
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2005

New efficient MDS array codes for RAID part II:
Rabin-like codes for tolerating multiple (>=4) disk
failures
Gui-Liang FENG

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Feng Bao
Singapore Management University, fbao@smu.edu.sg

DOI: https://doi.org/10.1109/TC.2005.200

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
FENG, Gui-Liang; DENG, Robert H.; and Bao, Feng. New efficient MDS array codes for RAID part II: Rabin-like codes for tolerating
multiple (>=4) disk failures. (2005). IEEE Transactions on Computers. 54, (12), 1473-1483. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1168

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TC.2005.200
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

New Efficient MDS Array Codes for RAID
Part II: Rabin-Like Codes for Tolerating Multiple

(� 4) Disk Failures
Gui-Liang Feng, Senior Member, IEEE, Robert H. Deng, Feng Bao, and Jia-Chen Shen

Abstract—A new class of Binary Maximum Distance Separable (MDS) array codes which are based on circular permutation matrices

are introduced in this paper. These array codes are used for tolerating multiple (� 4) disk failures in Redundant Arrays of Inexpensive

Disks (RAID) architecture. The size of the information part is m� n, where n is the number of information disks and ðmþ 1Þ is a prime

integer; the size of the parity-check part is m� r, the minimum distance is rþ 1, and the number of parity-check disks is r. In practical

applications, m can be very large and n ranges from 20 to 50. The code rate is R ¼ n
nþr . These codes can be used for tolerating up to

r disk failures, with very fast encoding and decoding. The complexities of encoding and decoding algorithms are OðrmnÞ and Oðm3r4Þ,
respectively. When r ¼ 4, there need to be 9mn XOR operations for encoding and ð9nþ 95Þðmþ 1Þ XOR operations for decoding.

Index Terms—Rabin codes, MDS array codes, RAID, multiple disk failures.

�

1 INTRODUCTION

A new technique, called RAID, can be used in many
applications to store huge amounts of data and it has

been used by many companies, universities, and govern-
ment organizations. Erasure codes are required for protect-
ing data in RAID from multiple disk failures.

In order to retrieve the information lost on r failed
(erased) disks, we need at least r redundant disks (in coding
theory, this is known as the capacity of the erasure channel
[2]). The well-known Reed-Solomon codes [3] can achieve
this capacity. However, their encoding and decoding
involve operations over finite fields and, hence, are very
slow. It would be desirable to have binary linear codes that
only involve exclusive-OR (XOR) operations. For r ¼ 2, i.e.,
for tolerating two disk failures, many good codes have
already been developed [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. These codes are called MDS array codes. The best
results are obtained with EvenOdd codes [5], [14], X-codes
[12], and B-codes [13]. But, these codes all have distance 3,
meaning they can only be used for tolerating two disk
failures. A generalization of EvenOdd codes has been
developed [14]. Yet, the encoding and decoding for r � 3
need to be developed. In practical applications of RAID, the
size of each individual symbol (i.e., m) can be as big as a
whole sector: During update operations, we prefer to
update a minimal number of redundant symbols when a
single information symbol is updated. That means the
parity-check matrix should be of the following form:

H ¼

1 0 . . . 0 h1;1 h1;2 . . . h1;n

0 1 . . . 0 h2;1 h2;2 . . . h2;n

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . 1 hr;1 hr;2 . . . hr;n

26664
37775: ð1:1Þ

Recently, a class of Reed-Solomon-like MDS array codes

for tolerating three disk failures in RAID with very fast

encoding and decoding algorithms has been developed [15].

However, it cannot be used for tolerating more than four

disk failures in RAID architectures. In this paper, we

address this issue by developing a new class of binary MDS

array codes for tolerating multiple (� 4) disk failures in

RAID in an efficient manner. The binary MDS array codes

are a class of binary linear codes, where information bits

form an m� n array and parity bits form an m� r array. In

applications of these new codes in RAID, m indicates the

number of “data,” which can be bytes or computer words

and are stored on a disk, ðmþ 1Þ is a very large prime, and

n denotes the number of information disks on which

information “data” are stored. In RAID, n should be

20 � 50. The code rate is n
nþr, i.e., it achieves the capacity

of erasure channel [1]. Although this class of codes is high-

density parity-check codes, the encoding and decoding are

still very fast.
This paper is organized as follows: In the next section, we

first briefly review the circular permutation matrices (CPM)

and their algebra, which are very useful in the subsequent

sections. The proof of the lemmas and theorems can be found

in [15]. In Section 3,we introduce a class of codes based on the

Cauchy matrix and CPMs, called the Rabin-like MDS array

codes. Their advantage is that (1.1) is satisfied for any r � 4.

Although these codes are high-density parity-check codes

and the encoding cost is three times as much as that of the

codes in [15], it is still very fast. In Section 4, we present a

decoding algorithm for tolerating up to r � 4 disk failures.

The complexity of such a decoding algorithm isOðm3r4Þ and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 12, DECEMBER 2005 1473

. G.-L. Feng and J.-C. Shen are with the Center for Advanced Computer
Studies, University of Louisiana at Lafayette, Lafayette, LA 70504.
E-mail: {glf, jxs2352}@cacs.louisiana.edu.

. R.H. Deng and F. Bao are with the Institute for Information Research, 21
Heng Mui Keng Terrace, Singapore.
E-mail: {deng, baofeng}@i2r.a-star.edu.sg.

Manuscript received 11 Jan. 2005; revised 12 May 2005; accepted 21 June
2005; published online 14 Oct. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0005-0105.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Published in IEEE Transactions on Computers, 2005 December, Volume 54, Issue 12, Pages 1473-1483
https://doi.org/10.1109/TC.2005.200

its cost is linear with the decoding cost of the Reed-Solomon-

like codes [15]. Finally, conclusions arepresented in Section 5.

2 NOTATIONS AND MAIN LEMMAS

In this section, we present some new mathematical results

of CPM matrices. Other results can be found in [15]. Both of

them are very important in understanding the new codes

and their fast encoding and decoding algorithms.

2.1 Review of CPMs and Their Algebra

We introduce a quasi-inverse matrix of ðI þE�Þ, denoted
by ðI þ E�Þ�1, as follows:

ðI þ E�Þ�1ðI þE�Þ ¼ Im 1
!T

0
!

0

" #
¼� Q ð2:1Þ

and

ðI þE�ÞðI þ E�Þ�1 ¼ 0 1
!

0
!T

Im

" #
¼� P: ð2:10Þ

Let

S ¼� I þQ ¼ Om 1
!T

0
!

1

" #
ð2:2Þ

and

S� ¼� I þ P ¼ 1
!

1

Om 0
!T

" #
; ð2:20Þ

where Om denotes m�m zero matrix.

Definition 2.1. The modified quasi-left-inverse matrix and

modified quasi-right-inverse matrix of ðI þE�Þ for � 6¼ 0,

denoted by ðI þ E�Þ�1
�������!

and ðI þ E�Þ�1
 �������

, are defined by

ðI þ E�Þ�1
�������!

QðI þ E�Þ ¼ Q ð2:3Þ

and

ðI þE�ÞP ðI þ E�Þ�1
 �������

¼ P; ð2:30Þ

respectively.

These two modified quasi-inverse matrices are very

important in our decoding algorithm.
We can prove the following lemma:

Lemma 2.1. Let u!¼ ðu0; u1; . . . ; umÞ be the sum of all rows of

ðI þ E�Þ�1, i.e., ui ¼ 1 if the weight of column i of ðI þ
E�Þ�1 is odd and, otherwise, 0. We have

ðI þ E�Þ�1
 �������

¼ ðI þE�Þ�1 þ U; ð2:4Þ

where

U ¼

0
!

u!
..
.

u!

26664
37775:

Furthermore, ðI þ E�Þ�1
 �������

is a nonsingular matrix.

