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Despite the ubiquity of physical obstacles (e.g., buildings, hills, and blindages, etc.) in the real world, most of 
spatial queries ignore the obstacles. In this article, we study a novel form of continuous nearest neighbor queries 
in the presence of obstacles, namely continuous obstructed nearest neighbor (CONN) search, which considers 
the impact of obstacles on the distance between objects. Given a data set P, an obstacle set O, and a query line 
segment q in a two-dimensional space, a CONN query retrieves the nearest neighbor p  P of each point p' on q 
according to the obstructed distance, i.e., the shortest path between p and p' without crossing any obstacle in O. 
We formalize CONN search, analyze its unique properties, and develop algorithms for exact CONN query 
processing assuming that both P and O are indexed by conventional data-partitioning indices (e.g., R-trees). Our 
methods tackle CONN retrieval by performing a single query for the entire query line segment, and only 
process the data points and obstacles relevant to the final query result via a novel concept of control points and 
an efficient quadratic-based split point computation approach. Then, we extend our techniques to handle 
variations of CONN queries, including (i) continuous obstructed k nearest neighbor (COkNN) search which, 
based on obstructed distances, finds the k ( 1) nearest neighbors (NNs) to every point along q; and (ii) 
trajectory obstructed k nearest neighbor (TOkNN) search which, according to obstructed distances, returns the 
k NNs for each point on an arbitrary trajectory (consisting of several consecutive line segments). Finally, we 
explore approximate COkNN (ACOkNN) retrieval. Extensive experiments with both real and synthetic datasets 
demonstrate the efficiency and effectiveness of our proposed algorithms under various experimental settings.  

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Spatial 
databases and GIS; H.2.4 [Database Management]: Systems—Query processing  

General Terms: Algorithms, Design, Experimentation, Performance  
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1. INTRODUCTION  
The mobile communication revolution is in full swing. It is reported that the world 
reached over four billionth mobile connections in early 2009, and the number of global 
wireless connections is expected to reach six billion in 2013. More and more customers 
are experiencing the incredible benefits and conveniences only offered by wireless 
communication, and they can access information anywhere even on the move. 
Consequently, continuous queries are proposed to cater for the dynamic nature of the 
queries issued by clients who are moving [Terry et al. 1992; Chen et al. 2000]. Compared 
with traditional snapshot queries of constant settings, continuous queries require 
continuous evaluation and real-time updates of the results as the query settings change.  

Continuous nearest neighbor (CNN) search is such an example. It retrieves from a 
given data set P the nearest neighbor (NN) of every point on a specified query line 
segment q. Example applications for CNN queries include “report the nearest restaurant” 
submitted by a hungry tourist shopping on the Fifth avenue, and “find the closest exit” 
issued by a lost driver driving along the Highway 401. The result of a CNN query 
contains a set of p, I tuples, such that p  P is the NN of all points along the interval I  
q. Figure 1(a) illustrates an example CNN query, in which the data set P = {a, b, c, d, f, g} 
and the query line segment q = [s, e]. The output of the CNN query is {d, [s, s1], b, [s1, 
s2], g, [s2, s3], c, [s3, e]}, meaning that point d is the NN for any point along the 
interval [s, s1], point b is the NN for any point along the interval [s1, s2], and so on. The 
points s1, s2, s3 on q where there is a change of the NN object are called split points.  

Existing work on CNN search utilizes either Euclidean distance or network distance 
to measure the proximity of objects [Song and Roussopoulos 2001; Tao and Papadias 
2002; Tao et al. 2002; Feng and Watanabe 2002; Kolahdouzan and Shahabi 2005; Cho 
and Chung 2005]. However, there are applications where neither Euclidean distance nor 
network distance can represent the closeness between objects. For instance, battlefields 
usually have no fixed road network structure and soldiers would enjoy certain degrees of 
free movement until they hit obstacles (e.g., blindages, etc.). Another example is that 
mobile robots help rescue survivors after a disaster (e.g., a devastating earthquake). The 
robots equipped with location-sensing ability as well as visual and other sensors can 
burrow into the rubble and try to locate potential survivors, which can facilitate the 
excavation without further injuring survivors. Theoretically, the robot navigating the 
space can take any direction, but the existence of physical obstacles (e.g., rocks, etc.) 
affects the real distance that a robot has to travel in order to reach its destination. To this 
end, in this article, we study a novel form of CNN queries in an obstructed space, namely, 
continuous obstructed nearest neighbor (CONN) search, where the object movement is 
constrained by the obstacles.  

Compared with the Euclidean space, an obstructed space considers the presence of 
obstacles that may block the immediate path from one object to another and hence the 
Euclidean distance between them does not always indicate the actual travelling distance. 
On the other hand, compared with the network space, it does not assume any underlying 
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Fig. 1. Example of CNN and CONN queries  

 
 

fixed network structure and still entitles the objects to free movement. Correspondingly, 
the distance between two objects in the obstructed space is measured based on the 
obstructed distance, i.e., the length of the shortest path connecting two objects without 
crossing any obstacle. Take the points a and g shown in Figure 1(b) as an example. Their 
Euclidean distance is the length of the line segment [a, g], whereas their obstructed 
distance is the summation of the lengths of the line segment [a, m] and the line segment 
[m, g], because of the obstruction of obstacle o4.  

Given a data set P, an obstacle set O, and a query line segment1 q in a 2-dimensional 
space, a CONN query retrieves the NN of each point on q according to the obstructed 
distance, i.e., the obstructed nearest neighbor (ONN) [Zhang et al. 2004; Xia et al. 2004] 
for every point along q. Specifically, CONN retrieval aims to find a set of p, R tuples, 
where p  P is the ONN for any point in the interval R  q. Continue the example in 
Figure 1(b), with P = {a, b, c, d, f, g}, O = {o1, o2, o3, o4} (denoted by shaded rectangles2), 
and q = [s, e]. Note that the placement of data points and query line segment q in Figure 
1(b) is the same as that in Figure 1(a). The CONN query returns {a, [s, s1'], b, [s1', s2'], 
g, [s2', s3'], c, [s3', e]}, which means that point a is the ONN for each point along 
interval [s, s1'], point b is the ONN for each point along interval [s1', s2'], and so forth. 
Also notice that, the split points (i.e., s1, s2, and s3) of the CNN search are different from 
those (i.e., s1', s2', and s3') generated by the CONN retrieval. Moreover, their answer 
points3 vary as well. For instance, point d is the NN to point s in a Euclidean space, 
whereas it is not the ONN of s in an obstructed space, due to the block of obstacle o3.  

CONN search is useful for many applications. Consider an example application 
scenario. A zoologist in wildlife reserve may want to find the nearest observation points 
where he/she can most likely observe a certain rare animal (e.g., panda) along his/her 
trail4, defined by a starting point s and an ending point e. However, there may exist some 
obstacles (e.g., hills, rivers, etc.) on his/her route so that he/she has to detour these 
obstacles to reach the destination. In this case, a CONN query can be employed to find 
out the nearest observation point(s) for each (sub) route along a specified zoologist 
traveling route. Although conventional CNN retrieval can also be applied to this scenario, 
the result of CONN search provides more accurate information in terms of distance, since 
the CONN query considers obstacles. In addition, in view of the ubiquity of physical 
obstacles in the real world, the CONN query is obviously important, as a stand-alone tool 
or a stepping stone, in location-based commerce, geographic information systems, mobile 
                                                           
1In this article, we assume that any query line segment does not intersect/cross any obstacle.  
2Although an obstacle might be in any shape (e.g., triangle, etc.), we assume it is a rectangle in this article.  
3In the rest of this article, we refer to the data objects/points in the final query result as answer objects/points.  
4While a trail may not be a straight line, it can be decomposed into multiple line segments.  



XX:4      ●      Y. Gao et al.  
 

 
ACM Transaction on Database Systems, Vol. XX, No. X, Article XX, Publication date: XXXXXXXX 20XX.  

computing, and complex spatial data analysis/mining involving obstacles.  
To answer efficiently CONN search, two challenging issues have to be addressed.  
Challenge I: How to calculate the obstructed distance efficiently?   Based on the 

existing work related to robot motion planning, the lower bound of obstructed distance 
computation is O (n  logn), where n is the total number of obstacle vertexes [Berg et al. 
2000]. Although an asymptotically optimal algorithm has been devised in [Hershberger 
and Suri 1999], it is very complex and has a large hidden constant, which makes it 
impractical. In practice, a popular and practical method based on a visibility graph VG 
[Berg et al. 2000] has O (n2  logn) as the worst case time complexity. Compared with the 
Euclidean distance computation that can be completed in constant time, the calculation 
cost of the obstructed distance is much more expensive. Therefore, it is not feasible to 
compute the obstructed distance from the query point to every data point. Furthermore, 
VG-based approaches need to maintain a visibility graph, which requires O (n2) space in 
the worst case. The high space complexity deteriorates its scalability, not to mention its 
extremely high update cost. Thus, it is not always applicable to store the whole VG in 
main memory or pre-materialize VG (as in [Tung et al. 2001a]).  

We try to tackle this issue from two aspects, i.e., reducing the number of obstructed 
distance calculations and simplifying the computation of obstructed distances. The first 
objective is achieved via effective pruning techniques that can filter out unqualified data 
points and obstacles as early as possible. In other words, we prune away a large amount 
of non-qualifying data points and obstacles and only process/evaluate the data points and 
obstacles relevant to the final query result. As for the second target, we construct a local 
VG to simplify the process of obstructed distance calculation. Initially, the local visibility 
graph only contains two endpoints of a given query line segment. As we process the 
query and evaluate data points, we incrementally insert the obstacles that may affect the 
obstructed distances from the query point to the evaluated points into the local visibility 
graph. Owing to the small size of the local VG5 (to be demonstrated by our experimental 
results), the insertion/deletion/update operation is efficient.  

Challenge II: How to answer a CONN query efficiently?   A naive approach is to 
perform an ONN query [Zhang et al. 2004] at every point of a specified query line 
segment q. However, this method is infeasible since the number of points on q is infinite. 
Given the fact that nearby points along the query line segment may share the same ONN, 
we adopt an incremental approach to fine-tune the result upon the evaluation of each new 
data point using the concept of split point. Nevertheless, due to the existence of obstacles, 
existing split point formation algorithms developed for CNN search [Tao et al. 2002] 
cannot be applied directly. Hence, we introduce, in this article, a novel concept, namely 
control point, to facilitate the obstructed distance computation, and develop a quadratic-
based approach to identify split points. Specifically, we utilize a quadratic function to 
compute the split points, and exploit quadratic characteristics to quickly determine the 
intervals (bounded by the split points) for which a data point is closer to than another. 
Moreover, several pruning strategies and optimizations are proposed to further improve 
the search performance.  

In addition to CONN retrieval, in this article, we also investigate two variations of 
CONN queries, including (i) continuous obstructed k nearest neighbor (COkNN) search, 
which retrieves the k ( 1) obstructed nearest neighbors (ONNs) of every point on a given 

                                                           
5The size of the local visibility graph VG depends on several factors, including the distribution/position of a 
specified query line segment q, the length of q, and the distribution of a given data set P and a given obstacle set 
O. Note that, in the worst case, the size of the local VG might be similar to that of the complete VG.  
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query line segment; and (ii) trajectory obstructed k nearest neighbor (TOkNN) search, 
where the query input is an arbitrary trajectory6 (instead of a single line segment), and 
the goal is to find the k ONNs for every point along the query trajectory. In addition, as 
opposed to the exact COkNN query, approximate COkNN (ACOkNN) retrieval is 
explored in this article as well. Correspondingly, our techniques are extended to support 
COkNN search, TOkNN search, and ACOkNN search, respectively.  

In brief, the key contributions of this article can be summarized as follows.  

 We formalize CONN search, a new addition to the family of spatial queries with 
obstacle constraints. To our knowledge, this work is the first attempt on this problem.  

 We introduce the concept of control point that significantly simplifies the 
computation of the obstructed distance between two objects, and develop a quadratic-
based method to identify split points by solving quadratic inequalities.  

 We propose an efficient CONN search algorithm, which handles the CONN retrieval 
by performing a single query for the whole query line segment and only processes the 
data points and obstacles relevant to the final query result.  

 We tackle variants of CONN queries, including COkNN search and TOkNN search, 
and present an efficient approach to answer ACOkNN retrieval.  

 We conduct extensive experimental evaluation using both real and synthetic datasets 
to demonstrate the efficiency and effectiveness of the proposed algorithms under a 
variety of experimental settings.  

The rest of this article is organized as follows. Section 2 surveys related work. Section 
3 formulates the CONN query, introduces the concept of control point, and presents the 
split point computation approach. Section 4 proposes efficient CONN query processing 
algorithms, assuming that the data set P and the obstacle set O are indexed by two 
separate R-trees [Guttman 1984; Sellis et al. 1987; Beckmann et al. 1990] and a unified 
R-tree, respectively. Section 5 extends our solution to handle CONN query variants (viz., 
COkNN search and TOkNN search). ACOkNN retrieval is discussed in Section 6. Section 
7 experimentally evaluates the performance of the proposed algorithms, and reports 
experimental results and our findings. Finally, Section 8 concludes the article with some 
directions for future work.  

2. RELATED WORK  
In this section, we review the existing work related to CONN queries, namely, CNN 
search, spatial queries under obstacle constraints, and main-memory based obstacle paths.  

2.1 Continuous Nearest Neighbor Search  
With the proliferation of mobile e-commerce and mobile computing, CNN search 
becomes increasingly important. Sistla et al. [1997], for the first time, identify the 
significance of CNN retrieval in spatio-temporal databases. In that pioneering work, they 
describe modeling methods and query languages for the expression of CNN queries, but 
do not present processing methods. Song and Roussopoulos [2001] propose the first 
algorithm for CNN query processing by employing periodical sampling technique. In 
particular, the method incrementally computes the output at predefined sample points of 
the query line segment, and utilizes previous results to avoid total recomputation. 
However, its performance highly depends on the sampling rate, and thus the accuracy 

                                                           
6In this article, for simplicity, we model a trajectory with a sequence of line segments. If the trajectory is a 
smooth curve, we can model it with a number of short line segments.  



XX:6      ●      Y. Gao et al.  
 

 
ACM Transaction on Database Systems, Vol. XX, No. X, Article XX, Publication date: XXXXXXXX 20XX.  

 

N4

N3

N5

N6

N1

N2

2 4 6 8 100

2

4

6

8

10

x

y

a

b

d

f

g h

i

j

c

k

e

query line segment q = [s, e]

s

q

SLMAXD = dist(d, e)

            

N4

N3

N5

N6

N1

N2

2 4 6 8 100

2

4

6

8

10

x

y

a

b

d

f

g h

i

j

c

k

s1

e

query line segment q = [s, e]

s

q

SLMAXD = dist(s1, j)

⊥(d, j)

 
(a) After processing d                                             (b) After processing j  

 
Fig. 2. Example of CNN algorithm  

 
 

cannot be guaranteed. Specifically, a low sampling rate improves the performance but 
may result in incorrect results, whereas a high sampling rate incurs high computational 
overhead but decreases the possibility of producing incorrect results. In any case, there is 
no accuracy guarantee since even a high sampling rate may also miss some results. 
Therefore, the sampling based approach cannot be adopted to tackle exact CONN search, 
the focus of this article.  

In order to enable exact CNN retrieval, two algorithms for CNN queries, using R-tree 
as the underlying index structure, are proposed [Tao and Papadias 2002; Tao et al. 2002]. 
The first algorithm [Tao and Papadias 2002] is based on the concept of time-
parameterized (TP) queries, which treats a query line segment as the moving trajectory of 
a query point. Hence, the closest object to the moving query point is valid only for a 
limited duration, and a new TP query is issued to retrieve the next nearest object once the 
valid time of current closest object expires, i.e., when a split point is reached. Although 
the approach avoids the drawbacks of sampling, it needs to issue m TP queries to obtain 
the final query result, where m is the number of split points along the query line segment. 
Such a recomputation leads to prohibitive computational cost. In order to improve the 
search performance, the second algorithm, proposed later in [Tao et al. 2002], retrieves 
all the answer objects for the whole query line segment by navigating R-tree only once, 
which is also the objective of our solution (i.e., the proposed CONN algorithm) presented 
in this article.  

