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ABSTRACT

In this paper, a novel approach is developed to achieve automatic image collection summarization. The
effectiveness of the summary is reflected by its ability to reconstruct the original set or each individual
image in the set. We have leveraged the dictionary learning for sparse representation model to
construct the summary and to represent the image. Specifically we reformulate the summarization
problem into a dictionary learning problem by selecting bases which can be sparsely combined to
represent the original image and achieve a minimum global reconstruction error, such as MSE (Mean
Square Error). The resulting “Sparse Least Square” problem is NP-hard, thus a simulated annealing
algorithm is adopted to learn such dictionary, or image summary, by minimizing the proposed
optimization function. A quantitative measurement is defined for assessing the quality of the image
summary by investigating both its reconstruction ability and its representativeness of the original
image set in large size. We have also compared the performance of our image summarization approach
with that of six other baseline summarization tools on multiple image sets (ImageNet, NUS-WIDE-
SCENE and Event image set). Our experimental results have shown that the proposed dictionary
learning approach can obtain more accurate results as compared with other six baseline summarization

algorithms.

1. Introduction

Automatic image summarization, which attempts to select a
small set of the most representative images to highlight larger
amounts of images briefly, becomes very important to enable
interactive navigation and exploration of large-scale image
collections [3]. Many multimedia applications can benefit from the
results of automatic image summarization: (a) On-line shopping
sites generate multiple icon images (i.e., image summary) for each
product category by selecting a limited number of the most
representative pictures; (b) Tourism websites provide a small
set of the most representative photos from large-scale photo
gallery and display the photos on their web page to attract
visitors, which may further result in low information overload
on user navigation; (c) Online image recommendation system
learns the user intention in real time and recommends a small
amount of most representative images out of a large collection
[24]. Such interesting applications have motivated researchers to

* Corresponding author. Tel.: +1 704 491 9489.
E-mail addresses: cyang36@uncc.edu, yangchunlei22@yahoo.com (C. Yang).

develop more effective models and mechanisms for achieving
more accurate summarization of large-scale image collections.

For a given image set, most existing summarization techniques
follow the same criterion by selecting a small set of the most
representative images to highlight all the significant visual
properties of the original image set [3]. Thus the task for
automatic image summarization can be treated as an optimiza-
tion problem, e.g., selecting a small set of the most representative
images that can best reconstruct the original image set in large
size. If we define X e R¥™ as the original image set in large size
and De R k<n, DeX, as the summary out of the given
image set X, automatic image summarization is to determine
the summary D by minimizing the global reconstruction error in
L2-norm:

m[}nl\X—f(D)H% 1)
The selection of the reconstruction function f(-) is to determine
how each image in the original image set X can be reconstructed
by the most representative images in the summary D. In this
paper, we have defined the reconstruction function f(-) as a linear
regression model that uses the summary D to sparsely re-
construct each image in the original set X. The sparsity means
that only limited number of bases will actually be involved in the
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reconstruction of an image. The idea of “induced sparsity” has
already been introduced in Ma’s work [25], which also learns the
sparse coefficients from a given data set. However, Ma’s work
fixes the dictionary as the original training set of a given category.
In our problem, the dictionary and coefficient matrix are jointly
learnt so that the coefficient learning process in [25] can only be
considered as an alternative to the sparse coding stage of our
proposed work.

From the above description, we now successfully reformulate
the task of automatic image summarization into the problem of
dictionary learning for sparse representation as shown in Eq. (1).
Therefore, two research issues, automatic image summarization
and dictionary learning for sparse representation, are linked
together according to their intrinsic coherence: both of them try
to select a small set of the most representative images that can
effectively and sufficiently reconstruct large amounts of images in
the original image set.

We have discovered that the image collection summarization
problem can be interpreted straightforwardly with the dictionary
learning for sparse representation model under the SIFT BoW
framework. Therefore, the summarization performance can be
directly evaluated by the corresponding value of the reconstruc-
tion function. Although automatic image summarization and
dictionary learning for sparse representation have intrinsic co-
herence, we need to clarify that they have significant differences
as well, e.g., the optimization function for automatic image
summarization has some unique constraints such as the fixed
basis selection range, nonnegative and Ly-norm sparsity of the
coefficients. The constraints are critical and differ the proposed
framework from most of the existing works. For the basis learning
stage, traditional methods such as MOD [35], K-SVD [36], Dis-
criminative K-SVD [37], online dictionary learning [38], all learn
or update the basis analytically, which does not restrict the search
range. The sparse modeling pipelines introduced in Sapiro’s work
[32] propose similar sparse coefficients model, but do not have a
restriction on the bases learned either. On the other hand, the
summarization problem requires the bases to be chosen from a
pool of given candidates, which results in a “selecting” action,
rather than “learning”. This observation implies the use of
simulated annealing algorithm for discrete bases search, which
is the most important difference between the proposed work to
other works [32,35-38].

Most existing research work for automatic image summarization
evaluate their summarization results subjectively by using user
satisfaction and relevancy score. There lacks an objective and
quantitative evaluation metric for assessing the performance of
various algorithms for automatic image summarization. By refor-
mulating the issue of assessing the quality of summarization results
as a reconstruction optimization task, we can objectively evaluate
the performance of various algorithms for automatic image sum-
marization in terms of their global reconstruction ability. In addition
to the subjective evaluation, the global MSE is defined as the
objective evaluation metric to measure the performance of our
proposed algorithm for automatic image summarization and com-
pare its performance with that of other 6 baseline methods.

The contributions of this paper reside in three aspects:

i. The problem of automatic image summarization is reformu-
lated as an issue of dictionary learning for sparse representa-
tion. As a result, we can utilize the theoretical methods for
sparse representation to solve the problem of automatic image
summarization.

ii. A global optimization algorithm is developed to find the
solution of the optimization function for automatic image
summarization, which can avoid the local optimum and
achieves better reconstruction performance.

3. An interactive image navigation system is designed, which can
provide a good platform for users to interactively assess the
performance of various algorithms for automatic image
summarization.

The rest of this paper is organized as follows: The state-of-the-
art techniques for both automatic image summarization and
dictionary learning for sparse representation are discussed in
Section 2. In Section 3, our proposed algorithm for automatic
image summarization is introduced. We present and discuss our
experimental results in Section 4. Finally, we conclude this paper
in Section 5.

2. Related work

Most existing algorithms for automatic image summarization
can be classified into two categories: (a) simultaneous summar-
ization approach; and (b) iterative summarization approach.