From the above lemma and results in [15], we know that

there is a modified quasi-left-inverse matrix such that (2.3)

is true. Let us consider the matrix

Mt ¼ ðI þE�1Þ
Yt
j¼2
ðI þ E�jÞ

 !
;

where �j 6¼ 0. Since, for each �j, there are nonsingular

ðI þ E�jÞ�1
��������!

and ðI þ E�jÞ�1, from Definition 2.1 in [15] and

Definition 2.1, we have

Yt
j¼2
ðI þ E�jÞ�1
��������! !

ðI þ E�1Þ�1Mt ¼ Q:

2.2 The Rabin Codes

In the theory of error-correcting codes, Rabin codes [16] are

very important. They are defined by the Cauchy matrix and

are all Maximum Distance Separable (MDS) codes, other-

wise known as optimal codes (see [17, p. 316]).
First, we briefly review the Cauchy matrix:

HC ¼

1
x1�y1

1
x2�y1 . . . 1

xn�y1
1

x1�y2
1

x2�y2 . . . 1
xn�y2

..

. ..
. . .

. ..
.

1
x1�yr

1
x2�yr . . . 1

xn�yr

266664
377775; ð2:5Þ

where xis and yjs are distinct from each other for 1 � i � n

and 1 � j � r. It is well-known that a submatrix consisting

of any r columns of HC is a full rank matrix. A linear code

CRabin defined by HC as a parity-check matrix is called a

Rabin code [16], which is also an MDS code.
For any r, adding r columns, we have the following

matrix:

HEC ¼

1 0 . . . 0 1
x1�y1

1
x2�y1 . . . 1

xn�y1
0 1 . . . 0 1

x1�y2
1

x2�y2 . . . 1
xn�y2

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . 1 1
x1�yr

1
x2�yr . . . 1

xn�yr

266664
377775; ð2:6Þ

where xi and yj for 1 � i � n and 1 � j � r are distinct from

each other. It can be easily checked that a submatrix

consisting of any r columns of HEC is a full rank matrix.

Thus, a linear code CERabin defined byHEC as a parity-check

matrix is called an extended Rabin code, which is also an

MDS code.

3 THE EXTENDED RABIN-LIKE CODES BASED ON

CPM

Before introducing the extended Rabin-like codes based on

CPM, we present some important properties of CPM.

Proposition 3.1.

ðEi þ EjÞðEx þ EyÞ ¼ ðEx þ EyÞðEi þ EjÞ: ð3:1Þ

1474 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 12, DECEMBER 2005

Proposition 3.2.

ðEi þ EjÞQ ¼ ðEi þEjÞ; P ðEx þ EyÞ ¼ ðEx þ EyÞ: ð3:2Þ

Proof. From (2.1) and (2.2), we have

ðEi þ EjÞQ ¼ ðEi þ EjÞðI þ SÞ ¼ ðEi þ EjÞ þ ðEi þ EjÞS:

Since the first m columns of S are all columns of 0s, the

first m columns of ðEi þ EjÞS are also columns of 0s. On
the other hand, the last column is a column of 1s and

each row of ðEi þEjÞ has exactly two 1s, so the last

column of ðEi þ EjÞS is also a column of 0s. Therefore,
ðEi þ EjÞS ¼ O, i.e.,

ðEi þ EjÞQ ¼ ðEi þEjÞ:

By the same token, we have the second result. tu

Proposition 3.3.

P � P ¼ P: ð3:20Þ

Proof. Since P ¼ ðI þ EÞðI þ EÞ�1, we know that

P � P ¼ ðI þ EÞðI þ EÞ�1ðI þEÞðI þEÞ�1

¼ ðI þ EÞQðI þ EÞ�1 ¼ ðI þ EÞðI þ EÞ�1 ¼ P:

Thus, the proof is completed. tu
From these properties, we have the following theorem:

Theorem 3.1. Let an rðmþ 1Þ � rðmþ 1Þ matrix:

H ¼
X1ðx1þy1Þ�1Y1 X2ðx2þy1Þ�1Y1 X3ðx3þy1Þ�1Y1 . . . Xrðxrþy1Þ�1Y1

X1ðx1þy2Þ�1Y2 X2ðx2þy2Þ�1Y2 X3ðx3þy2Þ�1Y2 . . . Xrðxrþy2Þ�1Y2

X1ðx1þy3Þ�1Y3 X2ðx2þy3Þ�1Y3 X3ðx3þy3Þ�1Y3 . . . Xrðxrþy3Þ�1Y3

..

. ..
. ..

. . .
. ..

.

X1ðx1þyrÞ�1Yr X2ðx2þyrÞ�1Yr X3ðx3þyrÞ�1Yr . . . XrðxrþyrÞ�1Yr

266666664

377777775;

ð3:3Þ

where X1; X2; . . . ; Xr; Y1; Y2; . . . ; Yr are products of se-

quences of ðEi þEjÞ, and x1; x2; . . . ; xr and y1; y2; . . . ; yr
are terms of Ei.

Then, the matrix (3.3) has rank rm.

Proof. We use mathematical induction to prove this

theorem. From Section 2, we know that the rank of A is
m. Thus, the rank of X � ðxþ aÞ�1 �A is m, i.e., the

theorem is true for r ¼ 1.
Assume that the theorem is true for ðr� 1Þ. Let us

consider the following rðmþ 1Þ � rðmþ 1Þ matrix:

H1 ¼
X1ðx1þy1Þ�1Y1 X2ðx2þy1Þ�1Y1 X3ðx3þy1Þ�1Y1 . . . Xrðxrþy1Þ�1Y1

X1ðx1þy2Þ�1Y2 X2ðx2þy2Þ�1Y2 X3ðx3þy2Þ�1Y2 . . . Xrðxrþy2Þ�1Y2

X1ðx1þy3Þ�1Y3 X2ðx2þy3Þ�1Y3 X3ðx3þy3Þ�1Y3 . . . Xrðxrþy3Þ�1Y3

..

. ..
. ..

. . .
. ..

.

X1ðx1þyrÞ�1Yr X2ðx2þyrÞ�1Yr X3ðx3þyrÞ�1Yr . . . XrðxrþyrÞ�1Yr

266666664

377777775:

ð3:4Þ

Let

H2 ¼
ðx1 þ y1Þ O O . . . O

Y2ðx1 þ y1Þ Y1ðx1 þ y2Þ O . . . O

Y3ðx1 þ y1Þ O Y1ðx1 þ y3Þ . . . O

..

. ..
. ..

. . .
. ..

.

Yrðx1 þ y1Þ O O . . . Y1ðx1 þ yrÞ

266666664

377777775

�H1 �

I O O . . . O

O ðx2 þ y1Þ O . . . O

O O ðx3 þ y1Þ . . . O

..

. ..
. ..

. . .
. ..

.

O O O . . . ðxr þ y1Þ

266666664

377777775;

we have

H2 ¼

X1Y1 X2ðx1þy1ÞY1

O Y1X2ðx1þx2Þðx2þy2Þ�1ðy1þy2ÞY2

O Y1X2ðx1þx2Þðx2þy3Þ�1ðy1þy3ÞY3

..

. ..
.

O Y1X2ðx1þx2Þðx2þyrÞ�1ðy1þyrÞYr

266666664
X3ðx1þy1ÞY1 . . . Xrðx1þy1ÞY1

Y1X3ðx1þx3Þðx3þy2Þ�1ðy1þy2ÞY2 . . . Y1Xrðx1þxrÞðxrþy2Þ�1ðy1þy2ÞY2

Y1X3ðx1þx3Þðx3þy3Þ�1ðy1þy3ÞY3 . . . Y1Xrðx1þxrÞðxrþy3Þ�1ðy1þy3ÞY3

..

. . .
. ..

.

