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Extraction of Coherent Relevant Passages
Using Hidden Markov Models

JING JIANG and CHENGXIANG ZHAI

University of Illinois

In information retrieval, retrieving relevant passages, as opposed to whole documents, not only

directly benefits the end user by filtering out the irrelevant information within a long relevant

document, but also improves retrieval accuracy in general. A critical problem in passage retrieval

is to extract coherent relevant passages accurately from a document, which we refer to as passage
extraction. While much work has been done on passage retrieval, the passage extraction problem

has not been seriously studied. Most existing work tends to rely on presegmenting documents

into fixed-length passages which are unlikely optimal because the length of a relevant passage is

presumably highly sensitive to both the query and document.

In this article, we present a new method for accurately detecting coherent relevant passages of

variable lengths using hidden Markov models (HMMs). The HMM-based method naturally captures

the topical boundaries between passages relevant and nonrelevant to the query. Pseudo-feedback

mechanisms can be naturally incorporated into such an HMM-based framework to improve param-

eter estimation. We show that with appropriate parameter estimation, the HMM method outper-

forms a number of strong baseline methods on two datasets. We further show how the HMM method

can be applied on top of any basic passage extraction method to improve passage boundaries.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval—Retrieval models

General Terms: Algorithms

Additional Key Words and Phrases: Hidden Markov models, passage retrieval

1. INTRODUCTION

Traditional information retrieval systems return a ranked list of whole docu-
ments as the answer to a query. However, in many cases, not every part of an
entire document is relevant to the query. Thus, it is desirable to retrieve only
relevant passages, as opposed to whole documents, which in effect helps to filter
out irrelevant information in a long relevant document.

A critical problem in passage retrieval is to accurately locate the bound-
aries of coherent relevant passages in a document, which we refer to as passage
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extraction. Indeed, passage retrieval generally involves two components: pas-
sage extraction and passage ranking. Given a query, we can either first rank
documents in their entirety, and then extract relevant passages from the re-
trieved documents, or we can first extract the most likely relevant passages
from all documents, and then rank the extracted passages. No matter which
order we take, passage extraction is clearly an important element of passage
retrieval, and optimal passage retrieval performance requires accurate passage
extraction.

In addition to allowing an information retrieval system to precisely point
to the most relevant parts of a document, extracting query-specific relevant
passages also has the following benefits: (1) It allows us to score a document
based on its most relevant topical segment, which presumably is more accurate;
indeed, previous work has shown that retrieval performance can be improved
by exploiting passage-level evidence [Salton et al. 1993; Callan 1994; Kaszkiel
and Zobel 1997, 2001; Liu and Croft 2002]. (2) When the user provides exam-
ples of relevant documents, using relevant topical segments in these documents
for relevance feedback and query expansion is presumably more accurate than
using entire documents, since a whole document may contain nonrelevant infor-
mation. (3) In some distributed network environments where the bandwidth is
limited, such as wireless networks, retrieving relevant topical segments rather
than whole relevant documents can significantly reduce the amount of data
delivered to the user from the server, and thus the overall communication cost.

Despite its importance, however, the passage extraction problem has not
been seriously addressed in existing work. Indeed, to the best of our knowledge,
no direct evaluation of the accuracy of passage extraction methods has ever
been made. Passage retrieval methods have so far been evaluated for one of
the following three tasks: traditional document ranking [Salton et al. 1993;
Callan 1994; Mittendorf and Schäuble 1994; Kaszkiel and Zobel 1997, 2001;
Denoyer and Zaragoza 2001; Liu and Croft 2002], passage ranking, as in the
TREC HARD track [Allan 2003], and question answering [Clarke and Terra
2003; Tellex et al. 2003; Corrada-Emmanuel and Croft 2004]. However, since
the ranking is the main component being evaluated in all these tasks, such
evaluation does not directly help us understand how effective these methods
are for passage extraction. For example, any passage covering the answer to a
question would be equally good for question answering, but various passages
clearly differ in both coherence and overall coverage of the relevant information
from the perspective of passage extraction.

The lack of attention to passage extraction is also reflected in the fact that
none of the existing passage retrieval methods was intentionally designed to
achieve the goal of extracting passages that are both query-dependent and
coherent. For example, methods such as TextTiling [Hearst 1997] segment text
into coherent passages by automatically detecting topic shifts, but the passage
boundaries identified by these methods are not query-specific. The same prob-
lem exists with many window-based passage retrieval methods, which preseg-
ment documents into passages of fixed length without considering the specific
query. Some other methods do attempt to extract query-specific variable-length
passages, but they do not consider their coherence (e.g., Cormack et al. [1998],
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Kaszkiel and Zobel [2001]). More discussion on previous work is given in
Section 7.

In this article , we directly address the passage extraction problem, which we
define as detecting the boundaries of the most relevant and coherent passages
from relevant documents. While a relevant document may contain multiple rel-
evant passages, we choose to focus first on studying how to accurately extract
the single most relevant passage from each document. A good understanding
of this simpler case is necessary before we can effectively address more com-
plicated situations. Moreover, once we know how to extract the most relevant
passage, we can iteratively apply the same method to extract any additional rel-
evant passages by working on the rest of the document after taking out the most
relevant passages. We present a new method that uses hidden Markov mod-
els (HMMs) for accurately detecting coherent query-specific relevant passages
of variable lengths. We study how to design the structure of the HMMs and
propose three different methods for estimating their parameters. Evaluation
on two datasets shows that with appropriate parameter estimation, the HMM
method outperforms a number of strong baseline methods on both datasets. We
further show that the HMM method can be applied on top of any basic passage
extraction method to improve passage boundaries.

The rest of the article is organized as follows. In Section 2, we discuss
the challenges in the passage extraction problem. We then introduce our
HMM-based passage extraction method and basic HMM structure in Section 3.
We discuss refinement of the structure and parameter estimation in Section 4.
In Sections 5 and 6, we present our experiment design and results. In Section 7,
we discuss some related work. Finally, in Section 8, we conclude our work, and
envision future research directions.

2. CHALLENGES IN PASSAGE EXTRACTION

As we stated in Section 1, passage extraction aims at extracting coherent and
query-specific relevant passages. As such, there are certain challenges in the
passage extraction problem that previous passage retrieval methods have not
dealt with.

