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Dynamic Lookahead Mechanism for Conserving
Power in Multi-Player Mobile Games

Karthik Thirugnanam†, Bhojan Anand‡, Jeena Sebastian‡, Pravein G. Kannan‡

Akhihebbal L. Ananda‡, Rajesh Krishna Balan†, and Mun Choon Chan‡
†Singapore Management University and ‡National University of Singapore

Abstract—As the current generation of mobile smartphones
become more powerful, they are being used to perform more
resource intensive tasks making battery lifetime a major bottle-
neck. In this paper, we present a technique called dynamic AoV
lookahead for reducing wireless interface power consumption
upto 50% while playing a popular, yet resource intensive, mobile
multiplayer games.

I. INTRODUCTION

Modern smartphones are increasingly being used to play
games. Games use large amount of CPU and display resources
in addition to large amount of network resources for multi-
player games. These are the resources that consume significant
portion of the battery capacity of a smartphone — with the
display and network resources each consuming close to 45%
of the total battery power when fully operational [1].

In this paper, we present our solution for reducing the
power consumption of a smartphone’s network interface when
playing mobile multiplayer games without impacting the game
quality noticeably. Our solution looks for game situations
where it is safe to turn off the network interface.

AoV is generally defined as the visible area around each
player – with the assumption that almost all player interactions
in a game are with other players that they can actually see. In
general, AoV is a large circular disc, centred on the player,
However, in many cases, the actual AoV is constrained by
in-game obstacles such as walls and buildings. By estimating
the minimum time it takes for a player to reach other player’s
AoV, we can accurately estimate how long we can turn-off the
player’s network interface.

We call this approach dynamic AoV lookahead and present
its algorithm, implementation in a real game, and evaluation
results in the rest of this paper. To test our approach, we used
the Quake III Arena first person shooting (FPS) game. FPS
games are the hardest to save power in as real-time player
interaction events dominate in these types of games.

We tested our approach using both WiFi and cellular 3.5G
(HSPDA) network interfaces, with different maps and numbers
of players. Our results show that our approach is able to save,
using a trace-based simulation, between 20% to 50% of the
power consumed by the network interface and between 15%
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Academic Research Fund Tier 2 under the research grant T208B2301. Any
opinions, findings, conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of the
granting agency, National University of Singapore or Singapore Management
University.

to 36% using a real implementation with off-the-shelf WiFi
hardware. Finally, we tested the real implementation with end
users and determined that our power conservation method has
very little impact on perceived game quality.

II. RELATED WORK

There is a large set of related work in the area of power
conservation and interest management. We briefly discuss
them below.

Power Conservation Various authors have proposed saving
power by observing and exploiting the statistical correlations
between game application characteristics and load (eg. net-
work traffic, processor cycles) [2], [3], [4].

Interest Management There are two widely used cate-
gories of techniques for Area of Interest (AoI) or Interest
Management: Distance and Visibility based techniques. There
are various algorithms for determining the AoI [5] such as
Euclidean distance, square tile distance, and hexagonal tile
distance [6], [7], more complex visibility and orientation-based
algorithms [8].

The main difference of our work is that we are focusing
on client-side wireless interface power conservation instead of
overall game scalability. In addition, our approach has to work
in real-time for a modern multiplayer FPS game that demands
high frame rates.

III. ALGORITHM

A. Background
Modern commercial multi-player games are based on the

classic client-server paradigm. The client is typically an en-
hanced graphic device with minimum intelligence that simply
accepts inputs from the user, and advances the game state
according to the server’s instructions. In particular, the game
server has all the information and controls all logic. Such a
design is adopted for various reasons including better man-
ageability and security, which are important issues for modern
commercial games.

As explained earlier, we use the notion of AoV to determine
if two players can see each other in the game. To successfully
use the AoV, we need to answer two related questions. Given
the real-time requirements of a mobile game application, can
using AoVs tell us when it is possible to put the network
interface to sleep. In addition, can it also tell us how long to
sleep the interface? Our solution to these questions uses the
following observations: 1) Players cannot interact with each
other unless they can see each other. 2) Within a given time
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interval, a player can (usually) only travel a limited distance.
3) When a player is not interacting for a certain time interval,
the player’s network interfaces can be put to sleep during that
time interval without affecting game quality.

However, when the network interface is put to sleep, the
player receives no updates during that period. Problems can
arise if during the sleep period, two players that were not
visible to each other before sleeping become visible (and thus
interacting) during the sleep period. This is the source of
error/inaccuracy that we would like to avoid/minimise. Hence,
the key problem is to determine when the players may become
visible in the future. If this period is sufficiently large, we can
save power without affecting game quality.