Y1X3ðx1þx3Þðx3þyrÞ�1ðy1þyrÞYr . . . Y1Xrðx1þxrÞðxrþyrÞ�1ðy1þyrÞYr

377777775;

ð3:5Þ

where we use (3.2), (3.3), and the following formula:

ðx1 þ y1Þðx2 þ y1Þ�1 ¼ ðx1 þ x2 þ x2 þ y1Þðx2 þ y1Þ�1

¼ ðx1 þ x2Þðx2 þ y1Þ�1 þ P:

Now, let us consider the submatrix consisting of the

last ðr� 1Þ rows and the last ðr� 1Þ columns:

H� ¼
Y1X2ðx1þx2Þðx2þy2Þ�1ðy1þy2ÞY2 . . . Y1Xrðx1þxrÞðxrþy2Þ�1ðy1þy2ÞY2

Y1X2ðx1þx2Þðx2þy3Þ�1ðy1þy3ÞY3 . . . Y1Xrðx1þxrÞðxrþy3Þ�1ðy1þy3ÞY3

..

. . .
. ..

.

Y1X2ðx1þx2Þðx2þyrÞ�1ðy1þyrÞYr . . . Y1Xrðx1þxrÞðxrþyrÞ�1ðy1þyrÞYr

266664
377775:

Let

X�2 ¼ Y1X2ðx1 þ x2Þ
X�3 ¼ Y1X3ðx1 þ x3Þ
X�r ¼ Y1Xrðx1 þ xrÞ
Y �2 ¼ ðy1 þ y2ÞY2

Y �3 ¼ ðy1 þ y3ÞY3

Y �r ¼ ðy1 þ yrÞYr:

8>>>>>><>>>>>>:
ð3:6Þ

FENG ET AL.: NEW EFFICIENT MDS ARRAY CODES FOR RAID PART II: RABIN-LIKE CODES FOR TOLERATING MULTIPLE (� 4) DISK... 1475

We have

H� ¼

X�2ðx2þy2Þ
�1Y �2 X�3ðx3þy2Þ

�1Y �2 . . . X�r ðxrþy2Þ
�1Y �2

X�2ðx2þy3Þ
�1Y �3 X�3ðx3þy3Þ

�1Y �3 . . . X�r ðxrþy3Þ
�1Y �3

..

. ..
. . .

. ..
.

X�2ðx2þyrÞ
�1Y �r X�3ðx3þyrÞ

�1Y �r . . . X�r ðxrþyrÞ
�1Y �r

26664
37775;

where X�2 ; X
�
3 ; . . . ; X

�
r and Y �2 ; Y

�
3 ; . . . ; Y

�
r are also pro-

ducts of sequence of ðEi þEjÞ.
By mathematical induction, the rank ofH� is ðr� 1Þm.

Thus, the rank of H1 is at least ðr� 1Þmþm ¼ rm.

On the other hand, the rank of each block row of H1 is

at most m because the ranks of X1; X2; . . . ; Xr and

Y1; Y2; . . . ; Yr are all at most m. Therefore, the rank of H1

is at most rm.
Hence, the proof is completed. tu

We are now going to introduce the extended Rabin-like

codes based on CPM. Let us consider the following matrix:

H ¼

I 0 . . . 0 ðIþErÞ�1 ðIþErþ1Þ�1 . . . ðIþErþn�1Þ�1

0 I . . . 0 ðEþErÞ�1 ðEþErþ1Þ�1 . . . ðEþErþn�1Þ�1

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . I ðEr�1þErÞ�1 ðEr�1þErþ1Þ�1 . . . ðEr�1þErþn�1Þ�1

~00 ~00 . . . ~00 ~11 ~00 . . . ~00

~00 ~00 . . . ~00 ~00 ~11 . . . ~00

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

~00 ~00 . . . ~00 ~00 ~00 . . . ~11

2666666666664

3777777777775
:

ð3:7Þ

From Theorem 3.1, it can be easily seen that the rank of H is

rðmþ 1Þ. Thus, we can use H as a parity-check matrix to

define a binary linear code:

C ¼ f~cc ¼ ð~c0c0; ~c1c1; :::; ~cnþr�1cnþr�1Þ H�~c�c�
T ¼~00

Tg; ð3:8Þ

where

~cici ¼ ðci;0; ci;1; ci;2; :::; ci;mÞ for 0 � i � nþ r� 1

and

ci;m ¼ 0 for 0 � i � r� 1; ð3:9Þ

cj;0 ¼
Xm
�¼1

cj;� for r � j � nþ r� 1: ð3:90Þ

In the codeword, ci;�, for 0 � i � r� 1 and � < m, and cj;0,

for r � j � nþ r� 1, are parity-check bits, while cj;�, for

r � j � nþ r� 1 and � 6¼ 0, are information bits.

Remark. It can be easily seen that the code length is

ðrþ nÞðmþ 1Þ and code dimension is nm. However,

ci;m ¼ 0 and cj;0 ¼
Pm

�¼1 ci;�, for 0 � i � r� 1 and

r � j � nþ r� 1. Hence, the data on these bits do not

need to be stored on disks and only data on the other

ðnþ rÞm bits need to be stored on the disks. The nm bits

of these data are information and the rm bits are

redundant. Therefore, the code rate is n
nþr. Since the

submatrix consisting of any t � r block columns has rank

tðmþ 1Þ, any erasure error in t block columns can be

corrected.

For the same reason as in (3.7), this code C can be
defined on any Abelian group ðG;�Þ, i.e., ci;� 2 G.

Example 3.1. Let us consider the example: r ¼ 4 and n ¼ 4,
the parity-check matrix H is

I O O O ðIþEiÞ�1 ðIþEjÞ�1 ðIþEkÞ�1 ðIþEsÞ�1 ðIþEtÞ�1

O I O O ðEþEiÞ�1 ðEþEjÞ�1 ðEþEkÞ�1 ðEþEsÞ�1 ðEþEtÞ�1

O O I O ðE2þEiÞ�1 ðE2þEjÞ�1 ðE2þEkÞ�1 ðE2þEs Þ�1 ðE2þEtÞ�1

O O O I ðE3þEiÞ�1 ðE3þEjÞ�1 ðE3þEkÞ�1 ðE3þEs Þ�1 ðE3þEtÞ�1

~00 ~00 ~00 ~00 ~11 ~00 ~00 ~00 ~00

~00 ~00 ~00 ~00 ~00 ~11 ~00 ~00 ~00

~00 ~00 ~00 ~00 ~00 ~00 ~11 ~00 ~00

~00 ~00 ~00 ~00 ~00 ~00 ~00 ~11 ~00

~00 ~00 ~00 ~00 ~00 ~00 ~00 ~00 ~11

26666666666664

37777777777775
:

From Theorem 3.1, we know that the rank of H is
4ðmþ 1Þ. Thus, we can use H as a parity-check matrix to
define a binary linear code

C ¼ c!¼ ð c!0; c
!

1; . . . ; c
!

nþ3Þ H� c!
T ¼ 0
!T

� �
; ð3:10Þ

where

c!i ¼ ðci;0; ci;1; ci;2; . . . ; ci;mÞ for 0 � i � nþ 3

and

ci;m ¼ 0 for 0 � i � 3; ð3:11Þ

cj;0 ¼
Xm
�¼1

cj;� for 4 � j � nþ 3; ð3:12Þ

where ci;�, for 0 � i � 3 and 0 � � � m, and cj;0, for
4 � j � nþ 3, are parity-check bits and cj;�, for 4 � j �
nþ 3 and � 6¼ 0, are information bits. It should be noted
that both ci;�, for 0 � i � 3, and cj;0, for 4 � j � nþ 3, are
present for formal convenience. Specifically, ci;m ¼ 0, for
0 � i � 3, are constants and are therefore not used and
cj;0, for 4 � j � nþ 3, are not used either because they
are virtual parity-check bits, for the information on these
bits is calculated with (3.12) from other information bits
in the decoding process. Thus, with only the transmitted
information bits and parity-check bits considered, i.e.,
ci;�, for 0 � i � 3 and 0 � � � m� 1, and cj;� , for 4 � j �
nþ 3 and 1 � � � m, the code rate is nm

ðnþ4Þm ¼ n
nþ4 .