Since the CONN algorithm proposed in this article and CNN algorithm presented in 
[Tao et al. 2002] share the similar principle, we illustrate the basic idea of CNN 
algorithm using a running example. Note that they aim at different queries and have 
different split point computation approaches. As shown in Figure 2, a CNN query is 
issued at a line segment q = [s, e], with a dataset P = {a, b, c, d, f, g, h, i, j, k}. While the 
CNN algorithm developed in [Tao et al. 2002] supports both the best-first [Henrich 1994; 
Hjaltason and Samet 1999] and depth-first [Roussopoulos et al. 1995; Cheung and Fu 
1998] traversal paradigms, we assume that, for simplicity, the data points in P are visited 
in a best-first fashion, i.e., those closer to q are evaluated earlier. For each evaluated point 
p  P, the algorithm finds the set of points along q that are covered by p, i.e., being 
closest to p, discards the points that will not cover any point on q, and fine-tunes the 
covering relationship7 during the traversal.  
                                                           
7If a point p is the nearest neighbor (NN) of any point along the interval [si, si+1], we say that p covers every 
point on [si, si+1]. Please refer to [Tao et al. 2002] for the details of covering relationship.  
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Initially, the result list is set to {, [s, e]}, which indicates that the entire query line 
segment q is not covered by any data point, and the pruning metric SLMAXD that maintains 
the maximal distance between any point along q and its current NN is set to . Then, the 
traversal of P starts. When point d, the first data point visited, is evaluated, it covers the 
whole query line segment. Thus, the result list is updated to {d, [s, e]}, and SLMAXD is 
changed to dist(d, e)8, as illustrated in Figure 2(a). Next, point j is evaluated. As it is 
closer to e than its current NN (i.e., d), the result list is updated to {d, [s, s1], j, [s1, e]} 
and SLMAXD is set to dist(s1, j), as depicted in Figure 2(b). Note that, s1 is the intersection 
between the query line segment q and the perpendicular bisector of line segment [d, j] 
(denoted as  (d, j)), meaning that points along segment [s, s1] are closer to d, while 
points along segment [s1, e] are closer to j (see Figure 2(b)). Thereafter, point c is 
evaluated. Since its minimal distance to q exceeds the current SLMAXD, c will not 
invalidate the current covering relationship of any answer point and hence can be pruned 
away safely. Here, the algorithm terminates because all the unexamined entries are 
guaranteed to have their minimum distances to q greater than SLMAXD.  

In addition to Euclidean spaces, CNN search in road networks (i.e., network spaces) 
has been studied as well. The first solution to CNN queries in road networks is proposed 
in [Feng and Watanabe 2002]. Nevertheless, it only answers CNN retrieval and does not 
support CkNN (k > 1) search. In view of this, Kolahdouzan and Shahabi [2005] present 
two methods to address CkNN queries in road networks, namely, Intersection 
Examination (IE) and Upper Bound Algorithm (UBA). IE first finds the k NNs of all 
nodes on a path and then, for those adjacent nodes whose NNs are different, it finds the 
intermediate split points, and finally, it computes the k NNs of the split points using the k 
NNs of the surrounding nodes. The intuition behind UBA is that if an object moves 
slightly, its k NNs will probably remain the same. Consequently, UBA improves the 
performance of IE via restricting the evaluation of kNN queries to those necessary 
locations only. The same problem is also solved in [Cho and Chung 2005], by retrieving 
the kNN sets of all network nodes in the query path and combining them with the data 
objects falling in the path. It can be easily proven that the resulting set contains the k NNs 
of any point in the query path. Note that, the problem of CNN search in road networks is 
inherently different from CONN retrieval studied in this article. First, it focuses on the 
network space, where objects are restricted to move only on pre-defined trajectories/paths 
that are specified by the underlying network (e.g., road, railway, etc.). This means that 
the network distance between objects depends on the connectivity of the network rather 
than the object locations. Second, it does not consider the impact of obstacles in terms of 
distance. Consequently, the existing methods for CNN search in road networks are 
inapplicable to CONN retrieval.  

Recently, the CNN monitoring problem, which monitors the answer objects to a CNN 
query for a given duration, has also been investigated. Based on the concept of 
monitoring region, many monitoring algorithms (e.g., CPM [Mouratidis et al. 2005a], 
SEA-CNN [Xiong et al. 2005], and YPK-CNN [Yu et al. 2005]) have been proposed. 
Here, the monitoring region corresponding to a query point refers to an area inside which 
the movement of objects might affect the query result. Thus, those objects that are always 
outside the monitoring region could be safely discarded. Other variants of the CNN 
monitoring include (i) CNN monitoring in road networks [Mouratidis et al. 2006; Liu et 
al. 2007], where the distance between two objects is defined as their shortest path length; 
(ii) CNN monitoring in distributed environments [Mouratidis et al. 2005b; Wu et al. 

                                                           
8Without loss of generality, dist(pi, pj) denotes the Euclidean distance between points/objects pi and pj.  
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2007], where the optimization target is to reduce the communication cost between the 
central query processor and the data objects; and (iii) CNN monitoring over sliding 
windows [Mouratidis and Papadias 2007], where data arrive in the form of streams, and 
each data item is valid only while it belongs to a sliding window. In addition, CkNN 
retrieval over moving objects has been explored in [Iwerks et al. 2003; Li et al. 2004; 
Huang et al. 2009] as well. It is worthwhile to point out that, these works assume that 
data objects are moving while the query object is static/moving. Our problem studied in 
this article (i.e., CONN search), on the other hand, assumes that the query object is 
moving while data objects are static. Moreover, these works target at the Euclidean space 
but do not take into account the obstacle space, where the obstacle distance (instead of 
the Euclidean distance) is employed to indicate the proximity between objects. Hence, the 
existing approaches for them are not directly applicable to CONN retrieval.  

Another closely related work is MkNN query that finds the k NNs of a moving query 
point. A common practice is based on safe region; that is an area associated with an 
answer set within which the answer set remains valid for current MkNN query. In other 
words, safe-region-based approaches for MkNN query locate the answer set based on the 
current location of moving query point, and derive corresponding safe region. As long as 
the query point stays inside the safe region, the answer remains valid. Once the query 
point moves out of the safe region, another answer with its associated safe region is 
returned. For example, Voronoi Diagram [Okabe et al. 2000] is an example of safe region, 
and can be used to tackle the M1NN query, which involves (i) locating which Voronoi 
cell the specified query point falls into; and (ii) identifying the associated object. A 
natural generalization of Voronoi Diagram is the kth-order Voronoi Diagram (kVD), 
which can be utilized to handle MkNN queries in the same manner. Unfortunately, they 
both have several deficiencies, including (i) expensive precomputation, (ii) inefficient 
update operations, and (iii) no support for dynamical changing of k. Subsequently, Zhang 
et al. [2003] develop an algorithm, namely Retrieve-Influence-Set kNN (RIS-kNN), to 
locally compute the kVD using a spatial index (e.g., R-tree). RIS-kNN mitigates the 
above precomputation and update problems (i.e., deficiencies (i) and (ii)). However, it 
still does not support dynamical changing of k. Recently, Nutanong et al. [2008] propose 
a novel approach, called V*-Diagram, which is a safe-region-based technique for 
processing MkNN queries. The V*-Diagram addresses all the above three deficiencies, 
i.e., it requires no precomputation, adapts to changes in the dataset, and supports 
dynamically changing k values. A good survey of the safe-region-based techniques for 
handling MkNN queries can be found in [Nutanong et al. 2010]. It is worth noting that, 
the above safe-region-based techniques (for MkNN queries) differ from our approach for 
CONN search proposed in this article. First, an obvious advantage of the safe-region-
based techniques is that the query trajectory/path does not need to be known in advance, 
i.e., the location of query object is updated in a periodic manner. In contrast, our work 
presented in this article assumes that the query trajectory is known in advanced, 
represented by a line segment or a set of line segments. Second, the safe-region-based 
techniques continuously produce answers, whereas our approach returns all answers for a 
given query trajectory only once. Third, the safe-region-based techniques ignore the 
impact of obstacles in terms of distance, which has to be considered in our work. Thus, 
the existing safe-region-based techniques are not directly applicable to CONN retrieval. 
Note that, it would be an interesting and challenging topic to investigate the safe-region-
based methods for answering CONN search. However, we would like to leave it to our 
future work due to the focus of this article (i.e., how to efficiently find out all the answer 
objects for the whole query line segment or query trajectory by navigating R-tree only 
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once, as pointed out earlier) and the space limitation.  

2.2 Spatial Queries under Obstacle Constraints  
The existence of obstacles could affect the distance, visibility, and spatial clustering of 
spatial objects. First, in terms of distance, Zhang et al. [2004] and Xia et al. [2004] study 
the obstructed nearest neighbor (ONN) query where, given a data set P, an obstacle set O, 
and a query point p, the goal is to find the k ( 1) objects in P that have the smallest 
obstructed distances from p. An example ONN query issued at point p is depicted in 
Figure 3(a), with P = {a, b, c, d} and O = {o1, o2}. Point a having the minimal obstructed 
distance to p is the final answer point. Existing ONN search algorithm utilizes 
conventional NN retrieval to retrieve objects close to the query point as candidates, and 
terminates when the retrieved NN object has its Euclidean distance to the query point 
larger than the maximum obstructed distance of the candidates. Apart from ONN search, 
Zhang et al. [2004] also propose algorithms for processing other popular spatial queries, 
including range search, e-distance joins, and closest pairs, in the presence of obstacles. 
More recently, Li et al. [2010] propose the concept of obstacle-free safe region for 
handling the MkNN query in the obstructed space. They assume, however, unknown 
query trajectory instead of known one that is assumed in this article.  

A CONN query processing algorithm has been developed in [Gao and Zheng 2009]. 
Nonetheless, this article extends the initial study, via (i) formulating and tackling two 
variations of CONN queries, namely, continuous obstructed k nearest neighbor (COkNN) 
search that retrieves the k ( 1) ONNs of every point on a given query line segment and 
trajectory obstructed k nearest neighbor (TOkNN) search which returns the k ONNs for 
every point along a specified query trajectory consisting of several consecutive line 
segments; (ii) formalizing approximate COkNN (ACOkNN) search and proposing a 
method for fast ACOkNN retrieval; (iii) conducting a more comprehensive performance 
evaluation that incorporates the new classes of queries; and (iv) providing a more 
complete review of the related work, and including more illustrative examples, and more 
formal proofs.  

Second, in terms of visibility, two objects are visible to each other iff the straight line 
segment connecting them does not pass through any obstacle. Nutanong et al. [2007] 
introduce visible nearest neighbor (VNN) search to find the NN object that is visible to a 
given query point. An example of VNN retrieval issued at a query point p is illustrated in 
Figure 3(b), where the shaded area represents the visible region of p within which all the 
objects/points are visible to p. Point c that is the only point inside p’s visible region is the 
answer point. A VNN query algorithm, based on the fact that a faraway object cannot 
affect the visibility of a nearby object, is proposed in [Nutanong et al. 2007]. The basic 
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idea is to perform NN search and check visibility condition in an incremental manner. 
However, the algorithm can only support VNN retrieval for a fixed point but not a line 
segment. Later, Gao et al. [2009a] explore visible reverse nearest neighbor (VRNN) 
search where, given a data set P, an obstacle set O, and a query point p, the goal is to 
retrieve all the points in P that have p as their VNN. Take a VRNN query issued at point 
p as an example (shown in Figure 3(b)). Since no single point takes p as its VNN, the 
VRNN result set is empty. An algorithm for VRNN query processing, assuming that both 
P and O are indexed by R-trees, is presented in [Gao et al. 2009a]. The algorithm follows 
a filter-refinement framework, and requires no pre-processing. Specifically, it identifies a 
candidate set during the filter step, and filters out false hits in the refinement step, with 
these two steps integrated into a single R-tree traversal. Furthermore, pruning techniques 
based on half-plane properties (as [Tao et al. 2007]) and visibility check are developed to 
further improve the search performance. Along this line, Gao et al. [2009b] also study 
continuous visible nearest neighbor (CVNN) search where, given a data set P, an 
obstacle set O, and a query line segment q, the goal is to return the VNN of every point 
on q. Consider, for example, Figure 4, which uses the same data set P = {a, b, c, d, f, g}, 
obstacle set O = {o1, o2, o3, o4}, and query line segment q = [s, e] as Figure 1(b). The 
CVNN query returns {a, [s, s1''], c, [s1'', s2''], g, [s2'', s3''], c, [s3'', e]}, indicating 
that point a is the VNN for any point along interval [s, s1''], point c is the VNN for any 
point along interval [s1'', s2''], and so on. In [Gao et al. 2009b], a CVNN search algorithm, 
assuming that both P and O are indexed by R-trees, is proposed. The basic idea is to 
traverse data points in P based on ascending order of their mindist9 to q. For each data 
point p  P visited, the algorithm evaluates p’s impact on the current query result. Like 
CONN retrieval, CVNN search takes obstacles into consideration and assumes a known 
query line segment. However, they are fundamentally different. First, they adopt different 
distance metrics. CONN retrieval employs obstructed distance to measure the distance 
between objects. On the other hand, CVNN search utilizes Euclidean distance to indicate 
the proximity of objects. Second, their query results are different. CONN retrieval returns 
a set of p, R tuples, where point p is the ONN for each point on the interval R; while the 
output of CVNN search is a set of p', R' tuples, in which point p' is the VNN for every 
point on the interval R'. It is important to note that, if a given data set P is not empty, p 
can not be empty but p' might be empty due to the obstruction of obstacles. Last but not 
the least, CONN retrieval focuses on the impact of obstacles in terms of distance, 
whereas CVNN search considers the impact of obstacles in terms of visibility. Therefore, 

                                                           
9The mindist is a distance metric. Specifically, mindist(p, N) corresponds to the minimal Euclidean distance 
between a data point/object p and any data point/object in (the subtree of) node N. Please refer to [Roussopoulos 
et al. 1995; Hjaltason and Samet 1999] for details.  
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CONN retrieval differs from CVNN search, and algorithms developed for CVNN 
retrieval could not be directly applied to answer CONN search. More recently, Xu et al. 
[2010] explore group visible nearest neighbor (GVNN) where, given a data set P, an 
obstacle set O, and a query set Q, the goal is to retrieve p  P such that (i) p is visible to 
any query point qi  Q, and (ii) qi  Q dist(p, qi) is minimized.  

Third, the problem of spatial clustering in the presence of obstacles has attracted 
considerable attention in recent years. It divides a set of 2D data points into smaller 
homogeneous groups (i.e., clusters) by considering the impact of obstacles. Handling 
these constraints can lead to effective and fruitful data mining by capturing application 
semantics [Tung et al. 2001b]. A large number of clustering algorithms with obstacle 
constraints have been developed in the literature, including AUTOCLUST+ [Estivill-
Castro and Lee 2000], COD_CLARANS [Tung et al. 2001a], DBCLuC [Zaiane and Lee 
2002], DBRS+ [Wang et al. 2004], DBRS_O [Wang and Hamilton 2005], and 
DBSCAN_MDO [Park et al. 2007], etc.  

2.3 Main-Memory Based Obstacle Paths  
Main-memory based shortest path problem in the presence of obstacles has been well-
studied in computational geometry [Berg et al. 2000], and the most common approach is 
based on the visibility graph VG. A VG is constructed based on an obstacle set O and the 
source/destination point ps/pe. Its nodes correspond to the vertexes of the obstacles or 
source/destination point. Two nodes ni, nj are connected if and only if the straight line 
segment connecting them does not cross any obstacle interior.  

An example VG is shown in Figure 5, where shaded polygons represent obstacles. 
Nodes n2 and n7 are not connected directly as the corresponding straight line segment [n2, 
n7] intersects with obstacle o2. There are multiple paths available from the source point ps 
to the destination point pe, such as the path via nodes n1, n6 and the path via nodes n1, n8, 
and n7. Among all the available paths, the one with the shortest distance is returned, i.e., 
the path via nodes n4, n3, n5 and n6 (denoted by thick line in Figure 5). Since the shortest 
path contains only the edges of VG (as proved in [Berg et al. 2000]), a popular and 
practical obstacle path (i.e., shortest path) computation method proceeds in two steps. 
The first step constructs VG, which takes O (n2  logn) based on rotational plane sweep 
[Sharir and Schorr 1986], and can be optimized to O (m + n  logn) with an optimal 
output-sensitive algorithm [Ghosh and Mount 1987]. Here, n is the number of nodes in 
VG and m is the number of edges in VG. The second step computes the shortest path in 
VG using Dijkstra’s algorithm [Dijkstra 1959], which incurs O (m + n  logn) time. Thus, 
the time and space complexities of the approach are O (n2  logn) and O (n2), respectively. 
Obviously, the method has a poor scalability and cannot guarantee the efficiency when a 
large number of obstacles are considered. As mentioned in Section 1, we, in this article, 
efficiently calculate the obstacle distance (i.e., the shortest path length) by reducing the 
number of obstructed distance calculations and simplifying the computation of obstructed 
distances. In addition, the calculation of the shortest path distance with obstacles has also 
been discussed in [Okabe et al. 2000], using the shortest path voronoi diagram with 
obstacles.  

3. PRELIMINARIES  
In this section, we provide the formal definition of CONN search, introduce the concept 
of control point, and present the quadratic-based split point computation approach that is 
crucial to our proposed CONN search algorithm. Table I summarizes the notations used 
in the rest of this article.  
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Table I. Symbols and descriptions 

Notation Description 
P The set of data points p in a two-dimensional space
O The set of obstacles o in a two-dimensional space 
Tp The R-tree on P 
To The R-tree on O 
q The query line segment with q = [s, e] 

VG The visibility graph 
RL The result list of a CONN query  

 
Fig. 6. Example of control point list  

 
 

3.1 Problem Formulation  
Given a set of data points P = {p1, p2, , pn}, a set of obstacles O = {o1, o2, , om}, and 
a query line segment q = [s, e] in a two-dimensional space, the problem of CONN 
retrieval is formulated as follows.  