B. Visibility and Future Location Matrix
We assume that for any game, the maximum speed of a

player is fixed. For a given interval, say β milliseconds (ms),
a player can only move so far from their current location.
Conceptually, our approach does the following:
• For each player, it identifies all the possible areas the

player can be in β ms if they are moving at the maximum
speed.
• For all pairs of players, check if two players can be

visible to each other in β ms.
• For each player, if they are not visible to all other players

in β ms, then a sleep interval of β ms is a ”safe” interval
for this player to sleep.

Fig. 1. Inter-player Visibility With Obstacles

Figure 1 shows an example on how visibility varies with
the players’ positions over time. The shaded areas around each
player’s number indicate the possible areas that that player can
move to in β ms while the black areas indicate obstacles that
obstruct visibility. From the figure, we see that Player 1 is not
visible to Players 2 and 3 even after β ms — no matter how
each player moves. As a result, player 1 can sleep.

In order to perform this computation efficiently, we only
consider time quantum of β ms for time efficiency and we
discretized the game map for space efficiency. We divide the
game space into hexagonal or square grids, where the grid
element width (p) is the maximum distance a full-speed player
can cover in β ms. In the rest of this section, we use a 2D
hexagonal grid, even though our approach works for 3D maps
as well. However, for evaluation we use square grid due to its
ease of implementation.

Using the grid defined above, we identify the possible future
locations in multiple time steps (of β ms). Figure 2(b) shows

the possible locations from the current player’s position of (0)
(centre of figure) that can be reached up to 3 β time-steps later.
The darkest shading shows the area reachable in 1 time-step,
followed by 2 steps (lighter shading), and then 3 steps (lightest
shading). Note: the player could stay still and not move in each
time-step. The value inside each hexagon represents direction-
weight, which is explained in next section.

The visibility computation can then be performed off-line
as the map layout (where the walls are etc.) and grid repre-
sentation is mostly static. The visibility computation generates
a visibility matrix V . The matrix entry is 1 if two grids (in
particular the centre positions of those 2 grids) are visible to
each other, and 0 otherwise. For maps that change dynamically,
we can pre-compute matrices for the different layouts and use
the appropriate matrix at runtime.

C. Dynamic Lookahead

Fig. 2. Scaling Grid Weights (1 and 3 Time-steps)

To effectively use these grids, we need to also incorporate
the player’s movement patterns. In particular, we need to
assign weights to all the likely positions that a player could
be at β ms later. We can then use these weights to determine
the probability of the player being able to see other players
located at specific grids.

In our approach, we exploit the player’s velocity to set
the grid weights. This is a reasonable assumption as velocity
is often part of the the game state. To illustrate how we
incorporate velocity, Figure 2(a) shows the case where the
player is moving up from the centre. Let wi be the weight of
moving to grid i from the current position. The grid weight
for moving in the forward direction is 4. The forward plus
sideways directions have weights of 2, and the rest of the
directions have their weights set to 1. We do not claim that
our chosen weights are optimal, only that velocity information
can be utilised to improve prediction.

The weights shown above are for just 1 time-step. We used
a small grid size to reduce the grid-to-grid visibility check
inaccuracy. To find possible long sleep periods we extended
our weights to consider multiple β time intervals. Figure 2(b)
shows an example of a possible weighted grids for 3 times
steps and for a player moving forward.

D. Determining Sleep Times and Intervals
We now present our final algorithm that determines when

and for how long to sleep a player’s network interface.
Consider two players 1 and 2 at grids x1 and x2 respectively.
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In t time steps, let the grids reachable for players 1 and 2 be
L1
t and L2

t respectively.
For each point l1 ∈ L1

t , check its visibility to each point in
L2
t (using the visibility grid V ). Set the value v(l1, l2) to 1 if

their positions are visible to each other and 0 otherwise. For
each pair (l1, l2), the cost is computed as wl1 ∗wl2 ∗ v(l1, l2).
We compute the likelihood of player 1 seeing player 2 as the
following normalised sum:

St(1, 2) =

∑
l1∈L1

t ,l2∈L2
t
wl1 ∗ wl2 ∗ v(l1, l2)∑

l1∈L1
t ,l2∈L2

t
wl1 ∗ wl2

(1)

Let N be the set of all players, T be the set of all discrete
sleep time intervals considered and α be a control parameter.
The parameter α, 0 ≤ α ≤ 1, controls the aggressiveness of
the power saving mechanism, with 0 being the most conser-
vative and 1 the most aggressive (always sleep). By varying
α, we can obtain different trade-offs in power consumption
versus accuracy. The algorithm is outlined below:

For each player i
For each time slot t ∈ T

For each player j ∈ N \ i
compute St(i, j)

t is feasible if St(i, j) ≤ α,∀j
Select the largest feasible t as user i’s sleeping interval,
otherwise user i does not sleep.

