
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-1996

Entity identification in database integration
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Jaideep SRIVASTAVA

Satya PRABHAKAR

James RICHARDSON

DOI: https://doi.org/10.1016/0020-0255(95)00185-9

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng; SRIVASTAVA, Jaideep; PRABHAKAR, Satya; and RICHARDSON, James. Entity identification in database
integration. (1996). Information Sciences. 89, (1/2), 1-38. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/24

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/0020-0255(95)00185-9
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

NORTH- HOLLAND

Entity Identification in Database Integration*

EE-PENG LIM

School of Applied Science, Nanyang Technological University, Nanyang Avenue, Singapore
2263

JAIDEEP SRIVASTAVA

Department of Computer Science, University of Minnesota
Minneapolis, MN 55455

SATYA P R A B H A K A R

and

JAMES RICHARDSON

Honeywell Sensor and System Development Center, Minneapolis, MN 55455

Communicated by C. V. Ramamoorthy

Informatics and
Computer Science

ABSTRACT

The objective of entity identification is to determine the correspondence between
objective instances from more than one database. This paper examines the problem at
the instance level assuming that schema level heterogeneity has been resolved a priori.
Soundness and completeness are defined as the desired properties of any entity-identifi-
cation technique. To achieve soundness, a set of identity and distinctness rules have to
be established for the entities in the integrated world. We then propose the use of
extended key, which is the union of keys (and possibly other attributes) from the
relations to be matched, and its corresponding identity rule to determine the equiva-
lence between tuples from relations that may not share any common key. Instance level
functional dependencies (ILFD), a form of semantic constraint information about the
real-world entities, are used to derive the missing extended key attribute values of a
tuple. Formal properties of ILFDs are derived. Results from a Prolog-based prototype
entity-identification system are presented.

* Supported in part by contract F30602-91-C-0128 from Rome Laboratory of the U.S.
Air Force.

INFORMATION SCIENCES 89, 1-38 (1996)
© Elsevier Science Inc. 1996
655 Avenue of the Americas, New York, NY 10010

0020-0255/96/$15.00
SSDI 0020-0255(95)00185-R

2 E.-P. LIM ET AL.

1. INTRODUCTION

Database integration is the problem of taking two (or more) indepen-
dently developed databases and resolving the differences between them to
make them appear as one. The need for integration may arise due to new
applications that span multiple databases (e.g., an organization may want
an application that carries out an enterprise-wide analysis of operations)
or due to the integration of operations of different organizations (for
example, corporate mergers and acquisitions, or integrated billing, as in
the case of U.S. West and AT&T). Two kinds of integration are possible:

• Virtual Integration: A virtually integrated database is created on top of
the component databases, usually by means of a common data model
and integrated schema, while the components retain their identities
and usage. The effort in federated autonomous databases is in this
direction [14].

• Actual Integration: An actually integrated database is created from the
component databases. The original databases are discarded and the
applications are migrated to the new integrated database [17].

In this paper, we focus our attention on the entity identification
problem that can occur in both virtual and actual database integration. In
a single database context, it is usually the case that an object instance can
uniquely model a real-world entity. This property does not hold for
multiple autonomous databases and the problem of entity identification
therefore arises. Kent described this as the breakdown of the information
model [8]. For example, when we add two object instances to a relation in a
single database, the one-to-one correspondence between object instances
and real-world entities assures that the two new object instances refer to
distinct real-world entities. However, when the two object instances are
added to relations in different databases, such one-to-one correspondence
property may disappear.

Pre-existing databases in most organizations are defined and populated
by different people at different times in response to different organiza-
tional or end-user requirements. Such independent development of
databases often results in two databases capturing parts of the same
real-world domain. Typically, when there is a need to provide integrated
access to these related databases, relating the representations of the same
real-world entity from the two databases is often difficult, if not impossi-
ble, without specifying additional semantic information that resolves this
ambiguity.

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 3

The rest of this paper is organized as follows. In Section 2, we describe
the background of the entity-identification problem and give an example
that motivates this research. We also give some brief comments on some
existing approaches. In Section 3, we give a formal treatment of the
problem and characterize soundness, completeness, and monotonicity as
the desired properties of any entity-identification process. We then pro-
pose a new approach in Section 4 and give a formal analysis in Section 5.
Our entity identification prototype is described in Section 6. Conclusions
are given in Section 7.

2. BACKGROUND

The task of integrating pre-existing autonomous databases has to re-
solve the logical heterogeneity that arises when the participating databases
are designed independently of one another [2]. Logical heterogeneity can
occur at two levels, namely, schema level and instance level. The resolu-
tion of schema level heterogeneity is known as schema integration. The
resolution of instance level heterogeneity is known as instance integration.

1. Schema Level: The meta-data information of the participating databases,
equally applicable to all instances, are incompatible. The incompatibil-
ity problems at this level include:
• Domain mismatch: T h e domains of similar attributes are not compati-

ble in structure or semantics. For example, the currency attribute in
one relation being in U.S. dollars while the corresponding currency
attribute in another relation is in yen is a case of semantic mismatch.
An example of structural mismatch is the case when the name
attribute in one relation has a data type of string while the name
attribute in another relation is composed of three subattributes of
string data type, namely, lastname, firstname, and middlename.

• Schema mismatch: This problem arises when the schema structures
and semantics of two databases are not compatible, for example, the
Employee table in one database may correspond to a union of
Part-time-employee and Full-time-employee tables in another
database.

• Constraint mismatch: The constraints specified in the participating
databases may be incompatible. For example, a graduate school
database may have the constraint of requiring all graduate students to
have a cummulative GPA of greater than 3.0, whereas the computer
science department database may have the constraint of requiring all
graduate students to have a cumulative GPA of greater than 3.5.

4 E.-P. LIM ET AL.

2. Instance Level: The schemas are compatible in structure (attribute
domains) and semantics (attribute meaning), but the instances corre-
sponding to the same real-world entity have yet to be identified and
merged. The two problems that occur at this level are:
• Entity identification: This is the problem of identifying object instances

from different databases that correspond to the same real-world
entity. Related to the entity identification problem is the instance level
homonym problem. Instance level homonyms occur when the same
identifier is used for different real-world entities in different databases
[12]. The instance level homonym problem is different from the
homonym problems mentioned in most literature. Homonym prob-
lems are often discussed at the attribute level where the meanings
assigned to attribute names are different in two databases [3]. In
general, there appears to be no fully automatic way to solve the
instance level homonym problem [1].

• Attribute value conflict: Attribute value conflict arises when the at-
tribute values in the two databases, modeling the same property of a
real-world entity, do not match. This conflict may be caused by data
scaling conflict, inconsistent data, or missing data [15] or even potential
schema modeling errors. Data scaling conflict occurs when the
domains of semantically related attributes use different units of
measurement. Inconsistent data occur when semantically equivalent
attributes have different values. Missing data refers to the situation
when object instances modeling the same real world do not have the
same set of attributes. It is clear that attribute value conflict resolu-
tion can be performed only after the entity-identification problem has
been resolved.

Schema level homonym and synonym problems are usually resolved at
the schema integration stage. In the case of actual database integration,
the instance level problems must be resolved subsequently to complete the
integration process. In the case of virtual database integration, the strate-
gies and information required for resolving instance level problems have to
be specified during design time, i.e., schema integration phase, but the
actual processing only takes place during the query time.

Resolving instance level ambiguities is a common problem existing in a
federated database context. However, instance integration has not been
discussed much in the literature. Most of the database integration research
focuses on the schema integration problem. It is commonly believed that
the instance integration can be easily performed after schema integration
is completed. As we shall see in Section 2.1, it is not always easy to
integrate object instances even when the schemas are compatible. In the

ENTITY IDENTIFICATION IN DATABASE I N T E G R A T I O N 5

case of federated databases, participating database systems can continue to
operate autonomously. Instance integration may have to be performed
whenever updating is done on the participating databases. Because entity
identification is the first problem to be tackled in instance integration,
effective and efficient approaches to handle it are necessary.

2.1. MOTIVATING EXAMPLE

In the following, we show an example of the entity-identification prob-
lem. Consider the relations R and S from databases DB~ and DB2,
respectively, as shown in Table 1. Both relations contain tuples that
describe restaurant entities in the real world.

EXAMPLE 1
Relation R has (n a m e , street) as its candidate key, whereas relation S

has (name, city) as its candidate key. In this paper, candidate keys in
relations are underlined. To integrate relations R and S, we first have to
determine which tuples in R and S, respectively, describe the same
restaurant entity in the integrated world.

