
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1999

Harp: A distributed query system for legacy public
libraries and structured databases
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Ying LU

DOI: https://doi.org/10.1145/314516.314521

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng and LU, Ying. Harp: A distributed query system for legacy public libraries and structured databases. (1999). ACM
Transactions on Information Systems. 17, (3), 294-319. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/133

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/314516.314521
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Harp: A Distributed Query System for
Legacy Public Libraries and Structured
Databases

EE-PENG LIM
Nanyang Technological University
and
YING LU
Kent Ridge Digital Labs

The main purpose of a digital library is to facilitate users easy access to enormous amount of
globally networked information. Typically, this information includes preexisting public library
catalog data, digitized document collections, and other databases. In this article, we describe
the distributed query system of a digital library prototype system known as HARP. In the
HARP project, we have designed and implemented a distributed query processor and its query
front-end to support integrated queries to preexisting public library catalogs and structured
databases. This article describes our experiences in the design of an extended Sequel (SQL)
query language known as HarpSQL. It also presents the design and implementation of the
distributed query system. Our experience in distributed query processor and user interface
design and development will be highlighted. We believe that our prototyping effort will
provide useful lessons to the development of a complete digital library infrastructure.

Categories and Subject Descriptors: H.3 [Information Systems]: Information Storage and
Retrieval; H.5.2 [Information Interfaces and Presentation]: User Interfaces

General Terms: Design, Languages

Additional Key Words and Phrases: Digital libraries, Internet databases, interoperable
databases

Authors’ addresses: E.-P. Lim, Center for Advanced Information Systems, School of Applied
Science, Nanyang Technological University, N4-2A-12, Nanyang Avenue, 639798, Singapore;
email: aseplim@ntu.edu.sg; Y. Lu, Kent Ridge Digital Labs, Heng Mui Keng Terrace, Kent
Ridge, 119597, Singapore; email: luying@krdl.org.sg.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1046-8188/99/0700–0294 $5.00

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999, Pages 294–319.

1. INTRODUCTION

1.1 Objectives and Motivation

In digital library research, one of the main objectives is to provide an
integrated query service to digital library applications and users so they
are able to remotely access legacy library collections as well as other
archival information on the Internet. Typically, the kinds of information
include:

—Bibliographic data: Bibliographic data can be found in every legacy
public library. These data, also known as library catalog data, provide
the references, e.g., stack numbers, to the shelves on which the library
books or materials can be found. The creation of bibliographic records for
library material is usually done by professional catalogers. Hence, biblio-
graphic data represent an important class of information provided by the
public libraries. Lately, new forms of bibliographic data have emerged
due to the need to index publications on the Internet. For example, the
Unified Computer Science Technical Report Index (UCSTRI) [Van Hey-
ningen 1994] and many other online bibliographic resources [Ley 1995;
Jones 1996] have been created to help Internet users to locate published
computer science literature. Nevertheless, these new index servers may
not adopt a common query interface to their bibliographic data and they
also do not capture the large bulk of bibliographic data maintained by the
public libraries.

—Structured data: Structured data have traditionally been used to store
business and organization information. As SQL database systems become
inexpensive, they are becoming widely used. Since modern SQL database
systems can also be used to store text data and provide sophisticated text
query features, we expect many of the SQL databases will be used as
components of digital libraries to store information related to digital
libraries. For example, SQL databases may be used to store information
about interlibrary loan requests and books that have been borrowed or
reserved.

—Text and multimedia document data: While many public libraries are
now in the process of digitizing some or all of their library collections,
library users have been gaining interest in the document collections
found on the Internet. These document data can exist in a variety of
formats. Some of them are totally unstructured, e.g., plain text files.
Others may be semistructured. They can be represented by some
mark-up languages such as SGML [ISO 1986], HTML [Graham 1995],
etc. At present, the most popular way to obtain remote document files is
through a web browser. A large number of document files can also be
obtained from FTP (file transfer protocol) and WAIS [Kahle and Medlar
1991] (wide-area information servers) sites.

Harp: A Distributed Query System • 295

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

In this article, we address the important query-processing problem involv-
ing both legacy library catalogs and SQL databases containing structured
data. This type of integrated querying is often desired in situations where
SQL databases have been used to store some bibliographic information.
Consider the following scenario. To perform an interlibrary loan, a library
user has to first register a request with his or her affiliated library. Assume
that all loan requests are stored in an SQL database and that they are
processed in batch by a librarian. Having approved a number of registered
requests, the librarian will attempt to locate the requested books in
neighboring public libraries. In this process, it would be useful to provide
integrated queries to the remote library catalogs and the SQL database.

We have developed an SQL-like query language known as HarpSQL for
querying legacy public library catalog(s) and SQL server(s). The Z39.50
information retrieval protocol [NISO 1992] has been adopted to access the
existing library catalog databases. We have also designed and implemented
a query evaluation strategy for queries that involve legacy library catalogs
and SQL databases. The query evaluation strategy includes the processing
of joins between SQL tables and bibliographic data. We have also developed
a distributed query processor that incorporates the tuple substitution join
strategy. A graphical query formulation tool has been created.

1.2 Research Issues

A number of research issues have to be considered in the design of a
distributed query system for legacy public libraries and structured data-
bases:

—Modeling of legacy public library catalogs: Most existing public library
catalogs contain bibliographic records represented in MARC1 format
[Crawford 1984]. Each MARC record consists of multiple fields represent-
ing bibliographic elements, e.g., title, author, subject, ISBN, etc. These
bibliographic elements are identified by unique tag numbers (defined by
the MARC standard). A selected set of MARC fields and their tags are
shown in Figure 1. A bibliographic record formatted in MARC is shown in
Figure 2. Sometimes, a bibliographic element may occur more than once
in the same record, and sometimes each occurrence contains a different
value (e.g., the example MARC record has multiple fields with the tag
650). Furthermore, a field may be composed by one or more subfields
each carrying a specific meaning and a subtag (e.g., $a). In this article,
we will present an extended SQL model known as HarpSQL to query
these existing bibliographic data. Note that MARC is able to accommo-
date references to Internet resources by keeping Universal Resource
Locators (URLs) in the MARC records (using fields with tag 856) as
shown in Figure 1.

1MARC is the abbreviation of MAchine-Readable Cataloging.