For the simultaneous summarization approach, the global
distribution of an image set is investigated and image clustering
techniques are usually involved [1,2]. In particular, Jaffe et al. [1]
have developed a Hungarian clustering method by generating a
hierarchical cluster structure and ranking the candidates accord-
ing to their relevance scores. Denton et al. [2] have introduced the
Bounded Canonical Set (BCS) by using a semidefinite program-
ming relaxation to select the candidates, where a normalized-cut
method is used for minimizing the similarity within BCS while
maximizing the similarity from BCS to the rest of the image set.
Other clustering techniques such as k-medoids [7], affinity pro-
pagation [8] and SOM [16] are also widely acknowledged. The
global distribution of an image set can also be characterized by
using a graphical model. Jing et al. [3] have expressed the image
similarity contexts with a graph structure, where the nodes
represent the images and the edges indicate their similarity
contexts, finally, the nodes (images) with the most connected
edges are selected as the summary of a given image set.

For the iterative summarization approach, some greedy-
fashion algorithms are applied to select the best summary
sequentially until a pre-set number of the most representative
images are picked out [6]. Simon et al. [6] have used a greedy
method to select the best candidates by investigating the
weighted combinations of some important summarization metrics
such as likelihood, coverage and orthogonality. Sinha [17] pro-
posed a similar algorithm with the metrics of quality, diversity
and coverage. Fan et al. [24] proposed “JustClick” system for
image recommendation and summarization which incorporates
both visual distribution of the images and user intention dis-
covered during exploration. Wong et al. [15] integrated the
dynamic absorbing random walk method to find diversified
representatives. The idea is to use the absorbing states to drag
down the stationary probabilities of the nearby items to encou-
rage the diversity, where the item with the highest stationary
probability in the current iteration is selected. The above greedy
methods focus on selecting the current most representative
images at each iteration while penalizing the co-occurrence of
the similar candidates (images). Our proposed model for auto-
matic image summarization takes the benefit of both two types of
approaches, e.g., we use the explicit measurements in the itera-
tive approaches to characterize the property of a summary and
we learn the bases (candidates) simultaneously to avoid the
possible local optimum solution.

Most existing techniques for dictionary learning and sparse
coding use machine learning techniques to obtain more compact
representations, such as PCA, the Method of Optimal Direction
(MOD) [4] and K-SVD [10]. The MOD algorithm is derived directly



from Generalized Lloyd Algorithm (GLA) [5], which iteratively
updates the codebook and the codewords are updated as the
centroids from a nearest neighbor clustering result. The K-SVD
algorithm follows the same style by updating the bases iteratively
and the new basis is generated directly from the SVD calculation
result. The K-SVD method is not applicable to our proposed
approach for automatic image summarization because our model
only takes discrete bases rather than numerical outputs from SVD.
Besides it, the sparse coefficient could be either positive or
negative, which guarantees a smaller reconstruction error, but
the bases learned do not have a practical meaning to be con-
sidered as the summary. The methods of Matching Pursuit (MP)
[11] and Lasso (forward stepwise regression and least angle
regression) are widely accepted for sparse coding. These methods
could provide us with some ideas on the design of an appropriate
sparse coding algorithm. Recently, Krause et al. [9] have proposed
the submodular dictionary selection method for sparse represen-
tation and have proved that the dictionary (which is selected
greedily) is close to the global optimum solution in the case that
the original data set satisfies the submodular condition. However,
most of the real-world image sets do not satisfy the submodular
condition which makes Krause’s algorithm less convincing for
automatic image summarization application. All these existing
algorithms may fall into the traps of the local optimums, thus the
simulated annealing algorithm is adopted in our proposed
approach to achieve global optimum with a high probability
when enough search steps are performed.

3. Automatic image summarization

In this section, we first define the criterion for assessing the
quality of an image summary (i.e., whether the image summary
are good enough to effectively reconstruct all the images in the
original image set), where the problem of automatic image
summarization is reformulated as the issue of dictionary learning
under sparsity and diversity constraints. We then point out the
significant differences between our reformulation of dictionary
learning for automatic image summarization with traditional
formulation of dictionary learning for sparse coding.

3.1. Problem reformulation

The BoW (Bag-of-Word) model serves as a basic tool for visual
analytic tasks, such as object categorization. The summarization
problem, which tries to generalize the major visual components
that appear in a collection, will therefore, utilize the BoWw model

very well. The choice of local descriptor in BoW model is
application dependent: the use of both texton descriptors
[29,30] and SIFT (Scale Invariant Feature Transform) [12] descrip-
tors [27,28] is widely observed. Considering the fact that texton
descriptors are suitable for scene image categorization, and SIFT
descriptor has a much wider range of usage, we have chosen the
SIFT descriptor as the feature to construct BoW model.

Each image, in a given set, is represented with Bow model. The
“visual words” in BoW model are iconic image patches or
fragments which are learned by clustering methods, and therefore
represents prominent visual perspectives of the entire collection.
The feature vector is represented in a histogram fashion, with
each bin value represents the frequency of the corresponding
visual word occurrence. We can presume that the major visual
contents of an image will be reflected by a large value on the
corresponding bins of the feature vector; while other bins will
have close-to zero values, which implies non-existence of the
corresponding “visual words” in the image. Therefore, the BoW
vector of an image can be understood as the distribution of the
occurrence probability of the visual words or visual patterns. If we
assume the visual patterns appear independently in the images
and we will observe the additivity property of the Bow model,
which is, one feature vector and be represented by the weighted
summation of several other vectors; or the accumulated prob-
ability of the appearance of visual patterns. One visual pattern
should either present or not present in an image, which implies
positive and zero weights respectively. A negative weight for a
vector does not have practical meaning in illustrating the addi-
tivity property of the BoW model. Therefore, sparse coefficients
applied on the dictionary should be nonnegative. Such restriction
is unique for summarization problem and BoW model. We also
observe similar design in face recognition applications [25], which
allows negative coefficients but without providing a practical
explanation.

By treating the problem of automatic image summarization as
the issue of dictionary learning, each image in the original image
set can be approximately reconstructed by a nonnegative
weighted linear combination of the summary images,or in other
words, represented by accumulated probability of the appear-
ances of various visual words (visual patterns) as shown in Fig. 1.
The summary images “beach” and “palmtree” will jointly recon-
struct the image which has both two visual objects, and such
linear correlation is reflected by the corresponding feature histo-
grams. The above linear reconstruction model illustrates the
foundation of how each image can be reconstructed by
the exemplars or bases. Also from Fig. 1, one can observe that
the richness of the visual content in an image is limited, thus one
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Fig. 1. Demonstration for the additivity property of Bow feature.



image can only be “sparsely” represented by the bases of a
dictionary. The definition of sparsity in this work is different
from the dictionary selection model such as in [22], our proposed
approach for automatic image summarization considers the dic-
tionary to “sparsely” represent the images in the original image
set. Based on our new definition of the reconstruction function,
automatic image summarization is achieved by minimizing the
overall reconstruction error in L2-norm:

2
n k
min Z Xi— Z djOCji (2)

i=1 ji=1 2

where x;,djeR?, o;eRy. x; and d; are data items from the
original collection; o; is the nonnegative weight for the corre-
sponding d;.