2.1 Address Length Variation

The passages we look for can be of various lengths. Because of the differences
between documents in topic, content, style, etc., the length of a coherent pas-
sage is document-dependent. Moreover, for different queries, the passage length
within the same document can also vary. In Table I, we show two documents in
the HARD04 dataset, which is one of two datasets we use and is described in
Section 5.2. Both documents contain relevant passages for two topics: “video
game crash,” and “hand-held electronics.” The underlined paragraphs are pas-
sages relevant to “video game crash,” and those in bold font are relevant to
“hand-held electronics.” These are the true relevant passages, according to hu-
man annotations. We can see that in the first document, the passage relevant
to “video game crash” covers its entirety, while the one relevant to “hand-held
electronics” covers only the middle part. In the second document, however, the
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Table I. Passage Length Variation

APE20030922.0156

Nokia, the world’s biggest cell phone maker,

said Monday it acquired Sega.com—a subsidiary

of Japanese video game maker, Sega Corp.—to

improve its online game and services.

The takeover, completed Sept. 16, means
that Nokia Nokia will use Sega.com Inc.’s
multiplayer technology in its mobile N-
Gage game deck that features 3D multi-
player gameplay using Bluetooth wireless
technology and GPRS.

Nokia has slated Oct. 7 for the worldwide
launch of its N-Gage mobile phone that
combines the features of a cell phone,
MP3-player and a gaming deck.

Nokia is the cell phone market leader with

about 36 percent of all mobile phones sold

worldwide, according to Gartner Dataquest.

Last year, Nokia claimed a 38 percent market

share.

APE20030911.0887

Nintendo Co.’s Game Boy Advance
hand-held machine now works as a video-
phone with an attachment that comes
with a digital camera, earphone and mi-
crophone.

The 13,000 yen (US$110) Campho Ad-
vance from Kyoto-based Digital Act Co.,
which makes mobile and Internet equip-
ment, slips into the top of the Game Boy
Advance just like any video-game cas-
sette.

When connected to an analog tele-
phone outlet, the display shows live video
of the person on the other end of the line,
who must also own both the Game Boy
Advance and the Campho Advance. Your
own image will show up in the corner of
the display.

Campho Advance, which goes on sale only

in Japan in December, requires no Internet

service provider. Developers are working on a

broadband device but have no plans to sell the

product overseas so far, company spokesman

Kazuhisa Saito said Friday.

Nintendo has sold more than 10 million

Game Boy Advance machines in Japan, and

about 34 million worldwide.

passage relevant to “video game crash” covers only a short paragraph, while the
passage relevant to “hand-held electronics” covers about two-thirds of the doc-
ument. This example shows that passage length is both document and query-
dependent.

Window-based passages are neither document nor query-dependent. Pas-
sages based on topic segmentation, although document-dependent, are not
query-dependent. Thus, presegmenting documents into passages, as many ex-
isting methods do, cannot address the length variation problem.

2.2 Exploit Coherence

In general, the relevant passages we are to extract will be coherent in content,
and the passage boundary is likely to be located where the coherence breaks. To
thus improve the accuracy of passage extraction, we should not only look at the
passages themselves, but also consider the surrounding text to find such bound-
aries of coherence. However, to the best of our knowledge, coherence has not
been exploited in most existing work on extracting query-dependent relevant
passages.

To address the issues of both length variation and coherence we propose a
hidden Markov model-based method to extract query-dependent relevant pas-
sages. The HMM-based method is designed to naturally extract variable-length
passages based on coherence.
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3. A BASIC HMM FOR PASSAGE EXTRACTION

The task of passage extraction can be formulated as follows. Given a query
q and a document d that is relevant or likely to be relevant to q, find those
text segments from d that are coherent and most relevant to q. In this article,
we propose a method that is based on unigram language models. We therefore
ignore the structural markups in d such as sentence and paragraph boundaries,
and represent d as a sequence of words, that is, d = (w1, w2, . . . , wn). Given
query q, we are to find the subsequences of d that are most relevant to q.

In the language modeling approach to information retrieval, a document is
often treated as a bag of words, where the words are considered to be a sample
drawn from a unigram language model (i.e., a multinomial word distribution).
For passage extraction, however, a document should be treated as a sequence,
rather than a bag of words, and relevant segments have a different language
model than nonrelevant ones. Thus, the document can be modeled as being se-
quentially generated from two language models, that is, the relevant segments
are generated from what we call a relevance language model, while the non-
relevant segments are generated from what we call the background language
model. The use of these two language models allows us to naturally model
coherence in the text.

There is, however, another stochastic process that determines when the lan-
guage model switches from the relevance to the background model, and vice
versa, during the generation of the document. This stochastic process is hidden
from us, but allows us to address the variable length issue in a principled way.
Note that this sequence of transitions between the relevance and background
model, as generated by the hidden stochastic process, is exactly what we want
to discover because this sequence shows where the document shifts between
relevant and nonrelevant segments. This doubly embedded stochastic process
is essentially a hidden Markov model.

3.1 Hidden Markov Models

Informally, a hidden Markov model is just a “stochastic machine” that can
stochastically generate a symbol at each discrete time-point. The symbol is
generated from an internal state of the HMM, according to a conditional dis-
tribution of the symbol, given the state. As time evolves, an HMM changes its
state according to a state-transition distribution. Formally, an HMM is char-
acterized by a set of hidden states, a set of observable output symbols, an ini-
tial state-probability distribution, a state-transition probability distribution for
each state, and an output-probability distribution for each state. A sequence of
output symbols is stochastically generated from a sequence of unobservable
states, which itself is generated from the hidden stochastic process that pro-
duces state transitions.

Given an observed sequence of output symbols, we often want to find the
sequence of hidden states that is the most likely to have generated the ob-
servations. The Viterbi algorithm is a dynamic programming algorithm that
can efficiently solve this problem. Another common issue is how to estimate
the output probabilities and state-transition probabilities, given a sequence of
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Fig. 1. Basic HMM structure.

output symbols. The Baum-Welch algorithm, essentially an EM algorithm, is
a practical solution to this unsupervised learning problem. The Baum-Welch
algorithm can also be used to estimate some of the parameters while other pa-
rameters are fixed. For example, we can fix the output probabilities and only
estimate the transition probabilities from a set of observed sequences by using
the Baum-Welch algorithm. Rabiner [1989] gives a good tutorial on HMMs.

3.2 Basic HMM Structure

Figure 1 shows a three-state hidden Markov model constructed to model the
generation of a document with a single relevant passage. To force the document
to contain only one relevant passage, this linear HMM has a relevance state
R between two background states B1 and B2. The set of output symbols is the
set of words in the document collection. The output distribution at state R is
the relevance language model, and the output distributions at states B1 and B2

are the background language model. The arrows in Figure 1 indicate nonzero
transition probabilities.

