
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-1997

Distributed query processing for structured and
bibliographic databases
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Ying LU

DOI: https://doi.org/10.1142/9789812819536_0046

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng and LU, Ying. Distributed query processing for structured and bibliographic databases. (1997). Database Systems for
Advanced Applications '97: Proceedings of the Fifth International Conference on Database Systems for Advanced Applications: Melbourne,
April 1-4, 1997. 441-450. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/920

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1142/9789812819536_0046
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Distributed Query Processing for Structured and
Bibliographic Databases

Ee-Peng Lim

School of Applied Science
Nanyang Technological University
Nanyang Ave., Singapore 639798

asepZim@sentosa.sas.ntu.ac.sg

Ying Lu

Institute of Systems Science
National University of Singapore

Heng Mui Keng Terrace, Kent Ridge, Singapore 119597
luying@iss.nus.sg

Abstract

To support future digital library systems which draw
information from different sources on the intemet,
we have to provide integrated queries to pre-existing
database servers which contain structured, semi-
structured and unstructured data. In this paper, we
specijically examine the problem of querying both
existing structured relational databases and biblio-
graphic databases. By adopting the well-accepted
239.50 standard protocol to access bibliographic data-
bases in different legacy library systems, we have
developed an extended SQL model, known as Harp-
SQL, to support integrated queries to both SQL
databases and bibliographic databases. Using Harp-
SQL, one can not only query bibliographic databases
in an SQL manner, but also perform join(s) be-
tween SQL and bibliographic databases. A distribu-
ted query processor supporting HarpSQL queries has
been developed. We will present our query process-
ing strategy that is based on client- server interac-
tion model between the distributed query processor
and the various remote database servers.

Keywords Digital libraries, internet databases,
interoperable databases

1 Introduction

1.1 Motivation

As increasing number of databases are being made
available on the internet, it is now possible to build
a wide variety of global applications which make
use of data from different sources. An example
of such global applications is a digital library
system. In [4], a digital library is defined to be a

Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Appli-
cations, Melbourne, Australia, April 1-4, 1997.

machine readable collection of information together
with a set of tools that helps users to find specific
information. Here, the collection of information
is no longer restricted to the information owned
by a single public library. Digital library systems
are expected to interoperate with a wide range of
information servers managed by different informa-
tion providers. The information provided by these
servers includes:

l Bibliographic data:
Bibliographic data (sometimes known as the
library catalog) exist in every public library.
The creation of bibliographic records for li-
brary material is usually done by professional
catalogers. To look for any library material,
one always has to begin with searching the
library’s bibliographic database. Hence, bib-
liographic data represent an important class
of information provided by the existing public
libraries. Lately, new forms of bibliographic
data have emerged due to the need to index
publications available on the internet. For ex-
ample, the Unified Computer Science Tech-
nical Report Index (UCSTRI) maintained by
University of Indiana [19] and other WWW
bibliographies[g, 71 have been constructed for
computer science related bibliographic infor-
mation. Nevertheless, these new index servers
may not adopt a common query interface to
their bibliographic data and they also do not
capture the large bulk of bibliographic data
maintained by the public libraries.

l Structured data:
Structured data have traditionally been used
to store business and organization information.
As SQL database systems become inexpensive,
they are becoming widely used. Since mod-
ern SQL database systems can also be used

441

to store text data and they provide sophis-
ticated text query features, we expect many
of the SQL databases will be used as compo-
nents of digital libraries and will be used to
stored information related to digital libraries.
For example, SQL databases may be used to
stored information about inter-library loan re-
quests, and books that have been borrowed or
reserved.

l Document data:
Document data on the internet can exist in a
variety of formats. Some of them are totally
unstructured, e.g. plain text files. Others may
be semi-structured. They can be represented
by some mark-up languages such as SGML[G],
HTML[5], etc. At present, the most popular
way to obtain remote document files is through
a web browser. A large number of document
files can also be obtained from ftp (file transfer
protocol) and WAIS[S] (wide area information
servers) sites.

In this paper, we address the important query
processing problem which involves both existing
bibliographic databases owned by the public libra-
ries and SQL databases containing structured data.
For example, to perform interlibrary loan, a library
user has to first register his request(s) with his af-
filiated library. Suppose interlibrary loan requests
are stored in a SQL database. After the librarian
has approved a number of registered requests, a
query process that attempts to locate the requested
books in neighboring public libraries will be carried
out. In this process, it would be useful to provide
integrated queries to both bibliographic databases
and SQL databases. Another query example that
involves both types of databases will be given in
Section 3.