296 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

—Query capabilities of remote access protocols: To ensure that our distrib-
uted query-processing strategy is applicable to the present and future
public library catalogs, we have adopted the Z39.50 protocol to query
these databases [NISO 1992]. Z39.50 is an application layer information
retrieval protocol drafted by ANSI/NISO. It has been widely used to
support remote accesses to the library catalogs maintained by public
libraries. At present, the queries supported by most Z39.50 servers are
restricted to boolean searches (or selection queries) which at most consist
of predicates on the MARC fields connected by boolean operators (AND,
OR, NOT). Projection and join operations are not supported. In other
words, our distributed query system has to accommodate the query
restriction imposed by Z39.50. For example, our query system has to
ensure that only selection queries are submitted to Z39.50 servers.
Moreover, the query system must support join and projection operations
which are not part of Z39.50 query support.

—Merging different kinds of data: Apart from retrieving data from remote
SQL and bibliographic databases, our query system has to be able to
merge the retrieved SQL and bibliographic data. In our approach, the
distributed query system supports extended predicates to be used in
joining the two kinds of data.

1.3 Article Outline

The rest of this article is organized as follows. In Section 2, we discuss
related work. Section 3 describes an extended query language (HarpSQL)
for writing integrated queries to bibliographic and SQL databases. Section
4 presents our distributed query-processing architecture. Processing

Fig. 1. Selected MARC fields and tags.

Harp: A Distributed Query System • 297

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

HarpSQL queries will be given in Section 5. Implementation of our distrib-
uted query processor is described in Section 6. The design and implemen-
tation of a graphical query formulation tool is presented in Section 7.
Discussions on possible HarpSQL extensions and conclusions are given in
Sections 8 and 9 respectively.

2. RELATED WORK

Querying multiple heterogeneous library databases simultaneously over
the network has been the research focus of several digital library projects
recently. In the Alexandria Digital Library project [Smith 1996], a new
metadata standard combining MARC and Federal Geographic Data Com-
mittee (FGDC) standards was proposed to unify the metadata of heteroge-
neous geographic information collections. In the University of Michigan
Digital Library project [Atkins et al. 1996], software agents that search
remote catalog and index databases via a Z39.50 interface have been
developed. A distributed search protocol known as Dienst has also been
developed at the University of Cornell to conduct multiple bibliographic
and full-text searches on different document databases [Lagoze and Davis

Fig. 2. A bibliographic record example formatted in MARC.

298 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

1995]. Nevertheless, these research efforts have not addressed integrated
queries to both structured and bibliographic databases.

In this project, remote structured and bibliographic databases can be
seen as distributed heterogeneous databases. Our work is therefore related
to the current research in multidatabase query processing [Lim et al. 1995;
Liu and Pu 1996; Salza et al. 1994]. Similar to multidatabase systems,
digital library systems have to accommodate different types of autonomous
and heterogeneous databases. However, most multidatabase research has
focused on querying structured databases only [Salza et al. 1994]. The
multidatabase query evaluation strategies have to be further modified
before they can be used to query bibliographic data. Multidatabase query
processing can also be very complicated when the semantic conflicts be-
tween participating databases have to be resolved [Lim et al. 1995].

As bibliographic data are semistructured, our research is related to some
ongoing work in modeling and querying semistructured data [Blake et al.
1995; Papakonstantinou et al. 1995; Quass et al. 1995]. To model and query
all kinds of semistructured data, Quass et al. have proposed a flexible data
model and query language known as OEM and LOREL respectively [Papa-
konstantinou et al. 1995; Quass et al. 1995] . In a similar effort, Blake et al.
have extended SQL to query semistructured data and their metadescrip-
tion. Both approaches assume that every record instance has its own
structure or metadescription. Bibliographic data in the library catalogs,
however, are stored as MARC records sharing a fixed set of MARC fields.
Hence, it is simpler to model the library catalogs as relations and to extend
SQL to query them.

Although the distributed query-processing problem has been well studied
in the domain of relational databases, there is very little research in
processing distributed queries which involve both structured and biblio-
graphic databases. In Chaudhuri et al. [1995], several join techniques have
been proposed for queries which involve an external text data manager
loosely coupled with a relational database system. These techniques in-
clude (a) naive tuple substitution, (b) relational text processing, (c) semijoin,
and (d) probing.

The naive tuple substitution technique requires a join between relation
and text to be translated into a set of selection queries to the text database.
This is done by evaluating the relational query followed by substituting
relational attributes in the join predicate by actual column values. This
technique is usually undesirable because a large overhead will incur when
numerous selection queries are sent to the text database. The relational
text-processing technique assumes that the relational database system can
handle the join predicates between relational attributes and text at-
tributes. This assumption, however, does not hold in our context because
the extended predicates and functions in our integrated queries cannot be
handled by ordinary relational database systems. In Chaudhuri et al.
[1995], the proposed semijoin technique is actually a variant of tuple
substitution. Semijoin reduces the overhead of tuple substitution by com-
bining all selection queries generated by tuple substitution into one selec-

Harp: A Distributed Query System • 299

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

tion query. The probing technique, designed to work together with either
naive tuple substitution or relational text processing, further improves the
two techniques by not sending queries that return empty results to the text
system.

In our project, we deal with queries involving multiple external SQL
databases and library catalogs. The distributed query-processing problem
is therefore more complex. We have adopted a tuple substitution approach
similar to semijoin to evaluate subqueries on library catalogs. The probing
method is not chosen because we currently do not maintain the statistics
the probing method requires for the external databases.

3. HARPSQL QUERY LANGUAGE

To enable digital library users and application developers to query existing
SQL and bibliographic data, we have extended the SQL language in a
number of ways and called it HarpSQL [Lu and Lim 1996]. In the current
HarpSQL design, we have assumed that the users are familar with the
MARC attribute set and the bibliographic attribute set adopted by the
Z39.50 protocol. The HarpSQL language can however be further extended
to make it more useable by novice users (see Section 8). The unique
features of HarpSQL include the following:

—Foreign SQL and bibliographic tables: In HarpSQL, a table (say Cour-
seTB) from a remote SQL database (say RefDB) can be imported as a
foreign SQL table (CourseTB@RefDB). Unlike SQL databases, remote
library catalogs do not contain member tables. Hence, each remote
library catalog is imported as a single foreign bibliographic table (or
BIB table). Each imported BIB table is named BibTB@^Library name &
where ^Library name & is the public library that provides the BIB table.

