated until its query
is answered properly. This scheme is simple but the handoff
clients2 sometimes have to wait a long time for the requested
data. Thus, starvation cannot be avoided.

Priority. In order to handle the starvation problems of the
naive scheme, this scheme gives a higher priority to handoff
clients. There are two query queues maintained in the base
station, with one having a higher priority than the other. The
queries submitted by handoff clients are put into the higher
priority queue, and the queries issued by normal clients are
put into the other queue. As long as the higher priority queue
is not empty, the server will answer the query from this queue
in FCFS order. With this scheduling scheme, starvation may
happen for the normal clients when there are many handoff
clients. Therefore, a control parameter, which equals to the
probability of the server answering a query from the higher
priority queue, can be used. Although handoff clients can ob-
tain service quickly in a new cell, the tradeoff for this scheme
is to prolong average response time of non-handoff clients.

Intelligent. This scheme gives priorities to clients who are
very likely to leave the cell soon so that their queries can be
answered before they handoff. When a client submits a query,
the server can estimate its departure time based on its current
position and velocity. If the time is shorter than the predefined
threshold, this client is expected to handoff soon. Therefore, it
is better for the server to service this client first. Two different
priority queues are maintained in the server. Queries issued
by clients expected to leave the cell are put into the high-
priority queue, while other queries are put into the normal
queue. When the high-priority queue is not empty, the server
answers the query from this queue first with some predefined
probability. This is the same as in the Priority method. Here,
no priority has been given to the handoff clients. The effort is
to reduce the number of handoff clients. The average query

2 Handoff clients refer to those mobile clients who just enter new cells.



ON SEMANTIC CACHING AND QUERY SCHEDULING FOR MOBILE NEAREST-NEIGHBOR SEARCH 659

response time of the normal clients will be prolonged. Hand-
off clients do not receive any benefit.

Hybrid. This scheme combines Priority and Intelligent to-
gether by giving priorities to both handoff clients and clients
to be handoff soon. The expense of this scheme is put upon
the average query response time of normal clients.

The various schemes introduced above put different em-
phasis on different aspects of the handoff problem. There-
fore, each one has its own pros and cons, as the performance
evaluation presented in the next section shows.

6. Simulation model

We conduct simulations to examine the performance of our
proposals. In this section, we describe a simulation model
for performance evaluation. CSIM [14], a process-oriented,
discrete-event simulation package, is used for implementation
of our simulations.

6.1. System model

For the sake of generality, we simulate a multi-cell environ-
ment even though some of the experiments can be performed
in a single-cell environment. The system has nine cells orga-
nized as a 3 × 3 grid.3 Each cell is represented by a square
with a side length of SideLen. The clients’ movements follow
a “wrapped-around” moving pattern, i.e., when a client leaves
the square from an edge, it will enter the square from the op-
posite edge with the same velocity. In each cell, the average
number of clients is denoted as ClientNum.

The data server maintains ServNum types of services (e.g.,
restaurants, theaters, and gas stations). Each type of services
has different AreaNum values. Therefore, ServNum × Are-
aNum approximates the whole database size. To simplify the
simulation, we assume that the distributions of data values for
all the service types are the same. A wireless cell (i.e., the
geographical region monitored by a base station) is evenly
divided into AreaNum parts. Then, a service facility is ran-
domly produced in each part. Given n locations correspond-
ing to the service facility of the same type, a Voronoi Dia-
gram is constructed using the Triangle algorithm in O(n log n)

time [15]. Figure 5 shows two Voronoi Diagrams produced in
our simulation that serve as area distributions in later experi-
ments. All this work is done in the data preprocessing stage
of a location-based service.

We assume point-to-point communication between the
server and clients. Thus, an uplink channel and a downlink
channel, with bandwidth UplinkBand and DownlinkBand, re-
spectively, are created between a client and the server. Ta-
ble 1 summarizes the configuration parameters of the system
model.

3 We find that the size of grid does not influence the simulation result.
A small 3 × 3 grid is chosen, because a square cell has 8 neighbors.

(a) Area distribution 1: AreaNum = 20.

(b) Area distribution 2: AreaNum = 50.

Figure 5. Two VDs for performance evaluation.