Formally, let B denote the background language model for states B1 and B2,
and R denote the relevance language model for state R. Let p(S2|S1) denote
the transition probability from state S1 to state S2, and p(S1) denote the initial
probability of state S1, where S1, S2 ∈ {B1, B2, R}. Given a document d =
w1w2 . . . wn, we want to find the state sequence S∗ that has generated d with
the highest probability.

S∗ = arg maxS=S1 S2...Sn
p(S1)p(w1|S1)

n−1∏
i=1

p(Si+1|Si)p(wi+1|Si+1), (1)

where Si ∈ {B1, B2, R} for i = 1, . . . , n. Because of the structure of the three-
state HMM, the state sequence S∗ must be of the form B1 . . . B1 R . . . R B2 . . . B2,
unless it stops at state R or state B1, in which case the state sequence is of the
form B1 . . . B1 R . . . R or B1 . . . B1. We will show in Section 4 how we handle the
case in which the state sequence stops at state R or B1.

3.3 Parameter Estimation

In order to find the most likely state sequence of observed output symbols, we
need to set the various parameters in the HMM structure. We now discuss how
we estimate these parameters. The idea is to use fixed output probabilities,
estimated from either the document collection or the query, and to train the
transition probabilities from single documents.

3.3.1 Output Probabilities. The output probabilities at background states
B1 and B2 are specified by the background language model B. Estimating the
background language model is easy. We can simply use the collection language
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model C to approximate B. Let W = {w1, w2, . . . , wm} be the set of words in
the text collection C. Using maximum-likelihood estimation, we can estimate
the background language model as follows:

p(wi|B) = p(wi|C) = c(wi, C)∑m
j=1 c(wj , C)

, (2)

where c(wi, C) is the number of times word wi appears in the document collec-
tion C.

The output probabilities at state R are specified by the relevance language
model. To estimate this model, we start with the query language model. Let
Q denote the query language model. We can estimate Q using maximum-
likelihood estimation, as follows:

p(wi|Q) = c(wi, q)∑m
j=1 c(wj , q)

, (3)

where c(wi, q) is the number of times the word wi appears in query q. Since the
relevant passage also contains nonquery words, we need to smooth this query
language model with the background language model to construct the relevance
language model. One choice is the Jelinek-Mercer smoothing method [Zhai and
Lafferty 2001b]:

p(wi|R) = λp(wi|Q) + (1 − λ)p(wi|B), (4)

where λ is a parameter that needs to be tuned empirically.

3.3.2 Transition Probabilities. Once all the output probabilities have been
set, we can learn the transition probabilities of this HMM from observed se-
quences, that is, documents. Because passage length is document-specific, and
transition probabilities are important factors for determining passage length,
we decide that we should allow the transition probabilities for the HMM to
also be document-specific. We do not have labeled training data to learn the
transition probabilities because transition probabilities differ from document
to document. We can, however, use unsupervised learning. For each document,
we first fix the output probabilities at each state of the HMM, as we have de-
scribed in Section 3.3.1, and then use the document itself as the only observed
sequence to learn the transition probabilities, using the Baum-Welch algorithm.

3.4 Finding Relevant Passages

After all the state transition probabilities p(S1|S2) (S1, S2 ∈ {B1, B2, R}) and
output probabilities p(w|R) and p(w|B) are fully specified in the basic HMM, S∗

can then be efficiently found using the Viterbi algorithm. The intuitive reason
why the HMM can identify the relevant passage is that the latter usually con-
tains more query words than the nonrelevant passages, and for a query word
wi, p(wi|R) is higher than p(wi|B). Thus wi is more likely to be associated with
R than with B1 or B2. Meanwhile, a reasonable p(R|R) value ensures that
the state sequence stays at state R for a reasonable length of time. With both
the output and transition probabilities appropriately set, combining them can
automatically adjust the position of the relevant passage.
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Fig. 2. Improved HMM structure.

Note that we can iteratively apply the same method to extract additional
relevant passages from the rest of the document, or to design a more complex
HMM structure to extract multiple passages at once. We leave these consid-
erations to our future work and focus on extracting the single most relevant
coherent passage from a relevant document in this article.

4. IMPROVED HMMs

The basic HMM method we showed earlier has some limitations. In this section,
we discuss a number of improvements to the basic HMM method.

4.1 Structure Refinement

A problem with the three-state HMM is that the state sequence can stop at
state R or even state B1, without violating any restriction of the model. Indeed,
during the unsupervised training of the transition probabilities, to maximize
the likelihood, there is a tradeoff between having state R generate the query-
related words, which increases the likelihood, and going from state B1 to state
R, which has a low transition probability and thus decreases the likelihood.
If we know that there is a relevant passage in the document, we can impose
this prior knowledge on the unsupervised training by “forcing” the state se-
quence to go through state R, which will improve the performance. To force
a state sequence to contain state R, we extended the three-state HMM to a
four-state HMM by adding a fourth state at the end to indicate the termination
of a document. The end state E generates no words, but a special symbol ε that
marks the end of a document. This symbol ε is also added to the end of each
document. Hence, a document originally represented by (w1, w2, . . . , wn) now
becomes (w1, w2, . . . , wn, ε). Figure 2 shows this improved HMM. In our prelim-
inary experiments, we found that the four-state model indeed outperformed the
three-state model; the F1 measure increased from 0.306 to 0.655 on the DOE
dataset (described in Section 5.2).

Another problem with both the three-state and four-state HMM is that the
smoothing parameter λ has to be empirically tuned. To automate the smoothing
of the relevance language model, we added another background state to the
HMM, as shown in Figure 3. Relevant passages can now be generated from
both state R and state B2. Note that in this five-state HMM, the smoothing
of the relevant language model is achieved by the transitions between state
R and state B2. To see how, consider a state sequence that has entered state
R. Now, to generate a nonquery word, besides switching to state B3, the state
sequence also has the option to switch to state B2, from which it can switch
back to state R later to generate another query word. Therefore, nonquery
words in the relevant passage are more likely to be generated from state B2

than from state B3, thus state B2 serves as the background language model in

ACM Transactions on Information Systems, Vol. 24, No. 3, July 2006.



Extraction of Coherent Relevant Passages Using Hidden Markov Models • 303

Fig. 3. Final HMM structure.