From (2.1’) and (3.12), we have

P � c!j ¼ c!j for 4 � j � nþ 3: ð3:13Þ

From Theorem 3.1, it is clear that any four or less block-
columns are linearly independent with coefficients of
E�-type. That means up to four erasure errors can be
corrected.

This code C can also be defined on any Abelian group
ðG;�Þ, i.e., ci;� 2 G. In practical applications, G can be a
group of computer words, i.e., binary vectors of 32 bits.
Therefore, the 32 codewords of C can be simultaneously
encoded/decoded, which will lead to a 32-fold improve-
ment in efficiency.

1476 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 12, DECEMBER 2005

Now, we discuss the encoding process. In this code C,

information bits are cj;� for r � j � nþ r� 1 and 1 � � � m,

from which cj;0 ¼
Pm

�¼1 cj;� for r � j � nþ r� 1 are calcu-

lated. Then, ci;�, for 0 � i � r� 1 and 0 � � � m, are

calculated with (3.8). Finally, we need to store only ci;�,

for 0 � i � r� 1 and 0 � � � m� 1, and cj;� , for r � j �
nþ r� 1 and 1 � � � m, on the n information disks and the

four parity-check disks, respectively.

1. To calculate ci;0 ¼
Pm

�¼1 ci;� for r � i � nþ r� 1: For

each ci;0, there need to be ðm� 1Þ XOR operations.

Thus, a total of nðm� 1Þ XOR operations are needed.
2. To calculate ci;� for 0 � i � r� 1 and 0 � � � m� 1:

For each j, r � j � nþ r� 1, we first calculate the

sums sj;i;� of rows ði; �Þ and block-columns j. For

each block-section ði; jÞ, from Section 2, there need to

be m XOR operations to calculate sj;i;�. Thus, a total

of 4mn XOR operations are needed for all sj;i;�s. To

calculate a single ci;� ¼
Pnþr�1

j¼r sj;i;� from sj;i;�s, there

need to be ðn� 1Þ XOR operations. Thus, a total of

rmðn� 1Þ XOR operations are needed for all ci;�s

from sj;i;�s. Therefore, to calculate all ci;�s from cj;�s,

there need to be 2rmn XOR operations.

Consequently, in the encoding process, at most ð2rþ
1Þmn XOR operations are needed. Thus, the encoding cost

of code C is roughly three times as much as that of the codes

in [15]. However, it is still very fast.

To calculate ci;0, we need m XOR operations for each

r � i � nþ r� 1. Thus, we need nm XOR operations. Then,

from all ci;j, for r � i � nþ r� 1 and 0 � j � m, we need to

calculate ch;j, for 0 � h � r� 1. For this step, we need to

calculate ðn� rÞmultiplications of ðEi þ EjÞ�1 and ~c�c�. From

Section 2, each such multiplication needs m XOR opera-

tions. Thus, we need a total of nrm XOR operations.

4 DECODING OF THE EXTENDED RABIN-LIKE

CODES BASED ON CPM

Assume that a codeword c ¼ ð c!0; c
!

1; . . . ; c
!

nþr�1Þ is trans-
mitted and that t packets, say c!�i

for i ¼ 1; 2; . . . ; t � r, are

lost. Then, the received codeword is given by

y ¼ ð y!0; y
!

1; . . . ; y
!

nþr�1Þ;

where

y!i ¼
c!i i 62 f�1; �2; :::; �tg
0
!

i 2 f�1; �2; :::; �tg:

�
We define the syndromes of the received codeword y as

eHHyT ¼ sT ; ð4:1Þ

where s ¼ ð s!0; s
!

1; . . . ; s
!

r�1Þ, s!i ¼ ðsi;0; si;1; . . . ; si;mÞ, and
si;j 2 G.

Let

z ¼ ð z!0; z
!

1; . . . ; z
!

nþr�1Þ

and

z!i ¼ 0
!

i 62 f�1; �2; . . . ; �tg
c!i i 2 f�1; �2; . . . ; �tg:

�
It follows that

c ¼ yþ z:

Since eHHcT ¼ 0
!T

and (4.1), we have

eHHzT ¼ sT : ð4:2Þ

Then, correcting these erasure errors is equivalent to

solving the following set of linear equations with a Cauchy

matrix:

ðE�0 þE�sÞ�1 ðE�0 þE�sþ1Þ�1 . . . ðE�0 þ E�tÞ�1

ðE�1 þE�sÞ�1 ðE�1 þE�sþ1Þ�1 . . . ðE�1 þ E�tÞ�1

..

. ..
. . .

. ..
.

ðE�t�s þE�sÞ�1 ðE�t�s þ E�sþ1Þ�1 . . . ðE�t�s þ E�tÞ�1

2666664

3777775

�

~c�1
c�1

~c�2
c�2

..

.

~c�t
c�t

266664
377775 ¼

~
s
ð0Þ
0s
ð0Þ
0

~
s
ð0Þ
1s
ð0Þ
1

..

.

~
s
ð0Þ
t�1s
ð0Þ
t�1

266666664

377777775;

ð4:3Þ

where we assume that

0 � �1 < . . . < �s�1 � r� 1 < �s < . . . < �t;

i.e., the first ðs� 1Þ errors are in the parity-check bits and

the last ðtþ sþ 1Þ errors are in the information bits,

f�0; �1; . . . ; �t�sg � f0; 1; . . . ; r� 1g n f�1; �2; . . . ; �s�1g:
ð4:4Þ

Remark. When t < r, there are many such sets of �s and we

can choose any one.

The decoding process can be briefly summarized as

follows: Given a received codeword y and the locations of

the lost packets �1; �2; 	 	 	 ; �r, we first compute the

syndromes from (4.1) and then determine the values of

the lost packets c!�i
for 1 � i � r by solving (4.4).

We are now going to derive a recursive algorithm for

solving (4.4). The algorithm consists of two parts: the

forward steps and the backward steps.
First, we explain the forward steps.
Let us consider the equation

FENG ET AL.: NEW EFFICIENT MDS ARRAY CODES FOR RAID PART II: RABIN-LIKE CODES FOR TOLERATING MULTIPLE (� 4) DISK... 1477

X
ð0Þ
1
ðx1þa1Þ�1Að0Þ1 X

ð0Þ
2
ðx2þa1Þ�1Að0Þ1

X
ð0Þ
3
ðx3þa1Þ�1Að0Þ1

X
ð0Þ
1
ðx1þa2Þ�1Að0Þ2 X

ð0Þ
2
ðx2þa2Þ�1Að0Þ2

X
ð0Þ
3
ðx3þa2Þ�1Að0Þ2

X
ð0Þ
1
ðx1þa3Þ�1Að0Þ3 X

ð0Þ
2
ðx2þa3Þ�1Að0Þ3

X
ð0Þ
3
ðx3þa3Þ�1Að0Þ3

..

. ..
. ..

.

X
ð0Þ
1
ðx1þatÞ�1Að0Þt X

ð0Þ
2
ðx2þatÞ�1Að0Þt X

ð0Þ
3
ðx3þatÞ�1Að0Þt

266666664
. . . X

ð0Þ
t ðxtþa1Þ

�1A
ð0Þ
1

. . . X
ð0Þ
t ðxtþa2Þ

�1A
ð0Þ
2

. . . X
ð0Þ
t ðxtþa3Þ

�1A
ð0Þ
3

. .
. ..

.

. . . X
ð0Þ
t ðxtþatÞ

�1A
ð0Þ
t

377777775�
�
ð0Þ
1

�
ð0Þ
2

�
ð0Þ
3

..

.

�
ð0Þ
t

266666664

377777775 ¼
~
s
ð0Þ
1
s
ð0Þ
1

~
s
ð0Þ
2
s
ð0Þ
2

~
s
ð0Þ
3
s
ð0Þ
3

..