Table 1
Configuration parameters of the system model.

Parameter Description

SideLen Side length of the square service area
ServNum Number of service types
AreaNum Number of different facility instances for each service type
DataSize Size of a data value
UplinkBand Bandwidth of the uplink channel
DownlinkBand Bandwidth of the downlink channel
ClientNum Average number of clients within a cell

6.2. Client model

Each client is modeled by an independent process. It contin-
ues to issue queries for NN search over various service types.
A Zipf distribution, with preset θ value to control skewness,
is used to model user data access. Before a query is submit-
ted, a client first checks its local cache for the availability of
the requested data. Only when a cache miss happens would
the client submit the query to the server; otherwise, the query
is answered locally. The think time between two successive
queries issued by a client is assumed to be exponentially dis-
tributed with a mean value of MeanThinkTime. Here, we as-
sume that the client can detect the current base station. When
it finds a new base station and it has an unfinished query, this
client will resubmit the same query to the new base station.

The client is assumed to have a cache of CacheSize size,
which is a CacheSizeRatio ratio of the database size. We ig-
nore the overhead of the semantic description since it is very



660 ZHENG, LEE AND LEE

small compared to the size of a data item used in the simula-
tion. A detailed analysis of the relationship between cache
usage and the embedded semantic information is available
in [21]. Finally, to simplify our evaluation, we assume that the
velocity of a mobile user does not change, since this problem
is out of scope of this study. In our experiments, we specify
a range of clients’ speed with MaxSpeed and MinSpeed. The
direction of motion is chosen randomly.

6.3. Server Model

The server is modeled by a single process that serves re-
quests from clients. In the first part of the simulation, we
compare the performance of traditional cache and semantic
cache, along with various cache replacement policies. In
this part, only one infinite queue is maintained in the server.
The server answers the queries in FCFS order. To answer
an NN search for certain service type, the server first em-
ploys the trapezoidal mapping algorithm to locate the client
in a Voronoi cell. Then, the service facility located in that
Voronoi cell is returned as the answer. Generally speak-
ing, the algorithm can locate the Voronoi cell of the client
in O(log m), where m is the total number of the edges in
this Voronoi Diagram. We assume that the system is heav-
ily loaded and major congestion occurs in wireless transmis-
sion. Thus, the query processing time is omitted. Given the
size of a data object DataSize, the transmission time ServTime
equals to (DataSize + Overhead)/DownlinkBand. Overhead
here refers to the spatial scope information of semantic cir-
cles. In this simulation, each service type is treated indepen-
dently and the clients can only query one type of services at a
time.

In the second part of simulation, various query scheduling
schemes are evaluated. Two infinite queues are maintained in
the server; one has a higher priority than the other.4 UrgReq
is defined as the time threshold to determine whether a client
is to handoff soon or not. HigherFirstProb is the probability
that the server will answer the query from the higher prior-
ity queue first when it is not empty. Table 2 summarizes the
configuration parameters of the client and server models.

7. Performance evaluation

Based on the simulation model described earlier, experiments
have been conducted to evaluate the access performance of
mobile NN search. We first compare the performance of sys-
tems with semantic cache, traditional cache, and no cache.
Then, we compare several cache replacement policies de-
signed for the semantic cache used in our study. Finally, the
impacts of various query scheduling schemes, which address
the roaming problem, are examined. Table 3 shows the para-
meter settings for our experiments. All the experiments use
these settings unless noted explicitly.

4 For naive scheduling scheme, only one queue is used.

Table 2
Configuration parameters of the client and server models.

Parameter Description

MeanThinkTime Average time interval between two consecutive queries
issued by a client

MinSpeed Minimum moving speed of a client
MaxSpeed Maximum moving speed of a client
CacheSizeRatio Ratio of the cache size to the database size
CacheSize Cache size of the client
θ Skewness parameter for the Zipf access distribution
UrgReq The time threshold used to detect the clients that will be

handoff soon
HigherFirstProb The probability that a server answers the query from

a higher priority queue first

Table 3
Parameter settings for performance evaluation.

