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Abstract

Detecting code clones has many software engineering
applications. Existing approaches either do not scale to
large code bases or are not robust against minor code modi-
fications. In this paper, we present an efficient algorithm for
identifying similar subtrees and apply it to tree representa-
tions of source code. Our algorithm is based on a novel
characterization of subtrees with numerical vectors in the
Euclidean space R

n and an efficient algorithm to cluster
these vectors w.r.t. the Euclidean distance metric. Subtrees
with vectors in one cluster are considered similar. We have
implemented our tree similarity algorithm as a clone detec-
tion tool called DECKARD and evaluated it on large code
bases written in C and Java including the Linux kernel and
JDK. Our experiments show that DECKARD is both scal-
able and accurate. It is also language independent, appli-
cable to any language with a formally specified grammar.

1. Introduction
Many software engineering tasks, such as refactoring,

understanding code quality, or detecting bugs, require the
extraction of syntactically or semantically similar code frag-
ments (usually referred to as “clones”). Various stud-
ies show that much duplicated code exists in large code
bases [10,11,17]. Many such duplications can be attributed
to poor programming practice since programmers often
copy-paste code to quickly duplicate functionality. This ten-
dency not only produces code that is difficult to maintain,
but may also introduce subtle errors [6, 17].

Different approaches for clone detection have been pro-
posed in the literature. Most of them focus on detecting syn-
tactic similarity of code because checking semantic similar-
ity is very difficult (and in general undecidable). Roughly,
these techniques can be classified into four categories:

∗This research was supported in part by NSF NeTS-NBD Grant No.
0520320, NSF CAREER Grant No. 0546844, NSF CyberTrust Grant No.
0627749, and a generous gift from Intel. The information presented here
does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

String-based: A program is first divided into strings, usu-
ally lines. Each code fragment consists of a contiguous se-
quence of strings. Two code fragments are similar if their
constituent strings match. The representative work here is
Baker’s “parameterized” matching algorithm [1, 2], where
identifiers and literals are replaced with a global constant.

Token-based: A program is lexed to produce a token
sequence, which is scanned for duplicated token subse-
quences that indicate potential code clones. Compared to
string-based approaches, a token-based approach is usually
more robust against code changes such as formatting and
spacing. CCFinder [10] and CP-Miner [17] are perhaps the
most well-known among token-based techniques.

Tree-based: A program is parsed to produce a parse tree
or abstract syntax tree (AST) representation of the source
program. Exact or close matches of subtrees can then be
identified by comparing subtrees within the generated parse
tree or AST [4,5,21]. Alternatively, different metrics can be
used to fingerprint the subtrees, and subtrees with similar
fingerprints are reported as possible duplicates [15, 19].

Semantics-based: Semantics-aware approaches have
also been proposed. Komondoor and Horwitz [14] suggest
the use of program dependence graphs (PDGs) [8] and
program slicing [22] to find isomorphic PDG subgraphs
in order to identify code clones. They also propose an
approach to group identified clones together while preserv-
ing the semantics of the original code [13] for automatic
procedure extraction to support software refactoring. Such
techniques have not scaled to large code bases.

Of existing techniques, CCFinder [10], CP-Miner [17],
and CloneDR [4, 5] represent the state-of-the-art. However,
they either have limited scalability or are not robust against
code modifications. Our goal is to develop a practical detec-
tion algorithm that is both scalable and robust against code
modifications.

In this paper, we introduce a novel algorithm for
detecting similar trees and a practical implementation,
DECKARD, for detecting code clones. The main idea of
the algorithm is to compute certain characteristic vectors to
approximate structural information within ASTs and then
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Figure 1. System architecture.

adapt Locality Sensitive Hashing (LSH) [7] to efficiently
cluster similar vectors (and thus code clones).

Figure 1 shows the high level architecture of DECKARD:
(1) A parser is automatically generated from a formal syn-
tax grammar; (2) The parser translates sources files into
parse trees; (3) The parse trees are processed to produce
a set of vectors of fixed-dimension, capturing the syntac-
tic information of parse trees; (4) The vectors are clustered
w.r.t. their Euclidean distances; and (5) Additional post-
processing heuristics are used to generate clone reports.