Table II. Some Statistics of the Transition Probabilities of

the Five-State HMM Trained on the HARD04 Dataset

Statistics of the Probability Sample

Transition Mean Variance Standard Deviation

B1 → B1 0.884 0.081 0.284

B1 → R 0.129 0.035 0.188

R → R 0.118 0.027 0.165

R → B2 0.613 0.206 0.454

R → B3 0.293 0.080 0.283

B2 → R 0.125 0.052 0.229

B2 → B2 0.866 0.052 0.228

B3 → B3 0.893 0.111 0.333

B3 → E 0.130 0.061 0.248

E → E 1.000 0.000 0.000

Equation (4). Note that since the transition probabilities between R and B2 are
also trained, the smoothing parameter is not manually tuned, but learned from
the observations. The five-state HMM is the final HMM structure we used in
our experiments.

To give a concrete idea of how the five-state HMM looks after training, in
Table II, we show some statistics for a sample of the transition probabilities
for each pair of states that has a nonzero transition probability. We trained
a five-state HMM on each document in the HARD04 dataset, which is one of
the two datasets we use and is described in Section 5.2. We then collected the
transition probabilities for all the documents, and calculated the sample mean,
sample variance, and sample standard deviation of the transition probability
for each pair of states. First, as shown in the table, we see that the sample
means of the transition probabilities for B1 → B1, B2 → B2, and B3 → B3 are
the largest, all between 0.85 and 0.9. These relatively large numbers indicate
that most of the transitions between two consecutive words in a document are
within either a relevant passage or a nonrelevant passage. The sample mean
of the transition probability for R → B2 is also relatively large, and again, this
transition is within a relevant passage. Second, transitions between relevant
and nonrelevant passages have lower probabilities, as indicated by the sample
means of the transition probabilities for B1 → R and R → B3. Indeed, there
should be only one transition from B1 to R and one from R to B3 for each
document. Third, the sample means of the transition probabilities for R → R
and B2 → R are quite small, indicating that only a small number of words in the
relevant passages are generated by state R, while most are generated by state
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Fig. 4. Within-document pseudo-feedback.

B2, consequently showing that state B2 serves as a smoothing state for relevant
passages. Last, the sample variances show that the transition probabilities vary
from document to document. Therefore, it is necessary to train the HMM on
each document to obtain the transition probabilities.

4.2 Parameter Estimation Based on Feedback

In the final five-state HMM, the simplest way to estimate the output probabili-
ties at state R is to use the query language model, as in Equation 3. The query
language model does not need to be smoothed here because the transitions
between R and B2 essentially implement the smoothing mechanism.

A potentially better way to estimate the relevance language model is to in-
corporate pseudo-feedback. We present two pseudo-feedback mechanisms here.

4.2.1 Within-Document Pseudo-Feedback. The first pseudo-feedback
mechanism considers each document individually, and uses a short, accurate
passage extracted from the document as feedback to estimate the relevance
language model for the same document. The motivation is as follows. Since
a relevant passage within a document is usually a coherent piece of text, if
we already have a short passage from the document that is guaranteed to
be relevant to the query, we can imagine that the true relevant passage is
probably a longer one containing this short starting passage and that it has a
similar word distribution. If we use the starting short passage to estimate a
relevance language model, and use this language model at state R, then state
R should presumably attract similar text surrounding the starting passage.
The short starting passage can thus be extended to the true relevant passage
that is coherent in content and has a natural topical boundary with the rest of
the document. Figure 4 illustrates this basic idea.

Let p be the short starting passage. Using maximum-likelihood estimation,
we can estimate the relevance language model as follows:

p(wi|R) = c(wi, p)∑m
j=1 c(wj , p)

. (5)
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Again, we do not need to smooth the relevance language model here because
we have background state B2.

4.2.2 Cross-Document Pseudo-Feedback. If short, accurate starting pas-
sages can help estimate the relevance language model within the same doc-
ument, the next research question is whether different passages relevant to
the same query can also help estimate the relevance language model across
various documents. We present another pseudo-feedback mechanism here to
explore this idea.

The idea of cross-document pseudo-feedback is similar to that of query ex-
pansion. An assumption here is that documents or passages relevant to the
same query are also similar to each other. Thus, if we can expand the query
language model based on feedback from different documents or passages that
are ranked as highly relevant to this query, and use this expanded query lan-
guage model as the relevance language model at state R, then presumably
the output probabilities at R will be more accurate. In principle, we can apply
any language model-based pseudo-feedback methods (e.g., relevance language
models [Lavrenko and Croft 2001] and mixture-feedback language models [Zhai
and Lafferty 2001a]) to expand the query. We now present a method that uses
previously extracted passages.

Suppose for query q, we have extracted its relevant passages from a set of
documents we are considering by using some basic passage extraction method.
This can be our HMM-based method with direct parameter estimation from
the query only, or any other method, such as window-based. We can then con-
struct an expanded query language model based on all or some of these relevant
passages. Suppose we are to use passages p1, p2, . . . , pl for pseudo-feedback.
If we assume all the words in l passages are samples drawn independently
from a language model Q′, then based on these observed passages and using
maximum-likelihood estimation, Q′ can be estimated as follows:

p(wi|Q′) =
∑l

k=1 c(wi, pk)∑l
k=1

∑m
j=1 c(wj , pk)

, (6)

where c(wi, pk) is the number of times word wi appears in passage pk , and m
is the total number of words in the vocabulary. This expanded query language
model can now be used at state R as the relevance language model. In our
experiments, we used all relevant passages removed by the basic passage ex-
traction method from the set of documents that were known to be relevant to
the query for cross-document pseudo-feedback.

As we have seen in Sections 4.2.1 and 4.2.2, our final HMM structure can
naturally incorporate feedback. An important observation is that there is no
restriction on the method used to extract the short, starting passages for feed-
back, as long as the starting passages are highly relevant to the query. The
HMM shown in Figure 3 can be easily built on top of any basic passage extrac-
tion method. Thus our HMM method provides a framework for incorporating
feedback for passage extraction. In Section 6, we show how the feedback mech-
anism can also be used on top of two baseline methods to significantly improve
performance.
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4.3 Summary

To summarize, to extract the most relevant passage from document d with re-
spect to query q, we first use the whole collection to estimate the background
language model B. We then estimate the relevance language model R, either
directly from the query language model or from some feedback, particularly
within-document or cross-document pseudo-feedback. After all the language
models have been estimated, we train the transition probabilities of the HMM
for each document using the Baum-Welch algorithm and also using the same
document as the only observation sequence. Once the transition probabilities
are estimated, we use the Viterbi algorithm to find the most likely state se-
quence for document d , and thus extract the most relevant passage.