Parameter Setting

SideLen 1000 meters
ServNum 20
AreaNum 20, 50
DataSize 512 byte
DownlinkBand 1.25 · 105 byte/second
ClientNum 1000
MeanThinkTime 20.0 seconds
MinSpeed 10 meters/second
MaxSpeed 20 meters/second
CacheSizeRatio 10%
UrgReq 100 · ServTime seconds
HigherFirstProb 70%

7.1. Experiment #1: Caching techniques

In this section, we compare the average query response time
of mobile clients with (1) no cache, (2) traditional cache, and
(3) semantic cache. For a mobile client without cache, it has
to submit its query to the server and waits for the response.
For a mobile client with a traditional cache, it issues a query to
the server if the answer is not available in cache. The returned
answer is cached for future use. Since we only consider mo-
bile NN search in this study, the cached answers can only be
reused when the client submits the same query at the same lo-
cation. For a mobile client with a semantic cache, it issues a
query to the server just like a client with a traditional cache, if
the answer is not available in cache. The returned data object,
along with a semantic circle, is cached to answer the same
query in the future as long as the client is located within the
semantic circle. To provide a fair comparison between tradi-
tional caching and semantic caching techniques, we choose
LRU as the cache replacement policy for this experiment.

Figures 6 and 7 show the simulation result in terms of aver-
age query response time and cache hit ratio, respectively. By
increasing the simulation time, represented by the number of
queries processed, we observe that the response time reaches
a steady state. The simulation result shows that the traditional
data cache does not improve the performance much over no-
cache approach. This is due to the location dependency of
mobile NN search, i.e., cached data can only be reused when
the client submits the same query at the same location. On the
other hand, cache hit ratio of traditional cache is close to zero,



ON SEMANTIC CACHING AND QUERY SCHEDULING FOR MOBILE NEAREST-NEIGHBOR SEARCH 661

(a) Area distribution 1: AreaNum = 20.

(b) Area distribution 2: AreaNum = 50.

Figure 6. Average query response time vs. caching techniques.

which shows the ineffectiveness of the traditional caching
technique on location-dependent queries. The semantic
caching technique simply outperforms the other two methods.
In terms of query response time, it improves about 2.61% over
traditional cache for the first distribution and 4.84% for the
second distribution, respectively. In terms of cache hit ratio,
the superiority of semantic cache is overwhelming.

7.2. Experiment #2: Cache replacement policies

This experiment is to compare the impact of different cache
replacement policies on semantic cache. A good cache re-
placement policy will maintain a high cache hit ratio and thus
improve the system performance. In this experiment, we ex-
amine the semantic caching technique with Area, Dist, AID,
FAR, and LRU cache replacement policies.

As shown in figure 8, cache replacement policies do have a
significant impact on cache performance. We found that Area
and AID outperform others significantly. From the experi-
ments, it is observed that area is a major factor that affects the
cache hit ratio for location-dependent queries. While AID per-
forms better than Area, the improvement is not distinguish-
able, only about 0.19% for distribution 1 and nearly zero for
distribution 2. Surprisingly, the LRU performs slightly better
than the Dist and FAR. One reason for this is that, in this ex-
periment, we do not consider the impact caused by the clients’

(a) Area distribution 1: AreaNum = 20.

(b) Area distribution 2: AreaNum = 50.

Figure 7. Average cache hit ratio vs. caching techniques.

moving patterns and assume the clients move in a constant
velocity. FAR actually outperforms LRU when the queries is-
sued have high locality. Our later study shows the impact of
clients’ movement on the cache replacement strategies in de-
tail [21].

Another observation is that the performance of semantic
cache improves gradually with the increase of total query
numbers, which is particularly obvious in distribution 2. This
is also impacted by the area factor. Area and AID take area as
the major replacement metric. As a result, a data object with
small area is more likely to be replaced than a data object
with large area. Consequently, the total area covered by all
the cached semantic circles improves along with the increase
of simulation time. Cache hit ratio, which is expected to be
equal to the proportion between cached area over the area of
the Voronoi cell, becomes higher and the query response time
is reduced. However, the cache hit ratio will not continue to
increase, because the maximal semantic circle of an area is
less than or equal to its inscribe circle.