A popular approach of using a common candidate key for identification
does not work because R and S do not share a common candidate key.
The common key attribute, name, may suggest that the first tuple in R and
the first tuple in S refer to the same restaurant entity because they have
the same value, i.e., name = "VillageWok". Nevertheless, a careful analysis
reveals that this conclusion may not be correct. For example, if we insert a
tuple with n a m e = "VillageWok" and s treet = "Penn.Ave." into R, we will
have a situation where one tuple in S can be matched with two tuples in
R. It is not clear which of them is the correct one.

On the other hand, if we were told that restaurant entities in the
integrated world have unique combinations of name, street, and city
attribute values, Wash.Ave. is only in city Mpls, and the restaurant owned
by Hwang is only on Wash.Ave., we can safely conclude that the first tuple
in R and the first tuple in S refer to the same restaurant entity. The
insertion of a tuple with name ="Vil lageWok" and s t ree t="Penn .Ave ."

TABLE 1

R S

name street cuisine name city manager

VillageWok Wash.Ave. Chinese VillageWok Mpls Hwang
Ching Co.B Rd. Chinese OldCountry Roseville Libby
OldCountry Co.B2 Rd. American ExpressCafe Burnsville Tom

6 E.-P. LIM ET AL.

into R does not cause any problem because we know that it is not the
restaurant owned by Hwang.

With this example, we illustrate that entity identification in general is
not a trivial problem. In this paper, we investigate the use of extra
semantic information to (at least partially) automate the entity-identifica-
tion process.

2.2. EXISTING APPROACHES

The existing approaches to entity identification can be categorized as
follows:

1. Using key equivalence. Many approaches assume some common key
exists between relations from different databases modeling the same entity
type, e.g., Multibase [5, 7]. Because a key can be used for uniquely
associating object instance with real-world entities, equivalence of values
of the common key can be used to resolve the problem. This approach,
however, is limited because the relations may have no common key, even
though they might share some common key attributes, as shown in Exam-
ple 1.

2. User-specified equivalence. This approach requires the user to specify
equivalence between object instances, e.g., as a table that maps local object
ids to global object ids, i.e., the responsibility of matching the object
instance is assigned to the user. This technique has been suggested for the
Pegasus project [1]. Because the matching table can be very large, this
approach can potentially be extremely cumbersome. Nevertheless, it is a
general approach and can handle synonym and homonym problems.

3. Use of probabilistic key equivalence. Instead of insisting on full key
equivalence, Pu [13] suggested matching object instances using only a
portion of the key values in the restricted domain. The name matching
problem, as an instance of the key equivalence, has been addressed by
matching the subfields of names. If most of the subfields in two given
names match, the names are considered to be identical. Although this
approach can produce a high confidence on the matching result, it is
applicable only when common key exists between relations. The probabilis-
tic nature of matching may also admit erroneous matching.

4. Use of probabilistic attribute equivalence. Chatterjee and Segev pro-
posed the use of all common attributes between two relations to determine
entity equivalence [4]. For each pair of records from two relations, a value
called comparison value is assigned based on a probabilistic model. Never-
theless, in Section 2.1, we demonstrate that comparing common attribute
values does not necessarily produce correct matching results.

ENTITY IDENTIFICATION IN DATABASE IN TEG RA TIO N 7

5. Use of heuristic rules. Wang and Madnick attacked the problem using
a knowledge-based approach [18]. A set of heuristic rules is used to infer
additional information about the object instances to be matched. Because
the knowledge used is heuristic in nature, the matching result produced
may not be correct.

From the above, we conclude that key equivalence is a well-accepted
solution technique when it is applicable. Most entity-identification tech-
niques have been proposed based on different assumptions of entity
equivalence. The notion of correctness for entity-identification processes
has not been well formulated. We also realized that most techniques do
not handle cases when two object instances do not have a common
candidate key. In this paper, we give a formal treatment on the entity-iden-
tification problem. We propose the notions of soundness and completeness
as the desired properties of an entity identification process. To achieve a
sound identification result, we require identity rules and distinctness rules
to be established. Extra knowledge, known as instance level functional
dependency (ILFD), is used to match tuples in two relations that share no
common candidate key.

3. T H E ENTITY-IDENTIFICATION PROBLEM

3.1. PROBLEM FORMULATION

The aim of entity identification is to determine the correspondence
between object instances from multiple databases. To simplify the discus-
sion, we assume that the data model used is relational and real-world
entities of the same type can be represented as tuples in relations. Each
relation is expected to have one or more candidate keys to uniquely
identify its tuples. ~ Each key consists of one or more attributes called key
attributes. Each tuple in a relation models some properties of a unique
real-world entity. However, each real-world entity may be modeled by
many tuples, provided that no two such tuples can be found in the same
relation. 2 We also assume that the attribute values of tuples are accurate
with respect to that of the corresponding real-world entities. 3 Two tuples
from different relations are said to match if they model the same real-world

1 If no key is defined, the entire attribute set of the relation can be treated as the
key.

z This assumption is often satisfied by relations in the existing databases.
3Only the attribute values that are consistent with properties of the real-world

entities can participate in the entity-identification process.

8 E.-P. LIM ET AL.

Record
Instances
in Relation R

Real World Entities

O

i / ¢ , .. :

: i \

o / / / " io
• ~ \ \

; /
(5/

a2 /
/

©a3

k, ~ b3

0
b2

Record
Instances
in Relation S

................ Correspondence between record instances and real-world entities

Fig. 1. Relat ionship be tween real-world entit ies and tuples.

entity, as illustrated by Figure 1. Relations R and S contain tuptes that
represent a set of real-world entities. Because some real-world entities
may not be modeled in either relation, e.g., e 4, we are only interested in
the subset of real-world entities modeled by at least one of R and S. This
subset is known as the integrated world. In the example, a 2 and b 3 match
and a 3 and b 4 match.

Related to the entity identification problems are the synonym and
homonym problems. For example, different employee numbers assigned to
the same employee in different relations is an example of the synonym
problem, whereas the same employee number in two relations for different
employees exemplifies the homonym problem. The synonym problem
arises due to the fact that the attribute employee numbers in both
relations are not semantically equivalent. Because semantically equivalent
attributes can usually be determined at the schema integration stage [10,
19], we assume that the synonym problem would have been resolved before
entity identification was performed. Although the homonym problem may
arise due to semantically unequivalent attributes, it can also be caused by
the fact that the key of the relation is not the key in the integrated world.
For example, let R be a relation that contains tuples describing restaurant

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 9

entities in Minneapolis and let S be another relation that contains tuples
describing restaurant entities in St. Paul. Both relations have name as key.
Nevertheless, name is not necessarily the key in the integrated set of
restaurant entities because the same restaurant name may exist in both
Minneapolis and St. Paul.

To differentiate between value equivalence and entity equivalence, we
use a = b to denote the former and a - b to denote the latter from now on.

3.2. SOUNDNESS AND COMPLETENESS OF THE
ENT1TY-1DENTIFICA TION PROCESS

The entity-identification process can be expressed as a three-valued
function that takes a pair of tuples and returns "true" only if they refer to
the same real-world entity, "false" only if they do not, and "unknown"
otherwise. Based on the function values, all pair of tuples can be parti-
tioned into three disjoint sets, namely, identical pairs, distinct pairs, and
undetermined pairs. Those pairs evaluating to "true" or "false" can be
represented in a matching table and a negative matching table, respectively.
Because each tuple has a unique identifier in its relation, a matching
(negative matching) table entry consists of the key values of the pair of
tuples. Moreover, the record pairs in the matching table and negative
matching table have to satisfy the following constraints.

UNIQUENESS CONSTRAINTS. No tuple in either relation can be matched to
more than one tuple in the other relation.

CONSISTENCY CONSTRAINT. No tuple pair can appear in both the matching
and negative matching tables.

Consider two relations R and S, coming from different databases, both
of which model real-world entities of type E. We call the conceptual
matching table MTRs and the conceptual negative matching table NMTRs.

In the following, we define soundness and completeness of entity
identification. They are the desired properties to be achieved by the
entity-identification process.

DEFINmON (Soundness). Each record pair declared to be matching (not
matching) indeed models the same (distinct) real-world entity.

DEFINITION (Completeness). The entity-identification process returns a
value of "matching" or "not matching", but not "undetermined", for all
pairs of tuples.

In reality, soundness and completeness of solutions to the entity-identi-
fication problem are difficult to achieve. Nevertheless, at least the sound-

10 E.-P. LIM ET AL.

ness property must be achieved for an entity-identification process to be
successful. In Figure 2, we illustrate a particular entity identification
process that fails to satisfy the soundness property.