Definition 3.1 (Visibility [Gao et al. 2009a]).   Given p, p'  P and O, p and p' are 
visible to each other iff there is no any obstacle o in O such that the straight line 
connecting p and p', denoted as [p, p'], crosses o, i.e.,  o  O, [p, p'] ∩ o = .  

Definition 3.2 (Visible Region).   Given p  P and q, the visible region of p over q, 
denoted by VRp,q, is defined as the set of intervals R  q such that p is visible to all the 
points along R.  

In a Euclidean space, any two objects are visible to each other because there are no 
obstacles. However, this statement does not necessarily hold in an obstructed space. As 
shown in Figure 6, the visible region VRp,q of p over q is interval [s, s1], and the rest (i.e., 
interval [s1, e]) is blocked by obstacles10 o1 and/or o2. Since point s2 on q is not located 
inside p’s visible region over q, i.e., s2  VRp,q, it is invisible to point p. The visible 
region computation algorithm has been proposed in [Gao et al. 2009a; Gao et al. 2009b].  

Definition 3.3 (Obstacle-Free Path).   Given p, p'  P and O, a path connecting p and 
p' sequentially passes n nodes d1, d2, …, dn (i.e., n vertexes of obstacles in O), denoted as 
P(p, p') = {d1, d2, …, dn}. Let d0 = p, dn+1 = p', and assume P(p, p') reaches di before di+1. 
P(p, p') is an obstacle-free path (path for short) iff  i  [0, n], di and di+1 are visible to 
each other. Its length |P(p, p')| = ∑i[0, n] dist(di, di+1).  

Definition 3.4 (Shortest Obstacle-Free Path).   Given p, p'  P, the shortest 
obstructed-free path (shortest path for short) from p to p', denoted by SP(p, p'), is the 
(obstacle-free) path connecting p and p' that has the smallest length, i.e.,  P(p, p'), |P(p, 
p')|  |SP(p, p')|.  

Definition 3.5 (Obstructed Distance [Tung et al. 2001a]).   Given p, p'  P, the 
obstructed distance between p and p', denoted by ||p, p'||, is defined as the length of the 
shortest (obstacle-free) path SP(p, p') from p to p', i.e., ||p, p'|| = |SP(p, p')|.  

Given a set of obstacles, there are usually multiple obstacle-free paths from a 
specified point p to another point p'. As an example, in Figure 6, the path P(p, e) = {c, b} 
passes c and b before reaching e; and P(p, e) = {d} provides an alternative obstacle-free 
path connecting p and e. Among all the obstacle-free paths from p to e, the one with the 

                                                           
10For simplicity, we utilize line segments but not rectangles to represent obstacles in the rest of this article, 
although the proposed techniques are applicable to rectangles that consist of multiple line segments.  
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minimal distance, i.e., P(p, e) = {d}, is the shortest path SP(p, e). The obstructed distance 
between p and e is the length of the shortest path that connects p and e, i.e., ||p, e|| = |SP(p, 
e)| = dist(p, d) + dist(d, e).  

Definition 3.6 (Obstructed Nearest Neighbor).   Given p'  P and p  P, p' is the 
obstructed nearest neighbor (ONN) of p iff  p''  P, ||p', p||  ||p'', p||.  

Definition 3.7 (Continuous Obstructed Nearest Neighbor Query).   Given P, O, and q, 
a continuous obstructed nearest neighbor (CONN) query returns the result list RL that 
contains a set of pi, Ri (i  [1, t]) tuples, such that (i) ∪i[1, t] Ri = q; (ii)  i, j  [1, t] (i 
≠ j and |i  j| ≠ 1, i.e., Ri and Rj are discontinuous), Ri ∩ Rj = ; (iii)  i  [1, t), Ri (= 
[Ri.l, Ri.r]) ∩ Ri+1 (= [Ri+1.l, Ri+1.r]) = Ri.r; and (iv)  pi, Ri  RL, pi is the ONN of every 
point along interval Ri.  

In this article, we focus on efficient processing of CONN search and its variations.  

3.2 Split Point Computation  
As mentioned in Section 1, a naive CONN query processing approach is to perform ONN 
retrieval at every point of a given query line segment q. Unfortunately, it is not feasible 
due to the unlimited number of points on q. It is observed that nearby points along q 
normally share the same ONN. Take a result list RL (= ∪i[1, t] pi, Ri) for a CONN query 
as an example. The object pi is the ONN for each point on interval Ri. Thus, it is only 
necessary to issue ONN search at those points where ONN objects change. In view of this, 
the concept of split point is introduced, as defined in Definition 3.8.  

Definition 3.8 (Split Point for CONN Search).   Given two points p, p'  P (p ≠ p') 
and q = [s, e], if p is the ONN to any point along [s, s1] and p' is the ONN for every point 
on [s1, e], point s1 is called a split point where the ONN corresponding to q changes.  

Based on the concept of split point, the CONN retrieval can be conducted as follows. 
Initially, none of the data points is evaluated and the result list RL = , q. When the 
first data point p is evaluated, p is definitely the ONN for any point along q, i.e., RL = {p, 
q}. As more and more data points are processed, split points are generated and q will be 
decomposed into several smaller segments/intervals with each having its own ONN. In 
other words, the evaluation of a new data point p' is converted to check whether the 
presence of p' introduces any new split point on a region/interval Ri contained in the 
current result list RL. Nevertheless, due to the existence of obstacles, the computation of 
split points for the CONN query is not trivial, and it is different from that for CNN search. 
To facilitate the formation of split points, in this article, we introduce a novel concept, 
namely, control point, which is defined in Definition 3.9.  

Definition 3.9 (Control Point).   Given p  P, O, and an interval R, a point cp is the 
control point of p over R, denoted as CPp,R, iff (i) the shortest path from p to any point on 
R passes through cp; and (ii) cp is visible to every point along R.  

Note that, the control point cp of a given data point p over a specified interval R is 
either the data point p or a vertex of the obstacle that locates on the shortest path from p 
to any point on R. As illustrated in Figure 6, all the points on interval R = [s1, s2] have 
their shortest paths to p passing through point a, and a is visible to every point along R. 
Thus, point a is the control point of point p over the interval R, i.e., CPp,R, according to 
Definition 3.9. Based on the concept of control point, each point p has its control point 
list over q, denoted as CPLp,q, formalized in Definition 3.10. In order to utilize the 
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concept of control point to facilitate the computation of obstructed distance, we reformat 
the result list RL into ∪i[1, t] pi, cpi, Ri such that point pi is the ONN of every point 
along interval Ri, and point cpi is the corresponding control point of pi over Ri. The 
detection algorithm for control points will be presented in Section 4.  

Definition 3.10 (Control Point List).   Given p  P and q, the control point list of p 
over q, denoted by CPLp,q, contains a set of cpi, Ri (i  [1, t']) tuples, such that (i) ∪i[1, 

t'] Ri = q; (ii)  i, j  [1, t'] (i ≠ j and |i  j| ≠ 1), Ri ∩ Rj = ; (iii)  i  [1, t'), Ri (= [Ri.l, 
Ri.r]) ∩ Ri+1 (= [Ri+1.l, Ri+1.r]) = Ri.r; and (iv)  cpi, Ri  CPLp,q, cpi is the control point 
of p over interval Ri.  

In the following, we will explain the rationale behind the concept of control points, 
i.e., to facilitate the identification of split points and to provide pruning opportunity. 
Given two points p, p' and a line segment q, suppose point v is the control point of p over 
q, point u is the control point of p' over q, and ||p, v||, ||p', u|| are known with ||p, v||  ||p', 
u|| = d. We further assume that p is the ONN for every point along q before p' is accessed, 
and now we need to evaluate p'. In other words, we need to check whether p' is closer to 
any point on q, compared with p. If yes, we have to locate the split points along q where 
ONN is changed from p to p'. Although the locations of u, v and the value of d have a 
direct impact on the number and positions of the split points that are introduced by p', it is 
confirmed that the maximum number of split points generated by p' is two, as stated in 
Theorem 3.1. Moreover, based on Theorem 3.1, we can easily determine the positions of 
split points on q by solving quadratic inequalities.  

THEOREM 3.1.   Given two points p, p', a line segment q = [s, e], together with 
corresponding control point v (u) of p (p') over q, let d = ||p, v||  ||p', u||. There are at 
most two points s1, s2 on q having the same obstructed distances to p and p', i.e., ||p, v|| + 
dist(v, s1) = ||p', u|| + dist(u, s1) and ||p, v|| + dist(v, s2) = ||p', u|| + dist(u, s2).  

PROOF.   Please refer to Appendix A.    

Theorem 3.1 demonstrates that there are at most two distinct points along q such that 
their obstructed distances to points p and p' are equivalent. We can also prove that when 
q is decomposed into several smaller intervals R by split point(s) sp on q, all the points 
along R must share the same ONN (either p or p'). In order to facilitate understanding, we 
transfer the Equation (1) (which is presented in Appendix A) to the following Equation 
(2), and assume point s' is located at (x, 0). The positions of split points correspond to the 
x values such that Y(x) = d. Figure 7(b) illustrates the distribution of Y(x) under different 
values of x.  

2 2 2 2( ) ( , ) ( , ) ( )Y x dist u s' dist v s' a x c x b        (2) 

Based on the derivative and the limit of Equation (2) with respect to the variable x, as 
shown in Equation (3), we find that (i) when x = ab/(bc), Y' (x) = 0 and Y(x) reaches its 
maximal value11 dist(u, v), which can also be verified by triangle inequality12; (ii) when x 
< ab/(bc), Y'(x) > 0, which indicates that Y(x) is monotone increasing, and Y(x)  (a, 
dist(u, v)); and (iii) when x > ab/(bc), Y'(x) < 0, which means that Y(x) is monotone 
                                                           
11Note that the distribution of Y(x) under other cases (e.g., a = 0, b > c, etc.) has different trend, i.e., different 
inflexion point(s) and maximal/minimal value.  
12Based on Figure 7(a) and triangle inequality, it is clear that dist(u, s′)  dist(v, s′) < dist(u, v) as long as points 
u, v and s′ form a triangle (i.e., they are not located along a line). Consequently, when u, v and s′ are located 
along one line, Y(x) = dist(u, s′)  dist(v, s′) reaches its maximal value dist(u, v), i.e., x = ab/(bc).  
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decreasing, and Y(x)  (a, dist(u, v)). The positions of split point(s) on q can be 
determined as follows, according to the value of d = ||p, v||  ||p', u|| and Y(x).  

( )
2 2 2 2( )

x a x
Y x

a x c x b

  
  

 

lim ( )
x

Y x a


  , and lim ( )
x

Y x a


  

(3) 

Case 1: d  dist(u, v). As Y(x)  dist(u, v), it is certain that, for any point s' along q, 
Y(x) = dist(u, s′)  dist(v, s′)  dist(u, v)  d = ||p, v||  ||p', u||, i.e., ||p', u|| + dist(u, s′)  ||p, 
v|| + dist(v, s′). Thus, new point p' will replace point p (that is the current ONN for every 
point on q) as the ONN for any point along q without introducing any new split point.  

Case 2: a < d < dist(u, v). As depicted in Figure 7(b), there will be two values x1 and 
x2 such that Y(x1) = Y(x2) = d, with x1 < ab/(bc) < x2. Let (x1, 0) be s1 and (x2, 0) be s2. 
For a given point s′ with coordinate (x, 0), (i) if x < x1 or x > x2, Y(x) < d, meaning that 
dist(u, s′)  dist(v, s′) < ||p, v||  ||p′, u||, i.e., ||p′, u|| + dist(u, s′) < ||p, v|| + dist(v, s′), and 
hence point p′ becomes the ONN for each point along intervals [s, s1] and [s2, e]; and (ii) 
if x1  x  x2, Y(x)  d, indicating that dist(u, s′)  dist(v, s′)  ||p, v||  ||p′, u||, i.e., ||p′, u|| 
+ dist(u, s′)  ||p, v|| + dist(v, s′), and thus point p is still the ONN for every point on 
interval [s1, s2]. In this case, p′ introduces two split points s1 and s2.  

Case 3: a < d  a. As shown in Figure 7(b), there will be only one value x1 such that 
Y(x1) = d. Let (x1, 0) be s1. For a specified point s′ with coordinate (x, 0), (i) if x < x1, Y(x) 
> d, which means that dist(u, s′)  dist(v, s′) > ||p, v||  ||p′, u||, i.e., ||p′, u|| + dist(u, s′) > ||p, 
v|| + dist(v, s′), and hence point p is still the ONN for any point along interval [s, s1]; and 
(ii) if x  x1, Y(x)  d, which indicates that dist(u, s′)  dist(v, s′)  ||p, v||  ||p′, u||, i.e., ||p′, 
u|| + dist(u, s′)  ||p, v|| + dist(v, s′), and thus point p′ becomes the ONN for every point on 
interval [s1, e]. In this case, p′ introduces only one split point s1.  

Case 4: d  a. As Y(x) > a, dist(u, s′)  dist(v, s′) > d = ||p, v||  ||p′, u||, i.e., ||p′, u|| + 
dist(u, s′)  ||p, v|| + dist(v, s′). Therefore, point p is still the ONN of each point along q 
without introducing any new split point.  

In the above discussion, we define a quadratic polynomial whose root(s) can be used 
to derive the number and position(s) of split point(s). However, some special case of 
Case 1/Case 4 can be detected by Lemma 3.1 below, without expensive calculation of 
the quadratic polynomial. Its pruning power will be discussed in Section 4, where we 
present the CONN search algorithm.  
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LEMMA 3.1.   Given two points p, p′, a line segment q = [s, e], together with 
corresponding control point v (u) of p (p′) over q, suppose dist(u, q) > dist(v, q), in 
which dist(u, q) (dist(v, q)) denotes the vertical distance13 from a control point u (v) to 
q. Point p is certainly closer to any point along q compared to p′, if it satisfies (i) ||p′, u|| + 
dist(u, s) > ||p, v|| + dist(v, s); and (ii) ||p′, u|| + dist(u, e) > ||p, v|| + dist(v, e).  

PROOF.   Pease refer to Appendix B.    

It is worth pointing out that, if dist(u, q) < dist(v, q), we can also develop a lemma 
that is similar to Lemma 3.1. Based on Lemma 3.1, we introduce a pruning distance, 
namely, RLMAX (see Lemma 3.2). As demonstrated by Lemma 3.2, if all the unexamined 
objects have their minimal Euclidean distances (i.e., mindist) to the query line segment q 
larger than RLMAX, it is guaranteed that the current result list RL will not be updated by 
any unexamined object. In other words, Lemma 3.2 offers an early termination condition, 
which will be employed by our proposed CONN search algorithm in this article.  

LEMMA 3.2.   Suppose the current result list RL for a CONN query issued at q = [s, e] 
is ∪i[1, t] pi, cpi, Ri, with interval Ri = [Ri.l, Ri.r]  q. Given a data point p, p cannot 
change RL if mindist(p, q) > RLMAX, where RLMAX = MAXi[1, t](||pi, Ri.l||, ||pi, Ri.r||)14.  

PROOF.   Pease refer to Appendix C.    

4. CONN QUERY PROCESSING  
In this section, we propose efficient algorithms for CONN query processing, assuming 
that the data set P and the obstacle set O are indexed by two separate R-trees. The basic 
idea is to traverse data points in P in ascending order of their mindist (that is the lower 
bound of obstructed distances) to a given query line segment q = [s, e]. For each data 
point p  P visited, we first find all the obstacles that may affect the obstructed distances 
from p to any point along q, then identify the control point(s) of p over q, and finally 
evaluate the impact of p on the current result list RL which is initialized to , , [s, e]. 
In what follows, we first elaborate the above three steps in Sections 4.1, 4.2, and 4.3, 
respectively. Then, we present the complete CONN search algorithm in Section 4.4, 
together with the analysis of its characteristics and correctness. Finally, we discuss how 
to adjust our techniques to tackle the CONN retrieval when P and O are indexed by one 
unified R-tree in Section 4.5.  

4.1 Obstacle Retrieval  
As pointed out in Section 1, the existing VG-based approach of obstructed distance 
calculation needs to maintain the visibility graph VG, and its high space and time 
complexities deteriorate its practicability. In general, for a specified data point p and a 
given query line segment q = [s, e], only a small number of obstacles will affect the 
obstructed distances between p and any point along q. It is worth noting that, the actual 
number of obstacles that affect the obstructed distance between p and any point along q 
depends on several factors, including the position of p, the distribution/position of q, and 
the length of q. As demonstrated in Theorem 4.1, once the shortest path from p to s (i.e., 
SP(p, s)) and that from p to e (i.e., SP(p, e)) are identified, the search range for all the 
obstacles that may affect the obstructed distances from p to any point along q is 

                                                           
13The vertical distance between a point p and a line segment l, denoted as dist(p, l), refers to the Euclidean 
distance from p to the projection of p on the line segment l (or l’s extended line).  
14If  pi, cpi, Ri  RL with pi = , ||pi, Ri.l|| = ||pi, Ri.r|| = ∞, and MAX(pi, pj) is a function to return (i) pi if pi  
pj or (ii) pj otherwise.  
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Algorithm 1 Incremental Obstacle Retrieval Algorithm (IOR)  

Input:  an obstacle R-tree To; a min-heap Ho; a query line segment q = [s, e];  
             a data point p; a visibility graph VG; previous search distance d  
  1:  while (1) do  
  2:      P1(p, s) = Dijkstra(VG, p, s)    // compute the current short path P1(p, s)  
  3:      P2(p, e) = Dijkstra(VG, p, e)    // compute the current short path P2(p, e)  
  4:      d′ = MAX(1/2  (MIN(|P1(p, s)|, |P2(p, e)|) + |q| + mindist(p, q)), |P1(p, s)|, |P2(p, e)|)  
  5:      if d′ > d then  
  6:          d = d′    // for the next loop  
  7:          while Ho   do  
  8:              de-heap the top entry (e, key) of Ho  
  9:              if key > d then    // key = mindist(e, q)  
10:                  break  
11:              else if e is an obstacle then  
12:                  add e to a set So and insert all vertexes of e into VG  
13:              else    // e is an intermediate (i.e., a non-leaf) node  
14:                  for each child entry ei  e from To do  
15:                      insert (ei, mindist(ei, q)) into Ho  
16:      else  
17:          break  

 
determined; and thus only those obstacles that intersect the identified search range have 
to be accessed.  