5. EXPERIMENT DESIGN

Although passage retrieval methods have previously been evaluated in the con-
text of either document retrieval or question answering, neither operation con-
siders the coherence of passages or the topic shifts at passage boundaries. We
evaluated our passage extraction methods by directly looking at the overlap
between gold standard and extracted passages. This metric is similar to that
used in TREC 2004 HARD track evaluation, except that we do not consider
passage ranking.

To evaluate our HMM-based passage extraction method, we tried three dif-
ferent parameter estimation methods. HMM-q uses only the original queries
to estimate the relevance language model, whereas HMM-wd and HMM-cd
use within and cross-document pseudo-feedback, respectively, to estimate this
same model.

5.1 Baseline Methods

We implemented a number of baseline methods for comparison, since there is
as of yet no reported performance on this problem that we can find for direct
comparison. HARD 2004 has a passage retrieval task, but since passage rank-
ing and extraction are mixed in their evaluation, the results therein are not
directly comparable to our problem.

The first method, BL-s, is a simple baseline method which returns a passage
that starts from the first and ends with the last occurrence of any query word in
the document. The second, BL-win, is a stronger baseline that is based on fixed-
size windows. Given a window size k, BL-win examines all passages that are
k-word long, and chooses the one that has the most occurrences of the query
words to be the most relevant. The other two baseline methods, BL-cos and
BL-pivoted, are also window-based. They differ from BL-win in that they employ
TF·IDF similarity to score passages. BL-cos uses the cosine measure defined in
Kaszkiel and Zobel [2001] to compute the similarity between a passage p and
a query q:

sim(p, q) =
∑

t∈p∧q(wp,t · wq,t)

Wp · Wq
, (7)
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with

wp,t = loge( f p,t + 1), (8)

wq,t = loge( fq,t + 1) · loge

(
N
ft

+ 1

)
, (9)

Wp =
√∑

t∈p
w2

p,t , (10)

Wq =
√∑

t∈q
w2

q,t , (11)

where f x,t is the number of occurrences of term t in x, N is the total number of
documents, and ft is the number of distinct documents containing t. BL-pivoted
uses a pivoted cosine measure, again defined in Kaszkiel and Zobel [2001], to
compute the similarity:

sim(p, q) =
∑

t∈p∧q

(
wp,t · wq,t

Wp

)
, (12)

with

wp,t = 1 + loge(1 + loge( f p,t)), (13)

wq,t = 1 + loge(1 + loge( fq,t)) · loge

(
N + 1

ft

)
, (14)

Wp = (1 − slope) + slope · plen

avg plen

, (15)

where plen is the passage length in words and avg plen is the average passage
length. In our experiments, we used slope = 0.2, which was the same as that
used in Kaszkiel and Zobel [2001]. Similarly, we followed these authors to set
avg plen to the average of the passage lengths we experimented with (50 to
400), which was 200. BL-cos and BL-pivoted both choose the passage with the
highest similarity score among all passages of length k from the document.

Kaszkiel and Zobel [2001] also proposed variable-length passages, where for
each document, the passages of a set of predefined lengths are examined, and
the one with either the highest cosine or pivoted cosine similarity with the query
is selected. We experimented with this variable-length method, but found its
performance much worse than that of the fixed-window-based method, partly
because the former often favors short passages. We therefore did not include it
as a baseline method.

5.2 Test Collections

Our experiments were carried out on two datasets: a synthetic dataset created
from TREC DOE (Department of Energy) abstracts, and a subset of TREC 2004
HARD track data. Using the HARD04 dataset was a natural choice, since it is a
reasonably large real dataset with its passage boundaries manually annotated.
The reason we also used a synthetic dataset is that this would allow us to control
the coherence of relevant passages and to vary the passage lengths, allowing
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deep understanding of an extraction method’s behavior. TREC 2003 QA track
also has a passage retrieval task with passage judgment. But as we pointed out
in Section 1, the passages we consider are different from those in QA. Therefore
we did not consider using QA data for our experiments.

The synthetic dataset was created from the DOE abstracts in the TREC data
collection, Disk 1. We concatenated relevant and nonrelevant abstracts into long
documents so that relevant abstracts could be considered relevant passages.
We chose the DOE abstracts because we believe that these short abstracts are
compact and highly relevant to the queries. We chose 35 topics from Topic 1
to Topic 150. We picked abstracts relevant to these topics, and then randomly
concatenated them into long documents, with the only constraint being that
each long document contains a single relevant passage (containing one, two, or
three DOE topic-relevant abstracts) with respect to one of the topics. This syn-
thetic dataset thus has very clear passage boundaries, and passages of differ-
ent lengths. There are 1029 documents in this dataset. The average document
length within this synthetic set in terms of number of words is 535. On average,
56.3% of a synthetic document in this set is marked as a relevant passage.

For the HARD04 dataset, we extracted only those documents that contain a
single passage relevant to some topic, according to the annotations. There are
1152 documents extracted, relevant to 25 topics. The average document length
is 475. On average, 65.2% of a document is marked as a relevant passage.

For both datasets, we used the Porter stemmer to perform stemming. In order
to test the robustness of our methods, we did not remove any stop-words.

5.3 Evaluation Procedure

For each document in the dataset and the query it is relevant to, we used
each passage extraction method to extract the most relevant passage. We then
computed the precision, recall, and F1 measures, defined as follows, for the
passage. Let Nt be the length (in number of words) of the true passage, as either
manually annotated in the HARD04 dataset or explicitly marked in the DOE
dataset. Let Ne be the length of the extracted passage. Let o be the overlapping
text segment between the true and extracted passage, and let No be the length
of o. Then,

P = No

Ne
, R = No

Nt
, F1 = 2 × P × R

P + R
.

Since we do not consider passage ranking, each extracted passage is treated
equally in our experiments. We average the precision, recall, and F1 measures
over all documents as the final performance measures.

6. EXPERIMENT RESULTS

In this section, we discuss our experiment results.

6.1 HMM Versus Baseline Methods

We first compare the three HMM methods with the four baseline methods on
both datasets in Table III. Stars in the table indicate the best performance

ACM Transactions on Information Systems, Vol. 24, No. 3, July 2006.