By adopting a SQL-like query language and the
239.50 information retrieval protocol[l3] to access
the existing bibliographic databases, we examine
how queries to these legacy bibliographic databases
can be evaluated. We further study the strategy
of performing joins between SQL tables and biblio-
graphic data. We have also developed a distributed
query processor that incorporates the tuple substi-
tution join strategy.

1.2 Distributed Query Processing Is-
sues for Structured and Biblio-
graphic Databases

Unlike the traditional distributed query process-
ing problem, processing integrated queries to struc-
tured and bibliographic databases has to consider
a number of issues:

l Modeling of existing bibliographic
databases:

1 Tag I Field name
NO:
001
020
040
092
100
110
111
245
250
260
600
610
650

Control number
ISBN number
Cataloging source
Call number
Main entry - personal name
Main entry - corporate name
Main entry - conference or meeting
Title statement
Edition statement
Publisher
Subject added entry - personal name
Subject added entry - corporate name
Subject added entry - topical heading

-I

Figure 1: Selected MARC Fields and Tags

Most of the existing bibliographic databases
contain bibliographic records represented in the
MARC’ format[3]. Each MARC record con-
sists of multiple fields representing bibliographic
elements, e.g. title, author, subject, ISBN, etc.
These bibliographic elements are identified by
unique tag numbers (defined by the MARC
standard). A selected set of MARC fields and
their tags are shown in Figure 1. A biblio-
graphic record formatted in MARC is shown
in Figure 2. Some bibliographic elements may
occur more than once in the same record and
each occurrence contains a different value (e.g.
the example MARC record has multiple fields
with the tag 650). Furthermore, a field may
be composed by one or more subfields each
carrying a specific meaning and a subtag (e.g.
$a). In this paper, we will present an extended
SQL model known as Harps&L to query these
existing bibliographic data.

l Query capabilities of remote access pro-
tocols:
To ensure that our distributed query process-
ing strategy is applicable to the present and fu-
ture bibliographic databases, we have adopted
the 239.50 protocol to query these databases[l3].
239.50 is an application layer information re-
trieval protocol drafted by ANSI/NISO. It has
been widely used to support remote accesses
to the bibliographic databases maintained by
public libraries. At present, the queries sup-
ported by most 239.50 servers are restricted to
boolean searches (or selection queries) which
consist of predicates on the MARC fields con-
nected by boolean operators (AND, OR, NOT).
Projection and join operations are not sup-
ported. In other words, our distributed query
processing strategy has to observe the query
restriction imposed by 239.50. For example,
our query processor has to ensure that only se-
lection queries are submitted to 239.50 servers.
Moreover, the query processor must support

‘MARC is the abbreviation of MAchine-Readable
Cataloging.

442

Bibliographic record:
Senn, James A. Information technology in business:
principles, practices, and opportunities.
Annotated instructor’s ed.
Englewood Cliffs, N.J.: Prentice Hall, c1995.

Corresponding MARC record:

020 $a 0134849086 (Instructor’s ed.)
020 $a 0134843045 (Student ed.)
040 $a DLC SC DLC Sd DLC
100 $a Senn, James A.
245 $a Information technology in business :

$b principles, practices, and opportunities
SC James A. Senn.

250 Sa Annotated instructor’s ed.
260 $a Englewood Cliffs, N.J. : $b Prentice Hall,

$c c1995.
650 $a Business $x Data processing.
650 $a Information storage and retrieval systems

$x Business.
650 $a Information technology.
650 $a Local area networks (Computer networks)

Figure 2: A Bibliographic Record Example For-
matted in MARC

join and projection operations which are not
part of 239.50 query support.

l Merging different kinds of data:
Apart from retrieving data from remote SQL
and bibliographic databases, our query proces-
sor has to be able to merge the retrieved SQL
and bibliographic data. In our approach, the
distributed query processor supports extended
predicates to be used in joining the two kinds
of data.

1.3 Paper Outline

The rest of this paper is organized as follows. In
Section 2, we discuss some related work. Section 3
describes an extended query language (HarpSQL)
for writing integrated queries to bibliographic and
SQL databases. Section 4 presents our distributed
query processing architecture. Processing Harp-
SQL queries will be given in Section 5. Imple-
mentation of our distributed query processor is de-
scribed in Section 6. Conclusions are given in
Section 7.

2 Related Work

As bibliographic data is semi-structured, our re-
search is related to some ongoing work in model-
ing and querying semi-structured data [16, 1, 141.
On the other hand, since we are dealing with dis-
tributed heterogeneous databases, our work is also
related to the current research in multidatabase
query processing[l7, 10, 111. In the following, we
will survey these two related research areas.