For the problem of automatic image summarization, {d;} is the
set of the most representative images that we want to learn, and
{d;} should come from the original image set. The size of {d;}
(summary) is a trade-off between concise summarization of the
original image set and accurate reinterpretation of the original
image set: a small size of {d;} means more concise summarization
of the original image set but its reinterpretation power for the
original image set may reduce; on the other hand, a large size of
{d;} guarantees a better reinterpretation power but the summar-
ization could be verbose.

The idea of this proposed reconstruction model (for automatic
image summarization) is similar to nonnegative matrix factoriza-
tion which learns the prominent objects or major components of
an image set. In our problem for automatic image summarization,
the summary (which is learned in this manner) is inclined to be
composed by the salient visual components of the original image
set. If we heavily penalize on the sparsity term o (such as
llellg = 1) which is used for determining the number of bases for
reinterpretation, our proposed model for automatic image sum-
marization can be reduced to k-medoids (the discrete form of k-
means). The k-medoids algorithm is well known as one of the
effective methods for collection summarization [7]. Thus, our
proposed approach for automatic image summarization via dic-
tionary learning for sparse representation can be treated as an
extension of the k-medoids. Consequently, considering that the
richness of the visual content of an image is limited, it is
necessary to bring in the sparsity constraint to the objective
function for guaranteeing that only a limited number of bases
may take effect in the reconstruction. Hence, only the bases with
non-zero coefficients are used to reconstruct the images in the
original image set. Meanwhile, the bases should be diverse; each
basis represents one type of principal visual patterns and all these
bases should be different from each other. Thus the diversity
constraint should be included in the objective function for
dictionary learning. We rewrite Eq. (2) as follows by adding both
the sparsity constraint and the diversity constraint.

: 2
nl}knzi:\\xi—Docin ”Z:”“f”o +p max corr(d;,dy) 3)

The problem of automatic image summarization is reformu-
lated as the optimization problem in Eq. (3), which can be jointly
optimized with respect to the dictionary D (a small set of most
representative images) and the nonnegative coefficient matrix
A=[d],....a"1",a; e R¥¥. The diversity constraint is determined by
the maximized correlation score rather than the average correla-
tion, or the mean distance to the centroids [26]. Because the
diversity (quality of the bases set) is determined by the least
different base pairs; while the mean value measurements do not
guarantee that the member of any pair differs from each other to
some degree.

There are two different aspects between our formulation of
sparse coding for automatic image summarization and traditional
formulations of dictionary learning for sparse representation:
(1) the coefficients {oj;} have to be non-negative; (2) the dic-
tionary D is selected from a group of given candidates (original
images) X rather than their combinations. This can be explained
briefly: Firstly, from our description of the accumulated appear-
ance probability of various visual patterns, we know that each
image may contain certain types of visual patterns (positive
coefficients) or do not contain these visual patterns (zero coeffi-
cients). It does not make sense that any type of visual patterns
contributes negatively (negative coefficients) to an image in the
original image set. Thus Eq. (3) has to satisfy the constraint that o
has non-negative elements. Secondly, the purpose for automatic
image summarization via dictionary learning is to get a small set
of the most representative images from the original image set,
thus the dictionary for automatic image summarization should be
selected from the original image set rather than learning analy-
tically (such as the combination or variation of the original
images).

3.2. Dictionary learning and sparse coding

The optimization problem defined in Eq. (3) is NP-hard (i.e. the
search space is discrete and can be transformed to k-medoids
problem which is know NP-hard [13]), and most eXisting algo-
rithms are inevitable to fall into the traps of the local optimums,
such as our previous work in [31]. In contrast, the simulated
annealing algorithm is suitable for solving the global optimization
problem, which can locate a good approximation of the global
optimum of a given function in a large search space.

The basic idea of exploiting the simulated annealing algorithm
for dictionary learning is to avoid the local optimum by efficiently
searching the solution space to obtain the global optimum
solution. It is well known that the greedy algorithms seek for
the local optimal solution and the final results of the AP and
k-medoids algorithms largely depend on the initial inputs. During
each iteration, the simulated annealing algorithm searches the
neighborhood space for all the possible candidates, which is based
on the Metropolis criterion and can effectively avoid the local
traps, e.g., the candidate that does not decrease the objective
function still has a chance to be accepted for the next iteration.
The current global best solution will be recorded for future
reference. When enough search iterations are performed, the
region for the global minimum can be found with a high
probability. We follow the idea of simulated annealing to design
our algorithm by introducing the major components as below:

Cooling schedule: The cooling schedule is used to decide when
the searching process will stop. The canonical annealing sche-
dules is defined as below:

To
1= fog (ko @
where k is the iteration index. The temperature T decreases faster
during the computational expensive initial steps and slower
during the later steps. The temperature can be used to determine
the search range and the acceptance probability, the temperature
decreases monotonically to make sure that the search will
terminate in a limited number of iterations.

Acceptance probability density function: The improvement of
reconstruction ability is measured by the difference of the
objective function, as defined in Eq. (3), between two consecutive
selections of the bases of the dictionary. The scale of the
measurement decreases as temperature increases and it is



compared with a random threshold as below:
exp (_ R(Dk+l)_R(DI<)) U

O(Tk

where R(-) is the reconstruction function as defined in Eq. (3). Ty is
the current temperature in the kth iteration. U € [0,1) is randomly
chosen as the acceptance threshold at each test, and new selec-
tion is accepted when the above inequity holds. The candidates,
that decrease the objective function, are definitely accepted while
the other candidates are accepted with a probability proportional
to the current temperature.

Basis update stage: We iteratively update each basis by search-
ing from its neighborhood in the similarity matrix S. The similarity is
defined as

Ix; X112
Sij =exp| —— 5—
Then we sort the columns of the similarity matrix in decreasing
order. For each new basis, we randomly search in its neighbor-
hood in terms of similarity as defined above. The search range is
restricted by exp(Ty,—To/To) - |X| which defines the maximum
index that can be searched in the sorted column. During the basis
update stage, each of these K bases is updated in parallel
according to the above criterion. A total number of MaxTries
dictionaries are selected in this stage and can be filtered by the
acceptance function as defined in Eq. (5). The accepted diction-
aries can form a candidate set and be used as the input for next
iteration.