Figure 2 depicts a scenario in which the attribute values (including the
key values) of tuples are identical, but the records model two different
real-world entities. If by using attribute value equivalence we conclude
that tuples r 1 and s I match, soundness is violated. The above entity-identi-
fication process fails because it could not recognize that database I and 2
are modeling different subsets of the domain of real-world entities. To
differentiate between the two tuples, we include an extra attribute in each
relation to indicate the domain attribute of value "DBI" , i.e., r 1 =
("Vi l lageWok","Chinese" ,"DBl") . With the domain attribute, we can
define assertions or semantic rules relevant to the entities modeled by a
particular database. Note that a domain attribute may or may not be
modeled in the integrated database depending on whether the source
location information has to be made available to the user.

To achieve soundness, all information used for entity identification
must be correct with respect to the integrated world. Moreover, some
identity and distinctness rules need to be established for entities in the
integrated world. These rules are asserted by the database administrator
(DBA) or a collaborative group of database administrators, who has a
better understanding of the integrated domain of real-world entities.
Advanced techniques in knowledge discovery may also suggest some iden-
tity or distinctness rules that have been overlooked by the database

I n t e g r a t e d W o r l d

Restaurant(name,street ,cuisine)

e~ (VillageWok ,Wash .Ave. ,Chinese)
l e2

O (VillageWok,Co.B2.Rd. ,Chinese) j
/

equiv, attrib, value

(villageWok,Chinese) illageWok,Chinese)

R(name,cuisine) I [S(name,euisine)

D a t a b a s e 1 D a t a b a s e 2

Fig. 2. Difficulties in guaranteeing soundness and completeness.

E N T I T Y I D E N T I F I C A T I O N IN DATAB AS E I N T E G R A T I O N 11

administrator. The entity-identification process should use this set of rules
to determine matched and unmatched tuples.

DEFINITION (Identity rule). An identity rule for the set of real-world
entities E is of the form

V e l , e 2 ~ E , P (e l . A l e l .Am,e2.B I e2.B,)--*(e, =e2) ,

where P is a conjunction of predicates on the attributes A1, . . . , Am, and
B1 , B n of e 1 and e 2, respectively. Each predicate is either of the form
ei.attribute op ej.attribute or ej.attribute op value, where op ~ { =, <, >,
~<, >/, =g}. Furthermore, for each el.A ~ or e2.A ~ that appears in the
predicates, P must imply el.A i =ez .A ~.

E X A M P L E
Let E denotes a set of restaurant entities. Consider the rules:

r l : Ve l, e 2 ~ E, (el.cuisine ="Chinese") A (e2.cuisine ="Chinese")

(e 1 -=e2).
r2: Ve 1, e 2 EE , (e! .cuisine = "Chinese") --+ (e I --- e2).

r l is an identity rule, but r2 is not because its antecedent does not imply
e 2.cuisine = e 1.cuisine.

Consider entities e l , e 2 c E . The existence of A k as an identifying
attribute can be captured by the identity rule

V e , , e z ~ E , (e l .A~=e2 .A~) ~ (e l - e 2) .

Suppose e 1 and e 2 were modeled in relations R 1 and R 2, respectively, and
attribute Ak was used as the key in both. The above identity rule then is
used by the technique called entity identification by key equivalence.

Similar to identity rules, a set of distinctness rules can be defined to
determine unmatched tuples.

DEFINITION (Distinctness rule). A distinctness rule for the set of real-
world entities E is of the form

Ve~,e2~E, P(e1 .A 1 e l .Am,e2.Bl e2 .Bn)- -~(e l~e2) ,

where P is a conjunction of predicates on the attributes A~ Am, and
B 1 B n of e I and e 2. Each predicate is either of the form el.attributed op
ej.attribute or ei.attribute op value, where i~{1,2} and o p t { = , <, >,

12 E.-P. LIM ET AL.

~<, >~, ~}. Furthermore, P must involve some attribute from each of e 1
and e 2.

E X A M P L E

r3: Vel, e 2 ~ E, (e 1.speciality = "Mughalai") A (e z.cuisine ~ "Indian") --*
(ej 4= e2).

The above distinctness rule says that restaurant entity e 1 specialized in
Mughalai food is not equivalent to the restaurant entity e 2 with non-In-
dian cuisine.

In general, it is necessary though not sufficient to enforce the
identity/distinctness rules in the integrated world as constraints in the
relations to be matched. For example, for the identity rule r l to hold, we
have to ensure that there is at most one Chinese restaurant in every
relation modeling the restaurant entities. In other words, the uniqueness
of tuple in a relation satistying the identity rule conditions must be
observed. The above constraint is not sufficient because it does not ensure
that whenever two Chinese restaurant records are added to relations in
different databases, they refer to the same real-world restaurant. A com-
mon means to achieve uniqueness for an identity rule, which contains only
predicates of the form e l . A i = e 2 . A i for 1 <~i<~m, is to treat a subset of
A~ A m that appears in the relation as key.

Similarly, for the distinctness rule r3 to hold, we have to ensure that for
each relation modeling the restaurant entities, no non-Indian restaurant
tuple can have specialty in Mughalai food. The above constraint is not
sufficient because it is still possible to have two records across different
databases both referring to the same real-world entity and both satisfying
the constraints in each database, but they together violate the distinctness
rule.

To guarantee completeness, we require enough information to deter-
mine whether every pair of tuples matches or not. This means that a
complete set of identity (distinctness) rules, and a complete knowledge
about the domain of real-world entities modeled by the relations may be
needed. Such complete knowledge is often difficult, if not impossible, to
obtain. To cope with incompleteness, an entity identification technique
should allow the DBA to supply more information as more knowledge
about the real-world is gained.

3.3. MONOTON1C1TY OF E N T I T Y IDENTIFICATION

Given a set of identity/distinctness rules, entity identification can be
viewed as a reasoning process which derives the conditions required by the

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 13

Matching Pairs ~Undetermined l
Pairs

Not Matchin
Pairs

Fig. 3. Three kinds of matching relationships.

antecedents of the rules. To guarantee soundness of the entity-identifica-
tion process, the technique used should be monotonic [11].

DEFINITION (Monotonic entity-identification technique). An entity-
identification technique is monotonic if every pair of tuples determined by
the technique to be matching/not matching remains so when additional
information is supplied.

Pictorially, we can visualize the relationships between pairs of tuples as
the Venn diagram shown in Figure 3.

If the entity-identification technique adopted is monotonic, the sets of
matching pairs and non matching pairs will expand, whereas the set of
undetermined pairs shrinks as more semantic information becomes avail-
able. Completeness is achieved only when the undetermined set is empty.

4. PROPOSED SOLUTION

In this section, we propose a new approach to solve the entity-identifi-
cation problem. Our approach differs from previous approaches in the
following aspects:

1. Our technique is developed under the assumption that a sound
matching result is desired. For example, a company wanting to dismiss
employees with sales performance below expectation requires matching
between the employee records in one database and their performance
records in another database. It is crucial that the set of matched records
be correct; otherwise, some people may be wrongly fired. Our technique
achieves soundness by using valid constraints about the integrated real-
world to perform matching. Object instances are matched only when they

14 E.-P. LIM ET AL.

satisfy some identity rule. This is in contrast to some approaches that rely
heavily on heuristics, or a probabilistic model.

2. Our technique removes the requirement for a common key between
relations to be matched. This offers a more general approach toward entity
identification.

3. Using a matching table to contain the result of entity identification,
our technique does not exclude the use of other approaches to assert
additional possible matching record pairs in the table. For example, it is
possible for a knowledgeable user to add entries directly to the matching
table.

We define the concept of extended key and extended key equivalence.
The extended key equivalence, as a kind of identity rule, can be used with
instance level functional dependencies (ILFDs) to match tuples from two
relations sharing no common candidate key.

4.1. EXTENDED KEY EQUIVALENCE AND INSTANCE LEVEL
FUNCTIONAL DEPENDENCIES

In Section 2.2, we mentioned that key equivalence is a common ap-
proach for entity identification by matching tuples from two relations, in
the presence of a common candidate key. In the previous section, we
showed that key equivalence is one kind of identity rule. An additional and
often unstated assumption for key equivalence to work is that "the
(common) candidate key continues to remain as a key for the unionized set
of real-world entities." Key equivalence will not work when the relations to
be matched do not have any common candidate key. As a result, we may
have to use other kinds of identity rules to perform entity identification.

The following is an approach that uses relationships/equivalences be-
tween key (and potentially nonkey) attributes to establish entity equiva-
lence.

Let R 1 and R 2 be relations (in different databases) that model (poten-
tial subsets of) a set of real-world entities E. Let K 1 and K 2 be the keys
of R1 and R2, respectively. We define the concepts of extended key and
extended key equivalence as follows.