We have done extensive empirical evaluation of
DECKARD on large software (including JDK and the Linux
kernel) and compared it against CloneDR and CP-Miner.
Results indicate that DECKARD is both scalable and accu-
rate: it detects more clones in large code bases than both
CloneDR and CP-Miner; it is more scalable than CloneDR,
which is also tree-based, and is as scalable as the token-
based CP-Miner.

The rest of the paper is structured as follows. We first
give a detailed overview of our algorithm and illustrate it
with an example (Section 2) before presenting details of
our detection algorithm (Section 3). Next, we discuss our
implementation and evaluation of DECKARD (Section 4).
Finally, we survey related work (Section 5) and conclude
with a discussion of future work (Section 6).

2. Overview

This section illustrates the main steps of our algorithm
with a small example. Consider the following two C pro-
gram fragments for array initialization:

for (int i= 0; i < n; i++)
x[i]= 0;

for (int i= 0; i < n; i++)
y[i]= "";

The parse trees for these two code segments are identical,
because the code differs only in identifier names and literal
values. The parse tree is shown in Figure 2. A pairwise
tree comparison could be used to detect such clones, but
this is expensive for large programs because of the possibly
large number of subtrees. In the following, we demonstrate
a novel, efficient technique for tree similarity detection.

Characteristic Vectors We introduce characteristic vec-
tors to capture structural information of trees (and forests).
This is a key step in our algorithm. The characteristic vector
of a subtree is a point 〈c1, . . . , cn〉 in the Euclidean space,
where each ci represents the count of occurrences of a spe-
cific tree pattern in the subtree. For this example, we let

the tree patterns be the node kinds in a parse tree. We will
introduce more general tree patterns in Section 3.2.1.

Not all nodes in parse trees are essential for capturing
tree structural information; many are redundant w.r.t. their
parents, or were introduced to simplify the grammar spec-
ification. We thus also distinguish between relevant and
irrelevant nodes. Example irrelevant nodes include C to-
kens ‘[’ and ‘]’ and parentheses (‘(’ and ‘)’). In Figure 2,
nodes with solid outlines are relevant while nodes with dot-
ted outlines are irrelevant. Irrelevant nodes do not have an
associated pattern or dimension in our vectors. For the ex-
ample, the ordered dimensions of characteristic vectors are
occurrence counts of the relevant nodes: id, lit, assign e,
incr e, array e, cond e, expr s, decl, and for s. Thus,
the characteristic vector for the subtree rooted at decl is
〈1, 1, 0, 0, 0, 0, 0, 1, 0〉because there is an id node, a lit node,
and a decl node.

Characteristic vectors are generated with a post-order
traversal of the parse tree by summing up the vectors for
children with the vector for the parent’s node. As an
example, the vector for the subtree rooted at assign e
〈2, 1, 1, 0, 1, 0, 0, 0, 0〉 is the sum of the vectors for ar-
ray e (〈2, 0, 0, 0, 1, 0, 0, 0, 0〉), = (〈0, 0, 0, 0, 0, 0, 0, 0, 0〉),
primary e (〈0, 1, 0, 0, 0, 0, 0, 0, 0〉), and the additional node
assign e (〈0, 0, 1, 0, 0, 0, 0, 0, 0〉). Users may also specify
a minimum token count to suppress vectors for small sub-
trees; this helps to avoid reporting small clones which are
often uninteresting. For example, in Figure 2, with this
threshold set to three, no vector is generated for the subtree
rooted at incr e. By varying this threshold, we can system-
atically find only large clones.

Vector Merging The aforementioned technique consid-
ers only those code fragments with a corresponding sub-
tree in the parse tree. However, developers often insert
code fragments within some larger context. Differences in
the surrounding nodes may prevent the parents from being
detected as clones (see Section 4.3.2 for a concrete exam-
ple from JDK 1.4.2). To identify these cloned fragments,
we use a second phase of characteristic vector generation,
called vector merging, to sum up the vectors of certain node
sequences. In this phase, a sliding window moves along a
serialized form of the parse tree. The windows are chosen
so that a merged vector contains a large enough code frag-
ment. In Figure 2, for example, we merged the vectors for
decl and cond e to get the vector 〈3, 1, 0, 0, 0, 1, 0, 1, 0〉 for
the combined code fragment.