2.1 Multidatabase Query Processing

Similar to multidatabase systems, digital library
systems have to accommodate different types of au-
tonomous and heterogeneous databases. However,
most multidatabase research has focused on query-
ing distributed structured databases only. Multi-
database query processing can also be very compli-
cated when the semantic conflicts between partici-
pating databases have to be resolved.

In [17], a multidatabase query processing strat-
egy has been proposed. It, however, did not con-
sider semantic conflict resolution in the query pro-
cessing strategy. To resolve inter-database con-
flicts, Lim etc. has proposed new integration oper-
ations in [lo]. In [ll], a new object-oriented data
model known as DIOM has been designed for the
Diorama multidatabase project.

2.2 Distributed Query Processing for
Semi-structured Data

To model and query all kinds of semi-structured
data, Quass etc. have proposed a flexible data
model and query language known as OEM and
LOREL respectively[lb, 141. Blake etc. have ex-
tended SQL to query semi-structured data and their
meta-descri-ption. Unlike other types of semi-struct-
ured data, bibliographic data in the public libraries
are stored as MARC records. Hence, we are able to
model the bibliographic databases as relations and
to extend SQL to query them.

Although distributed query processing problem
has been well studied in the domain of relational
databases, there is very little research effort in pro-
cessing distributed queries which involve both struc-
tured and bibliographic databases. In [2], several
join techniques have been proposed for queries which
involves an external text data manager loosely cou-
pled with a relational database system. These tech-

niques include (a) naive tuple substitution, (b) rela-
tional ted processing, (c) semijoin and (d) probing.

The naive tuple substitution technique requires
a join between relation and text to be translated
into a set of selection queries to the text database.
This is done by evaluating the relational query fol-
lowed by substituting relational attribute in the
join predicate by its actual column values. This
technique is usually undesirable because a large
overhead will incur when numerous selection queries
are sent to the text database. The relational text
processing technique assumes that the relational
database system can handle the join predicates be-
tween relational attributes and text attributes. This
assumption however, does not hold in our context
because the extended predicates and functions in
our integrated queries cannot be handled by ordi-
nary relational database systems. In 121, the pro-
posed semijoin technique is actually a variant of tu-
ple substitution. Semijoin reduces the overhead of

443

tuple substitution by combining all selection queries
generated by tuple substitution into one selection
query. The probing technique, designed to work
together with either naive tuple substitution or re-
lational text processing, further improves the two
techniques by not sending queries that return empty
results to the text system.

In this paper, since our queries involve multiple
external SQL and bibliographic databases, the dis-
tributed query processing problem becomes more
complex than that examined by [2]. We have adopt-
ed a tuple substitution approach similar to semijoin
to evaluate subqueries on bibliographic databases.
Probing method is not chosen because we currently
do not maintain the statistics the probing method
requires for the external databases.

3 HarpSQL Query Language

To enable digital library users and application de-
velopers to query existing SQL and bibliographic
data, we have extended the SQL language in a
number of ways and called it HarpSQL[12]. The
unique features of Harps&L include2:

l Foreign SQL and bibliographic tables
In Harps&L, a table (say CourseTB) from a
remote SQL database (say RefDB) can be im-
ported as a foreign SQL table (named as
CourseTB0FlefDB). Unlike SQL databases, re-
mote bibliographic databases do not contain
member tables. Hence, each remote biblio-
graphic database is imported as a foreign Bib-
liographic table (or BIB table). Each im-
ported BIB table is named BibTBQ<Library
name> where <Library name> is the public
library that provides the BIB table.

l MARCString data type
Bibliographic data found in the public libraries
are mostly formatted based on the MARC stan-
dard. To model the MARC fields, we have
defined a new data type called MARCString.
A MARCString value models multiple MARC
fields sharing a common tag number in a MARC
record. These MARC fields form the elements
of the MARCString value. Each element may
consist of multiple subelements modeling the
subfields in the MARC fields. Hence, an im-
ported BIB table consists of multiple MARC-
String attributes each with a unique tag num-
ber and attribute name MAttr<tagnumber>.
For example, the MAttr650 attribute value of
the record given in Figure 2 is:

(650, (‘$a Business ’ ‘3x Data processing’)

(‘$a Information storage and retrieval systems’

2Due to space constraint, we only list the major exten-
sions that are relevant to our discussion.

RefTB RefId Title Author Course
CourseTB 1 CourseId) Cname] Year 1 Lecturer

Figure 3: Schema of RefDB

‘Sx Business')

(‘$a Information technology’)

(‘$a Local area net.oorks(Computer

Virtual bibliographic tables

networks) ‘))

To support broadcasting of queries to multi-
ple bibliographic databases, Harps&L allows
a virtual bibliographic (BIB) table to be
defined upon a number of import BIB tables
which are also known as the members BIB
tables. Apart from having the same MARC-
String attributes found in any BIB table, every
virtual BIB table contains an extra location
attribute to indicate where its records come
from.