DEFINITION (Extended key). The extended key (denoted by KEx t) is a
minimal set of attributes, of the form K~ UK2U.4, needed to uniquely
identify an instance of type E in the integrated real world, where .4 is a
set of attributes of E in neither K 1 nor K2 .4

4 The extended key will be used as the key of the integrated relation. If a common
candidate key exists and key equivalence identity rule holds, we have KEx t =K~ =K 2.
Quite often, we may have KE× t = K 1 U K 2.

ENTITY IDENTIFICATION IN DATABASE IN TEG RA TIO N 15

Given an extended key KEx t, the corresponding identity rule, extended
key equivalence is defined as follows.

DEFINmON (Extended key equivalence). By its definition, the concept
of extended key gives rise to an identity rule of the form

Ve 1 , e 2 E E, (e ~ . A 1 =ez.A1) A "'" A (e l . A k = e 2 . A k) - -) (e , - - e 2) ,

where KE, t= (A t , A 2 A k } .

Extended key equivalence is an interesting identity rule in that it does not
require constraints other than the key constraint to be enforced on the
relations to be matched in order to guarantee that the tuples satisfying the
matching condition are unique in their relations.

EXAMPLE 2
For example, in Table 2, R and S are two relations that model the

real-world entity type Restaurant. Key equivalence is not applicable be-
cause R and S do not share any common key. However, the domain of
restaurant entities may have the extended key KEx t = (name, cuisine), with
the corresponding extended key equivalence rule being:

Ve I , e 2 E Restaurant , (e I . n a me = e 2 . n a m e) A (e 1 .cuisine = e 2 .cuisine)

- (el =e2).

Because relation S does not have the attribute cuisine, this rule is not
directly applicable. However, if relation S could be extended to include
this attribute, by using additional information perhaps, the rule could be
used for entity identification. For example, if we know that every restau-
rant specializing in Mughalai food should be an Indian restaurant, then we
can conclude that the second tuple in R matches the tuple in S, as shown
in Table 3.

In this paper, we call this kind of semantic information instance level
f unc t iona l dependence (ILFD). ILFDs can be used to derive the missing key
attribute values that are required for using extended key equivalence.

TABLE 2

R S

name cuis ine street name special i ty city

TwinCities Chinese Wash.Ave. TwinCit ies Mughalai St. Paul
TwinCities Indian Univ.Ave.

16 E.-P. LIM ET AL.

TABLE 3

MTRs

R.name R.cuisine S.name

TwinCities Indian TwinCities

Let relation R model (a subset of) the set of real-world entities E.

DEFINITION (ILFD). An ILFD is a semantic constraint on the real-world
entities. It is of the form

V e ~ E , (e .A I = a l) A -.. A (e . A n = a n) ~ (e . B = b) ,

where A 1 A n and B are attributes (possibly including the domain
attributes) and a~ a n and b are the possible attribute values.

We express the above ILFD as

(E .A 1 = a l) A "" A (E . A . =an) ~ (E . B = b) .

For example, (Restaurant.speciality ="Mughala i") -o Restaurant.cuisine
="Ind ian" is used in Example 2, for entities of type Restaurant.

In many ways, ILFDs are very similar to the functional dependencies
(FDs) used in the database design process. Both are semantic constraints
on the possible relations that can be valid instances of a relation scheme.
For example, given a restaurant relation R(name, cuisine, speciality), the
FD name -o cuisine means that pairs of tuples in R having identical name
values must also have identical cuisine values. An ILFD speciality
= "Sichuan" ~ cuisine = "Chinese" would mean that every tuple in R that
has speciality as "Sichuan" must have cuisine as "Chinese". In fact, they
look identical when the boolean conditions in ILFDs are replaced by
propositional symbols.

Nevertheless, FDs and ILFDs are still different in the following ways:

• The implication sign ~ in an FD is read as "functionally determines,"
whereas the counterpart in an ILFD is the usual implication used in
mathematical logic.

• The antecedent and consequent of an FD are sets of attributes,
whereas the antecedent and consequent of an ILFD are sets of
propositional symbols with each set denoting the conjunction of its
members.

• Checking for violation of FDs involves at least two tuples whereas
checking for violation of ILFDs involves only one tuple.

E N T I T Y I D E N T I F I C A T I O N IN DATABASE I N T E G R A T I O N 17

• FDs are typically useful in designing relation schemes that do not
contain redundancy. This database design process is known as normal-
ization. ILFDs are useful in deriving new properties of real-world
entities from existing properties.

It is assumed that all tuples modeling in the real world are consistent
with the ILFDs. Not all attributes of a real-world entity are modeled as
attributes in a relation. One or more keys, each consisting of one or more
attributes, are selected to uniquely identify the entity in the relation.

Moreover, ILFDs can help to determine if a pair of tuples does not
model the same real-world entity. The following proposition shows that
each ILFD indeed corresponds to a distinctness rule.

PROPOSITION 1. (E . A 1 = a 1) A "'" A (E.A~ = a n) --* (E .B = b) is an ILFD
i fandonly if V e l , e z ~ E , (el .A 1 = a l) A ... A (el.A,, = a n) A (e 2 . B ~ b) ~ (e 1
~ e 2) is a distinctness rule.

Proof. (Only if) Suppose (E . A 1 = a t) A .-. A (E.A~ = a,) --* (E .B = b) is
an ILFD. Given any el ,e 2 ~ E ,

(e 1 ~ e 2) --> [((e l , A l = a l) A " " A(e,.A,,=a,,))

= , ,) A .-- A =.,))].

Applying the ILFD, we have

(e, =e2) ~ [((e , .A , = a ,) A ... A(e,.A n =a , ,)) , , - * . (ez .B=b)] ,

(e,-=e2) ~ [- , ((e , . A , = a ,) A ... A (e,.A n =a, ,)) V (e2.B=b)] ,

(e, ~e2) v -~((e,.A, = a ,) A ..- A (el.A n =a, ,)) v (e2.B=b).

Therefore,

(e l . A 1 = a l) A --- A (e l . A n = a ,) A (e2 .B vab) --* (e, ~ e 2) .

(If) Suppose we are given

V e l , e z ~ E , (e l . A t = a l) A ' " A (e i . A = a n) A (e 2 . B v ~ b) - - , (e i ~ e 2) .

I~t t ing e - e 1 = e 2 , w e get

V e ~ E , (e . A I = a l) A . . . A (e . A = a n) A (e . B v ~ b) - ~ F A L S E .

Therefore, (E . A 1 = a l) A -.. A (E . A n = a ~) - - * (E . B = b) i s an ILFD. []

18 E.-P. LIM ET AL.

TABLE 4
Negative Matching NMTRs

R.name R.cuisine S.name

TwinCities C h i n e s e TwinCities

For example, the corresponding distinctness rule for the above ILFD
example is

re1, e 2 e Restaurant, (e I .speciality = "Mughalai")

A (e 2 .cuisine 4= "Indian") ~ (e, ~ e 2).

Applying this rule to Example 2, we arrive at a pair of tuples that do not
model the same real-world entity. This distinct pair is asserted in the
conceptual negatiue matching table NMTRs as shown in Table 4.

Because the number of nonmatching RS pairs is usually much larger
than that of matching RS pairs (because the maximum of matching pairs is
the minimum of R and S sizes), our approach does not try to present all
nonmatching RS pairs explicitly. Instead, we keep those R(S) tuples not
matched with any S(R) tuple as separate tuples in the integrated table,
while merging the matching pairs into one. We denote the integrated table
by TRs. Because R and S may not have all extended key attributes, NULL
values may exist in the extended key attributes of TRs. As a result of this,
we have to assign a new interpretation to the integrated table TRs.

Within the integrated table TRs, a real-world entity can be modeled by
more than one tuple. 5 A TRs tuple can possibly match another TRs tuple
provided they have no conflicting nonnull values in their extended key.

Given tables R and S, and the matching table MTRs, the integrated
table TRs can be expressed using relational operations. Let K R and K s be
the keys of tables R and S , respectively. The integrated table TRs can be
expressed as MTRsM ~RR~4r, S, where ~ denotes the full outer-join
operator.

4.2. MATCHING TABLE CONSTRUCTION

Let R and S be two relations that model the same real-world entity
type E, with K R and K s as their respective keys. Let KEx t be an extended

5 In this case, it is at most two.

E N T I T Y I D E N T I F I C A T I O N IN DATABASE I N T E G R A T I O N

TABLE 5

19

R S

name cuisine street name speciality county

TwinCities Chinese Co.B2 TwinCities Hunan Roseville
TwinCities Indian Co.B3 TwinCities Sichuan Hennepin
It'sGreek Greek FrontAve. It'sGreek Gyros Ramsey
Anjuman Indian LeSalleAve. Anjuman Mughalai Mpls.
VillageWok Chinese Wash.Ave.

key, with the missing key attributes in R and S as KExt_ R and KExt_ s,
respectively, i.e.,

KExt - R = KExt -- KR,

KExt s = K E x t - K s .