—MARCString data type: Bibliographic data found in the public libraries
are mostly formatted based on the MARC standard. To model the MARC
fields, we have defined a new data type called MARCString. A MARC-
String value models multiple MARC fields sharing a common tag number
in a MARC record. These MARC fields form the elements of the
MARCString value. Each element may consist of multiple subelements
modeling the subfields in the MARC fields. Hence, an imported BIB table
consists of multiple MARCString attributes each with a unique tag
number and attribute name MAttr ^tag number &. For example, the
MAttr650 attribute value of the record given in Figure 2 is

(650, (‘$a Business’ ‘$x Data processing’)
(‘$a Information storage and retrieval systems’ ‘$x Business’)
(‘$a Information technology’)
(‘$a Local area networks(Computer networks)’))

—Virtual bibliographic tables: To support broadcasting of queries to multi-
ple library catalog databases, HarpSQL allows a virtual bibliographic
(BIB) table to be defined upon a number of imported BIB tables which

300 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

are also known as the members BIB tables. Apart from having the
same MARCString attributes found in any BIB table, every virtual BIB
table contains an extra location attribute to indicate where its records
come from.

—Contain and Extract predicates and functions: With the new data type
MARCString, a new predicate called Contain has been defined to apply
different kinds of selection criteria on the MARCString attributes, and to
allow BIB tables to be joined with SQL tables by comparing the MARC-
String attributes with the text attributes in the SQL tables. Unlike the
usual regular-expression predicates, the Contain predicate caters for a
wide variety of string comparison methods by supporting different search
modes for different bibliographic elements [Lu and Lim 1996]. Each
search mode is a quadruple of four submodes represented by ^position,
structure,truncation,completeness&. The specification of the search
mode is given in the Appendix. In order to query remote library catalogs
using the Z39.50 protocol, all Contain predicates on the bibliographic
attributes must adopt a standard attribute set known as Bib-1. Bib-1
attributes can be seen as standard surrogates for the MARC attributes. A
mapping between the Bib-1 attribute set and the MARC attribute set is
given in Table V, in the Appendix. Like MARC attributes, every Bib-1
attribute is assigned a tag number and a name denoted by BAttr ^Bib-1
tag &. The Extract function, on the other hand, allows us to extract
subelements from a MARCString value by supplying the subtags.

Example 1. Let BibTB@NTUand BibTB@NUSbe two BIB tables imported
from the NTU2 library and NUS3 library. Let CourseTB@RefDB and
RefTB@RefDB be two SQL tables imported from RefDB, an SQL database
containing some course information. RefTB@RefDB contains information
about reference books adopted by different courses. CourseTB@RefDB con-
tains information about the courses to be taken by computer engineering
students. Their attributes are shown in Figure 3.

In the following, we show some query examples4 demonstrating the
HarpSQL features.

Example 2. (Q1): Retrieve the titles and authors of books with titles
containing ‘distributed database’ from the NTU library.

2NTU is an abbreviation of Nanyang Technological University.
3NUS is an abbreviation of National University of Singapore.
4To simplify our explanation, some parameters to be used in Extract and Contain are not
shown.

Fig. 3. Schema of RefDB.

Harp: A Distributed Query System • 301

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

SELECT Extract(Mattr245,‘$a’), Extract(Mattr100,‘$a’
FROM BibTB@NTU
WHERE Contain(BAttr4,‘distributed database’,
^ANY_POSITION,IS_PHRASE,NULL,NULL &)

In the above HarpSQL query, MAttr245 and MAttr100 are the MARC-
String attributes containing the title and author information in their
subelements with subtag $a . BAttr4 is the Bib-1 attribute for book title.
The search mode ^ANY_POSITION,IS_PHRASE,NULL,NULL & in the Contain
predicate indicates that only those titles containing ‘distributed database’
as a phrase are wanted. The Extract functions are used to obtain title and
author text from the MARCString attributes MAttr245 and MAttr100
respectively.

Example 3. (Q2): Retrieve the course titles, call numbers, titles, au-
thors, and locations of reference books used by courses held in the academic
year 95/96 from NTU and NUS libraries.

SELECT c.Cname, Extract(a.MAttr092, ‘$a’),
Extract(a.MAttr245,‘$a’), Extract(a.MAttr100,‘$a’),

a.location
FROM VL_NTUandNUS a, RefTB@RefDB b, CourseTB@RefDB c
WHERE c.Year 5 ‘95/96’ AND b.Course 5 c.CourseId AND

Contain(a.BAttr4,b.Title,
^FIRST_IN_SUBFIELD,IS_PHRASE,NULL,NULL &) AND

Contain(a.BAttr1003,b.Author, ^NULL,IS_NAME,NULL,NULL &)

The MARCString attribute MAttr092 contains the call number informa-
tion. BAttr1003 is the Bib-1 attribute for author. The above query specifies
a join between two SQL tables and a virtual BIB table VL_NTUandNUS
defined on the BIB tables imported from NTU and NUS libraries. Note that
the Contain predicates have been used to join RefTB with VL_NTUandNUS.

4. DISTRIBUTED QUERY-PROCESSING ARCHITECTURE

As shown in Figure 4, our distributed query-processing architecture con-
sists of two types of processes, namely query managers and query
agents. Each HarpSQL query is handled by a query manager and a
number of query agents, one for each remote database server to be accessed
by the query. Given a HarpSQL query, a query manager is first created and
in turn creates the appropriate query agents. The query manager first
parses the query into a query graph that is later decomposed into a number
of subqueries to be processed by its query agents. Having collected all the
subquery results, the query manager combines them together and returns
the final query result to the digital library application. Since the combina-
tion of subquery results cannot be performed by the individual query
agents, a HarpSQL server is included into the query manager to provide
the capabilities to store and process intermediate results.

Figure 4 also depicts the remote SQL and Z39.50 servers managing
existing structured data and bibliographic data respectively. The SQL and

302 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

Z39.50 query agents act as wrappers that support subqueries to remote
SQL and Z39.50 servers which are members of the integrated digital
library environment. A query agent receives subqueries from the query
manager, sends them to its remote database server for processing, and
returns the result to the query manager. The interaction between the query
agents and their remote servers is governed by the specific remote access
protocols supported by the servers. By using the query agents, the query
manager is able to execute queries without knowing much about the
complex protocols and query interfaces adopted by the remote servers.
Furthermore, the query agents are designed to process their subqueries
concurrently, thus reducing the query response time.