The choice of which nodes in the tree to merge is impor-
tant; these nodes must make good boundaries among cloned
code, while not frequently containing large subtrees. Roots
of expression trees, likely the atomic units for copy-pasting,
are usually good choices for merging vectors. We call such
chosen nodes mergeable nodes. In Figure 2, the mergeable
nodes are the four children of the for statement. It is not
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Figure 2. A sample parse tree with generated characteristic vectors.

necessary for mergeable nodes to be on a same level. If
we had chosen any statement to be mergeable, the entire
for loop would have been considered as one unit without
subsequences. In Figure 2, we also required each merged
fragment to contain at least five tokens. If we had required
six tokens instead, there would have been only two merged
vectors instead of three: (1) for decl and cond e, and (2)
for cond e, incr e, and expr s.

Vector Clustering and Post-Processing After we have
selected the characteristic vectors, our algorithm clus-
ters similar characteristic vectors w.r.t. their Euclidean
distances to detect cloned code. The two sample C
code fragments both have the same characteristic vec-
tor 〈6, 2, 1, 1, 1, 1, 1, 1, 1〉, and DECKARD reports them as
clones. Because the number of generated vectors can be
large, an efficient clustering algorithm is needed. We will
present such an algorithm in Section 3.

The subtree rooted at expr s also illustrates the need
for post-processing. When a particular subtree has a low
branching factor, the vectors for a child and its parent are
usually very similar and thus likely to be detected as clones.
We employ a post-processing phase following clustering to
filter such spurious clones.

3. Algorithm Description

In this section, we give a detailed technical description
of our tree similarity algorithm: we first formally define
a clone pair (Section 3.1), then introduce characteristic
vectors for trees and describe how to generate them (Sec-
tion 3.2), and finally explain our vector clustering algorithm
for clone detection (Section 3.3).

3.1. Formal Definitions

In this paper, we view clones as syntactically similar
code fragments. Thus, it is natural to define the notion of
similar trees first. We follow the standard definition and use
tree editing distance as the measure for tree similarity.

Definition 3.1 (Editing Distance) The editing distance of
two trees T1 and T2, denoted by δ(T1, T2), is the minimal
sequence of edit operations (either relabel a node, insert a
node, or delete a node) that transforms T1 to T2.

Definition 3.2 (Tree Similarity) Two trees T1 and T2 are
σ-similar for a given threshold σ, if δ(T1, T2) < σ.

We are now ready to define the notion of a clone pair.

Definition 3.3 (Clone Pair) Two code fragments C1 and
C2 are called a clone pair if their corresponding tree rep-
resentations T1 and T2 are σ-similar for a specified σ.

Such a definition based on tree editing distance faithfully
captures how similar two code fragments are. However, it
does not lead naturally to an efficient algorithm because:
(1) the complexity of computing the editing distance be-
tween two trees is expensive,1 and (2) it requires many pair-
wise comparisons to locate similar code in large software
(quadratic in the worst case). Instead, we approximate tree
structures using numerical vectors and reduce the tree simi-
larity problem to detecting similar vectors. Before describ-
ing the details, we define the two common distance mea-
sures for numerical vectors that we use in this paper.

Definition 3.4 (Distance Measures on Vectors) Let v1 =
〈x1, . . . , xn〉 and v2 = 〈y1, . . . , yn〉 be two n-dimensional
vectors. The Hamming distance of v1 and v2, H(v1, v2),
is their l1 norm, i.e., H(v1, v2) = ||v1 − v2||1 =∑n

i=1 |xi − yi|. The Euclidean distance of v1 and v2,
D(v1, v2), is their l2 norm, i.e., D(v1, v2) = ||v1 − v2||2 =√∑n

i=1(xi − yi)2.

Such distance measures are much easier to compute and
efficient algorithms for near-neighbor queries exist for nu-
merical vectors. Based on these observations, we show how
to abstract trees into vectors and how to efficiently cluster
similar vectors to detect code clones.

1More precisely, for two trees T1 and T2 the complexity is O(|T1| ×
|T2| × d1 × d2), where |Ti| is the size of Ti and di is the minimum of the
depth of Ti and the number of leaves of Ti [24].