.

~
s
ð0Þ
ts
ð0Þ
t

266666664

377777775;
ð4:5Þ

Hð0Þ � ~�ð0Þ�ð0Þ ¼ ~Sð0ÞSð0Þ: ð4:50Þ

Let L1, R1, and R�1 be the following matrices, respectively:

L1 ¼�

ðx1þa1Þ O O . . . O

A
ð0Þ
2
ðx1þa1Þ A

ð0Þ
1
ðx1þa2Þ O . . . O

A
ð0Þ
3
ðx1þa1Þ O A

ð0Þ
1
ðx1þa3Þ . . . O

..

. ..
. ..

. . .
. ..

.

A
ð0Þ
t ðx1þa1Þ O O . . . A

ð0Þ
1
ðx1þatÞ

2666664

3777775;

R1 ¼�

I O O . . . O
O ðx2 þ a1Þ O . . . O
O O ðx3 þ a1Þ . . . O

..

. ..
. ..

. . .
. ..

.

O O O . . . ðxt þ a1Þ

2666664

3777775;

R�1 ¼
�

I O O . . . O
O ðx2 þ a1Þ�1 O . . . O

O O P ðx3 þ a1Þ�1
 �������

. . . O

..

. ..
. ..

. . .
. ..

.

O O O . . . P ðxt þ a1Þ�1
 �������

26666664

37777775:
ð4:6Þ

From (4.5’), we have

L1 �Hð0Þ �R1 �R�1 � ~�� ¼ L1 � ~Sð0ÞSð0Þ; ð4:7Þ

and it is denoted by

Hð1Þ � ~�ð1Þ�ð1Þ ¼ ~Sð1ÞSð1Þ; ð4:70Þ

where

Hð1Þ ¼�

X
ð0Þ
1

A
ð0Þ
1

X
ð0Þ
2
ðx1þa1ÞAð0Þ1

X
ð0Þ
3
ðx1þa1ÞAð0Þ1 . . . X

ð0Þ
t ðx1þa1ÞA

ð0Þ
1

O X
ð1Þ
2
ðx2þa2Þ�1Að1Þ2

X
ð1Þ
3
ðx3þa2Þ�1Að1Þ2

. . . X
ð1Þ
t ðxtþa2Þ

�1A
ð1Þ
2

O X
ð1Þ
2
ðx2þa3Þ�1Að1Þ3

X
ð1Þ
3
ðx3þa3Þ�1Að1Þ3

. . . X
ð1Þ
t ðxtþa3Þ

�1A
ð1Þ
3

..

. ..
. ..

. . .
. ..

.

O X
ð1Þ
2 ðx2þatÞ

�1A
ð1Þ
t X

ð1Þ
3 ðx3þatÞ

�1A
ð1Þ
t . . . X

ð1Þ
t ðxtþatÞ

�1A
ð1Þ
t

266666664

377777775;

ð4:8Þ

A
ð1Þ
i ¼� ða1 þ aiÞAð0Þi for 2 � i � t

X
ð1Þ
j ¼� A

ð0Þ
1 X

ð0Þ
j ðx1 þ xjÞ for 2 � j � t;

(

~�ð1Þ�ð1Þ ¼� R�1 � ~�ð0Þ�ð0Þ;

and

~Sð1ÞSð1Þ ¼� L1 � ~Sð0ÞSð0Þ:

Likewise, we give the recursive algorithm: for any

1 � i � t, as shown in Fig. 1, where the first ði� 1Þ block-

rows and first ði� 1Þ block-columns of Li form an ði�

1Þðmþ 1Þ � ði� 1Þðmþ 1Þ identity matrix and, as shown in

Fig. 2, where the first i block-rows and the first i block-

columns of both Ri and R�i form an iðmþ 1Þ � iðmþ 1Þ

identity matrix.
And, let

HðiÞ ¼ Li �Hði�1Þ �Ri
~�ðiÞ�ðiÞ ¼ R�i � ~�ði�1Þ�ði�1Þ

~SðiÞSðiÞ ¼ Li � ~Sði�1ÞSði�1Þ

8><>: ð4:80Þ

and

1478 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 12, DECEMBER 2005

Fig. 1.

X
ðiÞ
j ¼

Y
ði�1Þ
i X

ði�1Þ
j ðxi þ xjÞ if j > i

X
ði�1Þ
j if j < i;

8<:
Y
ðiÞ
j ¼

ðyi þ yjÞY ði�1Þj if j > i

Y
ði�1Þ
j if j < i:

8<:

We get

HðiÞ ¼ H
ðiÞ
1;1 H

ðiÞ
1;2

O H
ðiÞ
2;2

" #
ð4:9Þ

and

HðiÞ 	 ~�ðiÞ�ðiÞ ¼ ~SðiÞSðiÞ;

where

H
ðiÞ
1;1 ¼
X
ð0Þ
1

A
ð0Þ
1

X
ð0Þ
2
ðx1þa1ÞAð0Þ1 	 	 	 X

ð0Þ
i ðx1þa1ÞA

ð0Þ
1
	
Qi�1

m¼2ðxiþamÞ

O X
ð1Þ
2

A
ð1Þ
2

	 	 	 X
ð1Þ
i ðx2þa2ÞA

ð1Þ
2
	
Qi�1

m¼3ðxiþamÞ

..

. ..
. . .

. ..
.

O O 	 	 	 X
ði�1Þ
i A

ði�1Þ
i

2666664

3777775;

H
ðiÞ
1;2 ¼

X
ð0Þ
iþ1ðx1þa1ÞA

ð0Þ
1
	
Qi�1

m¼2ðxiþ1þamÞ

X
ð1Þ
iþ1ðx2þa2ÞA

ð1Þ
2
	
Qi�1

m¼3ðxiþ1þamÞ

..

.

X
ði�1Þ
iþ1 ðxi þ aiÞAði�1Þi

2666664
X
ð0Þ
iþ2ðx1þa1ÞA

ð0Þ
1
	
Qi�1

m¼2ðxiþ1þamÞ 	 	 	 X
ð0Þ
t ðx1þa1ÞA

ð0Þ
1
	
Qi�1

m¼2ðxiþ1þamÞ

X
ð1Þ
iþ2ðx2þa2ÞA

ð1Þ
2
	
Qi�1

m¼3ðxiþ1þamÞ 	 	 	 X
ð1Þ
t ðx2þa2ÞA

ð1Þ
2
	
Qi�1

m¼3ðxiþ1þamÞ

..

. . .
. ..

.

X
ði�1Þ
iþ2 ðxiþaiÞA

ði�1Þ
i

	 	 	 X
ði�1Þ
t ðxiþaiÞAði�1Þi

3777775;

H
ðiÞ
2;2 ¼
X
ðiÞ
iþ1ðxiþ1þaiþ1Þ

�1A
ðiÞ
iþ1 X

ðiÞ
iþ2ðxiþ2þaiþ1Þ

�1A
ðiÞ
iþ1 	 	 	 X

ðiÞ
t ðxtþaiþ1Þ

�1A
ðiÞ
iþ1

X
ðiÞ
iþ1ðxiþ1þaiþ2Þ

�1A
ðiÞ
iþ2 X

ðiÞ
iþ2ðxiþ2þaiþ2Þ

�1A
ðiÞ
iþ2 	 	 	 X

ðiÞ
t ðxtþaiþ2Þ

�1A
ðiÞ
iþ2

..

. ..
. . .

. ..
.