THEOREM 4.1.   Given a data point p, a query line segment q = [s, e], and the shortest 
path SP(p, s) (SP(p, e)) from p to s (e), assume d = 1/2  (MIN(||p, s||, ||p, e||) + |q| + 
mindist(p, q)), where ||p, s|| (||p, e||) denotes the obstructed distance from p to s (e), and |q| 
represents the length of the query line segment q. Let SRp,q be the range within which all 
the objects have their minimal Euclidean distances (i.e., mindist) to q bounded by d. It is 
guaranteed that all the obstacles outside SRp,q will not affect the obstructed distance 
between p and any point along q.  

PROOF.   Pease refer to Appendix D.    

In order to use Theorem 4.1 to bound the search range for all the obstacles affecting 
the obstructed distances from a specified data point p to any point along q = [s, e], both 
SP(p, s) and SP(p, e) have to be identified. In view of this, Lemma 4.1 is proposed.  

LEMMA 4.1.   Given a data point p, a point s′ on q, and a path P(p, s′) from p to s′, 
suppose all the obstacles o in O that have their minimal Euclidean distances (i.e., mindist) 
to q bounded by |P(p, s′)| have been retrieved and maintained in a set So, i.e., So = {o  O 
| mindist(o, q)  |P(p, s′)|}. Let P2(p, s′) be the shortest path from p to s′ obtained based 
on So. If |P2(p, s′)|  |P(p, s′)|, it is confirmed that P2(p, s′) must be the real shortest path 
SP(p, s′) between p and s′, i.e., P2(p, s′) = SP(p, s′).  

PROOF.   Pease refer to Appendix E.    

Based on Theorem 4.1 and Lemma 4.1, the Incremental Obstacle Retrieval Algorithm 
(IOR) is developed, with its pseudo-code depicted in Algorithm 1. The basic idea is to 
form the local visibility graph VG via incremental obstacle retrieval such that VG 
contains all the obstacles that might affect the obstructed distance from the point p 
evaluated currently to any point along the given query line segment q. As outlined in 
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Algorithm 1, based on the local VG, the local shortest paths from p to endpoints s and e, 
denoted as P1(p, s) and P2(p, e), can be identified respectively by Dijkstra’s algorithm 
[Dijkstra 1959] (lines 2-3). Since the local VG contains these three points p, s, e, and all 
the vertexes of the obstacles which may affect P1(p, s) or/and P2(p, e) (via expanding 
incrementally the local VG until no triggering the retrieval of any new obstacle), we can 
easily find P1(p, s) and P2(p, e) based on the local VG, using Dijkstra Algorithm. Then, 
IOR fetches all the obstacles having their mindist to q bounded by d′ = MAX(1/2  
(MIN(|P1(p, s)|, |P2(p, e)|) + |q| + mindist(p, q)), |P1(p, s)|, |P2(p, e)|), and inserts their 
vertexes into VG (lines 4-15). If VG is changed, both P1(p, s) and P2(p, e) are re-located, 
which may trigger the update of the radius d′ and hence the retrieval of new obstacles. 
The process repeats until the new P1(p, s) and P2(p, e) have their distances to s and e 
bounded by the current radius of local VG, i.e., without triggering the retrieval of any 
new obstacle. Here, as proved in Lemma 4.1, P1(p, s) and P2(p, e) must represent the real 
shortest paths from p to s and e respectively, i.e., P1(p, s) = SP(p, s) and P2(p, e) = SP(p, 
e). In other words, the fact that IOR retrieves all the obstacles with their mindist to q not 
exceeding MAX(1/2  (MIN(|P1(p, s)|, |P2(p, e)|) + |q| + mindist(p, q)), |P1(p, s)|, |P2(p, e)|) 
means that all the obstacles intersecting the search range SRp,q have been found, as proved 
in Theorem 4.1. Thus, the correctness of IOR algorithm is guaranteed.  

In addition, we would like to highlight that, since points in the data set P are accessed 
in ascending order of their mindist to q, IOR, for a data point p  P, does not need to 
start from scratch. Specifically, the local visibility graph VG formed by p can be reused 
by another point p′ that is visited after p. If p′ does not trigger the retrieval of any new 
obstacle, i.e., current VG has already covered all the obstacles overlapping the search 
range SRp′,q, IOR, for the point p′, can be safely terminated by reusing the current VG. 
Otherwise, it expands the local VG by adding new obstacle vertexes until all the obstacles 
that intersect SRp′,q have been retrieved. Therefore, IOR is an incremental process, and it 
finds obstacles, for all the points in P, via one traversal of the obstacle set O.  

4.2 Control Point List Computation  
Once the local VG contains all the obstacles that may affect the obstructed distance from 
a specified data point p to q, our next step is to find out the control point list of p over q, 
i.e., CPLp,q. Since the local VG includes all the obstacles affecting the obstructed distance 
between p and q, we can obtain CPLp,q using the local VG. A straightforward approach is 
to utilize the fact that a control point over an interval R must be visible to all points of R, 
and invoke Dijkstra’s algorithm to compute the shortest path from p to every node (i.e., 
obstacle vertex) n that is within the current local VG. For each n located inside VG (i.e., n 
 VG), we obtain n’s visible region over q (i.e., VRn,q), and add a new tuple n, Rn = 
VRn,q to CPLp,q if VRn,q  , assuming that n is the control point of p over VRn,q. If the 
interval Rn overlaps the interval Rm which is associated with some other control point m 
included in the current CPLp,q, i.e.,  m, Rm  CPLp,q with Rn ∩ Rm  , an update 
operation is triggered. Obviously, this method is expensive, especially when the number 
of nodes inside VG is large. To address this, we present several lemmas that can simplify 
the evaluation cost of some nodes n  VG.  

LEMMA 4.2.   Given a data point p, a query line segment q, and a node (i.e., an 
obstacle vertex) v in VG, we assume that the shortest path SP(p, v) from p to v visits node 
u right before v. Let VRu,q and VRv,q be the visible regions of u and v over q, respectively. 
Point v cannot be the control point of p over any interval R  (VRu,q ∩ VRv,q).  

PROOF.   Pease refer to Appendix F.    
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Fig. 8. Optimizations for control point list computation  

 
 

As Dijkstra’s algorithm gradually expands the search space from p (i.e., it always 
reaches u before v if ||p, u|| < ||p, v||), Lemma 4.2 matches its traversal perfectly. 
Whenever a node v is examined, it must be reached by the shortest path from p, and 
hence the node u visited right before v along the path is known. As depicted in Figure 
8(a), the shortest path from p to v passes u first and then reaches v. Instead of considering 
v’s visible region over q, i.e., VRv,q (= q = [s, e]), we only need to consider the region that 
is not enclosed by VRu,q, i.e., VRv,q  VRu,q (= [s, e]  [s, s1] = [s1, e] ). However, not all 
the intervals contained in (VRv,q  VRu,q) require evaluation. Lemma 4.3 can further shrink 
the search interval.  

LEMMA 4.3.   Given a data point p, a query line segment q, and a node (i.e., an 
obstacle vertex) v in VG, we assume that the shortest path SP(p, v) from p to v visits node 
u right before v, and VRu,q (VRv,q) is the visible region of u (v) over q. Let R = [R.l, R.r]  
(VRv,q  VRu,q) be the interval such that points along R are invisible to u due to the 
obstruction of obstacle o, and ∆ be the triangle formed by points R.l, R.r, and u. Point v 
cannot become the control point of p over R if the following conditions are satisfied: (i) v 
is located outside the triangle ∆, (ii) all the line segments formed by v and any point on R 
intersect [u, R.l] (or [u, R.r]), and (iii) point R.l (or R.r) is blocked from u by a vertex vo 
of o and vo is visible to every point along R.  

PROOF.   Pease refer to Appendix G.    

Take the case illustrated in Figure 8(b) as an example. For all the intervals included in 
VRv,q  VRu,q = {[s1, s2], [s3, s4]}, we can confirm that v cannot be p’s control point over 
interval [s3, s4] by Lemma 4.3. The above Lemmas 4.2 and 4.3 can be employed to 
reduce the examination cost of nodes included in the local VG. However, if the number of 
nodes contained in the local VG is huge, the examination cost is still high. Actually, not 
all the nodes in VG can change the current control point list. In order to further simplify 
the examination process, Lemma 4.4 is proposed.  

LEMMA 4.4.   Given a data point p and a query line segment q, we assume that the 
current control point list of p over q, i.e., CPLp,q, is ∪i[1, m] {cpi, Ri}, and let CPLMAX = 
MAXi[1, m](||p, cpi|| + dist(cpi, Ri.l), ||p, cpi|| + dist(cpi, Ri.r))15. A node (i.e., an obstacle 
vertex) v in VG cannot be included in CPLp,q if ||p, v|| + mindist(v, q)  CPLMAX.  

PROOF.   Pease refer to Appendix H.    

As an example, in Figure 9, p’s control point list CPLp,q over q is {p, [s, s1], v1, [s1, 
s2], v2, [s2, s3], v3, [s3, s4], v4, [s4, e]} and CPLMAX = dist(p, s). Since the node v6 (i.e., 
                                                           
15If  cpi, Ri  CPLp,q with cpi = , CPLMAX = ∞.  
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Algorithm 2 Control Point List Computation Algorithm (CPLC)  
Input:     a query line segment q = [s, e]; a data point p; a visibility graph VG  
Output:  p’s control point list CPLp,q over q  
/* Next(VG, p) is to expand the search space from p by Dijkstra’s algorithm. */  
  1:  CPLp,q = {, [s, e]}  
  2:  while v = Next(VG, p) ( ) do  
  3:      if ||p, v||  CPLMAX then    // Lemma 4.4  
  4:          break  
  5:      let u be the node that SP(p, v) passes right before reaching v  
  6:      R = VRv,q  VRu,q    // Lemma 4.2  
  7:      refine R using Lemma 4.3  
  8:      for each tuple cpi, Ri in CPLp,q do    // update CPLp,q  
  9:          Rint = R ∩ Ri  
10:          if Rint ≠  AND cpi =  then  
11:              replace cpi, Ri with v, Rint and cpi, Ri  Rint (if (Ri  Rint)  )  
12:          else if Rint ≠  AND cpi ≠  then  
13:              d = ||p, cpi||  ||p, v||  
14:              Split(p, cpi, p, v, Rint, d)    // see Section 3.2 for details  
15:  return CPLp,q  

 
a vertex of obstacle o3) in VG satisfies ||p, v6|| + mindist(v6, q) > dist(p, s) = CPLMAX, it is 
excluded from CPLp,q according to Lemma 4.4.  

In fact, Lemma 4.4 serves as an early termination condition of the Control Point List 
Computation Algorithm (CPLC) whose pseudo-code is shown in Algorithm 2. CPLC 
shares the same basic idea as the straightforward approach mentioned at the beginning of 
Section 4.2. That is to call Dijkstra’s algorithm to gradually traverse the local visibility 
graph VG and to access nodes v in VG according to ascending order of their obstructed 
distances to a specified data point p. The p’s control point list CPLp,q over q is updated 
during the traversal. However, different from the simple method, CPLC utilizes Lemmas 
4.2 and 4.3 (lines 6-7) to significantly reduce the node examination cost. The Split 
function invoked (line 14) is the same as the split point computation approach presented 
in Section 3.2. Before v is considered, all the shortest paths from p to any point on 
interval Rint ( q) pass the control point cpi, and now the algorithm needs to check 
whether the path from p to any point along Rint via v is even shorter (lines 8-14). Suppose 
s′ with coordinate (x, 0) is a point on Rint = [Rint.l, Rint.r] = R ∩ Ri. There are four cases, as 
discussed in Section 3.2, with dist(v, s′)  dist(cpi, s′) = d = ||p, cpi||  ||p, v|| and the 
difference between v’s projection on Rint and cpi’s projection on Rint denoted by a. (i) 
Case 1: d  dist(cpi, v). cpi, Ri is replaced with v, Rint and cpi, Ri  Rint (if Ri  Rint  
), since dist(v, s′)  dist(cpi, s′)  d = ||p, cpi||  ||p, v||. (ii) Case 2: a < d < dist(cpi, v). 
Interval Rint will be decomposed into three sub-intervals by points x1 and x2 along Rint, 
with x1 and x2 derived based on Equation (1). Thereafter, cpi, Ri is replaced accordingly. 
Specifically, cpi, Ri is replaced with v, [Rint.l, x1], cpi, [x1, x2], v, [x2, Rint.r], and cpi, 
Ri  Rint (if Ri  Rint  ). (iii) Case 3: a < d  a. Interval Rint will be decomposed into 
two sub-intervals by point x1 on Rint, with x1 derived based on Equation (1) too. Again, 
cpi, Ri is replaced accordingly. In particular, cpi, Ri is replaced with cpi, [Rint.l, x1], v, 
[x1, Rint.r], and cpi, Ri  Rint (if Ri  Rint  ). (iv) Case 4: d  a. cpi, Ri is still valid.  

The above process proceeds until all the nodes in local VG are accessed or the visited 
node satisfies ||p, v||  CPLMAX (lines 3-4). As nodes in the local VG are traversed in 
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Fig. 9. Example of CPLC algorithm  
 
 

ascending order of their obstructed distances to p, all the remaining nodes n in VG must 
satisfy ||p, n||  CPLMAX when the currently visited node has its obstructed distance to p 
larger than CPLMAX. Note that the termination condition employed in CPLC relaxes 
Lemma 4.4 using zero as the lower bound of mindist(n, q) in order to reduce the distance 
computation overhead.  

We illustrate the CPLC algorithm with the example depicted in Figure 9, where the 
local VG = {s, e, p, v1, v2, v3, v4, v5, v6}. First, CPLC accesses node p  VG. As p is 
indeed the data point evaluated, R = VRp,q = {[s, s1]} and CPLp,q is updated to {p, [s, s1], 
, [s1, e]}. Next, CPLC visits node v2  VG. Since the shortest path SP(p, v2) from p to 
v2 does not pass through any node u in VG (i.e., u = ), R = VRv2,q = {[s, s3]} and CPLp,q 
is changed to {p, [s, s1], v2, [s1, s3], , [s3, e]}. Then, node v3  VG is accessed. As 
the shortest path SP(p, v3) from p to v3 passes node v2 first and then v3, R = VRv3,q  VRv2,q 
= {[s3, e]}. Note that, here CPLC cannot refine R using Lemma 4.3 because v3 is located 
inside the triangle v2s3E. After updating CPLp,q, CPLp,q becomes {p, [s, s1], v2, [s1, s3], 
v3, [s3, e]}. Similarly, the subsequent nodes in VG visited are v1, v4 (in this order), after 
which CPLp,q = {p, [s, s1], v1, [s1, s2], v2, [s2, s3], v3, [s3, s4], v4, [s4, e]}. Finally, 
CPLC accesses v6  VG. Since ||p, v6|| > CPLMAX = dist(p, s), CPLC outputs CPLp,q and 
terminates. For ease of understanding, Figure 10 shows the trace of CPLC algorithm for 
this running example.  

4.3 Result List Update  
Once a new data point p is accessed and p’s control point list over a given query line 
segment q (i.e., CPLp,q) is formed, the next step is to evaluate the impact of p on current 
result list RL. The basic idea is to check whether p will replace the current ONN for some 
points along q. The pseudo-code of the Result List Update Algorithm (RLU) is presented 
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Algorithm 3 Result List Update Algorithm (RLU)  
Input:     a data point p; p’s control point list CPLp,q over q; current result list RL  
Output:  the updated result list  
  1:  for each tuple pi, cpi, Ri  RL do  
  2:      for each tuple cpi′, Ri′  CPLp,q do  
  3:          if Ri ∩ Ri′   then  
  4:              Rint = Ri ∩ Ri′ = [l, r]  
  5:              Rdif = Ri  Rint  
  6:              Rdif′ = Ri′  Rint  
  7:              if Rdif ≠  then  
  8:                  add pi, cpi, Rdif to RL  
  9:              if Rdif′ ≠  then  
10:                  add cpi′, Rdif′ to CPLp,q  
11:              if ||p, cpi′|| + dist(cpi′, l) > ||pi, cpi|| + dist(cpi, l) AND ||p, cpi′|| + dist(cpi′, r) >  
                   ||pi, cpi|| + dist(cpi, r) AND dist(cpi′, Rint) > dist(cpi, Rint) then    // Lemma 3.1  
12:                  add pi, cpi, Rint to TRL and Merge() if necessary  
13:                  continue  
14:              else  
15:                  d = ||pi, cpi||  ||p, cpi′||  
16:                  Split(pi, cpi, p, cpi′, Rint, d)    // see Section 3.2 for details  
17:                  insert the result tuples from Split function into TRL and Merge() if necessary  
18:  return TRL  

 
in Algorithm 3, which incrementally updates RL.  