5. HARPSQL QUERY-PROCESSING STRATEGY

In this section, we describe the query-processing strategy adopted by our
HarpSQL distributed query processor which has been developed based on
the architecture given in Section 4. Although query optimization is not the
prime focus of this research, our processing strategy has been designed to
reduce the subquery results by performing selection and projection as early
as possible and by avoiding cartesian products in the subqueries to be
evaluated by the external servers. By reducing the subquery results, we are
able to minimize the overhead of shipping data from the external servers to
the distributed query processor. Upon receiving the subquery results, the

Agent

SQL
Query

Server
Z39.50

Query
Z39.50

Agent

Distributed
Query
Processor

Query Manager

Query Executor

Parser

Server
HarpSQL

Query
Agent

SQL

Digital Library Applications

Remote
Database
Servers

SQL
Server

SQL
Server

Fig. 4. Architecture of the distributed query processor.

Harp: A Distributed Query System • 303

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

HarpSQL server will combine them together by performing some interdata-
base joins or cartesian products.

5.1 Restricting Bibliographic Queries Using Tuple Substitution

As Z39.50 disallows bibliographic queries that do not carry any selection
predicate,5 our query-processing strategy requires all BIB tables involved
in HarpSQL queries to be restricted by either selection or join with other
SQL tables. For those BIB tables that are only restricted by join, we can
derive the subqueries to their Z39.50 servers by performing tuple substi-
tution.6 In tuple substitution, a join predicate used in the join between a
BIB table and an SQL table is transformed into a disjunctive set of
selection predicates by first evaluating the SQL table, followed by instanti-
ating the SQL attribute in the join predicate by the corresponding attribute
values in the SQL subquery result.

For example, to process the query (Q3) below, we first evaluate the SQL
subquery to obtain the various reference title values from RefTB@RefDB.

Example 4. (Q3): Retrieve the call number and title of books that are
listed in the reference table.

SELECT Extract(a.MAttr092,‘$a’),a.MAttr245
FROM BibTB@NTU a, RefTB@RefDB b,
WHERE

Contain(a.BAttr4,b.Title, ^FIRST_IN_SUBFIELD,IS_PHRASE,NULL,NULL &)

Suppose the titles returned from RefTB@RefDB are “Digital Design,”
“Computer Networks,” etc. By tuple substitution, we obtain the following
selection subquery for BibTB@NTU:

SELECT *
FROM BibTB@NTU

WHERE Contain(BAttr4,‘Digital Design’, · · ·) OR

Contain(BAttr4,‘Computer Networks’, · · ·) OR · · ·

5.2 Distributed Query-Processing Steps

To process a HarpSQL query, we first represent it using a query graph
[Wong and Youssefi 1976]. In a query graph, each node represents an SQL
table, BIB table, or virtual BIB table. An edge between a pair of nodes
represents a join. For example, the query graph representing Q2 in Section
3 is shown in Figure 5. Given a query graph, the query-processing steps
performed by our distributed query processor are as follows:

—Step 1 (SQL subgraph extraction): When a query graph involves some
SQL tables, we first derive the subqueries to these tables by extracting
SQL subgraphs from the query graph. A SQL subgraph is a connected
subgraph of a query graph consisting of SQL tables that belong to the

5This prevents huge amounts of bibliographic data to be shipped across sites.
6This is similar to the semijoin technique mentioned in Chaudhuri et al. [1995].

304 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

same SQL database. To extract the SQL subgraphs, a depth-first search
is performed on the query graph.

—Step 2 (Processing SQL subqueries): Once the SQL subgraphs are ex-
tracted, we generate an SQL subquery for each subgraph. All these SQL
subqueries are submitted to the SQL query agents created for the target
SQL database servers and are evaluated by the servers concurrently.
Typically, the SQL subqueries involve select, project, and intradatabase
join operations. A temporary table for each subquery result is created at
the HarpSQL server when the subquery result is returned by the query
agent.

—Step 3 (Processing bibliographic subqueries): In this step, we derive and
evaluate the subqueries against the BIB tables. These subqueries can be
obtained in two ways as described below:

Case (a): If a BIB table (or virtual BIB table) node in the query graph is
restricted by some selection predicate(s), a bibliographic subquery
against the BIB table (or virtual BIB table) with the selection predi-
cate(s) is derived.
Case (b): If a BIB table (or virtual BIB table) node in the query graph is
not restricted by any selection predicate(s), we have to derive the
bibliographic subquery by performing tuple substitution. In tuple sub-
stitution, the subquery result of an SQL subgraph that is linked to the
BIB table (or virtual BIB table) is chosen7 to convert a join predicate
between the SQL subgraph and BIB table (or virtual BIB table) into a
disjunction of selection predicates.

For each subquery against a BIB table, we create a Z39.50 query agent to
process it. The subquery result returned by the query agent is stored as a
temporary table at the HarpSQL server with the necessary attribute
projection. In both cases (a) and (b), a subquery against a virtual BIB
table will be further replicated into subqueries against its member BIB
tables. Multiple Z39.50 query agents, each corresponding to a member
BIB table, will be created to process these subqueries. The results of all
these subqueries are unioned and stored as a temporary table in the
HarpSQL server with the necessary attribute projection. In the process of
unioning the subquery results, the location attribute value is added to
every record.

—Step 4 (Final result generation): A final query that joins all the temporary
tables is evaluated by the HarpSQL server. Apart from the final at-
tributes to be projected, the final query may consist of (1) join(s) between
tables from different SQL database servers and (2) join(s) between the
SQL table and BIB table (except the join used for tuple substitution). The
final query may also involve any remaining Contain predicates and
Extract functions to be applied on the query result.

7If there are multiple SQL subgraphs adjacent to the BIB table, we just choose one of them.

Harp: A Distributed Query System • 305

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

When the HarpSQL queries to be processed involve only SQL tables, only
steps 1, 2, and 4 are required. On the other hand, if a HarpSQL query
involves only a BIB table or virtual BIB table, we only need to perform
steps 3 and 4. In steps 2 and 3, query agents are created to evaluate
subqueries for remote servers. When any of the remote servers cannot be
reached due to some network or server problems, or cannot return sub-
query results within a specified amount of time, the respective query agent
will experience a timeout. The timeout in turn causes the query manager to
return failure status for the given HarpSQL query.