X
ðiÞ
iþ1ðxiþ1þatÞ

�1A
ðiÞ
t X

ðiÞ
iþ2ðxiþ2þatÞ

�1A
ðiÞ
t 	 	 	 X

ðiÞ
t ðxtþatÞ

�1A
ðiÞ
t

266664
377775:

Thus, we get

HðtÞ 	 ~�ðtÞ�ðtÞ ¼ ~SðtÞSðtÞ;

where

HðtÞ¼Lt�Lt�1�			�L1�Hð0Þ�R1�			�Rt�1�Rt

~�ðtÞ�ðtÞ¼R�t�R�t�1�			�R�1¼R�t�1�R�t�2�			�R�1�
~�ð0Þ�ð0Þ

~SðtÞSðtÞ¼Lt�Lt�1�			�L1� ~Sð0ÞSð0Þ:

8<:
Before calculating the complexity of the decoding, we

first introduce some new notations.

FENG ET AL.: NEW EFFICIENT MDS ARRAY CODES FOR RAID PART II: RABIN-LIKE CODES FOR TOLERATING MULTIPLE (� 4) DISK... 1479

Fig. 2.

Let h
ð�Þ
i be the number of factors ðE� þE�Þs in A

ð�Þ
i as

well as k
ð�Þ
j for X

ð�Þ
j . Thus, from (4.8’), we have

k
ð�þ1Þ
j ¼ h

ð�Þ
1 þ k

ð�Þ
j þ 1

h
ð�þ1Þ
j ¼ h

ð�Þ
j þ 1:

(
ð4:10Þ

We need to calculate ~Sð1ÞSð1Þ ¼ L1 � ~Sð0ÞSð0Þ, i.e.,

s
ð1Þ
1
¼� ðx1þa1Þsð0Þ1

; p XORs

s
ð1Þ
2
¼� A

ð0Þ
2
s
ð1Þ
1
þAð0Þ

1
ðx1þa1Þsð0Þ2

; ðhð0Þ
2
þhð0Þ

1
þ1þ1Þp XORs

s
ð1Þ
3
¼� A

ð0Þ
3
s
ð1Þ
1
þAð0Þ

1
ðx1þa1Þsð0Þ3

; ðhð0Þ
3
þhð0Þ

1
þ1þ1Þp XORs

..

. ..
. ..

.

s
ð1Þ
t ¼

�
A
ð0Þ
t s

ð1Þ
1
þAð0Þ

1
ðx1þa1Þsð0Þr ; ðhð0Þt þh

ð0Þ
1
þ1þ1Þp XORs:

8>>>>><>>>>>:
ð4:11Þ

For example, in calculating A
ð0Þ
2 s
ð1Þ
1 þA

ð0Þ
1 ðx1 þ a1Þsð0Þ2 ,

we need to multiply s
ð0Þ
1 and s

ð0Þ
2 by A2 and

A1ðx1 þ a1Þ, respectively, which needs ðhð0Þ2 þ h
ð0Þ
1 þ 1Þp

XORs. Next, adding them needs p XORs. Thus, a total

of ðhð0Þ2 þ h
ð0Þ
1 þ 1þ 1Þp XORs are needed for calculating

A
ð0Þ
2 s

ð0Þ
1 þA

ð0Þ
1 ðx1 þ a1Þsð0Þ2 .

From (4.11), in this recursive step, there need to be

Xt
i¼2

h
ð0Þ
i þ ðt� 1Þhð0Þ1 þ 2t� 1

 !
p XORs: ð4:12Þ

By the same token, we know that there need to be

ð
Pt

i¼jþ1 h
ðj�1Þ
i þ ðt� jÞhðj�1Þj þ 2t� 2jþ 1Þp XORs to cal-

culate ~SðjÞSðjÞ ¼ Lj�1 � ~Sðj�1ÞSðj�1Þ. Therefore, a total ofPt
j¼1ð

Pt
i¼jþ1 h

ðj�1Þ
i þ ðt� jÞhðj�1Þj þ 2t� 2jþ 1Þp XOR op-

erations are needed to get ~SðtÞSðtÞ.
From (4.3), we have

h
ð0Þ
i ¼ 0 for 1 � i � t

k
ð0Þ
i ¼ 0 for 1 � i � t:

(
From (4.9), we have

h
ð�Þ
i ¼ � for 0 � � � t; � � i � t

k
ð�Þ
i ¼

�ð�þ1Þ
2 for 0 � � � t; � � i � t:

(
ð4:13Þ

Thus,

Xt
j¼1

Xt
i¼jþ1

h
ðj�1Þ
i þ ðt� jÞhðj�1Þj þ 2t� 2jþ 1

 !
p ¼ t3 þ 2t

3
	 p:

Now, we come to the backward steps. First, we give a

definition.

Definition 4.1. For any given A, where

A ¼
Yn
i¼1
ðxi þ yiÞ;

let

A�1 ¼
Yn
i¼2
ðxi þ yiÞ�1
�������!

	 ðx1 þ y1Þ�1

and

A�1
� ¼

Yn
i¼1
ðxi þ yiÞ�1
�������!

:

Then, obviously,

A�1 �A ¼ Q
A�1

� �Q�A ¼ Q:

�

Since we know that

HðtÞ ¼
X
ð0Þ
1 A

ð0Þ
1 X

ð0Þ
2 ðx1þa1ÞA

ð0Þ
1 	 	 	 X

ð0Þ
t ðx1þa1ÞA

ð0Þ
1 	
Qt�1

m¼2ðxtþamÞ

O X
ð1Þ
2

A
ð1Þ
2

	 	 	 X
ð1Þ
t ðx2þa2ÞA

ð1Þ
2
	
Qt�1

m¼3ðxtþamÞ

..

. ..
. . .

. ..
.

O O 	 	 	 X
ðt�1Þ
t A

ðt�1Þ
t

2666664

3777775;

let

L�i ¼ lj;k
� �

;

where

lj;k ¼
I j¼k

O k6¼i;j 6¼k or j>k

X
ðj�1Þ
i ðxjþajÞAðj�1Þj

Qi�1
m¼jþ1ðxiþamÞðX

ði�1Þ
i Þ�1

�
ðAði�1Þi Þ�1 k¼i;j<k

8><>:
ð4:14Þ

for 2 � i � t.
Let

Hi ¼
L�i �Hiþ1 2 � i � t� 1

L�t �HðtÞ i ¼ t;

�
~SiSi ¼

L�i � ~Siþ1Siþ1 2 � i � t� 1

L�t � ~SðtÞSðtÞ i ¼ t:

(

Thus, Hi � ~�ðtÞ�ðtÞ ¼ ~SiSi for 2 � i � t and

H2 ¼

X
ð0Þ
1 A

ð0Þ
1 O 	 	 	 O

O X
ð1Þ
2 A

ð1Þ
2 	 	 	 O

..

. ..
. . .

. ..
.

O O 	 	 	 X
ði�1Þ
i A

ði�1Þ
i

266664
377775:

Finally, let

L�1 ¼
ðXð0Þ

1
Þ�1
�
ðAð0Þ

1
Þ�1 O 	 	 	 O

O ðXð1Þ2 Þ
�1� ðAð1Þ2 Þ

�1 	 	 	 O

..

. ..
. . .

. ..
.

O O 	 	 	 ðXði�1Þi Þ�1
�
ðAði�1Þi Þ�1

266664
377775;
ð4:140Þ

1480 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 12, DECEMBER 2005

H1 ¼ L�1 �H2 ¼

P O O 	 	 	 O
O Q O 	 	 	 O
O O Q 	 	 	 O

..

. ..
. ..

. . .
. ..

.

O O O 	 	 	 Q

2666664

3777775;

and

~S�S� ¼ L�1 � ~S2S2 ¼

s�1
s�2
..
.

s�t

26664
37775:

Therefore,

H1 � ~�ðtÞ�ðtÞ ¼ H1 �R�t �R�t�1 � 	 	 	 �R�1 � ~�ð0Þ�ð0Þ

¼

P�
ð0Þ
1

Qðx2 þ a1Þ�1�ð0Þ2

..

.

Qðxt þ at�1Þ�1
Qt�2

i¼1ðP ðxt þ aiÞ�1
�������!

Þ�ð0Þt

26666664

37777775 ¼ ~S�S� ¼

s�1
s�2

..