The matching table, MTRs, is constructed as follows:

• Extend relation R, to R', with attributes KExt_ R and set the missing
attribute values of each tuple to be NULL. The extended relation S'
is derived analogously.

• Apply the available ILFDs to derive the values for KEx t R and
KExt_ s for each R' and S' tuple.

• For each pair of R' and S' tuples that have identical nonnull values
for KEx t, append (R ' . K R , S ' . K s) to the MTRs table.

E X A M P L E 3 (Matching table construction)
Let R and S be relations that model the real-world Restaurant entities

as shown in Table 5. Suppose we have the extended key {name, cu i s ine ,
spec ia l i ty} and its corresponding extended key equivalence rule:

Ve I , e 2 ~ E, (e 1 . n a m e = e 2 . n a m e) / X (e I .cuisine = e 2 .cuis ine)

/x (e 1 .speciality = e2 .speciali ty)

--*(e I ~e2) .

Let the following be the available ILFDs:

I 1: (Restaurant . speciali ty = "Hunan") --* (Restaurant .cu is ine
= "Chinese").

I2: (Restaurant. speciality ="Sichuan") --* (Restaurant.cuisine

20 E.-P. L I M E T AL.

= "Chinese") .
I3: (Restaurant.speciality = "Gyros") ~ (Restaurant.cuisine = "Greek") .
I4: (Restaurant.speciality = "Mughala i") ~ (Restaurant.cuisine

= "Indian") .
I5: (Restaurant.name = "TwinCities") A (Restaurant.street = "Co.B2")

(Restaurant. speciality = " Hunan") .
I6'. (Restaurant.name = "Anjuman") A (Restaurant.street

= " LeSalleAve.") ~ (Restaurant. speciality = " Mughalai").
I7: (Restaurant.street = "FrontAve .") ~ (Restaurant.county = "Ramsey") .
I8: (Restaurant.name = " I t ' sGreek") A (Restaurant.county = "Ramsey")
(Restaurant.speciality = "Gyros") .

The following is a derived ILFD:

I9: (Restaurant.name = " I t ' sGreek") A (Restaurant.street = "FrontAve.")
(Restaurant. speciality = " Gyros").

The extended relations R' and S' are shown in Table 6. The matching
table MTRs is shown in Table 7.

The number of ILFDs useful to a relation and their format heavily
depend on the database domain. In some cases, there may be few I L F D s
that can be useful to the database relations, and the attributes involved in
their consequent and antecedents may vary widely. There are also cases in
which a large number of I L F D s are useful to some relations and their
formats are uniform. For the second category of useful ILFDs, it may be
storage efficient to store the ILFDs are relations. 6 For example, the ILFDs
I1, I2, I3, and I4 in Example 3 can be stored in a relation as shown in
Table 8.

Let IM~,y) denote the I L F D table that involves attributes £ and derives
attr ibute y. Given tables R and S, let R ' s attributes be r~ rp and let
S 's attributes be s 1 Sq. Let the missing key attributes in R be Yl Ym

6 ILFDs of the form (E .AI = a l) A "" A (E . A n = a n) ~ (E . B = b) can be s tored in

the re la t ion schema I L F D (A 1 , A2 An, B).

T A B L E 6

R r S ~

name cuisine speciality street name speciality cuisine county

TwinCities Chinese Hunan Co.B2 TwinCities Hunan Chinese Roseville
TwinCities Indian NULL Co.B3 TwinCities Sichuan Chinese Hennepin
lt'sGreek Greek Gyros FrontAve. lt 'sGreek Gyros Greek Ramsey
Anjuman Indian Mughalai LeSalleAve. Anjuman Mughalai Indian Mpls.
VillageWok Chinese NULL Wash.Ave.

ENTITY IDENTIFICATION IN DATABASE INTEGRATION

TABLE 7

MTRs

21

R.name R.cuisine S.name S.speciality

TwinCities C h i n e s e TwinCities Hunan
It'sGreek Greek It'sGreek Gyros
Anjuman Indian Anjuman Mughalai

and the missing key attributes in S be z l z n. Given a key missing
attribute Yi (z) in R (S), there may be several ILFD tables that can be
used to derive y~ (zi), each using different original attributes of R. Let
them be IM(r;1,yi) IM(r;u,y,) (IM~s;l.z,) IMcs,,, z,)).

The matching table MTns can be obtained as a series of relational
expressions as shown below. Essentially, the set of relational expressions
first derives the missing extended key attribute values for records in R and
S. Using each IM~r:j.k,) (IM~s;j.~)), a relation named R jy, (S~,) containing
the original R (S) key and the missing extended key attribute ys (z) is
computed. Combining all R~s (Sis), we obtain Ry~ (Sz) that contains key
attributes of R (S) as well as the missing extended key attribute y~ (zs). R
(S) is subsequently extended with all y;s (z~s) by a series of outer joins.
Finally, the extended relations R' and S' are joined over the extended key
KEx t to obtain the matching table MTns:

For each Yi, 1 ~< i ~< m,

R~i: KRI~ I (R[~r[1 IM(r~l,yi)),

R~,: H (R~X~r,'~lM(r;2,yi))
KR ~

TABLE 8

ILFD table IM(specialitv,cuisine)
speciality cuisine

Hunan Chinese
Sichuan Chinese
Gyros Greek
Mughalai Indian

22 E.-P. LIM ET AL.

for each z~, 1 4 i ~< n,

Ryi= H (RMr;ulM(r;u,yi)),
gR,y i

U

<,=UR~, ,
j=l

R' =R~KR Ry I [~KR "'" ~KR Ry ;

Zi [
Ks , zi

s2= ,~s z (sN,2 m,s~2z,,). g i

s'= H (s % m ~ ,) z i
K S , zi

0 Sz, = S~,
j = l

S ' : S [~Ks S z l D~Ks " " ~<]Ks S z . ,

MTRs: I-I (R't~KEx, S').
KR, Ks

Figure 4 depicts the overall entity-identification process of using ILFD
tables. The entity-identification process reads in R and S relations, derives
their extended key, and generates the integrated table TRS.

t
I E.,i,, I. ~

Identitlcation~-] ~'a~i~es I

Fig. 4. Entity identification using ILFD tables.

E N T I T Y I D E N T I F I C A T I O N IN DATABASE I N T E G R A T I O N 23

5. F O R M A L P R O P E R T I E S OF ILFDS

In this section, we explore the properties of ILFDs and describe their
relationship to functional dependencies (FDs). We establish an ILFD
theory similar to the FD theory. The latter has been addressed in most
database textbooks [16]. To simplify subsequent discussion, we adopt the
notation shown in Table 9. By limiting our discussion to the set of ILFDs
pertaining to a specific entity set E, we can eliminate E from the ILFD
definition and represent an ILFD as

((A 1 = a l) A "'" A (A m =am)) --) (B = b) .

Each (A i = a i) or (B = b) can be treated as a propositional symbol. As a
result, we can transform an ILFD into a formula in propositional logic
shown below:

(P1 A "" APm) ~ Q .

the above formula, Pi denotes (A i =a i) and Q denotes (B---b). Similar
to functional dependencies, two or more ILFDs with identical antecedent
conditions can be combined into one formula as follows:

((P , A "" APm) ~ Q ,) A ... A ((P, A ... APm) "--~Qn)

---(P, A "" APm) - ~ (Q , A ... A Q,,).

In the remainder of this paper, we assume that the information about
an entity set can be represented as a relation. Each tuple in the relation
represents an entity and each attribute of the tuple represents a property
about the corresponding entity. Because all relations mentioned in this

TABLE 9

Notation

Symbols Meaning

P, Q, R, etc. Propositional symbols
X, Y, Z, etc. Conjunction of propositional symbols
A, B, C, etc. Attributes
a, b, c, etc. Constants

24 E.-P. LIM ET AL.

section model sets of entities, we shall use the terms relation and entity set
interchangeably.

We say that a relation R satisfies ILFD X ~ Y if for every possible tuple
r ~ R , such that X holds, it is also true that Y holds in r. We say that a
relation R violates ILFD X ~ Y iff R does not satisfy the ILFD.

Although ILFDs can be modeled using propositional logic, it can also
be modeled in first order logic as program clauses [9]. ILFDs are defined
for a specific relation modeling an entity set. Their first order logic
representation always involves only one predicate symbol. In this case,
representing ILFDs using propositional logic can make the ILFD reason-
ing process simpler.