3.2. Characteristic Vectors for Trees
Recall that in Section 2 we illustrated the use of occur-

rence counts of relevant nodes to abstract a subtree (or sub-
trees). That example shows a special case of the general
construction that we will introduce in this section. In par-
ticular, we describe a general technique to map a tree (or
forests) to a numerical vector which characterizes the struc-
ture of the given tree. Without loss of generality, we assume
trees are binary [12].

3.2.1 Atomic Tree Patterns and Vectors

Given a binary tree, we define a family of atomic tree pat-
terns to capture structural information of a tree. They are
parametrized by a parameter q, the height of the patterns.

Definition 3.5 (q-Level Atomic Tree Patterns) A q-level
atomic pattern is a complete binary tree of height q. Given
a label set L, including the empty label ε, there are at most
|L|2q−1 distinct q-level atomic patterns.

Definition 3.6 (q-Level Characteristic Vectors) Given a
tree T , its q-level characteristic vector (denoted by vq(T ))
is 〈b1, b2, . . . , b|L|2q−1〉, where bi is the number of occur-
rences of the i-th q-level atomic pattern in T .

For example, in Figure 2, we used the relevant nodes as
the 1-level atomic patterns and characterized trees with their
1-level characteristic vectors.

Abstracting trees as q-level vectors yields an alternative
to the standard tree similarity definition based on editing
distance. Our plan is to use Euclidean distance between q-
level vectors to approximate the editing distance of the cor-
responding trees. We adapt a result of Yang et al. on com-
puting tree similarity [23] to show that this approximation
is accurate.

Theorem 3.7 (Yang et al., Thm. 3.3 [23]) For any trees
T1 and T2 with editing distance δ(T1, T2) = k, the l1 norm
of the q-level vectors for T1 and T2, H(vq(T1), vq(T2)), is
no more than (4q − 3)k.

For any two integer vectors v1 and v2,
√H(v1, v2) ≤

D(v1, v2) ≤ H(v1, v2). Thus we have the following corol-
lary that relates the tree editing distance of two trees with
the Euclidean distance of their q-level vectors.

Corollary 3.8 For any trees T1 and T2 with editing distance
δ(T1, T2) = k, the l2 norm of the q-level vectors for T1 and
T2, D(vq(T1), vq(T2)), is no more than (4q − 3)k and no
less than the square root of the l1 norm, i.e.,√

H(vq(T1), vq(T2)) ≤ D(vq(T1), vq(T2)) ≤ (4q − 3)k.

Corollary 3.8 suggests that either D(vq(T1),vq(T2))
4q−3 or√

H(vq(T1),vq(T2))

4q−3 can be used as a lower bound of the tree
editing distance δ(T1, T2). When such a lower bound is
larger than a specific threshold σ, T1 and T2 cannot be σ-
similar and thus not a clone pair for the specified σ. On

Algorithm 1 q-Level Vector Generation
1: function QVG(T : tree, C : configuration): vectors
2: V ← ∅
3: Traverse T in post-order
4: for all node N traversed do
5: VN ←P

n ∈ children(N) Vn

6: if IsRelevant(N , C) then
7: id← IndexOf(N, C)
8: VN [id]← VN [id] + 1
9: end if

10: if IsSignificant(N , C)
V

11: ContainsEnoughTokens(VN , C) then
12: V ← VS{VN}
13: end if
14: end for
15: return V
16: end function

the other hand, when the lower bound is smaller than σ,
δ(T1, T2) is likely to be less than σ too. Hence, we reduce
the problem of tree similarity to the problem of detecting
similar q-level vectors.

Notice that Definition 3.6, Theorem 3.7, and Corol-
lary 3.8 can be relaxed to work on tree forests (a collection
of trees) as well because tree forests can be viewed as a tree
by adding an additional root. This is important for deal-
ing with code fragments that do not correspond to a single
subtree in the parse tree (cf. Section 2).

3.2.2 Vector Generation

There are two phases of vector generation: one for subtrees
and one for subtree forests (for generating merged vectors).
Algorithm 1 shows how vectors are generated for subtrees.
Given a parse tree T , we essentially perform a post-order
traversal of T to generate vectors for its subtrees. Vectors
for a subtree are summed up from its constituent subtrees
(line 5). Certain tree patterns may not be important for a
particular application, so we distinguish between relevant
and irrelevant tree patterns (a concept that is similar to and
generalizes relevant and irrelevant nodes from Section 2).
If a pattern rooted at a particular node N is relevant (line
6), we look up its index in the vector space using IndexOf
(line 7) and update the vector correspondingly (line 8).