RLU performs the update by scanning the current result list RL. For each tuple pi, cpi, 
Ri in RL, it finds the corresponding tuples cpi′, Ri′ in CPLp,q with Ri ∩ Ri′  . For such 
a tuple, RLU first derives the intersection Rint (= Ri ∩ Ri′ = [l, r]) and differences Rdif (= Ri 
– Rint), Rdif′ (= Ri′ – Rint) between Ri and Ri′ (lines 4-6). Thereafter, RLU distinguishes four 
cases: (i) if Rdif is not empty (i.e., Rdif  ), pi, cpi, Rdif is inserted into RL for further 
evaluation (lines 7-8); (ii) if Rdif′ is not empty (i.e., Rdif′  ), cpi′, Rdif′ is added to 
CPLp,q (lines 9-10); (iii) if ||p, cpi′|| + dist(cpi′, l) > ||pi, cpi|| + dist(cpi, l), ||p, cpi′|| + 
dist(cpi′, r) > |pi, cpi|| + dist(cpi, r), and dist(cpi′, Rint) > dist(cpi, Rint), pi is closer to any 
point along the interval [l, r] than p by Lemma 3.1 (presented in Section 3.2), and hence 
pi, cpi, Rint is inserted into a temporal result list TRL (lines 11-13); and otherwise (iv) 
RLU utilizes the split point computation approach (i.e., Split function) discussed in 
Section 3.2 to update RL, and adds the result tuples to TRL (lines 14-17). After all the 
tuples in RL are evaluated, RLU outputs TRL as the updated result list (line 18). It is 
important to note that, when a new tuple p′, cp′, R′ in the current RL is inserted into TRL, 
it might be merged with an existing tuple p′′, cp′′, R′′ in TRL if cp′ = cp′′ and intervals R′, 
R′′ are adjacent, with the merge operation represented by Merge().  

Figure 10 depicts an example with the data set P = {a, b, c}, the obstacle set O = {o1, 
o2, o3}, and a specified query line segment q = [s, e]. Suppose point a has been processed 
and current result list RL = {a, a, [s, s3], a, v1, [s3, s5], a, v2, [s5, e]}, as shown in 
Figure 10(a). Now we invoke RLU to evaluate the impact of a new data point b on RL, 
with b’s control point list CPLb,q over q being {b, [s, s2], v5, [s2, s4], v6, [s4, e]}. RLU 
recursively examines every tuple in RL. First, the tuple a, a, [s, s3]  RL is compared 
against b, [s, s2]  CPLb,q. As [s, s3] ∩ [s, s2] = [s, s2]  , RLU derives Rint (= [s, s2]), 
Rdif (= [s, s3] – [s, s2] = [s2, s3]  ), and Rdif′ (= [s, s2] – [s, s2] = ). It adds a, a, [s2, s3] 
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Return TRL, and terminate RLU algorithm  
(c) The trace of RLU algorithm for the running example  

 
Fig. 10. Example of RLU algorithm  

 
 

to RL, and partitions [s, s2] into two sub-intervals (i.e., Case 3 presented in Section 4.2) 
based on the Split function, after which RL = {a, a, [s2, s3], a, v1, [s3, s5], a, v2, [s5, e]} 
and TRL = {a, a, [s, s1], b, b, [s1, s2]}. Next, the tuple a, a, [s2, s3]  RL is compared 
with v5, [s2, s4]  CPLb,q. Again, since [s2, s3] ∩ [s2, s4] = [s2, s3]  , RLU derives Rint 
(= [s2, s3]), Rdif (= [s2, s3] – [s2, s3] = ), and Rdif′ (= [s2, s4] – [s2, s3] = [s3, s4]). It inserts 
v5, [s3, s4] to CPLp,q, and updates TRL to {a, a, [s, s1], b, b, [s1, s2], b, v5, [s2, s3]} 
using the Split function. The process proceeds in the same manner until all the tuples in 
RL are evaluated. Finally, as illustrated in Figure 10(b), RLU returns TRL = {a, a, [s, s1], 
b, b, [s1, s2], b, v5, [s2, s4], b, v6, [s4, e]} as the updated RL. To facilitate 
understanding, Figure 10(c) summarizes the detailed steps of RLU algorithm with respect 
to this running example.  

4.4 CONN Search Algorithm  
Having explained IOR, CPLC, and RLU, we are ready to present the complete CONN 
query processing algorithm, namely CONN Search Algorithm (CONN). Algorithm 4 
shows the pseudo-code of CONN. It takes an R-tree Tp on the data set P, an R-tree To on 
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Algorithm 4 CONN Search Algorithm (CONN)  
Input:     a data R-tree Tp; an obstacle R-tree To; a query line segment q = [s, e]  
Output:  the result list RL of a CONN query  
  1:  RL = {, , [s, e]}, RLMAX = , VG = {s, e}, and d = 0  
  2:  insert (root(Tp), 0) and (root(To), 0) into heaps Hp and Ho, respectively  
  3:  while Hp   do  
  4:      de-heap the top entry (e, key) of Hp  
  5:      if key  RLMAX then    // Lemma 3.2, key = mindist(e, q)  
  6:          break  
  7:      else if e is a data point then  
  8:          insert e into local visibility graph VG  
  9:          IOR (To, Ho, q, e, VG, d)    // Algorithm 1  
10:          CPLe,q = CPLC (q, e, VG)    // Algorithm 2  
11:          remove e from VG  
12:          RL = RLU (e, CPLe,q, RL)    // Algorithm 3  
13:      else    // e is an intermediate (i.e., a non-leaf) node  
14:          for each child entry ei  e do  
15:              insert (ei, mindist(ei, q)) into Hp  
16:  return RL  

 
the obstacle set O, and a query line segment q as input, and outputs the final result list RL 
for a CONN query.  

CONN follows the best-first traversal. For this purpose, the algorithm maintains two 
heaps Hp and Ho to store the data and obstacle entries visited so far respectively, sorted 
by ascending order of their minimal Euclidean distances (i.e., mindist) to q. Initially, 
CONN inserts the root nodes of Tp and To into Hp and Ho, respectively (line 2). 
Thereafter, it continuously de-heaps the head entry e of Hp for examination until Hp 
becomes empty (lines 3-15). Each examination involves two tasks. First, CONN checks 
the early termination condition (presented in Lemma 3.2), and terminates if mindist(e, q) 
 RLMAX because all the unexamined data points in P cannot change the current result list 
RL obtained, as proved in Lemma 3.2 (lines 5-6). Otherwise, CONN proceeds with the 
second task to evaluate the top entry e of Hp. If e is a data point, CONN inserts e into 
local visibility graph VG, invokes IOR algorithm to retrieve all the obstacles that may 
affect the obstructed distances from e to any point along q, calls CPLC algorithm to get 
e’s control point list CPLe,q over q, removes e from VG, and utilizes RLU algorithm to 
update the current result list RL (lines 7-12). On the other hand, e is an intermediate (i.e., 
a non-leaf) node. CONN inserts all the child entries of e into Hp (lines 13-15).  

To facilitate the understanding, we illustrate the CONN algorithm using an example 
depicted in Figure 11, with data set P = {a, b, c, d}, obstacle set O = {o1, o2, o3}, and a 
query line segment q = [s, e]. First of all, the result list RL is initialized to {, , [s, e]}. 
When the first data point a (that is the closest to q in the Euclidean space) is visited, 
CONN inserts the point a into VG (= {s, e, a}), and calls IOR to retrieve all the obstacles 
that may affect the obstructed distances from a to any point along q, i.e., So = {o1, o2, o3} 
and VG (= {s, e, a, v1, v2, v3, v4, v5, v6}. Then, it employs CPLC to obtain CPLa,q = {a, a, 
[s, sa1], a, v1, [sa1, sa2], a, v2, [sa2, e]}, i.e., the control point list of a over q. Next, 
point a is deleted from VG, and then RLU is invoked to update the current RL, after 
which RL = {a, a, [s, sa1], a, v1, [sa1, sa2], a, v2, [sa2, e]} as shown in Figure 11(a). 
Similarly, the second data point processed is b, and Figure 11(b) depicts the 
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Fig. 11. Illustration of CONN query processing  

 
 

corresponding RL = {a, a, [s, sb1], b, b, [sb1, sb2], b, v5, [sb2, sb3], b, v6, [sb3, e]} after 
the processing of b. Subsequently, CONN evaluates the third data point c and updates RL 
again to {a, a, [s, sb1], b, b, [sb1, sb2], b, v5, [sb2, sc1], c, c, [sc1, e]}, which is 
illustrated in Figure 11(c). Finally, when the last data point d is encountered, it is 
discarded directly as mindist(d, q) > RLMAX = dist(c, sc1). Here, the algorithm terminates, 
with the final query result RL = {a, a, [s, sb1], b, b, [sb1, sb2], b, v5, [sb2, sc1], c, c, [sc1, 
e]} (i.e., {a, [s, sb1], b, [sb1, sc1], c, [sc1, e]} for short), as shown in Figure 11(d).  

Next, we analyze some properties of the CONN algorithm and prove its correctness.  

LEMMA 4.5.   The CONN algorithm only processes the data points and obstacles 
relevant to the final query result.  

PROOF.   Pease refer to Appendix I.    

LEMMA 4.6.   The CONN algorithm traverses the data R-tree Tp and the obstacle R-
tree To at most once.  

PROOF.   Pease refer to Appendix J.    

THEOREM 4.2.   The CONN algorithm retrieves exactly the ONN of each point along a 
given query line segment, i.e., the CONN algorithm has no false misses and no false hits.  

PROOF.   Pease refer to Appendix K.    

4.5 Discussion  
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Our previously proposed CONN algorithm assumes the data set P and the obstacle set O 
are indexed by two separate R-trees. However, it can be naturally extended to answer 
CONN search based on a single R-tree that indexes both P and O.  

The detailed extensions are summarized as follows: (i) It requires only one heap H to 
store candidate entries (including data points, obstacles, and non-leaf nodes), sorted in 
ascending order of their minimum Euclidean distances (i.e., mindist) to a given query line 
segment q. (ii) When processing the top entry e de-heaped from H, it distinguishes three 
cases. (1) Case 1: e is an obstacle. It inserts e’s vertexes into the local visibility graph VG. 
(2) Case 2: e is a data point. It calls IOR to retrieve all the obstacles that may affect the 
obstructed distances from e to any point along q, invokes CPLC to get e’s control point 
list CPLe,q over q, and employs RLU to update the current result list RL. It is worth noting 
that, during the obstacle retrieval via IOR, it is possible to access some data points which 
will be en-heaped into H for later processing. (3) Case 3: e is a non-leaf node. All the 
child entries of e are inserted into H for later evaluation.  

5. VARIATIONS OF CONN QUERIES  
In this section, we demonstrate the flexibility and extensibility of the proposed CONN 
algorithm by studying two interesting variations of CONN queries, namely, continuous 
obstructed k nearest neighbor (COkNN) search and trajectory obstructed nearest 
neighbor (TONN) search. Note that TONN retrieval can be generalized to trajectory 
obstructed k nearest neighbor (TOkNN) search. As the search algorithm for TONN can 
be extended to that for TOkNN naturally, which is similar to the extension from CONN 
retrieval to COkNN search, we omit its detailed explanation.  

5.1 COkNN Search  
COkNN search aims at finding the k ( 1) ONNs for every point along a specified query 
line segment q. The proposed algorithms for CONN queries can be extended to support 
COkNN retrieval. The detailed extensions are described as follows.  

First, ONN is generalized to obstructed k nearest neighbors (OkNNs), as defined in 
Definition 5.1, based on which COkNN search is formulated in Definition 5.2. Note that, 
although the COkNN query defined in Definition 5.2 refers to ordered kNN search, the 
CONN query studied in this article can also be adapted to support orderless COkNN 
retrieval via merging query result.  

Definition 5.1 (Obstructed k Nearest Neighbors).   Given p  P and a query point q′, 
p is one of the obstructed k nearest neighbors (OkNNs) of q′ iff there are at most (k  1) 
data points p′  P  {p} that have their obstructed distances to q′ smaller than the 
obstructed distance between p and q′, i.e., |{p′  P  {p} | ||p, q′|| > ||p′, q′||}|  (k  1).  

Definition 5.2 (Continuous Obstructed k Nearest Neighbor Query).   Given P, O, and 
q, a continuous obstructed k nearest neighbor (COkNN) query returns the result list RL 
that contains a set of ONNSi, Ri (i  [1, t]) tuples, such that (i) ∪i[1, t] Ri = q; (ii)  i, j 
 [1, t] (i ≠ j and |i  j| ≠ 1), Ri ∩ Rj = ; (iii)  i  [1, t), Ri (= [Ri.l, Ri.r]) ∩ Ri+1 (= 
[Ri+1.l, Ri+1.r]) = Ri.r; (iv)  i  [1, t], |ONNSi| = k (in this article we assume |P|  k); and 
(v)  ONNSi, Ri  RL, ONNSi is the set of OkNNs for every point on interval Ri.  

As mentioned in Section 3.2, to facilitate the split point computation under obstacle 
constraints, we introduce the concept of control point (defined in Definition 3.9). 
Accordingly, the result list RL of COkNN retrieval is reformatted into the list of three-
element tuples ONNSi, CPSi, Ri (i  [1, t]), with ONNSi representing the set of OkNNs 
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for every point along interval Ri and CPSi being the set of control points. To be more 
specific, ONNSi = ∪j[1, k] ONNj, and CPSi = ∪j[1, k] CPj, Ri in which CPj is the control 
point of ONNj over Ri, i.e., the shortest path from the answer object ONNj to any point on 
the interval Ri must pass the control point CPj, and CPj is visible to any point along Ri.  

Second, the pruning distance RLMAX introduced in Lemma 3.2 needs to be updated, as 
presented in Lemma 5.1.  

LEMMA 5.1.   Suppose the current result list RL = ∪i[1, t] ONNSi, CPSi, Ri with 
interval Ri = [Ri.l, Ri.r]  q. Given a data point p and a query line segment q = [s, e], p 
cannot change RL if mindist(p, q) > RLMAX = MAXi[1, t](maxodist(ONNSi, Ri.l), 
maxodist(ONNSi, Ri.r)), with maxodist(ONNS, s′) defined as follows:  

MAX ,         
( , )

                                   

p ONNS p s' if ONNS k
maxodist ONNS s'

if ONNS k

   
 

 (4) 

PROOF.   Pease refer to Appendix L.    

Third, the handling of data points is similar as that for CONN search. Specifically, the 
processing of each data point p  P involves three steps. The first step is to find all the 
obstacles that may affect the obstructed distances from p to any point on q. The second 
step is to obtain the control point list of p over q (i.e., CPLp,q). Finally, the third step is to 
update the current result list RL retrieved if necessary, where split point computation is 
more complex than that under CONN retrieval. Algorithm 5 presents the pseudo-code of 
the Split Point Computation for COkNN Search Algorithm (SPC-COkNN), which 
evaluates the impact of a new data point on a specified interval R.  

SPC-COkNN takes as inputs a temporary result list TRL, an interval R = [l, r], a set 
Soknn that stores the current k ONNs for R retrieved so far, a set Skcp that keeps the current 
k control points identified so far corresponding to points in Soknn over R, a new data point 
p, and p’s control point cp, and outputs the updated TRL. If R is empty (i.e., R = ), 
SPC-COkNN returns TRL and terminates (lines 2-3). Otherwise, the algorithm performs 
the following tasks. First, SPC-COkNN utilizes, for each control point cpi in Skcp, the 
split point computation approach (i.e., Split function) proposed in Section 3.2 to compute 
the split points corresponding to cp and cpi on R, and preserves the result tuples from 
Split function in a set Sspc (lines 5-8). Note that, the set Sspc accepts entries/tuples in the 
form of cp′, R′, where R′  R is the (sub) interval bounded by two consecutive split 
points, denoted as R′ = [R′.l, R′.r], and cp′ is the corresponding control point for R′.  