.

s�t

266664
377775:

ð4:15Þ

Left multiplying both sides of (4.15) by

I O O 	 	 	 O
O ðx2 þ a1Þ O 	 	 	 O
O O ðx3 þ a1Þðx3 þ a2Þ 	 	 	 O

..

. ..
. ..

. . .
. ..

.

O O O 	 	 	
Qt�1

i¼1ðxt þ aiÞ

2666664

3777775;

we will get

�
ð0Þ
1

�
ð0Þ
2

�
ð0Þ
3

..

.

�
ð0Þ
t

26666664

37777775 ¼
~S�1S
�
1

ðx2 þ a1Þ~S�2S�2
ðx3 þ a1Þðx3 þ a2Þ~S�3S�3

..

.Qt�1
i¼1ðxt þ aiÞ~S�tS�t

26666664

37777775:

Thus, the decoding procedure is completed.
It can be easily checked that there need to be Oðp3 	 i2Þ

XORs to calculate lj;k in L�i . Thus, Oðp3 	 t3Þ XORs are

needed to get ~SSi from ~SSiþ1. So, the complexity of calculating
~SS� from ~SSðtÞ, i.e., the complexity of the backward steps, is

Oðp3 	 t4Þ.
On the other hand, we already know that the complexity

of the forward steps is Oðp 	 t3Þ. Therefore, with the forward

steps and the backward steps combined, calculation of the

syndromes in the decoding process requires a total of Oðp3 	
t4Þ XOR operations.

Theorem 4.1. For the extended Rabin-like codes based on CPM

with r packages erased, the decoding cost is Oðm3 	 r4Þ XOR

operations at the most.

In the following, we show how the decoding algorithm

corrects four errors.
For convenience, let us consider the worst case where all

four errors are in c!j for 4 � j � nþ 3, i.e., on the

information disks. Correcting these erasure errors is

equivalent to solving the following set of linear equations

with a Cauchy matrix.

ðI þ EiÞ�1 ðI þEjÞ�1 ðI þ EkÞ�1 ðI þ EsÞ�1

ðE þEiÞ�1 ðE þ EjÞ�1 ðE þ EkÞ�1 ðE þ EsÞ�1

ðE2 þ EiÞ�1 ðE2 þEjÞ�1 ðE2 þ EkÞ�1 ðE2 þ EsÞ�1

ðE3 þ EiÞ�1 ðE3 þEjÞ�1 ðE3 þ EkÞ�1 ðE3 þ EsÞ�1

26664
37775

�

c!i

c!j

c!k

c!s

26664
37775 ¼

s!ð0Þ0

s!ð1Þ0

s!ð2Þ0

s!ð3Þ0

2666664

3777775:
ð4:16Þ

The decoding process can be briefly summarized as

follows: Given a received codeword y and the locations of

the lost packets �1; �2; �3; �4, we first compute the syn-

dromes from (4.1) and then determine the values of the lost

packets c!�i
for 1 � i � 4 by solving (4.16).

Let

Hð0Þ ¼
ðI þ EiÞ�1 ðI þ EjÞ�1 ðI þEkÞ�1 ðI þEsÞ�1

ðE þ EiÞ�1 ðE þEjÞ�1 ðE þ EkÞ�1 ðE þ EsÞ�1

ðE2 þEiÞ�1 ðE2 þ EjÞ�1 ðE2 þ EkÞ�1 ðE2 þ EsÞ�1

ðE3 þEiÞ�1 ðE3 þ EjÞ�1 ðE3 þ EkÞ�1 ðE3 þ EsÞ�1

26664
37775;

�
!ð0Þ ¼

c!i

c!j

c!k

c!s

26664
37775; and S

!ð0Þ ¼

s!ð0Þ0

s!ð0Þ1

s!ð0Þ2

s!ð0Þ3

2666664

3777775:
ð4:160Þ

Thus, (4.16) can be written as

Hð0Þ � �
!ð0Þ ¼ S

!ð0Þ
: ð4:1600Þ

After the forward steps, we have

Hð4Þ ¼ L4 � L3 � L2 � L1 �Hð0Þ �R1 �R2 �R3; ð4:17:1Þ

�
!ð3Þ ¼ R�3 �R�2 �R�1 � �

!ð0Þ
; ð4:17:2Þ

and

S
!ð4Þ ¼ L4 � L3 � L2 � L1 � S

!ð0Þ
; ð4:17:3Þ

where Li for i ¼ 1; 2; 3; 4, Rj and R�j for j ¼ 1; 2; 3 are

defined as in (4.6) and (4.6’).

During the forward steps, we need to calculate S
!ð4Þ

. To

calculate L2 � S
!ð1Þ

, there need to be nine ððE� þ E�Þ s!Þ-type
operations and two ð s!þ t

!Þ-type operations. From Lem-

mas 2.8 and 2.9 in [15], there need to be ð9þ 2Þ � p ¼ 11p

XOR operations. For the same reason, calculating L1 � S
!ð0Þ

,

L3 � S
!ð2Þ

, and L4 � S
!ð3Þ

involves 10p, 8p, and p XOR

FENG ET AL.: NEW EFFICIENT MDS ARRAY CODES FOR RAID PART II: RABIN-LIKE CODES FOR TOLERATING MULTIPLE (� 4) DISK... 1481

operations, respectively. Thus, in the forward steps, a total

of 30p XOR operations are needed.
After the backward steps, we have

H1 �R�3 �R�2 �R�1 � �
!ð0Þ ¼ S

!ð8Þ
; ð4:18Þ

where

H1 ¼ L�1 � L�2 � L�3 � L�4 �Hð4Þ ¼

P O O O
O Q O O
O O Q O
O O O Q

2664
3775;
ð4:19Þ

S
!ð8Þ ¼ L�1 � L�2 � L�3 � L�4 � S

!ð4Þ
;

and L�i for i ¼ 1; 2; 3; 4 are defined in (4.14) and (4.14’),

namely

P c!i

QðI þEjÞ�1 c!j

QðE þ EkÞ�1P ðI þEkÞ�1
 �������

c!k

QðE2 þ EsÞ�1P ðE þ EsÞ�1
 �������

P ðI þ EsÞ�1
 �������

c!s

266664
377775

s!ð8Þ0

s!ð8Þ1

s!ð8Þ2

s!ð8Þ3

266664
377775:
ð4:20Þ

Both sides are multiplied by

I O O O

O ðIþEjÞ O O

O O ðIþEkÞðEþEkÞ O

O O O ðIþEsÞðEþEsÞðE2þEsÞ

2664
3775:

Using (2.3’), (3.2), (3.2’), and (3.13), we have

c!i

c!j

c!k

c!s

2664
3775 ¼

s!ð8Þ0

ðI þ EjÞ s!ð8Þ1

ðI þ EkÞðE þEkÞ s!ð8Þ2

ðI þEsÞðE þ EsÞðE2 þ EsÞ�1 s!ð8Þ3

266664
377775: ð4:21Þ

Remark. As an example, let us consider

ðI þ EkÞðE þ EkÞ �QðE þEkÞ�1P ðI þ EkÞ�1
 �������

c!k:

From (3.2), it is equal to

ðI þ EkÞðE þ EkÞðE þ EkÞ�1P ðI þ EkÞ�1
 �������

c!k:

Using (2.1’), (2.3’), (3.2’), and (3.13), it is equal to

ðI þEkÞP ðI þ EkÞ�1
 �������

c!kP c!k ¼ c!k:

During the backward steps, from Lemmas 2.8 and 2.9 in

[15], in order to calculate S
!ð8Þ ¼ L�1 � L�2 � L�3 � L�4 � S

!ð4Þ
, a

total of 65p XOR operations are needed.
With the forward steps and the backward steps

combined, calculation of the syndromes in the decoding

process requires a total of ð95þ 9nÞðmþ 1Þ XOR operations.