In addition to the above experiment, we evaluate the cache
replacement policies by varying the ratio of cache size to data-
base size, i.e., CacheSizeRatio, from 5% to 20%. The objec-
tive of this experiment is to examine the impact of cache size
on hit ratio of cache replacement policies. As illustrated in
figure 9, while the cache size increases, hit ratio is improved
as we expected.



662 ZHENG, LEE AND LEE

(a) Area distribution 1: AreaNum = 20.

(b) Area distribution 2: AreaNum = 50.

Figure 8. Cache hit ratio vs. cache replacement policies.

7.3. Experiment #3: Query scheduling schemes

The main objective of this experiment is to evaluate the per-
formance of different query scheduling schemes which ad-
dresses the query resubmission problem caused by roaming.
In addition to the performance metrics used in previous exper-
iments, we introduce two more performance metrics: cross
number, denoting the number of handoff clients, and recross
number, denoting the number of clients that have been hand-
off several times before receiving answers to their queries.
Each client has a local semantic cache employing Area as
the cache replacement scheme since it provides better per-
formance in most cases as illustrated in our previous exper-
iments. Default values of the parameters related to clients’
cache are used. In this experiment, we keep track of the aver-
age query response time of normal clients who have not been
given any priority but received the requested data in the cell
where they issue the queries.

Figure 10 shows the mobile clients’ query response time
corresponding to various query scheduling schemes. Only
the result based on distribution 1 is shown here. The other
distribution produces a similar result so we omitted it to save
space.

As illustrated in figure 10(a), hybrid has the best perfor-
mance in query response time of all mobile clients, which in-
cludes both the handoff clients and normal clients. As far as

(a) Area distribution 1: AreaNum = 20.

(b) Area distribution 2: AreaNum = 50.

Figure 9. Cache hit ratio vs. cache sizes.

query response time is concerned, hybrid outperforms naive
by about 4.74%. Compared with naive, the improvement is
about 4.36% and 1.76% for priority and intelligent, respec-
tively. Figure 10(b) shows the average response time of the
queries issued by the normal clients, which are not given any
priority. Since intelligent detects the clients who will be hand-
off soon and tries to answer requests before they leave the
cell, those clients receive responses quickly. These clients
are also considered as normal clients, consequently, the av-
erage query response time of normal clients of intelligent is
shortened compared with naive. For the other two scheduling
schemes, i.e., priority and hybrid, the query response time for
normal clients is increased.

Figures 11 and 12 show the experiment results in terms
of cross and recross numbers. These two metrics gauge the
severity of query resubmission due to roaming. Therefore,
a goal of scheduling schemes is to reduce both the cross and
recross numbers so as to maximize the number of mobile
clients which will receive their responses before they leave
their current cells. As illustrated, priority has a higher cross
number than naive, because it provides service to handoff
clients first. Therefore, the query response time of normal
clients is inevitably increased and the cross number is in-
creased. However, this scheme does reduce the recross num-
ber. As shown in figure 12, its recross number is nearly zero.
In terms of recross number, all the proposed schemes outper-
form naive and the improvement is very significant.



ON SEMANTIC CACHING AND QUERY SCHEDULING FOR MOBILE NEAREST-NEIGHBOR SEARCH 663

(a) Query response time of all clients.

(b) Query response time of normal clients.

Figure 10. Query response time vs. query scheduling schemes.

Figure 11. Average cross number.

In the experiments shown above, all the parameters use
default values. Actually, some parameters may impact the
final performance. As for the priority scheduling scheme,
HigherFirstProb decides the probability that a higher pri-
ority is assigned to a handoff client. With the increase of
HigherFirstProb, from 0.3 to 1.0, only recross decreases
monotonously. The average response time reaches the opti-
mal value when HigherFirstProb is set around 0.9, while the
response time of normal clients reaches the peak value when
HigherFirstProb is near 0.8. Due to space constraint, the de-
tails are omitted in this paper.

Figure 12. Average recross number.