Then, SPC-COkNN finds all the tuples cp′, R′ in Sspc such that the interval R′ starts 
from l, and stores them in a set Sspc′, i.e., Sspc′ = {cp′, R′ | cp′, R′  Sspc  R′.l = l} (line 
9). In the sequel, SPC-COkNN distinguishes two cases (lines 10-24). (i) Case 1: all the 
tuples cp′, R′ in Sspc′ have their corresponding control point cp′ being cpi but not cp (i.e., 
 cp′, R′  Sspc′, cp′  cp). It identifies from Sspc′ the interval Rmin  R having the 
shortest length (i.e., Rmin = MIN({R′ | cp′, R′  Sspc′})), inserts tuple Soknn, Skcp, Rmin 
into TRL (as both Soknn and Skcp remain valid for the interval Rmin), and invokes recursively 
SPC-COkNN to check the validity of Soknn on the interval R′′ = R  Rmin (if R′′  ) upon 
the presence of p (lines 10-15). (ii) Case 2: there is at least one tuple cp′, R′ of Sspc′ with 
cp′ = cp. It first finds from Sspc′ the interval Rmax  R that has the longest length and 
meanwhile cp is the corresponding control point over Rmax, i.e., Rmax = MAX({R′ | cp′, 
R′  Sspc′  cp′ = cp}) (line 17). Suppose Rmax = [l, Rmax.r], cp′′ is the current control 
point in Skcp such that cp and cp′′ can generate the split point Rmax.r using the Split 
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Algorithm 5 Split Point Computation for COkNN Search Algorithm (SPC-COkNN)  
Input:     a temporary result list TRL; an interval/region R = [l, r]; a set Soknn = {pi | i  [1, k]} of  
                the current k ONNs for every point along R; a set Skcp = {cpi | i  [1, k]} of the current k  
                control points corresponding to Soknn over R; a data point p; a control point cp  
Output:  the updated TRL  
  1:  initialize a set Sspc =  accepting entries/tuples in the form cp′, R′ with R′ = [R′.l, R′.r]  
  2:  if R =  then  
  3:      return TRL  
  4:  else    // R is not empty 
  5:      for each control point cpi  Skcp do  
  6:          d = ||pi, cpi||  ||p, cp||  
  7:          Split(pi, cpi, p, cp, R, d)    // compute split points  
  8:          insert the result tuples from Split function into Sspc  
  9:      Sspc′ = {cp′, R′ | cp′, R′  Sspc  R′.l = l}  
10:      if cp′  cp for  cp′, R′  Sspc′ then  
11:          Rmin = MIN({R′ | cp′, R′  Sspc′})  
12:          R′′ = R  Rmin  
13:          insert Soknn, Skcp, Rmin into TRL    // both Soknn and Skcp remain valid for the interval Rmin  
14:          if R′′   then  
15:              SPC-COkNN (TRL, R′′, Soknn, Skcp, p, cp)    // split the interval R′′ if necessary  
16:      else    //  cp′ = cp for  cp′, R′  Sspc′  
17:          Rmax = MAX({R′ | cp′, R′  Sspc′  cp′ = cp})    // Rmax = [l, Rmax.r]  
18:          let cp′′ be the current control point in Skcp such that cp and cp′′ can generate the split point  
               Rmax.r, and p′′ be the current ONN in Soknn for the interval Rmax corresponding to cp′′  
19:          R′′ = R  Rmax  
20:          Soknn′ = Soknn  p′′  ∪ p    // replace p′′ with p  
21:          Skcp′ = Skcp  cp′′  ∪ cp    // replace cp′′ with cp  
22:          SPC-COkNN (TRL, Rmax, Soknn′, Skcp′, p′′, cp′′)  
23:          if R′′   then  
24:              SPC-COkNN (TRL, R′′, Soknn, Skcp, p, cp)  
25:  return TRL  

 
function, and p′′ is the current ONN in Soknn for the interval Rmax that corresponds to the 
control point cp′′ (line 18). The algorithm then replaces cp′′ and p′′ with cp and p 
respectively, employs SPC-COkNN to examine the validity of (Soknn  p′′  ∪ p) on the 
interval Rmax upon the existence of p′′, and calls recursively SPC-COkNN to check the 
validity of Soknn on the interval R′′ = R  Rmax (if R′′  ) upon the presence of p (lines 19-
24). Finally, the updated TRL is returned to complete the algorithm (line 25).  

We use the example depicted in Figure 12 to illustrate the SPC-COkNN algorithm. 
Suppose a CO2NN (k = 2) query is issued at a specified query line segment q = [s, e]. We 
assume that points a and b are the current control points of data points p1 and p2 over q 
respectively, and SPC(cp1, cp2, R) represents the result of the split point computation 
between two control points cp1, cp2 over the interval/region R via Split function, which 
contains a set of cp, R′ tuples such that cp is the control point for the (sub) interval R′  
R. Now we employ SPC-COkNN to evaluate the impact of a new control point c of a 
data point p over q, i.e., whether c will generate some new split points and become one of 
control points over some (sub) intervals on q.  

In the first place, as q = [s, e]  , SPC(a, c, q) = {a, [s, sac], c, [sac, e]} and SPC(b, 
c, q) = {c, [s, sbc1], b, [sbc1, sbc2], c, [sbc2, e]} are computed by using the Split function, 
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(b) The trace of SPC-COkNN algorithm for the running example  

 
Fig. 12. Example of SPC-COkNN algorithm  

 
 

and Sspc = {a, [s, sac], c, [sac, e], c, [s, sbc1], b, [sbc1, sbc2], c, [sbc2, e]} is obtained. 
Since Sspc′ = {a, [s, sac], c, [s, sbc1]} with Rmax = [s, sbc1] having c as the control point, 
SPC-COkNN first derives cp′′ = b and p′′ = p2, and then invokes SPC-COkNN (TRL, [s, 
sbc1], {p1, p}, {a, c}, p2, b) and SPC-COkNN (TRL, [sbc1, e], {p1, p2}, {a, b}, p, c) to 
further evaluate the impact of b and c on intervals [s, sbc1] and [sbc1, e], respectively. Next, 
SPC-COkNN (TRL, [s, sbc1], {p1, p}, {a, c}, p2, b) is conducted. Similarly, the Split 
function is called with SPC(a, b, [s, sbc1]) = {a, [s, sbc1]} (notice that the actual split 
point sab corresponding to a and b is located outside the interval [s, sbc1]  q but inside q.), 
SPC(c, b, [s, sbc1]) = {c, [s, sbc1]}, and Sspc = {a, [s, sbc1], c, [s, sbc1]}, due to the 
interval [s, sbc1]  . Here, Sspc′ = Sspc = {a, [s, sbc1], c, [s, sbc1]}, in which there is no 
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any interval that has b as its control point. Thus, Rmin = [s, sbc1] is derived, and the tuple 
{p1, p}, {a, c}, [s, sbc1] is inserted into TRL (without any changing). The algorithm 
proceeds in the same manner until all the split points along q are identified, after which 
TRL is updated to {{p1, p}, {a, c}, [s, sbc1], {p1, p2}, {a, b}, [sbc1, sbc2], {p1, p}, {a, c}, 
[sbc2, sab], {p2, p}, {b, c}, [sab, e]}, as illustrated in Figure 12(a). For ease of 
understanding, Figure 12(b) shows the executive processes of SPC-COkNN algorithm 
for the running example.  

It is worth mentioning that k has a direct impact on the size of the result list RL. In 
particular, the bigger the k is, the larger the number of intervals/regions included in RL is, 
and the higher the cost incurred by COkNN search algorithm is.  

5.2 Trajectory ONN Search  
So far we have discussed CONN and COkNN query processing for a single query line 
segment. However, in practice, the users may want to retrieve the ONN of every point on 
a given trajectory that consists of several consecutive line segments. Motivated by this, 
we introduce trajectory obstructed nearest neighbor (TONN) search, which finds the 
ONN for every point on a specified query trajectory.  

An intuitive solution to TONN search, namely Simple Processing Algorithm (SP), is 
to, for each line segment qi included in a trajectory q (i.e.,  qi  q), invoke the CONN 
algorithm to retrieve the ONN of every point along qi; and then merge the results if 
necessary. Although this approach is straightforward, it is inefficient in terms of I/O cost. 
This is because, given a query trajectory q that contains  line segments qi (i.e., q = 
∪1i qi), SP needs to traverse the data R-tree Tp and the obstacle R-tree To  times, 
resulting in extremely high I/O overhead, especially when  is large. To address this, we 
adopt a batch process to evaluate  line segments simultaneously, such that both Tp and 
To are traversed, respectively, only once. In this way, the I/O cost can be reduced.  

In the sequel, we explain how to extend the CONN algorithm to tackle the TONN 
query by traversing Tp and To only once no matter how large  is. The proposed algorithm 
outperforms SP, as demonstrated in Section 7.3. First, instead of decomposing the 
trajectory into multiple line segments, we consider it as one unit. The minimal distance 
between an entry E (representing a data point or an obstacle or a node MBR) and a given 
query trajectory q is defined as the minimal distance among all the minimal distances (i.e., 
mindist) from E to each line segment qi  q (i [1, ]), i.e., minimummindist(E, q) = 
MIN1i(mindist(E, qi)). As depicted in Figure 13, the query trajectory q = [s, e] consists 
of three consecutive line segments q1 = [s, tp1], q2 = [tp1, tp2], and q3 = [tp2, e], and the 
corresponding minimummindist(p1, q) = MIN(mindist(p1, q1), mindist(p1, q2), mindist(p1, 
q3)) = MIN(dist(p1, tp1), dist(p1, tp2), dist(p1, tp2)) = dist(p1, tp2).  

Second, as implied by Theorem 4.1 (presented in Section 4.1), the obstacles o that 
might affect the obstructed distances between a data point p and any point on a specified 
query line segment qi = [qi.l, qi.r] must have their mindist to q bounded by d = 1/2  
(MIN(||p, qi.l||, ||p, qi.r||) + |qi| + mindist(p, qi)), i.e., mindist(o, qi)  d. Since we need to 
find out all the obstacles that may affect the obstructed distances from p to a given query 
trajectory q consisting of multiple line segments qi, d should be replaced by 1/2  
(MIN1i(+1)(||p, tpi||) + |q| + minimummindist(p, q)), in which tpi (i  [1,  + 1]) is an 
endpoint of a line segment included in q. Take Figure 13 as an example again. All the 
obstacles o affecting the obstructed distances from p1 to any point along the query 
trajectory q must have their minimummindist to q, i.e., minimummindist(o, q), bounded by 
d = 1/2  (MIN(||p1, s||, ||p1, tp1||, ||p1, tp2||, ||p1, e||) + minimummindist(p1, q) + |q|) = 1/2  
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Fig. 13. Distance metric of TONN search  

 
 

 
Fig. 14. Example of a TONN query  

 
 

(||p1, tp2|| + |q| + minimummindist(p1, q)) = 1/2  (dist(p1, v) + dist(v, tp2) + |q| + dist(p1, 
tp2)).  

Third, the lemmas used by the CONN algorithm are still applicable, but the mindist 
metric needs to be replaced by the minimummindist metric.  

Figure 14 shows an example, where a data set P = {a, b, c, d}, an obstacle set O = {o1, 
o2, o3, o4}, and a query trajectory q = [s, e] that consists of three consecutive line 
segments q1 = [s, tp1], q2 = [tp1, tp2], and q3 = [tp2, e]. As illustrated in Figure 14, after 
processing points b, c, a, d (in this order), the final result of this TONN query is {a, a, [s, 
s1], a, v, [s1, s2], b, b, [s2, s3], c, c, [s3, s4], d, u, [s4, s5], d, d, [s5, e]}.  

It is worth noting that, the cost of TONN search, compared to CONN retrieval, is 
higher due to the fact that the number of split points and the number of obstacles 
retrieved increase with the number of query line segments.  

6. APPROXIMATE CONN SEARCH  
In general, if both the data and the obstacle sets are huge, the processing of CONN 
queries incurs extremely high cost since in the worst case it may require evaluating all the 
data points in P and accessing all the obstacles in O. Motivated by this observation, we, 
in this section, explore approximate continuous obstructed nearest neighbor (ACONN) 
search (defined in Definition 6.1), which aims to compromise accuracy for efficiency by 
proposing a method for fast but approximate CONN retrieval, i.e., the result of ACONN 
search may incur false negative or/and false positive.  

Definition 6.1 (Approximate Continuous Obstructed Nearest Neighbor Query).   
Given P, O, and q, an approximate continuous obstructed nearest neighbor (ACONN) 
query returns the approximate result list ARL that contains a set of pi, Ri (i  [1, t]) 
tuples where pi might not necessarily be the ONN to all the points along Ri.  

A naive solution to ACONN retrieval is based on sampling. In particular, this method 
finds the ONN objects for several predefined sample points of a specified query line 
segment q, and then computes the split points assuming the retrieved ONN objects 
constitute the final answer set. Nevertheless, due to the natural disadvantage of sampling, 
its performance highly depends on the number and the positions of sampling points, and 
the accuracy cannot be guaranteed. In one extreme, we can select one point p from q and 
assume the ONN to p is the ONN to any point along q. This sampling replaces a CONN 
query with an ONN query, which incurs much lower cost. However, the accuracy is very 
low. In the other extreme, we select all the points on q as sampling points, which 
guarantees the accuracy but results in extremely high processing cost. As a result, it is 
very difficult to determine an appropriate number and the positions of sampling points 
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along q, in order to efficiently process ACONN search with high accuracy. Furthermore, 
it needs to traverse the data R-tree Tp and the obstacle R-tree To multiple times because it 
has to conduct ONN retrieval on each sample point, which incurs high I/O overhead.  

Actually, our proposed CONN algorithm could be adapted to support ACONN search. 
As proved in Theorem 4.1 (presented in Section 4.1), only the obstacles with their 
mindist to q bounded by d = 1/2  (MIN(||p, s||, ||p, e||) + |q| + mindist(p, q)) may affect the 
obstructed distance between p and any point along a given query line segment q = [s, e]. 
Nonetheless, most of the qualified obstacles that require accessing are inside a much 
smaller range, as demonstrated in Lemma 6.1.  

LEMMA 6.1.   Given a data point p and a query line segment q = [s, e], let ASRp,q be the 
range bounded by the shortest path SP(p, s) from p to s, the shortest path SP(p, e) from p 
to e, and q. For any point s′ on q, it has high probability that the shortest path SP(p, s′) 
from p to s′ only passes the vertexes of the obstacles o that overlap ASRp,q, i.e., o ∩ 
ASRp,q  .  

PROOF.   Pease refer to Appendix M.    

Based on Lemma 6.1, a tighter search range for the obstacles that may affect the 
obstructed distance between the current data point p evaluated and any point along a 
specified query line segment q = [s, e] is determined, as stated in Lemma 6.2.  

LEMMA 6.2.   Given a data point p and a query line segment q = [s, e], let ASRp,q be the 
range bounded by the shortest path SP(p, s) from p to s, the shortest path SP(p, e) from p 
to e, and q. Assume  = MAXvVp(mindist(v, q)), where Vp denotes the set of vertexes v 
(including p, s, and e) on SP(p, s) and SP(p, e). All the obstacles o with mindist(o, q) >  
do not overlap ASRp,q, i.e., if mindist(o, q) > , o ∩ ASRp,q = .  

PROOF.   Pease refer to Appendix N.    

Our proposed approximated CONN (ACONN) algorithm for ACONN retrieval, like 
CONN, evaluates data points according to the ascending order of their mindist to q, but 
(unlike CONN) it retrieves only those obstacles having their mindist to q bounded by  = 
MAXvVp(mindist(v, q)) when evaluating a point p, with set Vp containing the set of 
vertexes v (including p, s, and e) on SP(p, s) and SP(p, e). For example, in Figure 15, Vp = 
{p, v1, v2, s, v3, v4, e} and  = MAXvVp(mindist(v, q)) = MAX(mindist(p, q), mindist(v1, 
q), mindist(v2, q), mindist(s, q), mindist(v3, q), mindist(v4, q), mindist(e, q)) = mindist(p, q) 
= dist(p, s1). According to Lemma 6.2, the shortest distance from p to any point along q is 
most likely affected only by the obstacles with their mindist to q bounded by mindist(p, q) 
= dist(p, s1).  

Compared with CONN, ACONN saves the retrieval of those obstacles o with 
mindist(o, q) larger than  but bounded by d = 1/2  (MIN(||p, s||, ||p, e||) + |q| + mindist(p, 
q)). Therefore, ACONN may miss some obstacles (e.g., obstacle o′′ in Figure 15) that do 
affect the obstructed distances between the evaluated data point p and some points on q. 
However, as demonstrated in Section 7.4, the number of missed obstacles is relatively 
small, compared with the performance improvement. In addition, ACONN can be 
naturally extended to answer approximate COkNN (ACOkNN) search. The details are 
skipped to save space.  

7. EXPERIMENTAL EVALUATION  
In this section, we verify the performance of our proposed algorithms for CONN query 
and its variants via extensive experimental evaluation. All the algorithms were 
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Fig. 15. Obstacle search ranges for ACONN search  
 
 

implemented in C++, and the experiments were conducted on an Intel Core 2 Duo 3.2 
GHz PC with 3GB RAM, running Microsoft Windows XP Professional Edition. The 
detailed experimental setup is presented in Section 7.1. Section 7.2 studies the efficiency 
and effectiveness of CONN algorithm in supporting COkNN (k  1) search. Sections 7.3 
and 7.4 evaluate TOkNN and ACOkNN queries, respectively.  