Extraction of Coherent Relevant Passages Using Hidden Markov Models • 309

Table III. HMM Methods vs. Baseline Methods

Collection Precision Recall F1

DOE BL-s 0.869 0.591 0.632

BL-win 0.779 0.777 0.730

BL-cos 0.764 0.763 0.717

BL-pivoted 0.749 0.745 0.701

HMM-q 0.940 0.500 0.561

HMM-wd 0.932 0.630 0.659

HMM-cd 0.941* 0.858* 0.862*

HARD04 BL-s 0.670 0.909 0.666

BL-win 0.668 0.759 0.621

BL-cos 0.671 0.781 0.628

BL-pivoted 0.672 0.783 0.629

HMM-q 0.709* 0.726 0.585

HMM-wd 0.686 0.877 0.656

HMM-cd 0.671 0.969* 0.706*

Stars indicate the best performance among all methods on the same

dataset. HMM-cd outperformed all other methods on both datasets (in

terms of F1 measure).

figures among all methods on the same dataset. For BL-win, BL-cos, and
BL-pivoted, the window size k is set to approximately the average relevant
passage length for that data collection, which is 250 for DOE data, and 300 for
HARD04. Without any knowledge about the length of the relevant passage in
each particular document, the best the system can do is to choose one that can
perform well on average. We believe the true average relevant passage length
is a good approximation to this optimal value, and is thus the best the system
can choose for window-based methods. Actually, this gives these window-based
baseline methods an unrealistic advantage, as relevance judgments are used to
tune the window size. Thus BL-win, BL-cos, and BL-pivoted can be regarded as
very strong baselines. Note that we do not tune the HMMs with any relevance
judgment information about the passage boundaries or lengths. For HMM-wd
and HMM-cd, the starting passages used for pseudo-feedback are extracted by
HMM-q.

We can see from Table III that HMM-cd performed the best among all
methods if we used F1 as the performance measure. A Wilcoxon signed-
rank test showed that using F1 as the performance measure, HMM-cd per-
formed significantly better than the best baseline method (BL-win for DOE and
BL-s for HARD04), at p = 0.001. This shows that with good parameter es-
timation from pseudo-feedback, the HMM-based method can outperform all
baselines.

We also see that HMM-q, the HMM method with parameter estimation taken
directly from the queries, did not perform as well as the baseline methods in
terms of the F1 measure. On both datasets, HMM-q achieved high precision
among all methods, but with very low recall. The reason is that in HMM-q, the
relevance language model is estimated using only the original query. The rele-
vant passage that HMM-q extracts is therefore very conservative: the density
of query words in the extracted passage must be high. Although occurrences
of query words often indicate relevance to the query, the true relevant passage
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Table IV. Effect of Pseudo-Feedback on DOE Data—F1

BL-win (with different k)

BL-s 50 100 150 200 250 300 350 400

BL 0.632 0.344 0.529 0.636 0.696 0.730 0.749 0.756 0.755

HMM-wd 0.705 0.712 0.749 0.771 0.772 0.775 0.774 0.766 0.754

Improv. +12% +107% +42% +21% +11% +6% +3% +1% −0%
HMM-cd 0.874 0.845 0.872 0.876 0.860 0.842 0.826 0.809 0.791

Improv. +38% +146% +65% +38% +24% +15% +10% +7% +5%

does not need to contain query words everywhere. Thus, although HMM-q can
achieve a high precision, its recall is lower than other methods.

However, when the relevance language model is estimated using pseudo-
feedback, as in HMM-wd and HMM-cd, we can see that recall increased sub-
stantially compared with HMM-q, while precision did not decrease much. As a
result, the overall performance of HMM-wd and HMM-cd, measured by F1, was
an improvement over HMM-q. This agrees with our hypothesis that if we use
short, accurate passages as article pseudo-feedback to estimate the relevance
language model, the HMM method can automatically extend passages to the
natural topical boundaries, and thus improve recall.

The baseline methods performed differently on the two datasets. BL-s
achieved high precision and low recall on DOE data, but average precision
and high recall on HARD04 data. BL-win outperformed both BL-cos and BL-
pivoted on DOE data, but performed worse than these two on HARD04 data.
This difference in the performance of the baseline methods between the datasets
suggests that the datasets have different characteristics. On the other hand, it
also suggests that no baseline method can perform consistently well on differ-
ent datasets, whereas we see that HMM-cd consistently performed better than
baseline methods on both.

6.2 The Effect of Feedback

As we have discussed in Section 4.2.2, the HMM method provides a frame-
work for incorporating feedback from any basic passage extraction method. In
this section, we show the results of applying the HMM method using pseudo-
feedback from some of the baseline methods. First, we applied HMM-wd and
HMM-cd on top of BL-s. Since BL-s achieved high precision on DOE data, pas-
sages extracted by BL-s on the DOE dataset are presumably a good choice as
starting passages. We also applied HMM-wd and HMM-cd on top of one of the
window-based baseline methods. Since the three window-based baseline meth-
ods did not differ significantly we picked BL-win. We used passages of different
lengths extracted by BL-win as pseudo-feedback. The passage length k allowed
us to control the accuracy of the starting passages and to study the effectiveness
of the HMM method when passages of different accuracy are used for feedback.
Tables IV, V, and VI show the F1, precision, and recall values, respectively, of
applying HMM-wd and HMM-cd on top of baseline methods on DOE data, and
Tables VII, VIII, and IX show the same on HARD04 data.

From these tables, we can draw a number of conclusions: (1) The HMM
pseudo-feedback method is highly effective. Indeed, from Tables III and VI, we
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Table V. Effect of Pseudo-Feedback on DOE Data—Precision

BL-win (with different k)

BL-s 50 100 150 200 250 300 350 400

BL 0.869 0.913 0.888 0.851 0.815 0.779 0.747 0.716 0.688

HMM-wd 0.906 0.898 0.864 0.828 0.785 0.750 0.722 0.693 0.668

Improv. +4% −2% −3% −3% −4% −4% −3% −3% −3%
HMM-cd 0.913 0.934 0.902 0.875 0.835 0.799 0.767 0.738 0.708

Improv. +5% +2% +2% +3% +2% +3% +3% +3% +3%

Table VI. Effect of Pseudo-Feedback on DOE Data—Recall

BL-win (with different k)

BL-s 50 100 150 200 250 300 350 400

BL 0.591 0.234 0.425 0.573 0.687 0.777 0.847 0.899 0.937

HMM-wd 0.703 0.646 0.721 0.789 0.841 0.890 0.926 0.950 0.966

Improv. +19% +176% +70% +38% +22% +15% +9% +6% +3%
HMM-cd 0.893 0.824 0.891 0.924 0.943 0.957 0.968 0.978 0.984

Improv. +51% +252% +110% +61% +37% +23% +14% +9% +5%

Table VII. Effect of Pseudo-Feedback on HARD04 Data—F1

BL-win (with different k)