Sparse coding stage: Every time we have found a set of
candidate dictionaries with the above operation, we will need to
calculate a set of coefficients that can minimize the optimization
function. As we have discussed before, the coefficient matrix
satisfies LO-norm constraint. Given the tractability of L1-norm
problem (P1) and the general intractability of the LO-norm
problem (PO), it has been proved that the solutions for P1
dictionaries are the same as the solutions for PO dictionaries
when they are sufficiently sparse [18]. As discussed above about
the highly sparsity of our proposed model for automatic image
summarization, we can replace the LO-norm by L1-norm and seek
for analytical solution. Furthermore, during the sparse coding
stage, the dictionary is fixed, hence, we can reduce the objective
function to the following form which overlooks the diversity
constraint f max; . corr(d;,dy).

R: mind Ix,—Do;l3 + 1S llogll; +C
D
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The above formulation is similar to the nonnegative matrix
factorization and nonnegative sparse coding, so we can make
use of the multiplicative algorithm [20] to solve the above convex
optimization problem. The objective function is non-increasing
under the update rule:

AT =A". D'X). /(D'DA' + /1) ®)

Table 1

where - and -/ denote element-wise multiplication and division
(respectively). A is updated by simply multiplying nonnegative
factors during the update stage, so that the elements of A are
guaranteed to be nonnegative under this update rule. As long as
the initial values of A are chosen strictly positive (1/k in our case),
the iteration is guaranteed to reach the global minimum.

Diversity function: The diversity metric is measured by the
correlation between two distributions rather than their Euclidean
distance or cosine distance. Because the correlation of two
variables is known to be both scale invariant and shift invariant
when compared to Euclidean distance and cosine distance. Thus,
it is more appropriate for the additive appearance property of the
bag-of-visual-words model. The correlation between two images
is calculated as follows:

(d;—d;)(d;—d;)

0i0j

corr(d;, d;) = 9

where d is the mean value of the vector and ¢ is the standard
deviation.

The dictionary and the coefficients are updated in turns. In
practical implementation, the current optimal combination is
always saved as (Aopi,Dopii) Which keeps R(Agpi,Dopsi) in the
current minimum. The annealing process stops when the tem-
perature reaches Ty, or the Ry, is not being updated for
MaxConseRej (number of maximum consecutive rejection) times
of iterations. Then, we go to the iterative basis selection stage,
which strictly decreases the reconstruction function until
convergence.

Iterative basis selection stage: In this stage, the basis is updated
iteratively and the reconstruction function is strictly decreased
during each iteration. Suppose we are updating the basis b; for
those i whose corresponding coefficient o;; is not zero, we fix all
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Fig. 2. MSE performance in terms of different dictionary size on a mixture data set
with summary size equals to 9.

ImageNet data collection statistics: 13 object categories with different size of summary.

Bakery Banana Bridge Church Cinema Garage Libra
Number of images 1214 1409 1598 1329 1392 1291 1305
Size of summary 10 26 33 34 25 20 16

Monitor Mug  Pajama Schoolbus  Skyscraper Mix
Number of images 1399 1573 900 1303 1546 1759
Size of summary 31 27 18 22 37 31




the other k—1 bases and calculate the residue as:
2
Ei = Z Xifzdpdip (10)
p#j

Then a new df, which can maximally approximate the current
residue " E;d}, is found and it is equivalent to

di =argmin{ > E.dj') 1)

which means d;" is the closest point to the center of all the
nonzero E;. Then we check whether d;‘ decreases the objective
function or not. After all the K bases are updated, we calculate the
coefficient matrix by using the method which is introduced in the
sparse coding stage and repeat the updating process until con-
vergence. The algorithm stops when no basis is being updated.
The purpose for this stage is to make sure that our proposed
algorithm can converge to some points. The algorithm is sum-

marized as Algorithm 1.

Algorithm 1. Proposed Dictionary Learning.

Input: Original image set X e R,
Output: Optimized dictionary Doy € R k < 1,Dgpei € X.
Initialization: Initial dictionary is appointed by random
selection of k bases from X.
Basis Update:
while T > Tstop and Rej < MaxConseRej do
T*+1 = Update_T(T")
for each d in D* do
d' = Update_D(d)
if accept(d’, T*) then
Dk+1 :Dk+l ud
end if
end for
A = Sparse_Coding(X,D¥,T¥)
if R(X,A,D*) < Rypi then
Ropti = R(X,A,DX)

Dopti = Dk
else
Rej=Rej+1
end if
Table 2

end while
Iterative Selection:
while not converge do
for i=1 to k do
Update(d;)
end for
A = Sparse_Coding(X,D¥, T
Ropi = R(X,A,D¥)
Dypi = D
end while

4. Experiment setup and algorithm evaluation

In this section, we report our experimental setup and algo-
rithm evaluation results. The experiments are designed to acquire
both the objective performance and the subjective performance of
our proposed algorithm as compared with other six baseline
algorithms such as SDS (spasifying dictionary selection) [9], K-
medoids [7], AP (Affinity Propagation) [8], Greedy (Canonical
View) [14], ARW (Absorbing Random Walk) [15] and K-SVD.

4.1. Experiment setup

Image sets: The image sets used in this work are collected from
ImageNet [19], NUS-WIDE-SCENE [21] and Event image set [23].
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Fig. 3. MSE comparison among all these six algorithms on ImageNet with
different summary sizes.

Performance comparison of the proposed algorithm with six other baseline algorithms in terms of reconstruction error; 13 object categories selected from ImageNet with

different summary sizes.

Bakery Banana Bridge Church Cinema Garage Library
SDS 0.13 0.179 0.180 0.171 0.176 0.187 0.163
K-med 0.162 0.169 0.181 0.160 0.162 0.171 0.144
AP 0.100 0.170 0.162 0.165 0.168 0.174 0.143
Greedy 0.167 0.172 0.180 0.175 0.176 0.178 0.173
ARW 0.128 0.175 0.185 0.176 0.175 0.186 0.162
Proposed 0.083 0.112 0.125 0.118 0.11 0.113 0.103
K-SVD 0.117 0.123 0.125 0.119 0.123 0.128 0.112
Size 10 26 33 34 25 20 16

Monitor Mug Pajama Sch-bus Skyscrap Mix Avg.
SDS 0.192 0.181 0.184 0.134 0.191 0.182 0.173
K-med 0.175 0.169 0.174 0.158 0.173 0.169 0.167
AP 0.175 0.168 0.175 0.162 0.177 0.168 0.162
Greedy 0.179 0.171 0.184 0.180 0.193 0.172 0.177
ARW 0.191 0.181 0.184 0.158 0.189 0.178 0.174
Proposed 0.125 0.108 0.106 0.105 0.15 0.118 0.114
K-SVD 0.129 0.122 0.127 0.106 0.131 0.121 0.121
Size 31 27 18 22 37 31 N/A

Best performance values are shown in bold.