5.3 Query-Processing Example

Figure 6 shows the query-processing steps for our query example Q2. From
the query graph (see Figure 5), we extract an SQL subgraph which is
translated into an SQL subquery to be executed by an SQL query agent.
The SQL subgraph is shown in Figure 6(a). From the subgraph, we
generate an SQL subquery and send it to an SQL query agent as shown in
Figure 6(b). A temporary table T1 is created at the HarpSQL server for the
subquery result. Subsequently, we substitute the Title attribute in the
Contain predicate by the corresponding attribute values in the previous
SQL subquery result T1. A substituted BIB subquery is created and is
submitted to the two BIB query agents for the NTU and NUS libraries as
shown in Figure 6(c). The results from all the BIB query agents are
unioned and stored in a temporary table T2 by the HarpSQL server.
Finally, a query that joins T1 and T2 is evaluated by the HarpSQL server
to obtain the final query result as shown in Figure 6(d).

6. IMPLEMENTATION ISSUES

As part of our research work, we have developed a distributed query
processor that can handle HarpSQL queries over a collection of SQL and
Z39.50 servers. Within the distributed query processor, the query manager
and agents are implemented as separate processes. Message queues have
been used for communication between the query manager and agent
processes.

Since the query manager is responsible for storing and processing inter-
mediate results collected from different remote servers, we need a
HarpSQL server that can handle both SQL and bibliographic data on
behalf of the query manager. In the following subsection, we describe how
we realize the HarpSQL server by extending the POSTGRES database
system.

a
NTUandNUSLib

RefTB@RefDB:

b
CourseTB@RefDB:

c

c.Year = ‘95/96’

<FIRST_IN_SUBFIELD, IS_PHRASE,NULL,NULL>)

<NULL, IS_NAME,NULL,NULL>)

Contain(a.BAttr4, b.Title,

AND Contain(a.BAttr1003, b.Author,

c.CourseId
b.Course =

Fig. 5. A query graph example.

306 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

6.1 HarpSQL Server Implementation

To play a role in processing distributed HarpSQL queries, the HarpSQL
server supplementing the query manager must support the following
features:

—Basic SQL data types and the MARCString data type

—Contain() predicate

—Extract() function

Instead of building the HarpSQL server from scratch, we base our imple-
mentation on the POSTGRES database system [Stonebraker and Rowe
1986]. One key difference between POSTGRES and standard relational
systems is that POSTGRES captures extra information in its catalog,

Subquery submitted
to NTU and NUS
Z39.50 servers

Subquery results are

T2 in the HarpSQL server
unioned and stored as

Extracted SQL Subgraph:

(a) SQL Subgraph Extraction

c.CourseId

b c

c.Year = ‘95/96’

b.Course =

RefTB@RefDB CourseTB@RefDB

Subquery Result is
stored as T1 in the
HarpSQL server

Select c.Cname, b.Title, b.Author

Where b.Course = c.CourseId And

(b) Processing SQL Subquery

c.Year = ‘95/96’

Generated SQL Subquery:

Generated Bibliographic Query using Tuple Substitution:

Selection predicates:

.......

(c) Processing Bibliographic Subquery

Generated Final Query:

Select T1.Cname, Extract(T2.MAttr092,‘$a’),

T2.location

From RefTB b, CourseTB c

From T1, T2

(d) Final Result Generation

Contain(BAttr4,"Digital Design",...) Or
Contain(BAttr4,"Computer Networks",...) Or

Where Contain(T2.BAttr1003,T1.Author,.....)

Extract(T2.MAttr245,‘$a’), Extract(T2.MAttr100,‘$a’),

Fig. 6. Query-processing steps for Q3.

Harp: A Distributed Query System • 307

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

which allows its processing and storage capabilities to be extended. This
includes not only information about tables and fields, but also information
about types, functions, access methods, and etc. This information can be
modified by the user, and POSTGRES carries out its internal operation
based on this information. The query language of POSTGRES is known as
POSTQUEL. POSTGRES can also incorporate precompiled user-written
code into its query processing through dynamic loading. In other words, the
user can create an object file (e.g., a compiled (dot “oh”) .o file or shared
library) that implements new types and function in POSTGRES. A detailed
description can be found in The POSTGRES Group [1994].

Figure 7 shows the architecture of the HarpSQL server. Our HarpSQL
server is developed by augmenting POSTGRES with the MARCString data
type and its extended predicates and functions. In order to support the
MarcString data type, a C data structure is first defined and is used by the
POSTGRES database system as an internal representation of a MARC-
String value. After the MARCString datatype is defined, the Contain
predicate and Extract function were implemented in C and incorporated
into POSTGRES.

7. GRAPHICAL QUERY FORMULATION TOOL

In this section, we describe the design and implementation of the HarpSQL
query formulation tool. The HarpSQL query formulation tool allows users
to load and view schemas, to formulate HarpSQL queries, and to view the
query results. It is designed for digital library application developers and
sophisticated end-users to formulate and evaluate their HarpSQL queries.
Using the query formulation tool, one can store queries for future reference
or execution. Since library catalog records may contain references to
Internet resources, our query tool can be configured to invoke a web
browser to view the Internet resources directly.

In the design of our query formulation tool, the following criteria have
been adopted:

Extended
Predicates

MarcString

Definition
Data Type

& Functions

POSTGRES
Database

Management
System

Tables

Postgres

Fig. 7. HarpSQL server architecture.

308 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

—Online help subsystem: An online help subsystem plays an important role
in guiding new users. Two kinds of help information have been provided
by our GUI design: (1) a HELP window that displays the relevant help
information and (2) a message bar which dynamically displays brief help
messages about the icons or dialog boxes on which the cursor is placed.

—Multiwindow design: Our query formulation tool involves multiple win-
dow objects that can be moved, minimized, and resized freely. However,
the dependencies between these window objects are strictly maintained
by our query tool. For example, an update to a window object is automat-
ically propagated to the other window objects that are affected by the
change.

—User input assistance: In order to minimize typographical errors, users
are given as much assistance as possible during their query construction.
Using the query tool, a user can easily formulate HarpSQL queries using
the mouse. Keyboard input has been avoided as much as possible.