7.1 Experimental Settings  
Our experiments use both real and synthetic datasets, with the search/data space fixed at a 
[0, 10000]  [0, 10000] square. Two real datasets are deployed, namely, CA and LA16. 
Specifically, CA contains two-dimensional (2D) points, representing 60,344 locations in 
California; and LA includes 2D rectangles, representing 131,461 MBRs of streets in Los 
Angeles. All datasets are normalized in order to fit the search range. Synthetic datasets 
are generated based on uniform distribution and zipf distribution respectively, with the 
cardinality varying from 0.1|LA| to 10|LA|. The coordinate of each point in Uniform 
datasets is created uniformly along each dimension, and that of each point in Zipf datasets 
is generated according to a zipf distribution with a skew coefficient17   0.8. We assume 
a point’s coordinates on both dimensions are mutually independent.  

Since CONN search and its variants involve a data set P and an obstacle set O, we 
deploy three different combinations of the datasets, namely CL, UL, and ZL, representing 
(P, O) = (CA, LA), (Uniform, LA), and (Zipf, LA), respectively. CL utilizes real datasets 
with |P| < |O|. On the other hand, UL and ZL employ synthetic datasets, and thus we can 
adjust the relative size of P and O to simulate different cases. Note that the data points in 
P are allowed to lie on the boundaries of the obstacles, but not in their interior.  

All data and obstacle sets are indexed by R*-trees [Beckmann et al. 1990], with a 
page size of 4K bytes. Table II lists all the parameters that are considered in our 
experiments, with numbers in bold representing default settings. In each experiment, only 
one parameter is changed in order to evaluate its impact on the performance, while all the 
other parameters are fixed at their defaults. We run 100 queries for each experiment, and 
the average performance is reported.  
 

                                                           
16CA and LA datasets are available in the R-tree portal (http://www.rtreeportal.org).  
17When the skew coefficient equals 1, all numbers generated by the Zipf distribution are equivalent. When the 
coefficient equals 0, the Zipf distribution degenerates to uniformity.  
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Table II. Parameter ranges and default values  
Parameter  Range  
query length |q| (% of data space side)  1.5, 3, 4.5, 6, 7.5  
k  1, 3, 5, 7, 9  
|P|/|O|  0.1, 0.2, 0.5, 1, 2, 5, 10  
buffer size (% of the tree size)  0, 1, 2, 4, 8, 16, 32  
number of trajectory segments   2, 3, 4, 5, 6  

 
 

The main performance metrics in our experimental evaluation include I/O cost (i.e., 
the number of node/page accesses), CPU time, total query cost (i.e., the sum of the I/O 
time and CPU time, where the I/O time is calculated by charging 10ms for each page 
access [Tao et al. 2007]), the number of data points evaluated (NPE) during search, the 
number of obstacles encountered (NOE) during search, and visibility graph size |VG| (i.e., 
the number of vertexes contained in the local visibility graph VG). Unless specifically 
stated, the size of LRU buffer is 0 in the experiments, i.e., the I/O cost is determined by 
the number of nodes/pages accessed. Given a query length |q|, each query line segment is 
generated by (i) selecting a random point in the data space as the starting point of the 
query line segment, and (ii) selecting randomly an orientation (angle with the x-axis) 
from the range [0, 2π), with its length controlled by the specified query length |q|. In 
addition, we assume each query line segment does not cross any obstacle. The line 
segments included into a given query trajectory for TOkNN retrieval are created in the 
same manner. However, we fix the trajectory length to 4.5% of the data space side, and 
assume all the line segments contained in the query trajectory share the same length in 
order to simplify the simulation.  

7.2 Evaluation of COkNN Search  
The first set of experiments aims at evaluating the performance of CONN algorithm in 
answering COkNN queries. We study the influence of various parameters, including (i) 
query length |q|, (ii) the number of ONNs required k, (iii) the ratio of dataset cardinality 
|P| to obstacle set cardinality |O| (i.e., |P|/|O|), and (iv) buffer size. As explained in 
Section 4, the data set P and the obstacle set O can be indexed by two separate R-trees or 
a single R-tree. Consequently, the performance of COkNN search under both settings, 
denoted as COkNN-2T (2T for short) and COkNN-1T (1T for short) respectively, is 
evaluated as well.  

First, we investigate the effect of |q| on the efficiency of the algorithms using CL 
dataset combination. Figure 16 shows the performance of the COkNN algorithm in terms 
of I/O cost, total query cost (in seconds), number of items evaluated (including NPE and 
NOE), and visibility graph size, respectively, as a function of |q|, fixing k to 5. Here, the 
I/O cost is broken to data R-tree node accesses and obstacle R-tree node accesses, 
respectively; and the overall query cost is also broken into two components, 
corresponding to the I/O cost and the CPU cost, respectively. Furthermore, we explicitly 
point out the percentage of obstacle R-tree node accesses in the total node accesses (i.e., 
the summation of data R-tree and obstacle R-tree node accesses during the search) and 
the percentage of I/O cost in the overall query cost, denoted by the percentage number on 
top of each bar in Figure 16(a) and Figure 16(b), respectively.  

It is observed that the cost of COkNN retrieval grows with |q|. The reason behind is 
that, as the length of query line segment becomes longer, the number of data points 
processed, the number of obstacles encountered (i.e., the ones overlapping the obstacle 
search range), and the number of split points generated along the specified query line 
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Fig. 16. COkNN search performance vs. query length |q| (k = 5)  

 
 

segment increase, resulting in more distance calculation, more control point list 
computation, and more result list update. Figures 16(a), 16(b), and 16(c) further confirm 
this explanation, showing that the number of node accesses, CPU cost percentage, NPE, 
and NOE ascend with the growth of |q|. Figure 16(d) illustrates the size of visibility graph 
(i.e., |VG|) with respect to |q|. Since all the obstacles are in rectangular shapes (as 
specified in the footnote 1 of Section 1), there are 4  |O| = 525,844 vertexes in the global 
visibility graph, denoted by FULL, when we take LA as the obstacle set O. Note that, 
although |VG| increases with |q|, its size is much smaller than the size of FULL, as also 
demonstrated in the subsequent experiments. This confirms the effectiveness of our 
proposed IOR algorithm in reducing the number of obstacle traversals because IOR only 
incrementally retrieves all the qualified obstacles that may affect the final query result.  

Next, we explore the impact of k on the efficiency of the algorithms. Towards this, we 
employ CL again, set |q| to 4.5% of the data space side, and vary k between 1 and 9. 
Figure 17 depicts the performance of the COkNN algorithm for various values of k. As 
expected, all costs, including the number of node accesses, total query time, NPE, NOE, 
and |VG|, grow with k. This is because a higher value of k implies a larger range to be 
searched (for both data points and obstacles), incurring more distance computation. 
Moreover, as k increases, the number of answer points in the final result list RL grows as 
well, which leads to more frequent update operations and more expensive maintenance 
cost for the result list RL. In addition, notice that the ascending trend of Figure 17 is not 
as obvious as that observed from Figure 16, which indicates that the change of k has a 
smaller impact on the search performance than the change of |q|.  

Then, to study the influence of |P|/|O|, we utilize UL and ZL dataset combinations, 
where the ratio of the cardinality of the data set P to that of the obstacle set O, i.e., |P|/|O|, 
varies from 0.1 to 10. Figure 18 plots the performance of the COkNN algorithm as a 
function of the ratio |P|/|O|, with |q| = 4.5% and k = 5. A crucial observation is that the 
total query cost of COkNN search first drops and then increases as |P|/|O| varies. 
Specifically, COkNN retrieval decreases its query cost when |P|/|O| grows from 0.1 to 0.5 
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Fig. 17. COkNN search performance vs. k (|q| = 4.5%)  

 
 

(see Figures 18(b) and 18(f)). This is because, as the density of data set P increases, the 
search space of COkNN search becomes smaller. Correspondingly, the number of 
obstacles that might impact the obstructed distances from every data point to any point 
along a given query line segment q is decreased, i.e., the IOR algorithm retrieves less 
qualified obstacles, which is indicated by NOE in Figures 18(c) and 18(g). Nevertheless, 
as |P|/|O| continues growing from 1 to 10 (see Figures 18(b) and 18(f)), the query cost of 
COkNN retrieval increases gradually. The reason behind is that, the interval/region on q 
dominated by each data point becomes smaller, and the result list contains more answer 
points. In other words, more data points need to be evaluated, as implied by NPE in 
Figures 18(c) and 18(g), with higher split point computation overhead and higher result 
list update cost. Notice that, when P and O share similar cardinalities (e.g., |P|/|O| = 0.5 or 
1), COkNN search takes the smallest query time.  

We also observe that from Figures 18(a) and 18(e), with the growth of |P|/|O|, the 
node/page accesses of the data R-tree increase fast, whereas those of the obstacle R-tree 
decline gradually. This is because, as |P|/|O| ascends, the range around the query line 
segment where answer points are found decreases. Figures 18(c) and 18(g) further 
confirm this observation, showing that NPE grows fast, but NOE drops gradually. In 
addition, as illustrated in Figures 18(d) and 18(h), the visibility graph size |VG| drops as 
|P|/|O| increases, due to the shrinking of the COkNN search space.  

As mentioned in Section 7.1, all the previous experiments are conducted without any 
buffer, i.e., the size of LRU buffer is 0. In this set of experiments, we examine the effect 
of buffer size on the COkNN search performance, by changing the buffer size from 0% to 
32% of each R-tree size. To obtain stable statistics, we use the first 50 queries to warm up 
the buffer, and only measure the average cost of the last 50 queries. Figure 19 depicts the 
results for the CL dataset combination, with |q| = 4.5% and k = 5. It is observed that a 
non-zero buffer can improve the I/O performance only, but not others. In particular, as 
the buffer size increases, the I/O cost decreases gradually (see Figure 19(a)), whereas the 
other costs (e.g., CPU cost, etc.) remain almost the same.  
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Fig. 18. COkNN search performance vs. |P|/|O| (|q| = 4.5%, k = 5)  

 
 

In all the above experiments, we assume that the data set P and the obstacle set O are 
indexed by two separate R-trees. However, as discussed in Section 4.5, our proposed 
COkNN search algorithm is very flexible, and it can easily support the case where both P 
and O are indexed by a single R-tree. The last set of experiments in this subsection 
compares the performance of COkNN retrieval when P and O are indexed by two 
different R-trees (i.e., COkNN-2T (2T for short)) against that under the scenario where 
both P and O are indexed by one unified R-tree (i.e., COkNN-1T (1T for short)), and the 
experimental results are plotted in Figure 20. It shows that 1T is more efficient than 2T in 
most of the cases, although they share the similar performance trend. This is because, 
when both data points and obstacles are indexed by one R-tree, only one traversal of the 
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Fig. 19. COkNN search performance vs. buffer size (|q| = 4.5%, k = 5)  
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Fig. 20. COkNN search performance on two R-trees vs. that on one R-tree  

 
 

R-tree is required. Data points and obstacles that are close to each other could be found in 
the same leaf node of the R-tree. Hence, using a single R-tree to index both P and O is 
one potential approach to further boost up the search performance. It is observed that 1T 
incurs a high I/O cost than 2T in most of the cases. The reason behind is that, when both 
data points and obstacles are indexed by a single R-tree, more data points are likely to be 
visited/evaluated during the search (although they are unqualified ones), leading to more 
I/O overhead. We also observe that the performance gap between 2T and 1T is more 
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Fig. 21. TOkNN search performance vs. k ( = 4)  

 
 

obvious under ZL than that for UL, due to the different dataset distribution. In addition, 
the performance difference between 2T and 1T is more significant when |P|/|O| is lower. 
This is because, when the density of data set P is smaller, the search space of COkNN 
retrieval becomes larger, resulting in higher traversal cost of R-trees.  

7.3 Evaluation of TOkNN Search  
The second set of experiments evaluates the performance of our proposed algorithm for 
TOkNN search (called TOkNN). For comparison, we implement the SP algorithm 
(presented in Section 5.2) as a baseline approach. We study the influence of two factors: 
k and the number of trajectory segments . The trajectory length is set to 4.5% of the data 
space side, and it consists of  consecutive line segments with equivalent length.  

First, we investigate the effect of k on the efficiency of the algorithms. Figure 21 
shows the performance of the algorithms as a function of k, fixing  to 4 (which is the 
median value used in Figure 22). Clearly, TOkNN outperforms SP, especially for the I/O 
cost, NPE, NOE, and |VG|. The reason behind is that, as mentioned in Section 5.2, 
TOkNN answers TOkNN retrieval by traversing both the data set P and the obstacle set 
O only once. Notice that, in terms of overall query cost, although TOkNN is better than 
SP, they are similar, as illustrated in Figure 21(b). This is because the calculation of 
minimummindist metric (proposed in Section 5.2) requested by TOkNN is CPU time-
consuming. In addition, the cost of TOkNN search increases with k, since a higher value 
of k incurs a larger search space, more distance computation, and more result list 
maintenance cost. As SP always performs worse than TOkNN, it is omitted from the 
remaining experiments in this subsection.  

Then, we explore the impact of  on the efficiency of TOkNN algorithm. Figure 22 
depicts the results as a function of  using the CL dataset combination, by fixing k to 5 
and varying  from 2 to 6. As expected, the cost of the algorithm increases with the 
growth of . The reason behind is that, a larger  suffers from more distance calculation, 
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Fig. 22. TOkNN search performance vs. the number of trajectory segments  (k = 5)  
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Fig. 23. TOkNN search performance on two R-trees vs. that on one R-tree  

 
 

more control point list computation, and more frequent result list update.  
Also, we compare the performance of TOkNN when the data set P and the obstacle 

set O are indexed by two separate R-trees, denoted as TOkNN-2T (2T for short), against 
that under the case where both P and O are indexed by a single R-tree, denoted as 
TOkNN-1T (1T for short). The results are plotted in Figure 23. It is observed that 
TOkNN-2T and TOkNN-1T share the same performance trend, whereas the latter 
performs better. As mentioned earlier, the advantage of TOkNN-1T can be explained by 
the fact that the data points and obstacles located close to each other are very likely to be 
stored in the same page, and hence, the access to the data points and that to the obstacles 
might share the node access when both P and O are indexed by a unified R-tree.  

7.4 Evaluation of ACOkNN Search  
The last set of experiments aims to evaluate the efficiency of ACOkNN algorithm in 
answering ACOkNN queries. For the approximate algorithm, in addition to the search 
efficiency, we need to evaluate the quality of approximation. Towards this, we employ 
two metrics, i.e., precision and recall. Let ARLo be the set of answer objects contained in 
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Fig. 24. ACOkNN search performance vs. query length |q| (k = 5)  
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Fig. 25. ACOkNN search performance vs. k (|q| = 4.5%)  

 
 

the final result list of the approximate search (i.e., ACOkNN (AC for short)) and RLo be 
the set of answer objects included in the final result list of the exact search (i.e., COkNN 
(CO for short)). The precision and recall are defined as follows: precision = |ARLo ∩ RLo| 
/ |ARLo| and recall = |ARLo ∩ RLo| / |RLo|. Note that, given the fact that the result of 
COkNN search is a set of pi, Ri tuples, we use pi, Ri instead of a single pi to measure 
|ARLo ∩ RLo|. For example, let ARLo = {p1, R1, p2, R2, p3, R3, p4, R4} and RLo = {p1, 
R1′, p2, R2′, p3, R3, p5, R4} (R1 ≠ R1′ and R2 ≠ R2′), then |ARLo ∩ RLo| = |{p3, R3}| = 
1. In addition, it is worth mentioning that, we do not consider the sampling based 
approach for ACOkNN search because, as mentioned in Section 6, it has two deficiencies: 
(i) it is difficult to identify appropriate number and positions of sampling points in order 
to obtain high accuracy guarantee; and (ii) it may repetitively access some node entries in 
R-trees.  

In the first experiment, we fix k to 5 and vary |q| from 1.5% to 7.5% of the data space 
side. Figure 24(a) illustrates the total query cost with respect to |q|. Evidently, ACOkNN 
outperforms COkNN and the performance difference becomes more significant as |q| 
increases. Figure 24(b) unveils the precision and recall incurred by ACOkNN as a 
function of |q|. For a short query length (e.g., |q| = 1.5%), the precision and recall are high 
since the number of qualifying obstacles missed is limited. As a result, the difference 
between actual obstacle search range and approximate obstacle search range is 
insignificant. On the other hand, the number of missing qualified obstacles grows 
dramatically as |q| increases.  

Figure 25 shows the total query cost, precision, and recall under different k, by fixing 
|q| to 4.5% of the data space side. Similar to Figure 24, ACOkNN outperforms COkNN 
significantly in terms of performance, with reasonable precision and recall. Even when k 
increases, the precision and recall of ACOkNN are still acceptable.  
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Fig. 26. ACOkNN search performance vs. |P|/|O| (|q| = 4.5%, k = 5)  

 
 

 
Finally, we demonstrate the effect of |P|/|O| on the performance of the algorithms, 

using synthetic dataset combinations UL and ZL. The results are plotted in Figure 26. 
Again, ACOkNN is consistently better than COkNN for all the experimental instances. 
As shown in Figures 26(b) and 26(d), the precision and recall increase as |P|/|O| grows. 
This is because, when |P| is smaller than |O|, the obstacle set O has a larger density than P, 
and hence more obstacles actually fall outside the approximate obstacle search range but 
within the real obstacle search range, i.e., the number of qualified obstacles ignored by 
ACOkNN but not COkNN is larger. Moreover, we observe that the total query cost for 
COkNN search and that for ACOkNN retrieval have different performance trend (see 
Figures 26(a) and 26(c)), due to the different obstacle search range.  