ImageNet is an image collection which is organized according to
the WordNet hierarchy. The majority of the meaningful concepts
in WordNet are nouns (80,000 + ) which are called “synset”. There
are more than 20,000 such synsets/subcategories in ImageNet and
we have downloaded only partial of this large-scale image set and
reported our summarization results on 13 object categories of
bakery, banana, bridge, church, cinema, garage, library, monitor,
mug, pajama, school bus, skyscraper, and mix.

The algorithms for automatic image summarization should
work on image collections with various sizes and visual variety,
so we have integrated the images from ImageNet to construct a
new image category called mix by mixing the images from
multiple object categories to strengthen the visual diversity and
enlarge the size of image category. For each of these 13 categories
used in our experiments, the number of images ranges from 900
to 1800 and the predefined size of image summary is reported in
Table 1.

The NUS-WIDE database consists of 269,648 images which are
collected from Flickr. We focused on a subset called NUS-WIDE-
SCENE which covers 33 scene concepts with 34,926 images in
total. We have collected 11 scene concepts which are beach (449
images), building (451), clouds (317 images), hillside (466 images),
lakes (383 images), plaza (425 images), running (302 images),
skyline (147 images), sunrise (111 images), weather (225 images)
and zoos (448 images).

The Event image set contains eight sport event categories:
rowing (250 images), badminton (200 images), polo (182 images),
bocce (137 images), snowboarding (190 images), croquet (236
images), sailing (190 images) and rock climbing (194 images).
The images in the Event image set are closer to personal photo
album which focuses on the presence of people or ongoing
activities.

Each of these three image sets covers different visual aspects:
ImageNet focuses on object categories, NUS-WIDE-SCENE focuses
on natural scene categories, and Event image set focuses on event
categories.

Experimental specification: We extract interest points and calculate
their SIFT descriptors for image representation. A universal codebook
with 1000 visual words is constructed, where the k-means algorithm
is performed on 10 million interest points as introduced in Section 3
for codebook (dictionary) learning. We have investigated how the size
of dictionaries will affect the reconstruction performance. The affec-
tion of the dictionary size is evaluated on the reconstruction

Table 3

performance on the mixture data set and we observed that too small
size (less than 500) or too large size (larger than 100,000) dictionary
will all reduce the reconstruction performance, as shown in Fig. 2, so
that we choose size 1000 for the purpose of computation efficiency.
The image representation (1000-dimensional histogram of code
words) is obtained by quantifying all the interest points in the images
into the codeword dictionary. In our experiments, we have found that
our 1000-dimensional codebook can produce good representations of
the images. In the following, without special indication, we denote
the number of images in the given category by N and the number of
codewords by K.

Baseline algorithms: We have selected six baseline algorithms
for comparison.

The k-medoids algorithm [7] is a typical clustering-based image
summarization algorithm, k is the number of clusters or the size
of the dictionary and the medoid of each cluster is selected as one
basis. The clustering algorithm aims to partition the original
image set into k clusters which can minimize the within-cluster
sum of the square errors:

K
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The SDS algorithm [9] represents a series of greedy algorithms
which iteratively select the current best basis. Krause et al.
suggested in [9] that the local optimal derived by the greedy
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Fig. 4. MSE comparison among the algorithms on ImageNet with equal summary
size of 9.

Performance comparison of the proposed algorithm with six other baseline algorithms in terms of reconstruction error; 13 object categories selected from ImageNet

image set with equal summary size of 9.

Bakery Banana Bridge Church Cinema Garage Library
SDS 0.088 0.136 0.137 0.134 0.132 0.138 0.118
K-med 0.115 0.129 0.110 0.109 0.125 0.129 0.096
AP 0.083 0.128 0.116 0.105 0.121 0.129 0.107
Greedy 0.096 0.128 0.136 0.127 0.127 0.130 0.117
ARW 0.097 0.133 0.142 0.133 0.134 0.137 0.117
Proposed 0.077 0.088 0.102 0.094 0.091 0.092 0.086
K-SVD 0.118 0.130 0.137 0.121 0.130 0.133 0.108

Monitor Mug Pajama Sch-bus Skyscrap Mix Avg.
SDS 0.143 0.132 0.134 0.105 0.154 0.132 0.129
K-med 0.132 0.125 0.127 0.113 0.136 0.123 0.121
AP 0.134 0.125 0.129 0.114 0.128 0.123 0.119
Greedy 0.142 0.127 0.132 0.104 0.149 0.126 0.126
ARW 0.142 0.131 0.134 0.120 0.153 0.132 0.131
Proposed 0.099 0.086 0.089 0.085 0.121 0.087 0.092
K-SVD 0.137 0.129 0.131 0.124 0.153 0.123 0.129

Best performance values are shown in bold.



algorithm is a near-optimal solution when the data collection
satisfy the submodular condition. The greedy algorithm starts
with an empty dictionary D, and at every iteration i adds a new
element (basis) via

d;,=arg dr?)i(nD F(D;_; ud)

where F is the evaluation function. The SDS algorithm is modified
to satisfy our positive coefficient constraint.

The Affinity Propagation algorithm [8] updates the availability
function and the responsibility function in turns as below:

r(i,k) —s@,k)— max {a@i,k)+s@,k)}
Ks.tk #k

ai,k)—ming 0,r(k,k)+ > max{0,r(i,k)}
Is.tigik)

where s(i,k) is the similarity between two data points. The
number of exemplars is determined by the value of the preference
which is usually set to be median of the data similarities. The
algorithms like AP and Greedy does not require a preset number
of bases (number of clusters). If this number is required, we can
obtain it by tuning the value of the preference. Instead, we can
also fix the value of the preference to generate a set of bases with
AP, and then we can make sure other algorithms to generate the
same number of bases for the same image category as shown in
Table 1.

The Greedy algorithm [14] follows Simon’s definition of the
quality function as written below. The image, which maximally
increases the quality function at each iteration, is added to the
basis set D. The algorithm terminates when the quality function
reduces below zero or the preset number of bases is reached. We
tune the penalty weight o to ensure the required number of bases
can be selected automatically.