7.1 Interface Design and Functional Description

Our HarpSQL query formulation tool consists of a number of window
objects. Among them, a MAIN window is designed to be an entry point to
invoke query-related functions. As shown in Figure 8, The MAIN window
consists of nine buttons: LOAD SCHEMA, BUILD QUERY, SAVE QUERY,
LOAD QUERY, RUN QUERY, VIEW SCHEMA, VIEW RECORD, HELP
MENU, and EXIT. To prevent users from choosing inappropriate buttons,
some of the buttons may be disabled. For instance, the BUILD QUERY and
VIEW SCHEMA buttons are disabled when the schema of imported library
catalogs and structured databases has not been loaded. The online message
bar at the bottom of MAIN window provides the dynamic help and status
information during query formulation. The MAIN window also indicates
the currently loaded schema and query. Once a schema is loaded, it can be
browsed by invoking the VIEW SCHEMA button as shown in Figure 9.

7.1.1 Query Construction Windows. In our query tool, HarpSQL queries
can be constructed in two ways. One can construct new HarpSQL queries
from scatch using the BUILD QUERY option. Otherwise, new queries can
be constructed by modifying prestored queries using the LOAD QUERY
option. In both cases, the same three query construction windows will be
activated. They are the TABLE LIST (FROM), TARGET LIST (SELECT),
and PREDICATE LIST (WHERE) windows for specifying the FROM, SE-

Fig. 8. MAIN window.

Harp: A Distributed Query System • 309

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

LECT, and WHEREclauses respectively. These three windows are shown in
Figures 10, 11, and 12.

The TABLE LIST (FROM) window allows users to select the tables
required by the query and to provide an alias for each of them. The
TARGET LIST (SELECT) window allows users to select the target at-
tributes of the tables included in the TABLE LIST (FROM) window. When
an attribute of MarcString type is chosen, a TARGET FUNCTION window
(see Figure 13) will appear, and the user can choose to apply the Extract
or MarcToText 8 function on the MarcString attribute.

The PREDICATE LIST (WHERE) window allows users to construct the
predicates based on the selected tables in the TABLE LIST (FROM)
window. For each predicate, the OPERAND#1, OPERAND#2, and OPERA-
TOR options must be specified. When the Contain function is chosen as the
operator, a CONTAIN PREDICATE window (see Figure 14) will appear,
allowing the user to specify the search mode.

When a query is built, it can be saved using the SAVE QUERY button.
The LOAD QUERY button can later be used to load any saved query for
modification or evaluation.

7.1.2 Query Result Window. A constructed HarpSQL query can be
evaluated directly within the query formulation tool by invoking the RUN
QUERY option. Once the query evaluation is completed, the result can be
viewed within a QUERY RESULT window as shown in Figure 15. Apart
from viewing the query result, one can also choose to save or print the
result. The VIEW RECORD option in the MAIN window can later be
invoked to reload any saved query result.

8MarcToText is a function that flattens a MarcString value into a plain text string. It is used
mainly for debugging purposes.

Fig. 9. VIEW SCHEMA window.

310 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

Figure 16 shows a QUERY RESULT window showing a query result that
contains URL information as clickable objects. When any of the URL values
in the window is selected, a web browser will be invoked to browse the
corresponding Internet document.

7.2 Implementation of the Query Formulation Tool

The HarpSQL query formulation tool is built in the UNIX environment
using Tcl/Tk [Ousterhout 1993]. Tcl/Tk provides a programming environ-

Fig. 10. TABLE LIST (FROM) window.

Fig. 11. TARGET LIST (SELECT) window.

Fig. 12. PREDICATE LIST (WHERE) window.

Harp: A Distributed Query System • 311

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

ment for developing and using graphical user interface applications. Tcl is
a simple scripting language that provides generic programming facilities.
Tk, a toolkit for the X Window System, extends the core Tcl facilities with
additional commands for building user interfaces, so that users can con-
struct Motif user interfaces by writing Tcl scripts instead of C codes.

Fig. 13. TARGET FUNCTION window.

Fig. 14. CONTAIN PREDICATE window.

Fig. 15. QUERY RESULT window.

312 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

8. DISCUSSIONS

The use of MARC tags to represent bibliographic fields has become a
well-accepted practice in most legacy public libraries. The mapping be-
tween Bib-1 attributes and MARC tags further allows us to query biblio-
graphic databases using the Z39.50 protocol. Based on the MARC and Bib-1
standards, the HarpSQL query language and distributed query system
have been developed. Nevertheless, a number of problems may have to be
dealt with when MARC and Bib-1 are used. In the following, we discuss
some of these problems and present possible extensions to HarpSQL and
our query system in order to handle them.

8.1 Knowledge about MARC and Bib-1 Attributes

Our current query system relies heavily on users knowing the MARC and
Bib-1 attributes before they formulate HarpSQL queries. However, most
users may not be able to remember the MARC or BIB tag numbers. To
address this problem, our query system can be extended with an alias
mechanism that allows a meaningful bibliographic field name to be defined
as an alias of a MARC or Bib-1 attribute. For example, one can define the
following MARC and Bib-1 aliases.

DEFINE ALIAS MTitle AS MAttr245;
DEFINE ALIAS MAuthor AS MAttr100;
DEFINE ALIAS BTitle AS BAttr4;

With the above aliases, the query example Q1 in Example 2 can be
rewritten as follows:

SELECT Extract(MTitle,‘$a’), Extract(MAuthor,‘$a’)
FROM BibTB@NTU
WHERE Contain(BTitle,‘distributed database’,
^ANY_POSITION,IS_PHRASE,NULL,NULL &)

Fig. 16. QUERY RESULT window with document URL.

Harp: A Distributed Query System • 313

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

Compared to its original form, the above query is clearly more readable.
The MARC and Bib-1 alias mechanism can be incorporated into our
distributed query system in a number of ways. For example, the query
system could support a default set of MARC and Bib-1 aliases shared by all
users. The query system could also be designed to allow users to define
their own aliases.

8.2 Inconsistent Use of MARC Tags

We have so far assumed that MARC tags are consistently used across
libraries during the cataloging process. This assumption may not hold for
all libraries because tags may be used slightly differently due to different
cataloging methods practiced by the libraries. Given a query, the inconsis-
tent use of tags leads to unexpected query results from different biblio-
graphic databases. For example, a book that exists in both libraries A and
B may only be included in the query result from library A but not library B.