This algorithm is executed every β ms on the sever, but
control data is transmitted to the client only when the client
is awake.

IV. QUAKE III IMPLEMENTATION

We used the commercially successful Quake III Arena [9]
3D FPS game as our test game.

On average, the traffic rate from the server to clients is
16Kbps (≈20packet/sec) and 21Kbps (≈40 packet/sec) in the
reverse direction. The key information sent from a client to
the server is the player’s current position and action (e.g.
shooting). The key consequence of sleeping a client’s network
interface is that the player’s position updates could be delayed
significantly. As discussed previously, we consider this delay
to be a problem only if it results in state inconsistency between
two or more players.

In our implementation, we added a new sleep command
that the server uses to tell specific clients how long to sleep.
The client will put the wireless interface in sleep mode. When
it wakes up, it must stay awake for a minimum interval to
ensure that it receives at least one update packet from the
server, allowing the client to re-synchronise correctly with the
server. We experimentally determined that this interval should
be at least 100ms for WiFi as it needs time to re-establish a
connection with the access point.

V. METHODOLOGY

We performed three kinds of evaluation, namely: trace-
based simulations, actual system performance measurements,
and a small scale user study. Our evaluation aimed to answer

the following questions: 1) Game state varies from run-to-
run and no two games runs are identical. However, in order
to compare different algorithms, we need to evaluate different
algorithms under the “same” condition. How can this be done?
2) How do we evaluate quality objectively and how do we
relate the objective metric used to a player’s perception of the
gameplay? 3) How much power can we save in a realistic game
playing environment with minimum impact on gameplay? 4)
How much of the error is actually visible to the user?

A. Trace-based Simulation Methodology
1) Using Traces for Repeatability: To address the first

question, we separated the trace collection from the algorithm
evaluation. In the trace collection phase, the game was played
“normally” and the player location, player-to-player visibility
information (a record of which players are visible to each
player at that point in time), and direction information was
logged every 100ms. We then compared different lookahead
mechanisms using the same collected traces.

2) Defining a Accuracy Metric: For the second question,
we defined a miss or an error as the case when a player, on
waking up from sleep, finds that it is visible to some other
player.

The quality of the game is thus computed as

Accuracy = 1− Total sleep time with errors

Total sleep time
(2)

This accuracy metric has the advantage that it can be easily
measured using our visibility matrix. However, to support this
objective metric, we evaluated the impact of accuracy levels
on human quality perception through a small scale user study
(described in Section VI-F).

3) Running the Simulations: We conducted repeatable ex-
periments using a custom-built two-stage Java processor. The
first stage takes the player traces and generates a predicted
visibility map for various β values (200, 400, and 600ms).

In the second stage, we analyse the predicted visibility map
and determine the expected power savings and accuracy for
different algorithm variants for that particular trace. The power
savings is computed as:

% Power Saved =
total sleep period

total game period
(3)

This percentage can be converted to actual power numbers
by multiplying it with the actual power consumption of the
specific wireless interface.

4) Realistic Network & Game Characteristics: We col-
lected our game traces using two different wireless interfaces
that are commonly found on modern smartphones — 1)
802.11n WiFi, and 2) two different 3.5G cellular HSPDA
interfaces (2Mbps and 7.2Mbps).

We used laptops to run the Quake III Arena game client
as we did not want the limited graphics capabilities of cell
phones to hinder our network-interface focused experiments.
Our latencies to the game server were as follows: 3.55ms
average RTT (stdev. of 3.58ms) for WiFi with a 0% packet
loss, 84.35ms average RTT (stdev. of 34.63ms) for a 2Mbps
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3.5G connection with a 4% packet loss, and 62.29ms average
RTT (stdev. of 8.91ms) for a 7.2Mbps 3.5G connection with
a 1% packet loss.

We used three different game maps for all our experiments;
one created by the Quake III Arena developers themselves
(q3dm1), and two developed by us (longroom, bigroom2).
q3dm1 is a comparatively small map, while longroom is
roughly twice its size, and bigroom2 is twice as big as
longroom.