BL-s 50 100 200 300 400 500

BL 0.666 0.280 0.411 0.547 0.621 0.658 0.679

HMM-wd 0.683 0.665 0.688 0.698 0.703 0.703 0.703

Improv. +3% +138% +67% +28% +13% +7% +4%
HMM-cd 0.709 0.694 0.701 0.707 0.708 0.707 0.708

Improv. +6% +148% +71% +29% +14% +7% +4%

Table VIII. Effect of Pseudo-Feedback on HARD04 Data—Precision

BL-win (with different k)

BL-s 50 100 200 300 400 500

BL 0.670 0.709 0.696 0.674 0.668 0.662 0.657

HMM-wd 0.666 0.671 0.667 0.661 0.659 0.657 0.659

Improv. −1% −5% −4% −2% −1% −1% +0%
HMM-cd 0.664 0.670 0.666 0.664 0.660 0.658 0.657

Improv. −1% −6% −4% −1% −1% −1% 0%

Table IX. Effect of Pseudo-Feedback on HARD04 Data—Recall

BL-win (with different k)

BL-s 50 100 200 300 400 500

BL- 0.909 0.219 0.374 0.606 0.759 0.846 0.907

HMM-wd 0.946 0.859 0.910 0.947 0.967 0.970 0.966

Improv. +4% +292% +143% +56% +27% +15% +7%
HMM-cd 0.984 0.949 0.961 0.981 0.986 0.987 0.991

Improv. +8% +333% +157% +62% +30% +17% +9%

can see that when applied on top of a baseline method, both HMM-wd and
HMM-cd perform better than the latter in all cases by our primary measure
F1, and substantially better in most cases. (2) The relative improvement of the
HMM feedback method over that of the baseline is greater when we start with
short, accurate passages rather than long, inaccurate passages. For example,
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if we look at Tables IV and V, we can see that when k = 50, although the F1
measure of the starting passages extracted by BL-win is low, their precision
is high. Using these accurate starting passages, HMM-cd achieved the largest
relative improvement over BL-win in terms of F1. As k increases, the accu-
racy of the starting passages decreases, as does the F1 of HMM-cd and the
relative improvement of HMM-cd over BL-win. The optimal starting passages
to use should therefore be of medium size so that their F1 measure is not too
low, and their precision remains sufficiently good for feedback. (3) The HMM
feedback method can increase recall while keeping precision at a similar level.
This increase of recall shows that the HMM-method can indeed extend short
passages based on the language models constructed from short starting pas-
sages. The small change in precision shows that the extended portion of newly
extracted passages is also relevant to the query. (4) HMM-cd performed better
than HMM-wd, which means cross-document pseudo-feedback is more effective
than within-document pseudo-feedback, at least for these two datasets. One
possible explanation is that the relevant passages from different documents for
the same query tend to be similar. Hence, cross-document feedback can mu-
tually reinforce and amplify the feedback effect. In the case where passages
relevant to the same query are dissimilar, they will generally remain quite dif-
ferent from the nonrelevant background surrounding the relevant passages.
Thus cross-document feedback is also not likely to hurt performance.

6.3 Sensitivity of Performance to Passage Length

As we pointed out in Section 1, window-based passage extraction methods do
not consider query-specific passage boundaries, and therefore cannot handle
variable-length passages well. The HMM-based method, on the other hand, de-
tects query-specific passage boundaries based on a relevance language model
that is sensitive to both the query and the coherence of passages. We now look
at how the HMM methods HMM-wd and HMM-cd as well as the window-based
baseline method BL-win performed over passages of different lengths. For com-
parison, we also include BL-s because it is a baseline method that allows vari-
able passage lengths. To see the sensitivity of performance to passage length,
we grouped the documents in each dataset into a number of buckets, accord-
ing to their true passage lengths. We then plotted the average performance
measures over the passages in each bucket for BL-s, BL-win, HMM-wd, and
HMM-cd. Figures 5, 6 and 7 show the precision, recall, and F1 measures on
the DOE dataset, respectively. Figures 8, 9 and 10 show the same performance
measures on the HARD04 dataset. For each dataset, k is set to the average
passage length of that dataset in BL-win. HMM-cd and HMM-wd are based on
the passages extracted by BL-win for pseudo-feedback.

We can see from Figures 5 and 8 that for documents with different true
passage lengths, the precision of both HMM-wd and HMM-cd is similar to
that of BL-win. For these three methods, the precision is low for documents
with short true passages because BL-win uses the average passage length,
which is longer than these short true passages. BL-s gives high precision for
short passages because BL-s does not impose a fixed passage length. From

ACM Transactions on Information Systems, Vol. 24, No. 3, July 2006.



Extraction of Coherent Relevant Passages Using Hidden Markov Models • 313

Fig. 5. Precision vs. passage length on DOE data.

Fig. 6. Recall vs. passage length on DOE data.

Figures 6 and 9, we can see that BL-s gives low recall because it only returns
the passage between the first and last query words, which is probably only a
segment of the true passage. BL-win only achieved high recall for documents
with true passage lengths approximately equal to or less than the average
passage length. However, HMM-wd and HMM-cd achieved consistently high
recall over different true passage lengths. As a result, we see from Figures 7
and 10 that both HMM-wd and HMM-cd achieved consistently good F1 values
for different passage lengths.
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Fig. 7. F1 vs. passage length on DOE data.

Fig. 8. Precision vs. passage length on HARD04 data.

7. RELATED WORK

Passage retrieval is an important component of question answering systems.
Tellex et al. [2003] evaluated a number of passage retrieval methods in QA
systems. However, passage retrieval in QA systems is very different from the
passage extraction problem we address here—the former looks for passages
that contain answers to very specific questions, hence often only a few sentences
or even a single sentence in length, while the latter looks for coherent passages
that contain complete pieces of information about more general topics, which
are generally longer and have clearer topical boundaries with the rest of the
documents.
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Fig. 9. Recall vs. passage length on HARD04 data.

Fig. 10. F1 vs. passage length on HARD04 data.

Some previous passage retrieval methods have been based on structural
markups such as paragraph and section boundaries. A problem with this ap-
proach is that these structural boundaries may be inconsistent among different
authors. Callan [1994] observed that the structure of a document might be irrel-
evant to its content, but merely for presentation purposes. Another approach
is to automatically identify semantic boundaries, for example, as in Hearst’s
[1997] TextTiling method. A problem with this approach is that these preseg-
mented passages are not query-specific. A third approach that is commonly
used is window-based, where the number of sentences or words in a passage
is fixed. Although this approach has been shown to be effective for document
reranking, it does not consider passage coherence and our experimental results

ACM Transactions on Information Systems, Vol. 24, No. 3, July 2006.