8. Conclusion

Mobile nearest-neighbor (NN) search is a basic but impor-
tant function for LBSs. A Voronoi Diagram-based index has
been introduced in this paper to answer queries for finding
the nearest service facilities based on mobile clients’ loca-
tions. Due to the limited resources in mobile devices and re-
altime requirement of location-based services, we propose a
semantic cache to address the access efficiency of mobile NN
search. Several cache replacement policies, tailored for the
proposed semantic cache, are proposed and examined. More-
over, we extend our study from a single-cell environment to
a multi-cell environment. Considering the fact that mobile
clients may roam across cells, it’s likely for a mobile client
to leave a cell without receiving the response for the query
it issued there. This requires the resubmission of the query
in the new cell and thus results in performance degradation.
In order to reduce the number of query resubmissions, four
different query scheduling schemes have been proposed.

A series of experiments have been conducted to evaluate
the performance of our proposals in this paper. The result
shows that the VD-based index is an efficient solution for
NN search in mobile environments. Enhanced with seman-
tic cache, query processing efficiency is greatly improved.
We compared several cache replacement policies for semantic
cache and found that the areas of the semantic circles associ-
ated with the cached data are the major factor that impacts
cache performance in terms of query response time and hit
ratio. By taking roaming issues into consideration, our ex-
periments compare four different query scheduling schemes
which aim at reducing the cell-cross number and cell-recross
number. It is shown that no single scheduling scheme outper-
forms all the others in all aspects. The appropriate scheduling
scheme must be chosen based on the application’s require-
ments.

This study represents the first step into a very important
field of location-dependent query processing. In this paper,
we have explored some of the research issues in the field, but
further studies are needed. Two directions will be pursued in
our follow-up studies. First, location dependent queries other
than the basic mobile NN search will be examined. Secondly,
different communication mechanisms between the base sta-



664 ZHENG, LEE AND LEE

tion and mobile clients will be studied. While the point-to-
point communication is employed in this paper, we will inves-
tigate corresponding problems in broadcast-based systems.

Acknowledgements

We thank the special issue editors and the anonymous re-
viewers for their valuable comments and suggestions, which
have improved the quality of this article. The Research Grant
Council, Hong Kong SAR, China supported this research un-
der grant number HKUST6079/01E. Baihua Zheng was sup-
ported by Wharton-SMU Research Center, Singapore Man-
agement University. Wang-Chien Lee was supported in part
by US National Science Foundation grant IIS-0328881.

References

[1] S. Acharya, R. Alonso, M. Franklin and S. Zdonik, Broadcast disks:
Data management for asymmetric communications environments, in:
Proceedings of ACM SIGMOD Conference on Management of Data,
San Jose, CA (May 1995) pp. 199–210.

[2] A. Bakre and B.R. Badrinath, Handoff and systems support for indi-
rect TCP/IP, in: Proceedings of 2nd Usenix Symposium on Mobile and
Location-Independent Computing (April 1995).

[3] D. Barbara, Mobile computing and databases – a survey, IEEE Trans-
actions on Knowledge and Data Engineering 11(1) (1999) 108–117.

[4] D. Barbara and T. Imielinski, Sleepers and workaholics: Caching
strategies for mobile environments, in: Proceedings of ACM SIGMOD
Conference on Management of Data, Minneapolis, MN (May 1994)
pp. 1–12.

[5] S. Berchtold, B. Ertl, D.A. Keim, H.P. Kriegel and T. Seidl, Fast nearest
neighbor search in high-dimensional space, in: Proceedings of the 14th
International Conference on Data Engineering (ICDE’98) (February
1998) pp. 209–218.

[6] S. Berchtold, D.A. Keim, H.P. Kriegel and T. Seidl, Indexing the so-
lution space: A new technique for nearest neighbor search in high-
dimensional space, IEEE Transactions on Knowledge and Data Engi-
neering 12(1) (2000) 45–57.

[7] M. Berg, M. Kreveld, M. Overmars and O. Schwarzkopf, Computa-
tional Geometry: Algorithms and Applications, Chapter 7 (Springer,
New York, NY, 1996).

[8] T. Camp, J.C. Lusth and J. Matocha, Reduced cell switching in a mo-
bile computing environment, in: Proceedings of the 6th Annual In-
ternational Conference on Mobile Computing and Networking (Mobi-
Com’00) (August 2000) pp. 143–154.

[9] H.G. Gök, Processing of continuous queries from moving objects in
mobile computing systems, Master’s Thesis, Bilkent University (1999).

[10] H.G. Gök and Ö. Ulusoy, Transmission of continuous query results in
mobile computing systems, Information Sciences 125(1–4) (2000) 37–
63.