5.1. COMPARING ILFDS WITH FDS

In Section 4.1, we describe the similarities and differences between
ILFDs and FDs. The relationship between FDs and ILFDs can be seen
from the following proposition:

PROPOSITION 2. I f for each combination o f calues a~ a m in the do-
mains o f A 1 A m , respectic, ely, there is an ILFD ((A l = a 1) A ... A (A, , =
am))--+((B j = b l) A "" A(Bn=b~)) that holds in the relation R, then the
F D { A I , . . . , Am} ~ { B 1 Bn} also holds in R.

Proof. Suppose we are given all ILFDs of the form ((A l = a l) A ... A
(A m = a m)) - - + ((B l = b l) A ... A (B n = b ,)) , such that each ILFD corre-
sponds to a combination of A 1 A m values. Now given any two tuples,
t 1 and t e from R, if t~ and t 2 agree in their A t , . . . , A m values, by the
appropriate ILFD, we can infer that t~ and t: also agree in their B~ B, .
Therefore, the FD {A1 Am) ~ (B l B,} holds in R. []

Notice that the converse of the above theorem is not necessarily true
because FDs do not suggest particular values for the attributes involved.
Based on the similarity between FDs and ILFDs, we develop an ILFD
theory analogous to that of FDs.

5.2. ARMSTRONG'S AXIOMS FOR IFLDS

Let F be a set of ILFDs for relation scheme R modeling a set of
related real-world entities and let P--+ Q be an ILFD. P--+ Q is said to be
inferred from F, i.e., F ~ P ~ Q, iff every tuple r in R that satisfies the
ILFDs in F also satisfies P ~ Q.

E N T I T Y I D E N T I F I C A T I O N IN DATABASE I N T E G R A T I O N 25

DEFINmON. The closure of a set of ILFDs F, denoted by F +, is the set
of ILFDs that are logically implied by F; i.e.,

F + = { P - - - , Q [F ~ (P ~ Q) } .

As in the case of FDs, the set of inference rules for ILFDs can be
defined. Because this set of rules is similar to Armstrong's axioms for FDs,
we call them Armstrong's axioms for ILFDs.

1. Reflexivity. F ~ ((X l/x ... A X m) - * (X I A "'" AXe)), where m ~n. IL-
FDs of this form are known as tric, ial ILFDs because they hold in any
entity set and do not depend on F.

2. Augmentation. Let X, Y, and Z be conjunction of propositional
symbols. Now, if F ~ (X ~ Y) , then F ~ ((X A Z) ~ (Y A Z)) .

3. Transitivity. Let X, Y, and Z be conjunction of propositional sym-
bols. Now, if F ~ (X ~ Y) and F ~ (Y ~ Z) , then F ~ (X ~ Z) .

LEMMA 1. Armstrong's axioms for ILFDs are sound.

Proof. To prove that Armstrong's axioms for ILFDs are sound, we need
to prove that if X ~ Y is deduced from F using the axioms, then X - * Y is
true in any relation in which the ILFDs of F are true.

It is obvious that the reflexivity axiom is sound because we cannot have a
relation with a tuple in which X holds but some subset of X does not
hold.

To prove that the augmentation axiom is sound, suppose we have a
relation r that satisfies X ~ Y, and yet there is a tuple a in r such that
X A Z holds in a but YA Z does not. Because both Z and X must hold in
a , it must be the case that Y does not. However, this contradicts the initial
assumption of X ~ Y. Therefore, the augmentation axiom is sound.

To prove that the transitiuity axiom is sound, suppose we have a relation
r that satisfies X--*Y and Y---,Z, but there is a tuple a in r such that X
holds but Z does not hold. Because Z does not hold for a , neither must Y.
Similarly, we conclude that X does not hold for a. However, this contra-
dicts the initial assumption that X holds for a. Therefore, the transitivity
axiom is sound. []

E X A M P L E
Let R (A ,B ,C) be a relation scheme and F={(A=al) - -* (B=bl) ,

(B=bl)---,(C=cl)}. Let P, Q, and R denote A = a l , B=bl , and C=cl ,

26 E.-P. LIM ET AL.

respectively. Now, F + -- {P ~ P , Q ~ Q, R ~ R , (P A Q) ~ P , (P A Q) ~ Q,
(P A R) ~ P , (P A R) - , R , (Q A R) ~ Q , (Q A R) ~ R , (P A O A R) - - , P , (P
A Q AR)--*Q, (P A Q A R) ~ R,...}.

Notice that from the above three basic axioms, several other inference
rules on ILFDs can be derived, as shown below.

LEMMA 2.

1. Union Rule. {X ~ Y, X ~ Z} ~ X ~ (Y A Z).
2. Pseudotransitivity Rule. {X--* Y, (WA Y) ~ Z} ~ (WA X) ~ Z.
3. Decomposition Rule. If X--* (YA Z) holds, then X ~ Z holds.

The proof is similar to that in FDs.

DEFINITION (Closure of a set of proposition symbols). Let F be a set of
IFLDs and let X be a set of proposition symbols. The closure of X with
respect to F, denoted by X~, is the set of proposition symbols A such that
X ~ A can be deduced from F by Armstrong's axioms for ILFDs.

Having defined the above terms, we are now ready to prove the
important theorem about Armstrong's axioms for ILFDs.

THEOREM 1. Armstrong's axioms are sound and complete.

Proof. Armstrong's axioms are sound from Lemma 1. Therefore, only
completeness is left to be proved. Let F be a set of ILFDs and suppose
X ~ Y cannot be inferred from the axioms, but is satisfied by all instances
of relation R. This means that Y is not in X[. Let r be an instance of R
such that all propositional symbols in X [are true, but all other proposi-
tional symbols are false. This relation r certainly satisfies the axioms. For
X ~ Y to hold, Y must be true in R, i.e., Yc_X ÷. This contradicts the fact
that X ~ Y cannot be inferred from the axioms. Therefore, Armstrong's
axioms are sound and complete. []

Similar to the closure of a set of FDs, the closure of a set of ILFDs is
expensive to compute. This is because the closure of a set of ILFDs may
contain a huge number of ILFDs that can be inferred from the original
ILFD set.

On the other hand, computing the closure X~ of a set of propositional
symbols X with respect to a set of ILFDs F is relatively easier. Essen-
tially, the algorithm for computing X~ is the same as that for computing
the closure of a set of attributes with respect to a set of FDs.

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 27

6. IMPLEMENTATION OF ENTITY-IDENTIFICATION
TECHNIQUE USING ILFDS

In this section, we describe a Prolog implementation of our proposed
entity-identification technique. 7 Prolog was chosen because its basic con-
structs allow us to easily represent both the ILFDs and the source
relations. Furthermore, its well-known operational semantics guarantees
that the result obtained for a Prolog program is always a logical conse-
quence of the axioms contained in the program.

Our implementation stores the source relations and ILFDs as facts and
rules, respectively. By allowing the user to specify the extended key, our
system dynamically creates the rule that defines the matching table. Using
the matching table, the integrated relation can be constructed. Every time
an extended key is specified by the user, our system verifies that it does
not violate the soundness criteria of the matching result. That is, there
should not be a tuple from one source relation being matched to more
than one tuple from the other source relation.

In the following, we describe our systems using Example 3 of Section
4.2. A complete listing of the Prolog program is given in the Appendix.

6.1. REPRESENTATION OF RELATIONS AND ILFDS

Instead of storing each tuple in the source relation as a Prolog fact, we
assign a unique id to the tuple and store it as multiple facts. Each of these
facts contain a binary predicate that relates the tuple id to an attribute. By
representing a tuple as facts with binary predicates, we provide the
flexibility of augmenting the tuple with additional attributes. Moreover,
the representation of ILFDs becomes straightforward. For example, the
first tuple in relation R,

("TwinCit ies" ,"Chinese","Co.B2") ,

has been represented as

r_rname(r l, twincities) ,

r_ cui(r 1, chinese),

r_str(r l , co_B2) .

7 The Prolog interpreter we used is the SB-Prolog System, Version 3.0 [6].

28 E.-P. LIM ET AL.

The ILFD

(Restaurant.speciality = "Hunan") ~ (Restaurant.cuisine = "Chinese")

is represented as the Prolog rule

s_cu i (Rid, chinese) : - s_spec(Sid, hunan) , !.

A cut (!) is given at the end of an ILFD to prevent other ILFDs from being
used once the former ILFD has successfully derived the attribute value.
Note that the tuple id, other than being used for relating the attributes
belonging to the same tuple in a source relation, does not participate in
the actual entity-identification process because ILFDs and extended key
do not use the tuple id as an identifying attribute.