At present, our query system does not handle the inconsistency problem.
Nevertheless, the problem can be overcome by the addition of metadata to
each bibliographic database. The metadata could include information such
as the cataloging techniques practiced by the library concerned. Based on
the metadata of each bibliographic database, our distributed query system
can be enhanced to modify queries accordingly before they are submitted to
the bibliographic database server. When query results are returned from
the server, further interpretation of the results has to be performed using
the metadata information. In particular, individual bibliographic fields in
the query results must be extracted correctly using the knowledge about
how tags are used by the respective libraries.

9. CONCLUSIONS

In this article, we describe a distributed query system that allows users to
formulate integrated queries to legacy public library catalogs and SQL
databases. Our proposed query language, HarpSQL, supports a new data
type, predicate, and function required for representing and manipulating

Digital Library Applications

Integrated Digital Library Services

Info
Server Server

Info
Server
Info

Fig. 17. Integrated digital library architecture.

314 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

MARC-formatted bibliographic data. By accommodating MARC-formatted
data and by adopting the Z39.50 protocol standard to access the biblio-
graphic databases in public libraries, we achieve interoperability while not
sacrificing the local autonomy of the existing library systems. HarpSQL
further supports joins between SQL and bibliographic data.

To process HarpSQL queries over SQL and bibliographic databases at
different locations, we have designed and implemented a distributed query
processor which adopts some heuristics to reduce communication costs
during query processing. To handle interdatabase joins including joins
between SQL and bibliographic data, we implemented a HarpSQL server
which provides the query-processing capabilities to the query manager.
Moreover, we have also implemented a user-friendly graphical query front-
end for users to formulate their HarpSQL queries. The distributed query
system has been tested on the bibliographic database of the Nanyang
Technological University Library. The bibliographic database consists of
over 217,000 records. Using multiple query agents to access the same
bibliographic database over the Internet, we managed to simulate multiple
bibliographic databases using only one physical bibliographic database. By
doing this, we reduced the amount of time spent on system testing
significantly.

A digital library system typically consists of three layers of software,
namely the digital library applications, digital library services, and
information servers as shown in Figure 17. The work presented in this
article represents an effort in the digital library service layer. Our distrib-
uted query-processing technique therefore represents an important step
toward advanced query support for future digital library applications.

Table I. Position Submode

Option Meaning

First in element Search term must be the first data in the element.
First in subelement Search term must be the first data in any subelement.

Any Position* Search term may appear at any place.

Table II. Structure Submode

Option Meaning

IS_WORD A word search term contains no blanks. It specifies the exact text of
the value to be searched.

IS_PHRASE* A phrase search term consists of one or more words separated by
blanks. It will be treated with respect to order and adjacency.

IS_WORD_LIST A word list search term consists of one or more words separated by
blanks. No order of the words is implied.

IS_NAME The search term is treated as a person name.

IS_STRING The entire term is to be treated as a string, rather than a sequence
or set of individual words.

Harp: A Distributed Query System • 315

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

We are currently extending our work in several directions. First, we are
considering the use of cost-based optimization techniques in processing the
HarpSQL queries. Second, we plan to extend the HarpSQL to query other
forms of data, e.g., Web pages, since the latter represents a fast-growing
source of information on the Internet. Finally, we are attempting to build
some advanced digital library applications, e.g., interlibrary loan, using
HarpSQL and our distributed query processor.

APPENDIX

SEARCH MODE OF CONTAIN()

In Tables I–IV, for each submode, the option marked with an asterisk is the
default value. The mapping between BIB-1 and MARC attributes is shown
in Table V.

Table III. Truncation Submode

Option Structure Option Meaning

RIGHT_TRUNC* Word/Phrase Last word of term is right truncated.
String Entire term is right truncated.

Word list Each word is right truncated.

LEFT_TRUNC Word/Phrase First word of term is left truncated.
String Entire term is left truncated.

Word list Each word is left truncated.

LEFT_AND_RIGHT_TRUNC Word/Phrase First word of term is left truncated.
Last word of term is right truncated.

String Entire term is left and right truncated.
Word list Each word is left and right truncated.

DO_NOT_TRUNC No truncation is to be applied.

PROCESS_# The search term contains “#” to show
where truncation will take place.

REGULAR_EXP The term is in the form of a regular
expression.

Table IV. Completeness Submode

Option Meaning

INCOMPLETE_SUBELEMENT* Words other than those in the search term may appear
in the element/subelement in which the term appears.

COMPLETE_ SUBELEMENT No words other than those in the search term should
appear in the subelement in which the term appears.

COMPLETE_ ELEMENT No words other than those in the search term should
appear in the element in which the term appears.

316 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

Table V. Mapping between Bib-1 And MARC Attributes

Bib-1 id Name MARC Tag(s)

62 Abstract 520
1003 Author 100, 110, 111, 400, 410, 411, 700, 710,

711, 800, 810, 800
1000 Author-title 100/2XX, 110/2XX, 111/2XX, 400, 410,

411, 700, 710, 711, 800, 810, 811
1005 Author-name corporate 110, 410, 710, 810
1006 Author-name conference 111, 411, 711, 811
1004 Author-name personal 100, 400, 700, 800
13 Dewey classification 082
16 LC call number 050
55 Code-geographic area 043
56 Code-institution 040
54 Code-language 008, 041
9 LC card number 010, 011
12 Local number 001, 035
30 Date 005, 008, 260, 033, etc.
31 Date of publication 008, 260, 046, 533
1011 Date/time added to

database
008

1012 Date/time last modified 005
7 ISBN 020
8 ISSN 022, 4XX, 7XX
1007 Identifier-standard 010, 011, 015, 017, 018, 020, 022, 023,

024, 025, 027, 028,030, 035, 037
1002 Name 100, 110, 111, 400, 410, 411, 600, 610,

611, 700, 710, 711, 800, 810, 811
57 Name and title 100/2XX, 110/2XX, 111/2XX, 400, 410, 411,

600, 610, 611, 700, 710, 711, 800, 810, 811
2 Corporate name 110, 410, 610, 710, 810
3 Conference name 111, 411, 611, 711, 811
58 Name geographic 651
1 Personal name 100, 400, 600, 700, 800
63 Note 5xx
21 Subject heading 600, 610, 611, 630, 650, 651, 653, 654,