Contain predicate and Extract function
With the new data type MARCString, a new
predicate called Contain has been defined to
apply different kinds of selection criteria on
MARCString values, and to allow BIB tables
to be joined with SQL tables by comparing
the MARCString attributes with the charac-
ter string attributes in the SQL tables. Un-
like the usual regular expression predicates,
the Contain predicate caters for a wide vari-
ety of string comparison methods by support-
ing different search modes for different bibli-
ographic elements (see 1121 for details about
search modes). Extract function, on the other
hand, allows us to extract sub-elements from a
MARCString value by supplying the subtags.

Example: Let BibTB0NTU and BibTB0NUS be
two BIB tables imported from the NTU3 library
and NUS4 library. Let CourseQRefDB and
RefTBQRefDB be two SQL tables imported from
RefDB, a SQL database containing some course in-
formation. Ref TBORef DB contains information about
reference books adopted by different courses.
Course0RefDB contains information about the courses
to be taken by computer engineering students. Their
attributes are shown in Figure 3.

In the following, we show some query examples5
demonstrating the Harps&L features.

Example (Ql): Retrieve the titles and au-
thors of books with titles containing ‘distributed

3NTU is an abbreviation of Nanyang Technological
University.

‘NUS is an abbreviation of National University of
Singapore.

‘To simplify our explanation, some parameters to be used
in Extract and Contain are not shown.

444

database’ from the NTU library.

SELECT Extract(HAttr245,‘$a’),
Extract(MAttriOO,‘$a’) FROM BibTBQINTU

WHERE Contain(MAttr245,‘distributed
database’, <ANYSOSITION, ISSHRASE>)

In the above HarpSQL query, HAttr245 and
MAttrlOO are the MARCString attributes contain-
ing the title and author information in their subele-
ments with subtag $a. The search mode
<ANYSOSITION, ISSHRASE> in the Contain pred-
icate indicates that only those titles containing ‘dis-
tributed database’ as a phrase are wanted. The
Extract functions are used to obtain title and au-
thor text from the MARCString attributes MAttr245
and MAttrlOO respectively.

Example (Q2): Retrieve the course titles, call
numbers, titles, authors and locations of reference
books used by courses held in the academic year
95/96 from NTU and NUS libraries.

SELECT c.Cname, Extract(a.MAttr092,‘$a’),
Extract(a.MAttr245,‘$a’).
Extract(a.MAttrlOO,‘$a’), a.location

FROM NTUandNUSLib a, RefTBORefDB b,
Cours eTB@Ref DB c

WHERE c.Year = ‘95/96’ AND
b.Course = c.CourseId AND
Contain(a.MAttr245,b.Title,
<FIRSTINSUBFIELD , ISPHRASE>) AND
Contain(a.MAttrlOO,b.Author,
<NULL, ISNAME> >

The MARCString attribute MAttr092 contains
the call number information. The above query spec-
ifies a join between two SQL tables and a virtual
BIB table NTUandNUSLib defined on the BIB ta-
bles imported from NTU and NUS libraries. Note
that the Contain predicates have been used to join
Ref TB with NTUandNUSLib.

4 Distributed Query Processing Ar-
chitecture

Our distributed query processor consists of mainly
a query manager and a set of query agents
as shown in Figure 4. Query manager is the core
of the distributed query processor. It coordinates
the entire query processing by interacting with its
query agents. Given a HarpSQL query from a dig-
ital library application, the query manager first
parses it into a query graph that is later decom-
posed into a number of subqueries to be processed
by the query agents. Having collected all the sub-
query results, the query manager combines them

Digital Library Applications 3
. ..“......................

Figure 4: Architecture of the Distributed Query
Processor

together and returns the final query result to the
digital library application. Since not all opera-
tions of a query can always be performed by the
query agents, the query executor has to handle
some operations at the query manager site. Hence,
a HarpSQL server is needed to supplement the
query executor with the capabilities to store and
process intermediate results.

Figure 4 also depicts the remote SQL and 239.50
servers managing existing structured data and bib-
liographic data respectively. The SQL and 239.50
query agents act as wrappers that support sub-
queries to remote SQL and 239.50 servers which are
members of the integrated digital library environ-
ment. A query agent receives subqueries from the
query manager, sends them to its remote database
server for processing and returns the result to the
query manager. The interaction between the query
agents and their remote servers are governed by
the specific remote access protocols supported by
the servers. By using the query agents, the query
manager is able to execute queries without know-
ing much about the complex protocols and query
interfaces adopted by the remote servers. Further-
more, the query agents are designed to process their
subqueries concurrently, thus shortening the query
response time.