Theorem 4.2. For the extended Rabin-like codes with r ¼ 4 based

on CPM, the decoding cost is ð95þ 9nÞðmþ 1Þ XOR

operations at the most.

Remark. If G is a group of binary 32-dimension vectors, i.e.,

each vector is regarded as a computer word (32 bits),

then each codeword of this extended Rabin code in fact

contains 32 binary codewords. These 32 binary code-

words can be encoded/decoded simultaneously, redu-

cing the cost to ð95þ9nÞðmþ1Þ32 .

5 CONCLUSIONS

In this paper, we have presented a class of MDS array codes

based on CPM in Cauchy matrix. Although the parity-check

matrix is a high-density parity-check matrix, these codes are

still highly efficient for tolerating multiple package losses in

network-based storage systems, with very fast encoding

and decoding. There need to be at most 2nrðmþ 1Þ XOR

operations for encoding and at most Oðm3 	 r4Þ XOR

operations for decoding. When 32/64 codewords are

encoded/decoded simultaneously, a 32/64-fold improve-

ment can be achieved in terms of efficiency.
This scheme can increase the performance of network-

based storage systems as well as tolerating multipackage

loss. This goal is achieved with a recovery algorithm

invoked when ðn� rÞ disk data arrive as well as through

avoiding sending/receiving some of the packages when a

data update request arises.
On the other hand, data consistency, which is also an

important issue in network-based storage systems, is not

our main concern and, therefore, is not discussed in this

paper. It still remains an open problem in our scheme.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Hua Qian and

Ms. Anna Robin for helpful discussion.

REFERENCES

[1] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD ’88,
pp. 109-116, June 1988.

[2] P. Elias, “Coding for Two Noisy Channels,” Information Theory,
Proc. Third London Symp., pp. 61-76, Sept. 1955.

[3] M. Blahut, Algebraic Codes for Data Transmission. Cambridge Univ.
Press, 2003.

[4] M. Blaum, “A Class of Byte-Correcting Array Code,” IBM
Research Report, RJ 5652(57151), May 1987.

[5] M. Blaum, J. Bradt, J. Bruck, and J. Menon, “EVEN-ODD: An
Efficient Scheme for Tolerating Double Disk Failures in RAID
Architectures,” IEEE Trans. Computers, vol. 44, no. 2, pp. 192-202,
Feb. 1995.

[6] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with
Independent Parity Symbols,” IEEE Trans. Information Theory,
pp. 529-542, Mar. 1996.

[7] M. Blaum, H. Hao, R. Mattson, and J. Menon, “A Coding
Technique for Double Disk Failures in Disk Arrays,” US Patent
5,271,012, Dec. 1993.

[8] M. Blaum and R. Roth, “New Array Codes for Multiple Phased
Burst Correction,” IEEE Trans. Information Theory, pp. 66-77, Jan.
1993.

[9] M. Blaum and R. Roth, “On Lowest-Density MDS Codes,” IEEE
Trans. Information Theory, pp. 46-59, Jan. 1999.

1482 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 12, DECEMBER 2005

[10] T. Fuja, C. Heegard, and M. Blaum, “Cross Parity Check
Convolutional Code,” IEEE Trans. Information Theory, pp. 1264-
1276, July 1989.

[11] R. Goodman, R.J. McEliece, and M. Sayano, “Phased Burst
Correcting Array Codes,” IEEE Trans. Information Theory, pp. 684-
693, Mar. 1993.

[12] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Trans. Information Theory, pp. 272-276, Jan. 1999.

[13] L. Xu, V. Bohossian, J. Bruck, and D.G. Wagner, “Low-Density
MDS Codes and Factors of Complete Graphs,” IEEE Trans.
Information Theory, pp. 1817-1826, Sept. 1999.

[14] M. Blaum, J. Bradt, J. Bruck, J. Menon, and A. Vardy, “The
EVENODD Code and Its Generalization: An Efficient Scheme for
Tolerating Multiple Disk Failures in RAID Architectures,” High
Performance Mass Storage and Parallel I/O, chapter 14, 2002.

[15] G.-L. Feng, R. Deng, F. Bao, and J.-C. Shen, “New Efficient MDS
Array Codes for RAID, Part I: Reed-Solomon-Like Codes for
Tolerating Three Disk Failures,” IEEE Trans. Computers, vol. 54,
no. 9, pp. 1071-1080, Sept. 2005.

[16] M.O. Rabin, “Efficient Dispersal of Information for Security, Load
Balance, and Fault Tolerance,” J. ACM, vol. 36, no. 2, pp. 335-348,
Apr. 1989.

[17] F.J. MacWilliams and N.J.A. Slone, The Theory of Error-Correcting
Codes. Elsevier Science, 1977.

Gui-Liang Feng (S’89-M’92-SM’95) received
the BS degree from Fudan University, Shanghai,
in 1968 and the MS degree from Jiaotong
University, Shanghai, in 1982, both in applied
mathematics, and the PhD degree in computer
science from Lehigh University, Bethlehem,
Pennsylvania, in 1990. From 1970 to 1979, he
was an electrical engineer in the Hudong
Shipyard, Shanghai. From 1982 to 1986, he
was an assistant researcher at the Shanghai

Institute of Computer Technology. Since 1991, he has been with the
Center for Advanced Computer Studies at the University of Louisiana at
Lafayette, where he is currently an associate professor. His research
interests include error-correcting codes, data compression, fault-tolerant
computing, cryptography, and computational algebra. He has pub-
lisheded more then 50 papers in journals and proceedings of
international symposia and conferences. He has received some
research grants from the US National Science Foundation, US Office
of Naval Research, NASA, US Army Research Office, and LEQSF. Dr.
Feng was a member of the Governing Board of the Information Theory
Society of the Chinese Institute of Electronics. He received the 1994
IEEE Information Theory Society Paper Award and the Outstanding
Paper Award of the Chinese Institute of Electronics for 1984-1987. He
served as an associate editor for coding and fault-tolerant computing for
the IEEE Transactions on Computers from 1996-2000. He is a senior
member of the IEEE and the IEEE Computer Society.

Robert Deng received the BE degree from the
National University of Defense Technology,
China, and the MS and PhD degrees from the
Illinois Institute of Technology, Chicago. He is
currently a professor and director of the SIS
Research Center, School of Information Sys-
tems, Singapore Management University. Prior
to this, he was a principal scientist and manager
of the Infocomm Security Department, Institute
for Infocomm Research. He has 21 patents and

more than 140 technical publications in international conferences and
journals in the areas of digital communications, network and distributed
system security, and information security.

Feng Bao received the BS degree in mathe-
matics and the MS degree in computer science
from Peking University and the PhD degree in
computer science from Gunma University. Since
1996, he has been with the Institute for
Infocomm Research, Singapore. Currently, he
is a lead scientist and the head of the Infocomm
Security Department and Cryptography Lab of
the institute. His research areas include algo-
rithm, automata theory, complexity, cryptogra-

phy, distributed computing, fault tolerance, and information security. He
has more than 120 technical publications in international conferences
and journals and 16 patents.

Jia-Chen Shen received the BS degree from
Shanghai Jiaotong University, Shanghai, in 2001
and the MS degree from the University of
Louisiana at Lafayette, in 2003, both in computer
science. He is currently working toward the PhD
degree in computer science at University of
Louisiana at Lafayette. His research interests
include error-correcting codes, cryptography,
and computing algebra.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FENG ET AL.: NEW EFFICIENT MDS ARRAY CODES FOR RAID PART II: RABIN-LIKE CODES FOR TOLERATING MULTIPLE (� 4) DISK... 1483

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2005

	New efficient MDS array codes for RAID part II: Rabin-like codes for tolerating multiple (>=4) disk failures
	Gui-Liang FENG
	Robert H. DENG
	Feng Bao
	Citation

	New efficient MDS array codes for RAID. Part II. Rabin-like codes for tolerating multiple (/spl ges/ 4) disk failures