QD)= > (X;-Dyg)—xD|-F> > (d;-d))

X;e X dieDd;. ;D

The ARW algorithm [15] turns the selected items to the
absorbing state by setting the transition probability to 0 (from
the current item to other items), and 1 when it transits to itself.
The item, which has the largest expected number of visits in the
current iteration, is selected. The average expected number v is

Table 4

calculated as follows, and N is the so-called fundamental matrix
N'e

'~ n=po]

N=1-Q"

The K-SVD algorithm [10] is flexible, and works in conjugation
with any sparse coding algorithms. In order to incorporate the
K-SVD algorithm into the proposed framework, we learn the
sparse coefficient matrix under the non-negative constraint. In
the dictionary update stage, we follow the same SVD decomposi-
tion operation and update the basis iteratively. After the diction-
ary learned from K-SVD, we will assign each basis in the
dictionary to its nearest neighbor in the original set and construct
the final summarization.

For automatic image summarization, our proposed algorithm
is compared with all these six baseline algorithms objectively and
subjectively. We compare all these algorithms (our proposed
algorithms and six baseline algorithms) on their reconstruction
abilities under the sparsity and diversity constraints as defined in
Eq. (3), specifically, in terms of mean square error (MSE). Smaller
MSE value indicates better reconstruction ability.

4.2. Experimental results and observations

MSE performance on ImageNet: The MSE value is calculated for
all these six algorithms (our proposed algorithm and six baseline
algorithms) on 13 object categories where the size of image
summary is predefined as shown in Table 3. We have observed
that: (a) Our proposed algorithm has the best performance in
terms of the reconstruction ability on 12 out of 13 object
categories. The results are reported in Table 2 and Fig. 3. For
our proposed algorithm, its improvement on the reconstruction
ability is insignificant when compared with K-SVD, but is sig-
nificant as compared with other five baseline algorithms. (b) The
simultaneous summarization algorithms like AP and k-medoids
performed slightly better than the iterative summarization algo-
rithms like Greedy, SDS and ARW. (c) The performance improve-
ment on the mix category is especially significant, which implies
that the proposed algorithm has better summarization ability on
more visually diverse data collections.

The improvement comes from two aspects: (1) our proposed
algorithm considers both the sparsity constraint and the diversity
constraint while other baseline algorithms do not have such

Performance comparison of the proposed algorithm with six other baseline algorithms in terms of reconstruction error; 11 scene categories

selected from NUS=WIDE-SCENE with equal summary size of 9.

Beach Building Clouds Hillside Lakes Plaza
SDS 0.134 0.127 0.125 0.124 0.123 0.114
K-med 0.124 0.121 0.105 0.135 0.116 0.111
AP 0.125 0.116 0.115 0.109 0.119 0.103
Greedy 0.123 0.117 0.122 0.121 0.123 0.110
ARW 0.140 0.123 0.121 0.135 0.127 0.120
Proposed 0.119 0.106 0.106 0.107 0.108 0.097
K-SVD 0.131 0.122 0.107 0.135 0.109 0.112

Running Skyline Sunrise Weather Zoos Avg.
SDS 0.125 0.125 0.130 0.148 0.107 0.127
K-med 0.121 0.110 0.126 0.131 0.097 0.120
AP 0.113 0.108 0.118 0.130 0.099 0.116
Greedy 0.118 0.110 0.109 0.130 0.110 0.119
ARW 0.130 0.123 0.127 0.137 0.116 0.128
Proposed 0.104 0.102 0.110 0.127 0.090 0.109
K-SVD 0.123 0.107 0.119 0.124 0.108 0.118

Best performance values are shown in bold.



complete consideration of a good summary; (2) the simulated
annealing algorithm is adapted to seek for the global optimum
solution while all the other five algorithms seek the local
optimum solutions. When the same size of image summary is
used, we have also compared their performance in terms of MSE
values as shown in Table 3 and Fig. 4. The performance is similar
to the predefined size of summary experiment.

MSE performance on NUS-WIDE-SCENE: The MSE value is
calculated for all these six algorithms on 11 scene categories in
NUS-WIDE-SCENE image set when the size of image summary is
fixed. Similar performance is obtained as what we have got in
ImageNet, however, the performance improvement for the pro-
posed algorithm, and also among all these six algorithms is not as
significant as we have observed in ImageNet data set, and the
proposed algorithm is outperformed by other algorithms on two
categories as shown in Table 4 and Fig. 5. The absolute MSE value
and the difference among the baseline algorithms are also smaller
as compared with the object categories in ImageNet. The result
demonstrates that the images in the scene categories are more
evenly distributed and our proposed algorithm does not have as
distinguish performance as we have obtained in the object
categories.

MSE performance on Event image set: The MSE value is calcu-
lated for all these six algorithms on eight categories in the Event
image set with an equal summary size of 9. We have observed
that the MSE curves are more consistent as compared with the
MSE curves for ImageNet and NUS-WIDE-SCENE and the
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Fig. 5. MSE comparison among the algorithms on NUS-WIDE-SCENE with equal
summary size of 9.

Table 5

difference is very consistent and relatively small as shown in
Table 5 and Fig. 6. The reason is that the images for the Event
image set is organized much better and more consistent on visual
content as compared with ImageNet and NUS-WIDE-SCENE.
Discussion: We will discuss how the major components and
parameters will affect the performance of the proposed algorithm.
The spatial information is believed to be discarded with the
proposed SIFT BoW model, which is one of the major drawbacks
for BoW model. However, for the image collection summarization
applications, the spatial distribution or organization of objects
within a certain image is not critical. The critical property is the
existence of an object or visual component in an image, and the
distirbution of the occurrence probability of the visual words
within an image. Under such interpretation, the MSE measure
should be enough to serve for image collection summarization
task evaluation, compared to measuring metric such as SSIM [33].
As for the choice of the feature and the size of the image, we
further conduct another experiment on the eight scene categories
of Torralba dataset [34], whose images have the same size (256 by
256). Although GIST feature [34] does not have a straightforward
interpretation ability as SIFT BoW feature, we still consider it
appropriate for scene image representation and use this feature
for summarization task. The complete result is reported in Fig. 7,
and can be briefly concluded as: the average MSE value for the
proposed algorithm is 0.3833, with K-SVD followed closely by
0.3871. The other five algorithms performs relatively poor in the
range between 0.4 and 0.44. Similar to NUS-WIDE-SCENE and
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Fig. 6. MSE comparison among the algorithms on Event image set with equal
summary size of 9.

Performance comparison of the proposed algorithm with six other baseline algorithms in terms of reconstruction
error; eight event categories selected from Event image set with equal summary size of 9.