655, 656, 657, 69X
24 INSPEC subject 600, 610, 611, 630, 650, 651
27 LC subject heading 600, 610, 611, 630, 650, 651
1008 Subject-LC children’s 600, 610, 611, 630, 650, 651
1009 Subject name-personal 600
4 Title 130, 21X-24X, 400, 410, 440, 490, 600,

610, 611, 700, 710, 711, 730, 740, 800,
810, 811, 830, 840

43 Title abbreviated 210, 211, 246
37 Title added-title-page 246
38 Title caption 246
34 Title collective 243
36 Title cover 246
5 Title series 400, 410, 411, 440, 490, 800, 810, 811,

830, 840
6 Title uniform 130, 240, 700, 710, 711, 730

Harp: A Distributed Query System • 317

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

ACKNOWLEDGMENTS

We thank Nanyang Technological University and National Computer
Board for supporting this research work. We also thank the anonymous
referees for giving their helpful comments on this article which improved
both the article’s content and presentation.

REFERENCES

ATKINS, D. E., BIRMINGHAM, W. P., DURFEE, E. H., GLOVER, E. J., MULLEN, T., RUNDENSTEINER,
E. A., SOLOWAY, E., VIDAL, J. M., WALLACE, R., AND WELLMAN, M. P. 1996. Toward
inquiry-based education through interacting software agents. IEEE Computer 29, 5, 69–76.

BLAKE, G., CONSENS, M., DAVIS, I., KILPELAINEN, P., KUIKKA, E., LARSON, P.-A., SNIDER, T., AND

TOMPA, F. 1995. Text/relational database management systems: Overview and proposed
SQL extentions database prototype. Tech. Rep. 95-25. Centre for the New OED and Text
Research, University of Waterloo, Waterloo, Canada.

CHAUDHURI, S., DAYAL, U., AND YAN, T. W. 1995. Join queries with external text sources:
execution and optimization techniques. In Proceedings of the 1995 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’95, San Jose, CA, May 23–25, 1995),
M. Carey and D. Schneider, Eds. ACM Press, New York, NY, 410–422.

CRAWFORD, W. 1984. MARC for Library Use: Understanding the USMARC
Formats. Knowledge Industry Publications, Inc., White Plains, NY.

GRAHAM, I. 1995. The HTML Sourcebook. John Wiley & Sons, Inc., New York, NY.
ISO. 1986. International Standard 8879: Information processing—text and office systems—

Standard Generalized Markup Language (SGML). International Standards
Organization. Ref. No. ISO 8879-1986(E).

JONES, D. M. 1996. The Hypertext Bibliography Project. Tech. Rep.. MIT Laboratory for
Computer Science, Cambridge, MA. http://theory.lcs.mit.edu˜dmjones/hbp/.

KAHLE, B. AND MEDLAR, A. 1991. An information system for corporate users: Wide area
information servers. Online 15, 5 (Sept. 1991), 56–60.

LAGOZE, C. AND DAVIS, J. R. 1995. Dienst: An architecture for distributed document
libraries. Commun. ACM 38, 4 (Apr. 1995), 47.

LEY, M. 1995. DB&LP: A WWW bibliogrphy on databases and logic programming. Tech.
Rep.. Informatik Universitat, Trier, Germany.

LIM, E.-P., SRIVASTAVA, J., AND HWANG, S.-Y. 1995. An algebraic transformation framework
for multidatabase queries. Distrib. Parallel Databases 3, 3 (July 1995), 273–307.

LIU, L. AND PU, C. 1996. Issues on query processing in distributed and interoperable
information systems. In Proceedings of the International Symposium on Cooperative
Database Systems for Advanced Applications (Kyoto, Japan, Dec.).

LU, Y. AND LIM, E.-P. 1996. On integrating existing bibliographic databases and structured
databases. In Proceedings of the IEEE International Computer Software and Applications
Conference (COMPSAC ’96, Aug.). IEEE Press, Piscataway, NJ.

NISO. 1995. Information Retrieval (Z39.50): Application service definition and protocol
specification. Tech. Rep. ANSI/NISO Z39.50-1995. NISO Press, Bethesda, MD. Available
via http://lcweb.loc.gov/z3950/agency/.

OUSTERHOUT, J. 1993. An Introduction to Tcl and Tk. Addison-Wesley, Reading, MA.
PAPAKONSTANTINOU, Y., GARCIA-MOLINA, H., AND WIDOM, J. 1995. Object exchange across

heterogeneous information sources. In Proceedings of the IEEE International Conference on
Data Engineering (Mar.). IEEE Press, Piscataway, NJ.

QUASS, D., RAJARAMAN, A., SAGIV, Y., ULLMAN, J., AND WIDON, J. 1995. Querying semistruc-
tured heterogeneous information. In Proceedings of the 4th International Conference on
Deductive and Object-Oriented Databases (Singapore, Dec.). Springer-Verlag, Berlin, Ger-
many.

SALZA, S., BARONE, G., AND MOZRY, T. 1994. Distributed query optimization in loosely coupled
multidatabase systems. In Proceedings of the International Conference on Database Theory
(Prague).

318 • E.-P. Lim and Y. Lu

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

SMITH, T. 1996. A digital library for geographicaly referenced materials. IEEE Comput. 29, 5
(May), 54–60.

STONEBRAKER, M. AND ROWE, L. A 1986. The design of POSTGRES. SIGMOD Rec. 15, 2 (June
1986), 340–355.

THE POSTGRES GROUP. 1994. The POSTGRES user manual. Department of Electrical
Engineering and Computer Science, University of California at Berkeley, Berkeley, CA.

VAN HEYNINGEN, M. 1994. The Unified Computer Science Technical Report Index: Lessons in
indexing diverse resources. In Proceedings of the 2nd International WWW Conference
(Chicago, IL, Oct. 17–20). http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents/whitehead/
whitehead.html.

WONG, E. AND YOUSSEFI, K. 1976. Decomposition—A strategy for query processing. ACM
Trans. Database Syst. 1, 3 (Sept.), 223–241.

Received: July 1997; revised: March 1998 and June 1998; accepted: June 1998

Harp: A Distributed Query System • 319

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1999

	Harp: A distributed query system for legacy public libraries and structured databases
	Ee Peng LIM
	Ying LU
	Citation

	Harp: a distributed query system for legacy public libraries and structured databases