316 • J. Jiang and C. Zhai

also show that it does not perform well over varying passage lengths. Thus,
a window-based approach is not good for the purpose of passage extraction.
Researchers have also tried to identify arbitrary passages. In the MultiText
system [Cormack et al. 1998], heuristic rules and scoring functions are used to
rank arbitrary passages. The variable-length arbitrary passages proposed by
Kaszkiel and Zobel [2001] are chosen from a set of fixedlength passages with a
set of predefined different window sizes. However, none of these lines of work
has considered coherence, whereas the HMM method proposed in this article
can model coherence boundaries in a principled way.

The idea of applying HMMs for passage retrieval is not new [Mittendorf
and Schäuble 1994; Knaus et al. 1996; Denoyer and Zaragoza 2001; He et al.
2004], but our method differs from previous approaches. Our method was first
proposed in Jiang and Zhai [2004]. In this article, we refine the model, and pro-
pose a cross-document pseudo-feedback mechanism. Compared with previous
HMM-based methods, ours has three major differences. First of all, some pre-
vious work uses larger building blocks, such as sentences [Knaus et al. 1996] or
paragraphs [He et al. 2004], to build the hidden Markov models. In those cases,
a mapping function is needed to transform a single text segment (a sentence or
paragraph) into a value that encodes the similarity between the text segment
and query. For example, in He et al. [2004], the authors employed a set of simi-
larity measures to map a paragraph into a set of scalar values, and then linearly
combined them into a single scalar value. They built a two-state HMM wherein
one state generates relevant paragraphs and the other generates nonrelevant
paragraphs. The output probabilities in each state follow a Gaussian distribu-
tion. In Mittendorf and Schäuble [1994], even though the building blocks are
single words, the authors employed a similarity measure to map the words into
scalar values, and used these as outputs from the hidden states in HMMs. In
these methods, the issue of how to define such a mapping function becomes
important, but their HMM-based model provides no guidance on this, since the
mapping function is outside the model. By contrast, our method is based on
unigram language models, so it does not require a similarity mapping function,
but naturally captures the similarity between queries and passages. Second,
we trained the transition probabilities for each individual document, whereas
in some previous methods, the transition probabilities were fixed manually.
Third, unlike using passages for document retrieval [Mittendorf and Schäuble
1994] or classification [Denoyer and Zaragoza 2001], we addressed the passage
extraction problem, in which the evaluation focuses on the accuracy of passage
boundaries.

There has been some work in automatic text summarization that employs
hidden Markov models [Conroy and O’Leary 2001; Fung et al. 2003; Zajic et al.
2005]. Although our HMM-based passage extraction method bears some sim-
ilarity to these summarization methods, there are at least three major dif-
ferences. First, Conroy and O’Leary [2001], Fung et al. [2003], and Zajic et al.
[2005] all address the extractive summarization problem, and wherein, the goal
is to select a set of sentences (or a set of words, as in headline generation) that
can summarize the original document(s). Thus, the selected sentences are usu-
ally not contiguous in the original document(s), and there is no consideration
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of their coherence. When the method decides whether a given sentence should
be included in the summary, besides its content words, its length and position
in the document are often also considered. On the other hand, in passage ex-
traction, the goal is to select coherent, query-dependent relevant passages that
consist of contiguous sentences from the original documents. The task focuses
more on the coherence of the extracted passages. Second, Conroy and O’Leary
[2001], Fung et al. [2003], and Zajic et al. [2005] all address the generic sum-
marization problem, in which there is no notion of user queries. The goal is
to capture the essential contents of the document(s). By contrast, in passage
extraction, the extracted passage should be relevant to the user query. Third,
most summarization work, such as Conroy and O’Leary [2001] and Fung et al.
[2003], extracts sentences, so the building blocks of the hidden Markov mod-
els they use are thus sentences. Therefore, similar to other work in passage
retrieval using HMMs, they need a mapping function to transform the sen-
tences into some similarity measures, and again, how to define such a mapping
function becomes an important issue. In our HMM-based passage extraction
method, we use unigram language models to naturally model the similarity
between the passage and the user query. In Zajic et al. [2005], although their
building blocks for the HMMs are also words, because they are generating head-
lines, the words they select are not contiguous in the original documents, which
is a complete departure from passage extraction.

HMMs have also been successfully applied to information extraction
[Freitag and McCallum 2000], where the HMM structure contains target and
background states, which is a little similar to our HMM structure. However,
theirs is used to address a completely different problem.

8. CONCLUSION AND FUTURE WORK

Passage extraction is an essential component of passage retrieval, and can ben-
efit an information retrieval system in many respects. Unlike previous work,
which tends to mix passage extraction with a ranking component in evalua-
tion, our work aims at directly studying the problem of passage extraction. We
proposed an HMM-based method for passage extraction which can naturally
exploit the coherence in the text to accurately identify coherent relevant pas-
sages of variable lengths. We studied the design of the HMM structure, and
presented three different methods to estimate the parameters. With its refined
structure and appropriate parameter estimation, our HMM method outper-
formed a number of baseline methods. We also showed that the HMM method
naturally provides a framework for incorporating feedback from any basic pas-
sage extraction method, which can improve passage boundaries and hence, the
overall performance. Moreover, the HMM method can perform consistently well
over different passage lengths.

Currently, our HMM method only extracts a single relevant passage from
a given document. It can be extended to handle multiple relevant passages
per document, however, care must be taken in the design. If we simply allow
a transition from B3 to B1, that is, to allow a loop in the HMM so that mul-
tiple relevant passages can be generated, then without any constraint on the
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transition probabilities, the unsupervised training would assign very high tran-
sition probabilities from R to B3. This is because having R generate the query
words and B1 and B3 generate most of the background words could result in
a larger likelihood. The resultant extracted passages would consist of a short
fragments surrounding the query words in a document. One possibility is to
force the transition probabilities between B1 and B3 to be small. Currently, we
have not found a principled good solution to this problem.We will further study
the problem in the future.

We did not make use of the markups in the documents when we used HMMs
to extract passages because our method is based on unigram language models.
Recently, many documents in XML format have become available, providing
both good datasets on which to explore the usage of markup information for
passage extraction, and ground-truth passage boundaries on which to evaluate
our method. We will consider using these datasets in the future for the purpose
of improving our method.

Additional interesting problems for further study are the issues of how to
better estimate the relevance language model and how to exploit extracted
passages to improve document ranking.
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