5 HarpSQL Query Processing Strat-
egy

In this section, we describe the query processing
strategy adopted by our Harps&L distributed query
processor which has been developed based on the
architecture given in Section 4. Although query
optimization is not the prime focus of this research,
our processing strategy has been designed to re-
duce the subquery results by performing selection
and projection as early as possible and by avoiding
Cartesian products in the subqueries to be evalu-

445

ated by the external servers. By reducing the sub-
query results, we are able to minimize the overhead
of shipping data from the external servers to the
distributed query processor. Upon receiving the
subquery results, the Harps&L server will combine
them together by performing some inter-database
joins or Cartesian products.

5.1 Restricting Bibliographic Queries
using Tuple Substitution

As 239.50 disallows bibliographic queries that do
not carry any selection predicate6, our query pro-
cessing strategy requires all BIB tables involved in
HarpSQL queries to be restricted by either selec-
tion or join with other SQL tables. For those BIB
tables that are only restricted by join, we can derive
the subqueries to their 239.50 servers by perform-
ing tuple substitution7. In tuple substitution, a
join predicate used in the join between a BIB table
and a SQL table is transformed into a disjunctive
set of selection predicates by first evaluating the
SQL table, followed by instantiating the SQL at-
tribute in the join predicate by the corresponding
attribute values in the SQL subquery result.

For example, to process the query (Q3) below,
we first evaluate the SQL subquery to obtain the
various reference title values from RefTBBRefDB.

Example (Q3):

SELECT Extract(a.WAttr092,‘$a’),a.HAttr245

FROM BibTBQNTU a, RefTBQRefDB b,
WHERE Contain(a.MAttr245,b.Title,

<FIRSTINSUBFIELD,ISPHRASE>)

Suppose the titles returned are ‘Digital Design’,
‘Computer Networks’, By tuple substitution,
we obtain the following selection subquery for
BibTBQNTU:

SELECT *
FROM BibTBQNTU
WHERE Contain(MAttr245,'Digital Design',

<FIRSTINSUBFIELD,ISSHRASE>) OR
Contain(MAttr245,'Computer Networks',
<FIRST-INSUBFIELD,IS-PHRASE>) OR ...

NTUandNUSLib
.

Chti(aMA!1r245. b(ritle,
-zFRSTJNXlBFlEJ.D. ISJWRASE>)

AND Contain(a.MAttr100. b.Autbor.
<NULL. IS-NAME>)

Figure 5: A Query Graph Example

performed by our distributed query processor are
as follows:

l Step 1: SQL subgraph extraction
When a query graph consists of SQL table(s),
we first derive the subqueries to these tables by
extracting SQL subgraphs from the query
graph. A SQL subgraph is a connected sub-
graph of query graph consisting of SQL tables
that belong to the same SQL database.

Let the query graph be represented by (V, E)
where V and E denote the set of nodes and
edges respectively. The following algorithm
derives a set of SQL subgraphs denoted by
{SQLS’ubgraph~, SQLSubGraph~, . ..}.
for each N E V {

mark N as UNVISITED
SId = 1

1
for each unvisited N f V {

SQL-Subgraphsrd.V = 4
SQL27ubgraphsrd.E = q5
if (N.type == SQLTable) {

DepthFirstSearch(N)
SId + +

I
1

DepthPirstSearchCA) {
SQL-Subgraphsrd .V U = {A}
mark A as VISITED
for each edge (A,B)E E {

if B is UNVISITED and

B is a SQL table at the

5.2 Distributed Query Processing Steps same site as A (
SQL-Subgraphs1s.E U = {(A, B)}

To process a Harps&L query, we first represent it
using a query graph[20]. In a query graph, each
node represents a SQL table, BIB table or vir-
tual BIB table. An edge between a pair of nodes
represents a join. For example, the query graph
representing Q2 in Section 3 is shown in Figure 5.
Given a query graph, the query processing steps

‘This prevents huge amount of bibliographic data to be
shipped across sites.

‘This is similar to the semijoin technique mentioned in

PI.

DepthFirstSearch(B)

1)
1

l Step 2: Processing SQL subqueries
Once the SQL subgraphs are extracted, we
generate a SQL subquery for each subgraph.
All these SQL subqueries are submitted to the
SQL query agents created for the target SQL
database servers and are evaluated by the servers
concurrently. Typically, the SQL subqueries

446

involve select, project and intra-database join
operations. A temporary table for each sub-
query result is created at the HarpSQL server
when the subquery result is returned by the
query agent.

l Step 3: Processing bibliographic
subqueries
In this step, we derive and evaluate the sub-
queries against the BIB tables. These sub-
queries can be obtained in two ways as de-
scribed below:

Case (a): If a BIB table (or virtual BIB table)
node in the query graph is restricted by some
selection predicate(s), a bibliographic subquery
against the BIB table (or virtual BIB table)
with the selection predicate(s) is derived.