We also allow vectors to be generated only for certain
subtrees, for example those that are more likely to be units
of clones, such as subtrees rooted at declarations, expres-
sions and statements. Users can select those significant
node kinds to generate q-level vectors (line 10). For ex-
ample, if array e in Figure 2 had been specified as insignif-
icant, no vector would have been generated for it. In addi-
tion, we may want to ignore small subtrees that contain too
few tokens (cf. incr e in Figure 2). Users can define a min-
imal token requirement on the subtrees, which is enforced
with ContainsEnoughTokens (line 11).

Algorithm 2 shows how vectors are generated for adja-



Algorithm 2 Vector Merging for Adjacent Tree Forests
1: function WVG(T : tree, C : configuration): vectors
2: ST ← Serialize(T, C); V ← ∅
3: step← 0; front← ST.head
4: back ← NextNode(ST.head, C)
5: repeat
6: Vmerged ←P

n∈[front,back] Vn

7: while back �= ST.tail
V

8: ¬ContainsEnoughTokens(Vmerged , C) do
9: back ← NextNode(back, C)

10: Vmerged ←P
n∈[front,back] Vn

11: end while
12: if RightStep(step, C) then
13: V ← VS{Vmerged}
14: end if
15: front←NextNode(front, C)
16: step← step + 1
17: until front = ST.tail
18: return V
19: end function

cent subtree forests. It serializes the parse tree T in post-
order, then moves a sliding window along the serialized tree
to merge q-level vectors from nodes within the sliding win-
dow. Because it is not useful to include every node in the
serialized tree, we select certain node kinds (called merge-
able nodes) as the smallest tree units to be included (to make
larger code fragments in the context of clone detection). For
example, the significant nodes, decl, cond e, incr e, and
expr s in Figure 2 are specified as mergeable. Users can
specify any suitable node kinds as mergeable for a particu-
lar application. If both a parent and a child are mergeable,
we exclude the child in the sliding window for the benefit of
selecting larger clones. This is implemented by NextNode
in Algorithm 2 (line 9).

Users can also choose the width of the sliding window
and how far it moves in each step, i.e., its stride. Larger
widths allow larger code fragments to be encoded together,
and may help detect larger clones, while larger strides re-
duce the amount of overlapping among tree fragments, and
may reduce the number of spurious clones. With sliding
windows of different widths, our algorithm can generate
vectors for code fragments of different sizes and provide
a systematic technique to find similar code of any size.

3.3. Vector Clustering

Given a large set of vectors V , quadratic pairwise com-
parisons are computationally infeasible for similarity de-
tection. Instead, we can hash vectors with respect to the
Euclidean distances among them, and then look for similar
vectors by only comparing vectors with equal hash values.

Locality Sensitive Hashing (LSH) [7,9] is precisely what
we need. It constructs a special family of hash functions that
can hash two similar vectors to the same hash value with
arbitrarily high probability and hash two distant vectors to

the same hash value with arbitrarily low probability. It also
helps efficiently find near-neighbors of a query vector. In
the following, we provide some basic background on LSH,
then discuss how it is applied for clone detection.

3.3.1 Locality Sensitive Hashing

Definition 3.9 ((p1, p2, r, c)-Sensitive Hashing) A family
F of hash functions h : V → U is called (p1, p2, r, c)-
sensitive (c ≥ 1), if ∀vi, vj ∈ V ,{

if D(vi, vj) < r then Prob[h(vi) = h(vj)] > p1

if D(vi, vj) > cr then Prob[h(vi) = h(vj)] < p2

For example, Datar et al. have shown that the following
family of hash functions, which map vectors to integers, is
locality sensitive [7]:

{hα,b : R
d → N | hα,b(v) = 
α · v + b

w
�, w ∈ R, b ∈ [0, w]}

Definition 3.10 ((r, c)-Approximate Neighbor) Given
a vector v, a vector set V , a distance r, and c ≥ 1,
U = {u ∈ V | D(v, u) ≤ cr} is called an rcAN set of v,
and any u ∈ U is a (r, c)-approximate neighbor of v.