Rockclimb Badminton Bocce Croquet Polo
SDS 0.088 0.119 0.099 0.102 0.103
K-med 0.086 0.108 0.103 0.097 0.092
AP 0.086 0.115 0.103 0.096 0.098
Greedy 0.084 0.106 0.088 0.099 0.092
ARW 0.093 0.121 0.104 0.101 0.102
Proposed 0.074 0.102 0.08 0.09 0.086
K-SVD 0.085 0.112 0.102 0.096 0.099

Rowing Sailing Snowboard Avg.

SDS 0.111 0.133 0.129 0.111
K-med 0.11 0.117 0.118 0.104
AP 0.109 0.124 0.117 0.106
Greedy 0.104 0.129 0.126 0.104
ARW 0.110 0.133 0.132 0.112
Proposed 0.095 0.109 0.109 0.093
K-SVD 0.115 0.129 0.126 0.108

Best performance values are shown in bold.



Event image dataset, the Torralba 8 scene category dataset is also
consistent on visual content, the performance improvement of
the proposed algorithm is not as significant as with object
datasets. For this data collection, both K-SVD and the proposed
algorithm can achieve close to optimal results. In conclusion, the
consistency of visual content is the critical factor for summariza-
tion task, rather than the spatial layout or size of the image.

The initial choice of k random bases does not affect the final
reconstruction performance. Our proposed algorithm has consistent
reconstruction value with different inputs. We have used the
clustering results from AP or k-medoids as the initial inputs and
no significant difference is observed as compared with random
initial inputs.

We also observed that the L1-norm sparse coding scheme can be
used to replace the LO-norm sparse coding scheme. The coeffi-
cients are very sparse, and the majority of the weights concen-
trate on a few number of bases (two or three bases in general;
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Fig. 7. MSE comparison among all the six algorithms on the Torralba-8 dataset
with GIST feature.

Number of iteration 40
Diversity weight 3 0.05
Number of different initials | 3
MaxConseRej 20
MaxTries 40
Temparature decrease rate | 0.9
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Fig. 8. Optimization comparison in terms of reconstruction error: the blue dot is
the greedy algorithm; the red dot is the SA algorithm. Only the updated steps are
shown in this figure, thus the curve is not smooth. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

extremely small as compared with the size of the dictionary),
which coincide with our assumption.

The sparsity penalty weight o and the diversity weight f may
also affect the reconstruction value. We have tuned these two
parameters, so that two constraint terms can contribute equally
to the reconstruction function. We have tuned these two para-
meters under the following rules: (a) the sparsity penalty weight
o is determined first to make sure that each image is represented
sparsely enough by the dictionary; (b) we tune the diversity
weight of f3, so that the MSE curve decreases when the summary
size is increased. The MSE curves under different f values are
shown in Fig. 9. The value of # =0.05 (the middle curve in Fig. 9)
produces a balanced diversity term while other f values lead to
unbalanced diversity terms. We also observed that the MSE curve
(y-axis in Fig. 9) decreases when the summary size increases (x-
axis in Fig. 9). This observation coincides with our assumption in
Section 3 that the reconstruction ability will increase as the size
of the summary increases. We also observed that most of the
results strictly decrease the objective as the size of the dictionary
increases, but there are still some outliers that do not fit the curve
well. The reason is that the simulated annealing algorithm does
not guarantee that the global optimum is found every time
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Fig. 9. The MSE curve under different  value; x-axis represents the size of the
summary, y-axis represents the MSE value.
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Fig. 11. Screen shot of the system interface of category “clouds”; the algorithm and category names are not hidden in this case.

Table 6
Subjective evaluation of the proposed algorithm with six other baseline algorithms in terms of user grading on ImageNet with different summary size.
Bakery Banana Bridge Church Cinema Garage Library
SDS 6 6.9 7.5 7.3 7 6.9 6.3
K-med 6.2 7.6 7.4 7.2 74 7.5 6.9
AP 6.7 7.5 7.8 7.1 7.6 7.5 71
Greedy 5.8 6.3 6.9 6.6 6.7 7.1 5.9
ARW 5.7 6.3 7.3 6.9 74 7.8 6
Proposed 6.6 7.8 8.1 79 8 82 7.7
K-SVD 6.6 6.7 71 7.1 7.2 7.5 6.9
Size 10 26 33 34 25 20 16
Monitor Mug Pajama Schoolbus Skyscraper Mix Avg.
SDS 71 6.7 6.4 7.7 7.9 7 7
K-med 6.9 6.6 7.3 7.1 8.4 7.2 7.2
AP 7.2 7.2 7.2 6.9 8.4 7.2 7.3
Greedy 6.8 6.5 6.8 7 8 7 6.7
ARW 6.1 7.1 6.6 6.6 7.7 6.9 6.8
Proposed 74 7.7 7.8 7.5 8.5 7.3 7.7
K-SVD 6.5 6.6 7.2 7.3 7.2 7 7
Size 31 27 18 22 37 31 N/A

Best performance values are shown in bold.

Table 7
Subjective evaluation of the proposed algorithm with six other baseline algorithms in terms of user grading on ImageNet with
equal summary size of 9.

Bakery Banana Bridge Church Cinema Garage Library
SDS 6.4 5.8 5.9 6.7 6 5.8 5.3
K-med 7.2 5.9 6.7 8.9 6 6.2 5.1
AP 7.3 5.7 8.6 5.4 7.8 7 7.9
Greedy 8.7 6.2 5.6 5.7 6.6 5.4 6
ARW 8.5 6.8 5.9 8.6 7.3 6.1 8.2
Proposed 7.4 8.3 6.2 6.7 7.4 7.6 8.7
K-SVD 7.3 7.7 5.9 6.1 6.6 6.7 7.2

Monitor Mug Pajama Schoolbus Skyscraper Mix Avg.
SDS 6.9 7 6.4 53 5.4 8.5 6.0
K-med 6.8 7.4 8.5 7.7 8.1 5.7 7.0
AP 7.1 6.5 8.1 7.8 8.6 7.9 7.3
Greedy 7.3 5.9 8.9 6 7.6 6.3 6.6
ARW 5.9 6.9 5.1 6.3 6.9 7.7 6.8
Proposed 8.8 7.7 8.6 5.5 7.8 5.1 7.5
K-SVD 8.2 7.2 59 6.3 6.2 6.1 6.7

Best performance values are shown in bold.



Table 8

Subjective evaluation of the proposed algorithm with six other baseline algorithms in terms of user grading on

NUS-WIDE-SCENE with equal summary size of 9.