Case (b): If a BIB table (or virtual BIB ta-
ble) node in the query graph is not restricted
by any selection predicate(s), we have to de-
rive the bibliographic subquery by perform-
ing tuple substitution. In tuple substitution,
the subquery result of a SQL subgraph that is
linked to the BIB table (or virtual BIB table)
is chosens to convert a join predicate between
the SQL subgraph and BIB table (or virtual
BIB table) into a disjunction of selection pred-
icates.

For each subquery against a BIB table, we
create a 239.50 query agent to process it. The
subquery result returned by the query agent is
stored as a temporary table at the Harps&L
server with the necessary attribute projection.
In both case (a) and (b), a subquery against a
virtual BIB table will be further replicated into
subqueries against its different member BIB
tables. Multiple 239.50 query agents, each
corresponding to a member BIB table, will
be created to process these subqueries. The
results of all these subqueries are unioned and
stored as a temporary table in the HarpSQL
server with the necessary attribute projection.
In the process of unioning the subquery re-
sults, the location attribute value is added to
every record.

l Step 4: Final result generation
A final query that joins all the temporary ta-
bles at the Harps&L server is generated. Apart
from the final attributes to be projected, the fi-
nal query may consist of(i) join(s) between ta-
bles from different SQL database servers, and
(ii) join(s) between SQL table and BIB ta-
ble (except the join used for tuple substitu-
tion). Apart from join operations, the final

‘If there are multiple SQL subgraphs adjacent to the BIB
table, we just choose one of them.

query may also involve Contain predicates and
Extract functions.

When the Harps&L queries to be processed in-
volve only SQL tables, only steps 1, 2 and 4 are
required. On the other hand, if a Harps&L query
involves only a BIB table or virtual BIB table, we
only need to perform steps 3 and 4.

5.3 Query Processing Example

Figures 6 shows the query processing steps for our
query example Q2. From the query graph (see
Figure 5), we extract a SQL subgraph which is
translated into a SQL subquery to be executed by
a SQL query agent. The SQL subgraph is shown
in Figure 6(a). From the subgraph, we generate a
SQL subquery and send it to a SQL query agent as
shown in Figure 6(b). A temporary table Tl is cre-
ated at the Harps&L server for the subquery result.
Subsequently, we substitute the Title attribute
in the Contain predicate by the corresponding at-
tribute values in the previous SQL subquery result
Tl. A substituted BIB subquery is created and is
submitted to the two BIB query agents for the NTU
and NUS libraries as shown in Figure 6(c). The
results from all the BIB query agents are unioned
and stored in a temporary table T2 by the Harp-
SQL server. Finally, a query that joins Tl and T2
is evaluated by the HarpSQL server to obtain the
final query result as shown in Figure 6(d).

6 Implementation Issues

As part of our research work, we have developed a
distributed query processor that can handle Harp-
SQL queries over a collection of SQL and 239.50
servers. Within the distributed query processor,
the query manager and agents are implemented as
separate processes. Message queues have been used
for communication between the query manager and
agent processes.

Since the query manager is responsible for stor-
ing and processing intermediate results collected
from different remote servers, we need a Harps&L
server which can handle both SQL and bibliographic
data on behalf of the query manager. In the fol-
lowing subsection, we describe how we realize the
HarpSQL server by extending the POSTGRES
database system.

6.1 HarpSQL Server Implementation

To play a role in processing distributed Harps&L
queries, the Harps&L server supplementing the query
manager must support the following features:

l Basic SQL data types and the MARCString
data type

l Contain0 predicate

447

Extracted SQL Subgraph:

CourseTB@RefDB

b.Course = c
c.CourseId

I
c.Year = ‘95l96

(a) SQL Subgraph Extraction

Generated SQL Subquery:

Select c.Cname, b.Title, b.Autbor
From RetTB b, CourseTB c
Where b.Course = c.CourseId And

c.Year = ‘95f96

Subquery Result is
stored as Tl in the
HarpSQL server

(b) Processing SQL Subquery

Generated Bibliographic Query using Tuple Substitution:

Selection predicates:
Contain(MAttr245,“Digital Design”,...) Or
Contain(MAtt6&45.“Computer Networks”,...) Or
. . . .