6.2. REPRESENTATION AND REASONING WITH MISSING INFORMATION

Our system uses NULL values to represent missing information in both
the matching table and the integrated table. In the entity-identification
process, tuples from the source relations may have some missing extended
key attributes. For example, the speciality attribute of the entity modeled
by the R-tuple ("TwinCities","Indian","Co.B3") cannot be derived by any
given ILFD. Missing information must also be captured in the integrated
table because source relations may model different sets of entities. If a
tuple from a source relation does not match any tuple from the other
source relation, the missing attributes are represented as NULLs. In our
prototype system, NULL values are assigned as the default values for
those attributes whose values are neither given as facts nor derivable from
the ILFDs. Because the Prolog interpreter searches for usable rules in a
top down manner, we implemented the default NULL values by asserting
them only after all ILFDs have failed to assign the non-NULL values. For
example, the following two assertions can be found below all the source
relation assertions and ILFDs:

r_spec(Rid, nul l) , s_cu i (Sid, nul l) .

Because a NULL value is represented as an ordinary symbol in our system,
extra care must be taken when NULL values are involved in equality tests,
as in the rule defining the matching table. In this case, we do not want a

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 29

NULL value to be equated with another NULL value. Hence, we imple-
mented a n o n _ n u l l _ e q predicate that only holds for comparison between
non-NULL values.

6.3. DESCRIPTION OF ENTITY-IDENTIFICATION PROCESS

Having specified the source relations as Prolog facts and the ILFDs as
rules, our system allows the users to specify an extended key dynamically
and generates the rule defining the matching table.

To specify an extended key, the command setup_extkey can be invoked.
The setup_extkey invocation lists the candidate attributes for the ex-
tended key and asks the user to select some of all of them as the extended
key. Candidate attributes are those that are common among the source
relations and have been asserted to be semantically equivalent. In our
system, we assume that such information has been supplied a priori. The
following shows how the setup_extkey is invoked. To improve the read-
ability, all user responses have been written in italics.

I ? - se tup_extkey .
[0] Name: (r_name,s_name)

[i] Spec: (r_spec,s_spec)

[2] Cui: (r_cui,s_cui)

Please input the no. of keys: 3

Please input the keys:

key i=0

key 2=I

key 3=2

The new definition for the matching table :

matchtable(R name,R cui,S_name,S_spec) --

r name(R, R name) ,s name(S, S name) ,

r spec(R,R_spec) ,s spec(S, S spec) ,

r cui(R, R cui) ,s cui(S, S cui) ,

non_null eq(R_name,S_name) ,

non_null_eq (R_spec, S_spec) ,

non_null eq (R cui, S cui) .

Message: The extended key is verified.

yes

Once the extended key is selected, a new rule defining the matching
table is created. Due to the difficulty of constructing rules using Prolog, a
small C program (getkey) is written to create the rule defining the

30 E.-P. LIM ET AL.

matching table. Each time a new extended key is specified, our system
displays the rule defining the matching table. It also verifies that no tuple
from a source relation is matched with more than one tuple from another
relation in the new matching table. If an anomaly occurs, a warning
message is displayed.

I ? - setup_extkey.
[0] Name: (r_name,s_name)

[i] Spec: (r_spec,s_spec)

[2] Cui: (r cui,s_cui)

Please input the no. of keys:]

Please input the keys:

key i=0

The new definition for the matching table :

matchtable (R_name, R_cui, S_name, S_spec) • -

rname(R,R_) ,s-name(S,S name) ,

r_spec(R,R_spec) ,s_spec(S,S_spec) ,

r_cui(R,R_cui) ,£_cui(S,S_cui) ,

non_null_eq(R name, S name) .

Message: The extended key causes unsound matching

result.

yes

With the availability of a rule defining the matching table, the user can
invoke printmatchable and print_integ_table to display the matching
table and the integrated table respectively. For example, if we have
selected {Name, Spec, Cui} as our extended key, the display of matching
table and integration table is

I ?-pnnt_mamhmb&.

matching table

r_name r_cui s_name s_spec

anjuman indian anjuman mughalai

itsgreek greek itsgreek gyros

twincities chinese twincities hunan
yes

I ? - p r i n t _ i n t e g _ t a b l e .

r
_
n
a
m
e

a
n
j
u
m
a
n

i
t
s
g
r
e
e
k

n
u
l
l

t
w
i
n
c
i
t
i
e
s

c
h
i
n
e
s
e

h
u
n
a
n

t
w
i
n
c
i
t
i
e
s

i
n
d
i
a
n

n
u
l
l

v
i
l
l
a
g
e
w
o
k

c
h
i
n
e
s
e

n
u
l
l

y
e
s

i
n
t
e
g
r
a
t
e
d

t
a
b
l
e

r
_
c
u
i

r
_
s
p
e
c

s
_
n
a
m
e

s
_
c
u
i

s
_
s
p
e
c

r
_
s
t
r

s
_
c
t
y

i
n
d
i
a
n

m
u
g
h
a
l
a
i

a
n
j
u
m
a
n

i
n
d
i
a
n

m
u
g
h
a
l
a
i

l
e
_
s
a
l
l
e
_
a
v
e

m
i
n
n
e
a
p
o
l
i
s

g
r
e
e
k

g
y
r
o
s

i
t
s
g
r
e
e
k

g
r
e
e
k

g
y
r
o
s

f
r
o
n
t
_
a
v
e

r
a
m
s
e
y

n
u
l
l

n
u
l
l

t
w
i
n
c
i
t
i
e
s

c
h
i
n
e
s
e

s
i
c
h
u
a
n

n
u
l
l

h
e
n
n
e
p
i
n

t
w
i
n
c
i
t
i
e
s

c
h
i
n
e
s
e

h
u
n
a
n

c
o
_
B
2

r
o
s
e
v
i
l
l
e

n
u
l
l

n
u
l
l

n
u
l
l

c
o
_
B
3

n
u
l
l

n
u
l
l

n
u
l
l

n
u
l
l

w
a
s
h
.
a
v
e

n
u
l
l

32 E.-P. LIM ET AL.

7. CONCLUSION

In this paper, we address the entity-identification problem, an instance
level problem, in integrating pre-existing autonomous databases. We for-
mulate entity identification as a matching problem and identify desirable
properties, i.e., soundness and completeness, for an ideal entity-identifica-
tion technique. In order to integrate instances from several autonomous
databases, most existing approaches assume that the original relations
have at least one common candidate key, and key equivalence is a valid
identity rule. By using the extended key equivalence identity rule and
semantic information such as instance level functional dependencies
(ILFD), we are able to relax these restrictions and allow relations with no
common candidate key to be integrated. Such semantic information can be
supplied either by database administrators during schema integration or
through some knowledge acquisition tools. The applicability of our ap-
proach has been demonstrated using an example. We have also described
an implementation of our entity-identification technique using Prolog.

Entity identification is a major task to be dealt with in database
integration. In processing a federated database query, entity identification
has to be performed whenever the information about real-world entities
exists in different databases. Our ongoing research is developing mecha-
nisms to do so.

APPENDIX A: A PROLOG IMPLEMENTATION OF THE
PROPOSED ENTITY-IDENTIFICATION TECHNIQUE

The following is a listing of the Prolog program that implements our
entity identification technique.

/*

Entity Identification Example -- (Restaurant)

*/

/*

*/

Table R (name, cuisine, street)

r_name(rl,twincities) .

r_cui(rl,chinese).

r_str(rl,co B2) .

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 33

r name(r2,twincities).

r_cui(r2,indian).

r_str(r2,co_B3) .

r name(r3,itsgreek).

r_cui(r3,greek) .

r_str(r3,front ave) .

r_name(r4,anjuman).

r_cui(r4,indian) .

r_str(r4,1e_salle_ave).

r_name(r5,villagewok) .

r_cui(rS,chinese).

r_str(r5,wash_ave).

/* Table S (name, speciality, county)

*/

s_name(sl,twincities

s_spec(sl,hunan).

s_cty(sl,roseville).

s_name(s2,twincities

s_spec(s2,sichuan).

s_cty(s2,hennepin) .

s_name(s3,itsgreek) .

s_spec(s3,gyros) .

s_cty(s3,ramsey) .

s_name (s4, anjuman) .

s _ spec (s 4, mugha i a i) .

s_cty (s4, minneapolis

/* ILFDs

*/

s_cui(Sid,chinese) :- s_spec(Sid,hunan),!.

s_cui(Sid, chinese) :- s_spec(Sid, sichuan),!.