Beach Building Clouds Hillside Lakes Plaza
SDS 7 8.2 6.9 5.2 8.2 7.8
K-med 6.9 7.3 5.6 7.7 8.2 7.5
AP 7.4 8.5 7 7 7.6 6.7
Greedy 8.6 5.7 8.9 5.1 7.8 8.2
ARW 7.4 5.9 7.8 5.2 5.5 6.8
Proposed 8.4 8.6 6.8 53 7 8.3
K-SVD 74 8.2 71 7.5 6.7 7.7

Running Skyline Sunrise Weather Zoos Avg.
SDS 53 5.2 6.1 6.4 5.2 6.5
K-med 5.5 6.5 6.7 5.7 7.9 6.8
AP 8.3 7.6 5.6 7.8 71 7.3
Greedy 5.6 71 5 6.9 6 6.8
ARW 6.5 6.6 6.9 6.3 6.6 6.5
Proposed 8.2 8.5 74 8.6 8.7 7.8
K-SVD 5.2 5.9 6.8 6.6 6.4 6.8

Best performance values are shown in bold.
(although it is close to the global optimum). If we can sacrifice the Table 9

efficiency and repeat the learning process with more iterations,
we can have a much higher probability to achieve the global
optimum. In other words, the curve in Fig. 9 can prove that our
proposed algorithm finds the close-to-global optimum solution
with high probability.

We will discuss about the convergence of the simulated
annealing algorithm in this task. The use of annealing schedule
is to make it possible to avoid local optima, and terminates the
basis update stage in a limited number of steps. The newly
accepted updates do not critically decrease the reconstruction
error; the solution, which does not decrease the optimization
function, still has a chance to be accepted, which makes it
possible to jump out of a local minimum neighborhood. We have
compared the proposed algorithm with greedy algorithm in terms
of reconstruction error on a given data set with GIST feature. The
result can be found in Fig. 8. We observed that after the greedy
algorithm converges at a local optimum position (blue dot), the
SA algorithm (green dot) could still jump out of the local optimal
neighborhood and find a better optimal solution. The reconstruc-
tion error curve is not smooth because the solution space is not
continuous. Some important factors such as iteration number,
number of attempts with different initials, cooling schedule,
would all affect the convergence result. The optimal parameters
are given as below:

Number of iteration 40
Diversity weight f 0.05
Number of different initials 3
MaxConseRej 20
MaxTries 40
Temparature decrease rate 0.9

We further tested how the number of iterations may affect our
proposed algorithm and reported the summarization result for
the category of “clouds” as in Fig. 10. We have repeated the
algorithm for 90 times and each time with different number of
iterations. We have observed that the optimization function can
find close to optimum solution when a certain amount of iteration
is guaranteed.

Our proposed approach treated each image in the image
collection equally for getting the summary, so there does not

Subjective evaluation of the proposed algorithm with 6 other baseline algorithms
in terms of user grading on Event image set with equal summary size of 9.

Rockc Badm Bocce Croq Polo Rowi Saili Snowb Avg.
SDS 6.2 5.7 8.5 56 69 6 79 82 6.8
K-med 7.8 5.5 7.6 84 54 6.1 63 6 6.6
AP 6.6 7.7 5.1 6.8 57 6.5 82 86 6.9
Greedy 7.6 89 5.7 7.5 73 74 73 73 7.3
ARW 71 5.6 6.4 6.5 59 6 54 5 59
Proposed 8.9 7.6 7.2 89 67 73 85 85 79
K-SVD 8.4 7.7 5.6 6.7 72 69 8.1 6.8 7.2

Best performance values are shown in bold.

exist so-called “outliers” (a group of similar images that are far
different from the rest of the data set). As a result, the summar-
ization result may not coincide with the human perception of that
image categories. For example, the “bakery” category in ImageNet
contains a bunch of blank images which maybe the result of a
broken download link. So the summarization results for our
proposed approach can always include a blank image which are
usually eliminated by some other algorithms.

Computation efficiency: The computation cost of our proposed
algorithm is largely affected by the annealing schedule which is
used to determine the number of iterations. During each iteration,
the most time consuming operation is to learn the non-negative
sparse coefficients. In practical implementation, the simulated
annealing stage terminates after 30 to 40 iterations and the
overall computation time is around 2 to 3 min for each image
set (with around 1400 images). By contrast, the simultaneous
summarization learning algorithms such as AP and k-medoids
take around 30 to 40 s. The ARW, K-SVD and Greedy algorithms
has similar computation cost as compared with our proposed
algorithm. The SDS algorithm runs slowest because it needs to
examine the reconstruction performance for every image in the
image set during each iteration. All these experiments are carried
out in a 2.6G CPU and 4G memory computation environment.

Subjective evaluation: Image summarization is often task-
specific, so the subjective results from user study are meaningful
and also inevitable. We have performed user study to evaluate the
effectiveness of our proposed approach and compared with other
baseline approaches. The evaluation metric is measured by the
users’ feedback on how well the summarization results can
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Fig. 12. Summarization results for category “clouds” for the proposed algorithm and 5 other baseline algorithms (without K-SVD); a tile-view illustration of Fig. 11.

recover the overall visual aspects for the original image set.! Our
survey consists the following components : (1) 30 users (graduate
students) are involved in this survey to investigate the summar-
ization results for three image sets. (b) The system interface is
shown in Fig. 11. A tile-view of the example summarization
result, as shown in Fig. 11, can be found in Fig. 12. The users
should be able to explore the image category list (left: treeview),
the image set (right: panel), and summarization results as given
in the middle blob (summary size may vary according to user’s
demand) for all six algorithms (our proposed algorithm and other
six baseline algorithms). (c) In actual survey, the category names
are hidden from users because we do not want to distract users’
judgment by involving their semantic understanding of that
image category. The judgment should rely only on the visual
aspects of the images. The algorithm names are also hidden from
users to avoid biased opinion. (d) The average scores are reported
in Tables 6-9. The results indicate that our proposed approach
(via dictionary learning) has higher average appropriateness score
as compared with other baseline algorithms, which coincides
with the objective evaluation results.

5. Conclusion

Most existing algorithms for image summarization lack either
explicit formulation or quantitative evaluation metric. We had
discovered that there is an intrinsic coherence between the problem
of image collection summarization and the issue of dictionary
learning for sparse representation, which both focus on selecting a
small set of the most representative images to sparsely reinterpret
the original image set in large size. We have explicitly reformulated
the problem of automatic image summarization by using an sparse
representation model and the simulated annealing algorithm is
adopted to solve the optimization function more effectively. The
reconstruction ability in terms of the MSE are used to objectively
evaluate various algorithms for automatic image summarization.
Our proposed algorithm outperformed the six baseline algorithms
both objectively and subjectively on three different image sets.

! The score ranges from 0 to 10, with 10 represents that all the visual aspects
can be discovered by the summarization result. Visual aspects usually means
salient objects or major scenes that are reflected in the original image set.
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