Subquety submitted S&query results are

to NTU and NUS unioned and stored as

239.50 servers TZ in the HarpSQL server

(c) Processing Bibliographic Subquery

Generated Final Query:

Select Tl.Cname, Extract(T2.MAttrO92,‘$a’),
Extmct(T2MAttr245,‘$a’). Extract(T2.MAttr100,‘Sa’) ,
TSJocation

FromTl, T2
Where Contain(TZMAttrlOO,T1 .Autbor,<NULL,IS-NAM&)

(d) Final Result Genetation

Figure 6: Query Processing Steps for Q3

l Extract () function

Instead of building the Harps&L server from
scratch, we base our implementation on the POST-
GRES database system [18]. One key difference be-
tween POSTGRES and standard relational systems
is that POSTGRES captures extra information in
its catalog which allows its processing and storage
capabilities to be extended. This includes not only
information about tables and fields, but also infor-
mation about types, functions, access methods, and
etc. These information can be modified by the user,
and POSTGRES carries out its internal operation
based on these information. The query language
of POSTGRES is known as POSTQUEL. POST-
GRES can also incorporate pre-compiled user-
written code into its query processing through dy-
namic loading. In other words, the user can create
an object file (e.g., a compiled .o file or shared
library) that implements new types and function in
POSTGRES. A detailed description can be found
in [15].

Figure 7 shows the architecture of the HarpSQL
server. Our Harps&L server is developed by aug-
menting POSTGRES with the MARCString data
type and its extended predicates and functions.

Figure 7: Harps&L Server

MarcString data type

Architecture

In order to support the MarcString data type,
a C data structure is defined and is used by the
POSTGRES database system as an internal
representation of a MARCString value. The
MARCString data type can be incorporated
into POSTGRES by the following POSTQUEL
statements:

(1) define function marcStringin
(language = “C” (
returntype = MARCString)

xi3 is (=Y)
as “/home/harp/lqahs/-c.so”

(2) define function marcStringaut
(language = ” c” ,
returntype zany)

=8 is WY)
as “/home/harp/lqahs/-c.so”

(3) define type MARCString
(internallength = 2088,
input = marcStringin,
output = marcStringaut)

In statements (1) and (2), the input function
marcstringin and output function
marcstringaut are defined. They are used
to determine how the MARCString appears
in strings (for input by the user and output
to the user). The MARCString data type is
specified in statement (3). The MARCString
data structure and the actual implementation
of the input and output functions are included
in the object file mart. so.

Extended predicates and functions
The following POSTQUEL statements are used
to incorporate Contain predicate and the
Extract function into POSTGRES:

(4) define function contain
(language=” c”,
returntype = bool)
arg is (MARCString,text,int4,int4)
as “/home/harp/lqahs/marc.so”

(5) define function extract
(language = ” c” ,
returntypeztext)
arg is (MARCString,text,int4&4)
as “/home/harp/lqahs/marc.so”

The actual implementation of Contain and
Extract is included in the object file mart. so.

448

1 , DigitaI~Ap~ons 1

Integrated Digital Library Services

Figure 8: Integrated Digital Library Architecture

7 Conclusions

In this paper, we propose the use of HarpSQL, an
extension of SQL, to formulate integrated queries
to legacy bibliographic databases and SQL databases.
HarpSQL supports new data type, predicate and
function required for representing and manipulat-
ing the MARC formatted bibliographic data. By
accommodating the MARC formatted data, and by
adopting the 239.50 protocol standard to access the
bibliographic databases in the public libraries, we
achieve interoperability while not sacrificing the lo-
cal autonomy of the existing library systems. Harp-
SQL also supports joins between SQL and biblio-
graphic data.

To process HarpSQL queries over SQL and bib-
liographic databases at different locations, we have
designed and implemented a distributed query pro-
cessor which adopts some heuristics to reduce com-
munication costs during query processing. To han-
dle inter-database joins including joins between SQL
and bibliographic data, we implemented a Harp-
SQL server which provides the query processing ca-
pabilities to the query manager. Moreover, we have
also implemented a user-friendly graphical query
frontend for users to formulate their Harps&L quer-
ies.

A digital library system typically consists of three
layers of software, namely the digital library ap-
plications, digital library services, and infor-
mation servers as shown in Figure 8. The work
presented in this paper represents an effort in the
digital library service layer. Our distributed query
processing technique therefore renders an impor-
tant step towards advanced query support for fu-
ture digital library applications.

We are currently extending our work in several
directions. First, we are considering the use of
cost based optimization techniques in processing
the Harps&L queries. Second, we plan to extend
the HarpSQL to query other forms of data, e.g.
Web pages, since the latter represents a fast grow-
ing source of information on the internet. Finally,
we are attempting to build some advanced digital

library applications, e.g. interlibrary loan, using
HarpSQL and our distributed query processor.