8. CONCLUSIONS  
In this article, we identify and solve a novel type of CNN queries, namely CONN search, 
which considers the impact of obstacles on the distance between objects. CONN retrieval 
is not only interesting and challenging from a research point of view, but also useful in 
many applications such as location-based commerce, geographic information systems, 
and complex spatial data analysis under obstacle constraints. We carry out a systematic 
study of CONN search. First, we provide a formal definition of the problem. Second, we 
propose efficient algorithms for exact CONN query processing. Next, we extend our 
techniques to tackle variations of CONN queries, including COkNN search and trajectory 
ONN search. Then, we discuss approximate CONN retrieval. Finally, we conduct 
extensive experiments to evaluate the efficiency and effectiveness of the proposed 
algorithms using both real and synthetic datasets.  

In the future, we intend to explore the application of the related techniques to other 
forms of spatial queries (e.g., reverse nearest neighbor search [Korn and Muthukrishnan 
2000; Tao et al. 2007], etc.) in the presence of obstacles. Another promising direction for 
future work concerns the extension of our proposed methodology to alternative versions 
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of the problem. One such example refers to CONN queries for moving objects or/and 
moving obstacles. Finally, it would be particularly interesting to develop analytical 
models for estimating the execution cost of CONN search algorithms, because such 
models will not only facilitate query optimization, but may also reveal new problem 
characteristics that could lead to even better algorithms.  

ELECTRONIC APPENDIX  
The electronic appendix for this article can be accessed in the ACM Digital Library by 
visiting the following URL: http://www.acm.rog/pubs/citations/journals/tods/20XX-X-
X/p1-URLend.  
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A. PROOF OF THEOREM 3.1  
PROOF.   Consider the illustrative example of Figure 7(a), in which points m and n are 

the projections of u and v on the line segment q respectively, point y is the intersection 
between q and the extended line of segment [u, v], and point z is the intersection between 
the perpendicular bisector (u, v) of [u, v] and q. We further assume that point n is the 
origin of the XY coordinate system as depicted in Figure 7(a). Let dist(n, m) = a (> 0), 
dist(v, n) = b, dist(u, m) = c, and suppose b < c (i.e., v is closer to q than u). As we want 
to find point(s) s′ on q such that ||p, v|| + dist(v, s′) = ||p′, u|| + dist(u, s′), we need to find 
point(s) s′ along q that satisfy dist(u, s′)  dist(v, s′) = ||p, v||  ||p′, u|| = d. Suppose point s′ 
on q has coordinate (x, 0), we need to solve the following quadratic polynomial:  

2 2 2 2( , ) ( , ) ( )d dist u s' dist v s' a x c x b        (1) 

Let A = 4a2  4d2, B = 4aT, and C = T2  4b2d2 with T = a2 + c2  b2  d2, the roots 
of Equation (1) can be derived as follows: (i) if A = 0, then x = C/B; otherwise (ii) 

2( 4 ) (2 )x B B AC A    . Hence, there are at most two points along q such that ||p, v|| + 

dist(v, s′) = ||p′, u|| + dist(u, s′). The proof can be easily adjusted for other cases, including 
(i) a = 0, i.e., [u, v] is vertical to q; (ii) b = c, i.e., [u, v] is parallel to q, and (iii) b > c, i.e., 
u is closer to q than v.    
__________________________________________________________________________________________ 
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Fig. 27. The obstacle search range  
 
 

B. PROOF OF LEMMA 3.1  
PROOF.   Without loss of generality, we assume that there is at least one point s′ along 

the line segment q such that ||p′, s′|| < ||p, s′|| (i.e., p′ is nearer to s′ than p). As points v and 
u are the control points of p and p′ over q respectively, ||p, s′|| = ||p, v|| + dist(v, s′) and ||p′, 
s′|| = ||p′, u|| + dist(u, s′). ||p′, s′|| < ||p, s′|| indicates that ||p′, u|| + dist(u, s′) < ||p, v|| + dist(v, 
s′), i.e., dist(u, s′)  dist(v, s′) < ||p, v||  ||p′, u|| = d. On the other hand, based on the 
conditions (i) and (ii) presented in Lemma 3.1, we have dist(u, s)  dist(v, s) > ||p, v||  ||p′, 
u|| = d and dist(u, e)  dist(v, e) > ||p, v||  ||p′, u|| = d. Let Y(x) = dist(u, x)  dist(v, x) with 
x  [s, e]. Since x is a certain point along q = [s, e], the value of Y(x) first drops and then 
increases, which contradicts with the distribution of Y(x) illustrated in Figure 7(b). 
Consequently, our assumption is invalid, and point p is definitely closer to any point 
along q than p′. The proof completes.    

C. PROOF OF LEMMA 3.2  
PROOF.   Without loss of generality, we assume that there is at least one point s′ along 

the interval Ri  q such that ||p, s′|| < ||pi, s′||. As s′ is a point on Ri, ||p, s′||  dist(p, s′)  
mindist(p, q). On the other hand, ||pi, s′|| = ||pi, cpi|| + dist(cpi, s′). Since cpi is the control 
point of pi over Ri  q, it is visible to any point along Ri. Thus, dist(cpi, s′)  MAX(dist(cpi, 
Ri.l), dist(cpi, Ri.r)), i.e., ||pi, s′|| = ||pi, cpi|| + dist(cpi, s′)  ||pi, cpi|| + MAX(dist(cpi, Ri.l), 
dist(cpi, Ri.r)) = MAX(||pi, Ri.l||, ||pi, Ri.r||)  RLMAX < mindist(p, q)  ||p, s′||, which 
contradicts our assumption. The proof completes.    

D. PROOF OF THEOREM 4.1  
PROOF.   As illustrated in Figure 27, suppose there is at least one point s′ on q such 

that the shortest path SP(p, s′) from point p to s′ passes at least one vertex v of an obstacle 
o that is located outside the range SRp,q, i.e., v  SP(p, s′)  v  o  mindist(o, q) > d. 
Thus, |SP(p, s′)| = ||p, v|| + ||v, s′||  dist(p, v) + dist(v, s′). As mindist(o, q) > d, p locates 
inside SRp,q, and s′ lies on q, dist(p, v)  d  mindist(p, q) and dist(v, s′)  mindist(o, q) > 
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d. Hence, |SP(p, s′)|  dist(p, v) + dist(v, s′) > d  mindist(p, q) + d = 2d  mindist(p, q), 
i.e., |SP(p, s′)| > 2d  mindist(p, q). On the other hand, since the shortest paths SP(p, s) 
and SP(p, e) are available and the query line segment q does not intersect any obstacle, 
there are two other obstacle-free paths from p to s′, including (i) path P1(p, s′) that 
follows SP(p, s) and then from s to s′, i.e., path P1(p, s′) = {v1, v2, s}, and (ii) path P2(p, s′) 
that follows SP(p, e) and then from e to s′, i.e., path P2(p, s′) = {v3, e}, as shown in Figure 
27. Therefore, |SP(p, s′)|  MIN(|P1(p, s′)|, |P2(p, s′)|) = MIN(||p, s|| + dist(s, s′), ||p, e|| + 
dist(e, s′))  MIN(||p, s||, ||p, e||) + |q| = 2d  mindist(p, q), i.e., |SP(p, s′)|  2d  mindist(p, 
q), which contradicts the above fact that |SP(p, s′)| > 2d  mindist(p, q). Consequently, 
our assumption is invalid, i.e., the path from p to s′ via a vertex v of the obstacle o with 
mindist(o, q) > d is not the shortest path. The proof completes.    

E. PROOF OF LEMMA 4.1  
PROOF.   If P2(p, s′) is not the real shortest path SP(p, s′) from p to s′, there must be 

another one P3(p, s′) = SP(p, s′) with |P3(p, s′) | < |P2(p, s′)|. Since P2(p, s′) is the shortest 
one among all the paths from p to s′ that only pass the vertexes of obstacles inside So, 
P3(p, s′) must pass at least one vertex, denoted as v, of a certain obstacle o that is not 
included in So, i.e., dist(v, s′)  mindist(v, q)  mindist(o, q) > |P(p, s′)|. We further 
decompose P3(p, s′) into two paths via node v, i.e., P3(p, v) and P3(v, s′). As |P3(p, s′)| = 
|P3(p, v)| + |P3(v, s′)|, |P3(p, s′)| > |P3(v, s′)|  dist(v, s′)  mindist(o, q) > |P(p, s′)|. On the 
other hand, |P2(p, s′)|  |P(p, s′)| < |P3(p, s′)|. Therefore, P3(p, s′) could not be the shortest 
path from p to s′, and the proof completes.    

F. PROOF OF LEMMA 4.2  
PROOF.   As shown in Figure 8(a), suppose v is the control point of p over at least one 

point x on the interval (VRu,q ∩ VRv,q). Since x is visible to both u and v, let path P1(p, x) 
be the shortest path from p to x via v, and P2(p, x) be the obstacle free path from p to x via 
u. We have ||p, x|| = |P1(p, x)| = ||p, v|| + dist(v, x) = ||p, u|| + dist(u, v) + dist(v, x) > ||p, u|| 
+ dist(u, x) = |P2(p, x)|, which contradicts the assumption that P1(p, x) is the shortest path. 
Thus, our assumption is invalid, and the proof completes.    

G. PROOF OF LEMMA 4.3  
PROOF.   Take R = [s3, s4]  (VRv,q  VRu,q) = {[s1, s2], [s3, s4]} depicted in Figure 8(b) 

as an example. Here, point o2 blocks u over R. Suppose point v satisfies all three 
conditions, i.e., (i) v  ∆us3s4, (ii)  x  R, segment [v, x] intersects segment [u, s3], and 
(iii) endpoint s3 is invisible to u because of the vertex m of obstacle o2 and m is visible to 
any point along R. We assume v, although satisfying all three conditions, is the control 
point of point p for at least one point x on R. In other words, the shortest path from p to x 
must pass v, and we further assume P1(p, x) is the shortest path from p to x via u and v. 
Let y be the intersection between the segments [v, x] and [u, s3], as shown in Figure 8(b). 
Therefore, we have ||p, x|| = |P1(p, x)| = ||p, v|| + dist(v, x) = ||p, u|| + dist(u, v) + dist(v, x) = 
||p, u|| + dist(u, v) + dist(v, y) + dist(y, x). On the other hand, for triangle ∆uvy, dist(u, v) + 
dist(v, y) > dist(u, y) holds. Thus, |P1(p, x)| > ||p, u|| + dist(u, y) + dist(y, x) holds. As R  
VRv,q, x is visible to v and point y must locate between m and s3, i.e., dist(u, y) + dist(y, x) 
= dist(u, m) + dist(m, y) + dist(y, x) > dist(u, m) + dist(m, x). Hence, |P1(p, x)| > ||p, u|| + 
dist(u, m) + dist(m, x) holds. Let P2(u, x) be an obstacle free path from u to x only via m, 
i.e., |P2(u, x)| = dist(u, m) + dist(m, x). Consequently, |P1(p, x)| > ||p, u|| + |P2(u, x)| holds, 
which means that P1(p, x) is not the shortest path because its length is longer than an 
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obstacle free path from p to x via u and m. Thus, our assumption that P1(p, x) is not the 
shortest path from p to x via u and v is invalid. The proof completes.    

H. PROOF OF LEMMA 4.4  
PROOF.   If a node v in VG is contained in CPLp,q, there must be at least one point s′ on 

q such that the shortest path SP(p, s′) from p to s′ passes v and s′ is visible to v. We 
denote this shortest path (i.e., SP(p, s′)) as P1(p, s′) with |SP(p, s′)| = |P1(p, s′)| = ||p, v|| + 
dist(v, s′)  ||p, v|| + mindist(v, q)  CPLMAX. On the other hand, let cpi, Ri  CPLp,q be 
the tuple in CPLp,q such that s′ is on Ri = [Ri.l, Ri.r] ( q), and P2(p, s′) be the path from p 
to s′ via cpi. Hence, |P2(p, s′)| = ||p, cpi|| + dist(cpi, s′). As dist(cpi, s′)  MAX(dist(cpi, 
Ri.l), dist(cpi, Ri.r)), |P2(p, s′)|  ||p, cpi|| + MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)) = MAX(||p, 
cpi|| + dist(cpi, Ri.l), ||p, cpi|| + dist(cpi, Ri.r))  MAXi[1, m](||p, cpi|| + dist(cpi, Ri.l), ||p, 
cpi|| + dist(cpi, Ri.r)) = CPLMAX  |P1(p, s′)|, i.e., |P2(p, s′)|  |P1(p, s′)|. Thus, P1(p, s′) 
cannot be the shortest path from p to s′, which contradicts our assumption. The proof 
completes.    

I. PROOF OF LEMMA 4.5  
PROOF.   The proof is straightforward because (i) data points in a given data set P will 

be evaluated in an incremental manner during the search unless the currently evaluated 
point satisfies the early termination condition (presented in Lemma 3.2); and (ii) only 
obstacles in a specified obstacle set O that may affect the obstructed distances between 
the current data point p processed and any point along a given query line segment q, i.e., 
the obstacles in O bounded by the search range SRp,q (defined in Theorem 4.1), are visited 
incrementally.    

J. PROOF OF LEMMA 4.6  
PROOF.   As shown in Algorithm 4, the CONN algorithm traverses the data R-tree Tp 

once in a best-first fashion to evaluate every data point in P that does not satisfy the early 
termination condition (presented in Lemma 3.2). In addition, it only traverses the obstacle 
R-tree To once as well. Although the IOR algorithm is invoked every time a new data 
point p  P is evaluated, it utilizes the obstacle vertexes preserved in the current visibility 
graph VG and traverses To in an incremental manner.    

K. PROOF OF THEOREM 4.2  
PROOF.   First, no answer points are missed (i.e., no false negatives) as each data point 

in P is accessed until the data point satisfying the early termination condition (presented 
in Lemma 3.2) is encountered. Second, the impact of each visited data point on the 
current result list RL is evaluated, which ensures no false positives (i.e., no false hits).    

L. PROOF OF LEMMA 5.1  
PROOF.   The proof is similar to the proof of Lemma 3.2 and hence omitted.    

M. PROOF OF LEMMA 6.1  
PROOF.   Suppose there is a point s′ on q such that at least one vertex g along its 

shortest path to p, i.e., SP(p, s′), passes an obstacle o outside ASRp,q, i.e.,  g  SP(p, s′), 
g  o  o ∩ ASRp,q = . As s′ is on q (which is one boundary of ASRp,q) and o ∩ ASRp,q = 
, SP(p, s′) must intersect the boundary of ASRp,q, and let point x be one intersection. 
Without loss of generality, x could be located at SP(p, s) or SP(p, e) or q. If x is located at 
SP(p, s), we have two paths from p to x, i.e., P1(p, x) following SP(p, s′) and P2(p, x) 
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following SP(p, s), but both stop at x instead of s′/s. Take Figure 15 as an example. SP(p, 
s′) = {v5, v6} and SP(p, s) = {v1, v2}. Correspondingly, P1(p, x) = {v5, v6} and P2(p, x) = 
{v1, v2}. If |P1(p, x)| < |P2(p, x)|, |P1(p, x)| + ||x, s|| < |P2(p, x)| + ||x, s|| = |SP(p, s)|, which 
contradicts the fact that SP(p, s) is the shortest path from p to s. Otherwise, |P1(p, x)|  
|P2(p, x)|, i.e., |P1(p, x)| + ||x, s′||  |P2(p, x)| + ||x, s′||; and thus our assumption that the path 
from p to s′ passing vertex g is the shortest path is invalid. Similarly, we can prove that 
when x is located at SP(p, e), the path from p to s′ via an obstacle outside ASRp,q could not 
be the shortest path SP(p, s′). Since it is more likely that x is located at SP(p, s) or SP(p, e) 
but not q, we could conclude that most, but not all, of the obstacles that may affect the 
obstructed distance from p to any point along q should overlap the range ASRp,q. The 
proof completes.    

N. PROOF OF LEMMA 6.2  
PROOF.   Suppose there is an obstacle o′ such that (i) o′ ∩ ASRp,q  , (ii) mindist(o′, q) 

> , and (iii) there is at least one vertex v of o′ located inside ASRp,q, as shown in Figure 
15. Let s′′ be the projection of v on q, and p′ be the intersection between a ray from s′′ to v 
and the boundary of ASRp,q (i.e., either SP(p, s) or SP(p, e)), as illustrated in Figure 15. 
Obviously, dist(v, s′′)  dist(p′, s′′)   = MAXvVp(mindist(v, q)). On the other hand, 
since v is a vertex of the obstacle o′ and s′′ is v’s projection on q, mindist(o′, q)  dist(v, 
s′′). Thus, mindist(o′, q)  , which contradicts our assumption. The proof completes.    
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