34 E.-P. LIM ET AL

s cui(Sid,greek) :- s spec(Sid,gyros),!.

s cui(Sid, indian) :- s spec(Sid,mughalai ,l.

r spec(Rid,hunan) --

r_name(Rid,twincities),r str(Rid,co_B2),

r spec(Rid,mughalai) --

r name(Rid,anjuman),r str(Rid, le salle_ave),[.

r_cty(Rid,ramsey) :- r str(Rid, front ave), !.

r_spec(Rid, gyros) --

r_name(Rid, itsgreek),r_cty(Rid,ramsey), 1.

r spec(Rid,null) .

s_cui(Sid,null).

/* Extended Relations */

rr(Name,Cui,Spec,Str)

r spec(Rid,Spec) .

ss(Name,Cui,Spec,Cty)

:- r_(Rid,Name),r cui(Rid,Cui),

r_str(Rid, Str),

:- s(Sid,Name),

s spec(Sid, Spec),

s cty(Sid,Cty),

s_cui(Sid,Cui).

/* Integrated Relation */

/* oldrs is more general since it does not concern

abt resolution between common attributes */

rs(RName,RCui,RSpec,SName,SCui,SSpe<RStr,SCty) --

matchtable(RName,RCui,SName,SSpec),

rr(RName,RCui,RSpec,RStr),

ss(SName,SCui,SSpec,SCty).

rs(RName,RCui,RSpec,null,null,null,~tr,null) --

rr(RName,RCui,RSpec,RStr),

not matchtable(RName,RCui).

rs(null,null,null,SName,SCui,SSpec,mll,SCty) --

ss(SName,SCui,SSpec,SCty),

not matchtable(.... SName,SSpec).

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 35

/* Verification of Extended Key */

length([],0).

length([X I Xs],N+I) :- length(Xs,N).

if then else(P,Q,R) :- P,!,Q.

if_then else(P,Q R) :- R.

non_null_eq(A,B) :- non A-null, not B-null, A=B.

matched_R_keys(A B) :- matchtable(A,B,C,D) .

matched_S_keys(C D) :- matchtable(A,B,C,D).

correct :- bagof([A,B],matched_R_keys(A,B),Ml),

setof([C,D],matched_R_keys(C,D),M2),

bagof([E,F],matched S keys(E,F),M3),

setof([G,H],matched_S_keys(G,H),M4),

length(Mi,Nl),length(M2,N2),length(M3,N3),

length(M4,N4),

NI=N2, N3=N4.

acknowledge :- name(X, '~essage: The extended key is

verified. ''),print(X),nl.

warning :- name(X, '~essage: The extended key causes

unsound matching result. ''),print(X),nl.

verify :- if_then else(correct,acknow~dge,warning) .

/* Setup Extended key */

sstup_extkey :- not(system(~etkey ')),

abolish(matchtable,4),

consult(extkeyeq),verify.

/* Print the Extended R & S Tables */

print_RRtable :- setof([A,B,C,D] rr(~B,C,D),RRRecs),

nl,prtRRhdg,printreclist RR~cs) .

print SStable :- setof([A,B,C,D] ss(~B,C,D),SSRecs),

nl,prtSShdg,printreclist SS~cs) .

36 E.-P. LIM ET A t

/* Print the Matching Table */

print_matchtable :-

setof([A,B,C,D],matchtable(A,B,C,D),MatchRecs),

nl,prtmatchtabhdg,printrecl~t(MatchRecs) .

/* Print the Integrated Table */

print_integ_table :-

setof([A,B,C,D,E,F,G,H],rs(~B,C,D,E,F,G,H)

ntegRecs),

nl,prtintegtabhdg,printrecl~t(IntegRecs) .

/* Print Utility */

prtRRhdg :- name

prlnt_ar

prlnt_ar

prlnt_al

print al

prlnt_al

prlnt_al

(X '%xtended R table ''),

(30,X),nl,

(30,-),nl,

(15,r_name),

(15,r cui),

(15,r_spec),

(15,r str),nl,

name(Z, '),print al(15,Z)

print_al(15,Z),

print_al(15,Z),print al(15,Z),nl.

prtSShdg :- name

prlnt_ar

print_ar

print_al

print_al

print_al

print_al

(X '~xtended S table ''),

(30 X),nl,

(30),nl,

(15 s_name),

(15 s cui),

(15 s spec),

(15 s_cty),nl,

name(Z, '),print al(15,Z)

print al(15,Z),
print al(15,Z),print_al(15,Z),nl.

prtmatchtabhdg :- name(X, '~atching table ''),

prlnt_ar(30,X),nl,

prlnt_ar(3O,-),nl,

print al(15,r_name)
prlnt_al(15,r cui),

prlnt_al(15,s name)
prlnt_al(15,s_spec) nl,

name(Z, '),print al(15,Z),

ENTITY IDENTIFICATION IN DATABASE INTEGRATION 37

print_al (15, Z) ,
print al(15,Z) ,print al(15,Z) ,nl.

prtintegtabhdg : - name(X, ''integrated table ''),

prlnt_ar(30,X),nl,
prlnt_ar
prlnt_al
print_al
print_al
prlnt_al

print_al
print_al
print_al
print_al
name(Z,'
print_al
print_al
print_al
print_al

print_al

(30
(15
(15
(15

(15
(15
(i5
(15,

.

r_name

r_cui)
r_spec
s_name

s_cui)
s_spec
r_str)

(15,s_cty),nl,
, ,r) i

(15,Z),print_al(15,Z

(i5,Z),
(15,Z),print_al(15,Z
(15,z),
(15,Z),print_al(15,z

nl,

,nl.

printrec([]) :- nl.

printrec([A I Alist]) --
print_al(15,A),printrec(Alist) .

printreclist([]) :- nl.
printreclist([X I Xlist]) --
printrec(X),printreclist(Xlist) .

R E F E R E N C E S

1. R. Ahmed, P. DeSmedt, W. Du, B. Kent, M. Ketabchi, W. Litwin, A. Rafii, and
M-C. Shan. The pegasus heterogeneous multidatabase system. IEEE Computer
24:19-27 (1991).

2. E. Bertino. Integration of heterogeneous data repositories by using object-oriented
views. In Proceedings of the 1st International Workshop on Interoperability in Multi-
database Systems, 1991.

3. M. Batini, C. Lenzirini, and S. Navathe. A comparative analysis of methodologies
for database schema integration. ACM Comput. Surveys 18:323-364 (1986).

4. A. Chatterjee and A. Segev. Data manipulation in heterogeneous databases. SIG-
MOD Record 20:64-68 (1991).

5. U. Dayah Processing queries over generalized hierarchies in a multidatabase
systems. In Proceedings of the 9th VLDB Conference, 1983.

38
E.-P. LIM ET AL.

6. S. K. Debray. The SB-Prolog System, Version 3.0, 1988.
7. L. G. DeMichiel. Resolving database incompatibility: An approach to performing

relational operations over mismatched domains. IEEE Trans. Knowledge Data Eng.
1:485-493 (1989).

8. W. Kent. The breakdown of the information model in mdbss. SIGMOD Record
20:10-15 (1991).

9. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.
10. J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attribute equivalence in

databases with application to schema integration. IEEE Trans. Software Eng.
15:449-463 (1989).

11. D. V. McDermott. Non-monotonic logic 1. Artificial Intelligence 13:41-72 (1980).
12. E. J. Neuhold, W. Kent, and M-C. Shan. Object identification in interoperable

database systems. In Proceedings of the 1st Workshop on Interoperability in Multi-
database Systems, 1991.

13. C. Pu. Key equivalence in heterogeneous databases. In Proceedings of the 1st
International Workshop on Interoperability in Multidatabase Systems, 1991.

14. A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys 22:183-236
(1990).

15. F. S-C. Tseng, A. L. P. Chen, and W-P. Yang. A probabilistic approach to query
processing in heterogeneous database systems. In RIDE TQP 92, 1992.

16. J. Ullman. Principles of Database Systems. Computer Science Press, Rockville, MD,
1982.

17. S. Widjojo, R. Hull, and D. Wile. A specification approach to merging persistent
object bases. In Workshop on Persistent Object Bases, 1990.

18. Y. R. Wang and S. E. Madnick. The inter-database instance identification problem
in integrating autonomous systems. In Proceedings of the 5th International Confer-
ence on Data Engineering, 1989.

19. C. Yu, W. Sun, S. Dao, and D. Kersey. Determining relationships among attributes
for interoperability of multi-database systems. In Proceedings of the 1st International
Workshop on Interoperability in Multidatabase Systems, 1991.

Received 12 January 1994; revised 23 March 1995

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2-1996

	Entity identification in database integration
	Ee Peng LIM
	Jaideep SRIVASTAVA
	Satya PRABHAKAR
	James RICHARDSON
	Citation

	PII: 0020-0255(95)00185-9