[11] D.L. Lee, W.-C. Lee, J. Xu and B. Zheng, Data management in
location-dependent information services, IEEE Pervasive Computing
1(3) (2002) 65–72.

[12] Q. Ren and M.H. Dunham, Semantic caching and query processing,
Technical Report 98-CSE-04, Southern Methodist University (May
1998).

[13] Q. Ren and M.H. Dunham, Using semantic caching to manage location
dependent data in mobile computing, in: Proceedings of the 6th Annual
ACM/IEEE International Conference on Mobile Computing and Net-
working (MobiCom’2000), Boston, MA (August 2000) pp. 210–221.

[14] H. Schwetman, CSIM user’s guide (version 18), Mesquite Software,
Inc. (1998), http://www.mesquite.com

[15] J.R. Shewchuk, Triangle: Engineering a 2d quality mesh generator and
delaunay triangulator, in: Proceedings of the 1st Workshop on Applied
Computational Geometry (May 1996) pp. 124–133.

[16] A.P. Sistla, O. Wolfson, S. Chamberlain and S. Dao, Modeling and
querying moving objects, in: Proceedings of the 13th International
Conference on Data Engineering (ICDE’97), Birmingham, UK (April
1997) pp. 422–432.

[17] P. Sistla, O. Wolfson, S. Chamberlain and S. Dao, Querying the Uncer-
tain Position of Moving Objects (Springer, Berlin, 1998) pp. 310–337.

[18] S. Tekinay and B. Jabbari, Handover and channel assignment in mobile
cellular networks, IEEE Communications Magazine (November 1991)
42–46.

[19] J. Xu, X. Tang, D.L. Lee and Q.L. Hu, Cache coherency in location-
dependent information services for mobile environments, in: Pro-
ceedings of the 1st International Conference on Mobile Data Access
(MDA’99), Hong Kong (December 1999) pp. 182–193.

[20] J. Xu, B. Zheng, W.-C. Lee and D.L. Lee, Energy efficient index for
querying location-dependent data in mobile broadcast environments,
in: Proceedings of the 19th IEEE International Conference on Data
Engineering (ICDE’03), Bangalore, India (March 2003).

[21] B. Zheng, J. Xu and D.L. Lee, Cache invalidation and replacement
strategies for location-dependent data in mobile environments, IEEE
Transactions on Computers, Special Issue on Database Management
and Mobile Computing 51(10) (2002) 1141–1153.

Baihua Zheng received a Ph.D. in computer science
from Hong Kong University of Science and Tech-
nology. She is a member of the IEEE and the ACM.
Currently, she is an Assistant Professor in the School
of Information Systems at Singapore Management
University. Her research interests include mobile and
pervasive computing, and spatial databases.
E-mail: bhzheng@smu.edu.sg

Wang-Chien Lee received a Ph.D. in computer and
information science from the Ohio State Univer-
sity in 1996. He is a member of the IEEE and
the ACM. Currently, he is an Associate Professor
in the Computer Science and Engineering Depart-
ment at Pennsylvania State University. His research
interests include mobile and pervasive computing,
data management, and Internet technologies.
E-mail: wlee@cse.psu.edu

Dik Lun Lee received the M.S. and Ph.D. degrees in
computer science from the University of Toronto in
1981 and 1985, respectively. He is a Professor in the
Department of Computer Science at the Hong Kong
University of Science and Technology, and was an
Associate Professor in the Department of Computer
and Information Science at the Ohio State University,
Columbus, OH. He has served as a guest editor for
several special issues on database-related topics, and
as a program committee member and chair for nu-

merous international conferences. He was the founding conference chair for
the International Conference on Mobile Data Management. His research in-
terests include document retrieval and management, discovery, management
and integration of information resources on Internet, and mobile and perva-
sive computing. He was the Chairman of the ACM Hong Kong Chapter.
E-mail: dlee@cs.ust.hk


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2004

	On Semantic Caching and Query Scheduling for Mobile Nearest-Neighbor Search
	Baihua ZHENG
	Wang-Chien LEE
	Dik Lun LEE
	Citation


	tmp.1400657887.pdf._3X0Q