7.1 Acknowledgements

We thank Zhiliang Wang from the Information Tech-
nology Institute (ITI), National Computer Board
for helpful discussions on the implementation is-
sues. We are also grateful to our library staff and
computer center colleagues for providing valuable
information about the bibliographic databases main-
tained by the Nanyang Technological University
Library.

References

Ill

PI

PI

WI

[51

I61

[71

PI

449

G.E. Blake, M .P. Consens, I.J. Davis,
P. Kilpelainen, E. Kuikka, P.-A. Larson,
T. Snider, and F.W. Tompa. Text/Relational
Database Management Systems: Overview
and Proposed SQL Extensions Database Pro-
totype. Technical Report 95-25, UW Centre
for the New OED and Text Research, Univer-
sity of Waterloo, 1995.

S. Chaudhuri, U. Dayal, and T.W. Yan. Join
Queries With Extended Text Sources: Exe-
cution and Optimization Techniques. In Pro-
ceedings of ACM SIGMOD Conference, pages
410-422, San Jose, CA, 1995.

W. Crawford. MARC for Library Use: Under-
standing the USMARC Formats. Knowledge
Industry Publications, Inc., 1984.

Henry M. Gladney, Nicholas J. Belkin, Zahid
Ahmed, Edward A. Fox, Ron Ashany, and
Maria Zemankova. Digital Library: Gross
Structure and Requirements (Report from a
Workshop). Technical Report IBM Research
Report RJ 9840, May 1994.

I. Graham. The HTML Sourcebook. John
Wiley and Sons, 1995.

ISO. International Standard 8879: Xnfor-
mation Processing - Text and O&e Sys-
tems - Standard Generalized Markup Language
(SGML). First edition - 1986-lo-15(ref. no. iso
8879-1986(e)) edition, 1986.

D. M. Jones. The Hypertext Bibliog-
raphy Project. Technical report, Labo-
ratory for Computer Science, MIT, 1996.
http://theory.lcs.mit.edu/ dmjones/hbp/

B. Kahle and A. Medlar. An Information
System for Corporate Users: Wide Area In-
formation Servers. Connexions - The Interop-
erability Report, 5(11), Nov 1991.

[9] M. Ley. DB&LP: A WWW Bibliography on [20] E. Wong and K. Youssefi. Decomposition - A
Databases and Logic Programming. Technical Strategy for Query Processing. ACM Trans-
report, Informatik Universitat Trier D-54286 action on Database Systems, l(3), September
Trier Germany, 1995. 1976.

[lo] E.P. Lim, J. Srivastava, and S.Y. Hwang. An
Algebraic Transformation Framework for Mul-
tidatabase Queries. Distributed and Parallel
Database Journal, 3(3), 1995.

[ll] L. Liu and C. Pu. Issues on Query Processing
in Distributed and Interoperable Information
Systems. In Proceedings of the International
Symposium on Cooperative Database Systems
for Advanced Applications, Kyoto, Japan, De-
cember 1996.

[12] Ying Lu and Ee-Peng Lim. On Integrating Ex-
isting Bibliographic Databases and Structured
Databases. In IEEE Int’l Computer Software
and Applications Conference, August 1996.

[13] National Information Standard Organiza-
tion(NIS0). ANSI 239.50: Information Re-
trieval Service and Protocol, 1992.

[14] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object Exchange Across Heteroge-
neous Information Sources. In Iflternational.
Conf on Data Engineering, Taipei, March
1995.

[15] The POSTGRES Group, Computer Science
Div., Dept of EECS, University of California
at Berkeley. The POSTGRES User Manual,
4.2 edition, 1994.

[16] D. Quass, A. Rajaraman, Y. Sagiv, J.D.
Ullman, and J. Widom. Querying Semi-
structured Heterogeneous Information. In 4th
International Conference on Deductive and
Object-Oriented Databases, Singapore, De-
cember 1995.

[17] S. Salza, G. Barone, and T. Morzy. Dis-
tributed Query Optimization in Loosely Cou-
pled Multidatabase Systems. In International
Conference on Database Theory, Prague,
1994.

[18] M. Stonebraker and L. Rowe. The Design
of POSTGRES. In Proceedings of 1986
ACM-SIGMOD Conference on Management
of Data, Washington, D.C., May 1986.

[19] M.D. VanHeyningen. The Unified Computer
Science Technical Report Index: Lessons in
indexing diverse resources. In Proceedings of
the Second International WWW Conference,
Chicago, 1994.

450

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-1997

	Distributed query processing for structured and bibliographic databases
	Ee Peng LIM
	Ying LU
	Citation

	Distributed Query Processing for Structured and Bibliographic Databases