B. Experimental Evaluation Methodology
In order to address the third question, we measured the

actual power consumption of the network interface while the
game was being played for 5 minutes on a Lenovo T61 laptop.

C. Small Scale User Study Methodology
We answered the final question through a small scale user

study with 12 players to evaluate how the accuracy values
defined by our metric affects a human player’s perceived
game play experience. The participants in our study were all
graduate students in the computer science department. We first
trained the players on an unmodified game, and then had them
play the modified game several times with different α values.
For each game play, we asked them to rate how noticeable, if at
all, were any network related artifacts in the game, compared
to the unmodified version, on a 5-point Likert scale.

VI. EVALUATION RESULTS

A. Baseline - No Prediction
We first provide baseline power consumption values, using

trace-based evaluation, for the range of scenarios we consid-
ered. The client goes to sleep, for fixed sleep intervals of
200ms, 400ms, and 600ms, when no player is visible. The
simulation results are shown in Figure 3 for the q3dm1 map.
Substantial amounts of power (up to 50%) can be saved when
the number of players is small and the sleep interval is large.
However, this results in low accuracy value (< 70%) when
the number of players increases. We show, in the rest of this
section, that our dynamic lookahead algorithm can achieve
large power savings with low accuracy loss.

B. Experiments over Various Networks
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Fig. 4. Power Savings (3.5G Networks)
We performed the measurements using both the WiFi and

3.5G network traces while varying the parameter α (Sec-
tion III-D) from 0 to 1.

Figure 4 shows the results for 3.5G cellular networks for
the map q3dm1 using 4 players. “Dynamic” refers to our
dynamic algorithm where the maximum possible sleep interval
is selected. Each line shows a smooth variation of α from 0
(best quality and the leftmost point) to 1 (worst quality and
the rightmost point). The power saved is 14%, 11%, 9% and
7% for dynamic, static 200ms, static 400ms and static 600ms
respectively. The accuracy for all 4 cases is above 94%. For
almost all α values, the dynamic approach provides the highest
power savings with the highest accuracy.

The results for WiFi, which is not shown, is similar. Finally,
we also obtained similar patterns for both interfaces when
using the other two maps and player numbers (2, 8, and 16).
We omit those results due to space constraints.
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C. Effect of player density
The player density value is computed as follows:

% Player Density =
no. of P layers

Map′s V isibility Grid Area
(4)

Figure 5 shows our results. To make the plot more readable,
we normalised the player density by setting the lowest density
to 1. Hence, the scenario with the highest density has about
14 times more players per unit area than the scenario with the
lowest density.

The 5 plots represent 5 different α values. While it is
clear that a more aggressive setting (larger α) always saves
more power (at the expense of accuracy as shown earlier)
and vice versa, there are clear regions where the power
saved percentage falls into different effectiveness zones. For
example, player densities between 2 to 3 can save up to 42%
of the interface power while densities between 4 to 7 can save
at most 25% of the interface power.

D. Benefit of Our Dynamic Algorithm

Figure 6 plots the power savings achievable by our dynamic
algorithm and the 3 static algorithms for the full range of
player densities (α is set to 0 (best accuracy) for all four
algorithms and player densities are normalised as mentioned
previously). The dynamic algorithm performs consistently
the best over the entire range (≈50% savings at the lowest
density).
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E. Actual Power Measurements
In this section, we evaluate the correctness and accuracy

of the simulation by comparing it with actual power measure-
ments. Figure 7 shows the results. The actual power savings is
less than the predicted savings as fraction of the sleep interval
is taken for turning the interface on/off and that consumes
energy.

F. Impact of Errors on Perceived Quality
Figure 8 shows the user study results. We excluded two

players’ results that had outlier ratings (always good or con-
tradictory). The results show that most users found the system
very playable even when the α is around 0.5.

VII. DISCUSSION AND CONCLUSION

Our algorithm assumes that other players are moving in a
linear regular fashion. We are currently investigating various
mechanisms to reduce the impact of non-linear movements

Very Noticable

Noticable

Satisfactory

Barely Noticable

Unnoticable

 0  0.2  0.4  0.6  0.8  1

Alpha

Fig. 8. User Study - Quality Loss Versus Alpha

(eg. teleportation/spawn events). Also, we are studying various
mechanisms to improve the memory and processing efficiency
of our algorithm.

To conclude, we have presented our dynamic AoV looka-
head algorithm and demonstrated that it can save significant
amounts of power without compromising quality. In the future,
we plan to test this algorithm with other game genres.Finally,
we are in the process of integrating the various power savings
mechanisms for display, network and processing into a single
integrated framework.
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