Given a vector set V of size n and a query vector v, LSH
may establish hash tables for V and find v’s rcAN set in
O(dnρ log n) time and O(nρ+1 + dn) space, where d is the
dimension of the vectors and ρ = logp2

p1 < 1
c for c ∈

[1, +∞). As long as we feed r (the largest distance allowed
between v and its neighbors) and p1 (the minimal proba-
bility that two similar vectors have the same hash value)
to LSH, it automatically computes other parameters that
would give optimal running time of a query.

3.3.2 LSH-based Clone Detection

LSH’s querying functionality can help find every vector’s
rcAN sets, which are needed for clone detection. Algo-
rithm 3 describes the utilization of LSH: (1) All vectors are
stored into LSH’s hash tables (line 2), where r serves as
the threshold σ defined in Definition 3.3; (2) A vector v is
used as a query point to get an rcAN set (lines 3 and 4);
(3) If the rcAN set only contains v itself, it means v has no
neighbors within distance σ and should be deleted directly
(line 8); (4) Otherwise, the rcAN set is treated as a clone
class (lines 6 and 8). Such a process may query LSH n
times in the worst case. Thus, our LSH-based clone detec-
tion takes O(dnρ+1 log n) time, where d is the dimension of
the vectors, i.e., |L|2q−1 in terms of q-level vectors, where
|L| is the number of node kinds in a parse tree.

All the rcAN sets may contain potentially spurious
clones (cf. Section 2) and are post-processed to generate
clone reports. A filter is created to examine the line range
of every clone in an rcAN set and remove any that is con-
tained by or overlaps with others. A second filter is applied
after the first one to remove rcAN sets that contain only one
vector. Both filters run in linear time in the number of rcAN
sets and quadratic time in the size of the sets.



Algorithm 3 LSH-based Clone Detection
1: function LSHCD(V : vectors, r : distance, p1 : prob): rcANs
2: N ← ∅; LSH(V , r, p1)
3: repeat pick a v ∈ V
4: rcAN ← queryLSH(v)
5: if |rcAN | > 1 then
6: N ← N S{rcAN \S

n∈N n}
7: end if
8: V ← V \ rcAN
9: until V = ∅

10: return PostProcessing(N )
11: end function

3.4. Size-Sensitive Clone Detection

Definition 3.3 of a clone pair does not take into account
the varying sizes of code fragments. It is however natu-
ral to allow more edits for larger code fragments to be still
considered clone pairs. In this section, we introduce a size-
sensitive definition of code clones and an algorithm for de-
tecting such clones. Such a higher tolerance to edits for
larger code fragments facilitates the detection of more large
clones.

Definition 3.11 (Code Size) The size of a code fragment C
in a program P , denoted by S(C), is the size of its corre-
sponding tree fragments in the parse tree of P .

Definition 3.12 (Size-Sensitive Clone Pair) Two code
fragments C1 and C2 form a size-sensitive clone pair if
their corresponding tree representations T1 and T2 are
f(σ, S(C1), S(C2))-similar, where f is a monotonic,
non-decreasing function with respect to σ and S(Ci).

Clone detection based on Definition 3.12 requires larger
distance thresholds for larger code. We now present a tech-
nique to meet such a requirement. The basic idea is vector
grouping: vectors for a program are separated into differ-
ent groups based on the sizes of their corresponding code
fragments; then LSH is applied on each group with an ap-
propriate threshold; and finally, all reported clone classes
from different groups are combined.

Any grouping strategy is appropriate as long as it meets
the following requirements: (1) It should not miss any
clones detectable with a fixed threshold, thus each group
should overlap with the neighboring groups; (2) It should
not produce many duplicate clones, thus overlapping should
be avoided as much as possible; (3) It should produce many
small groups to help reduce clustering cost.

Algorithm 4 shows a generic vector grouping algorithm,
where s is a user-specified code size for the first group.
Each vector v is dispatched into groups whose size ranges
contain the size of its corresponding code fragment, i.e.,
S(Cv). SIZERANGES shows our formulae for grouping.
The exact constraints used to deduce the grouping formulae
can vary as long as they meet the aforementioned require-
ments.

Algorithm 4 Vector Grouping
1: function VG(V : vectors, r : distance, s : size)
2: R← sizeRanges(V, r, s)
3: dispatch V into groups according to the ranges in R
4: end function
5:
6: function SIZERANGES(V : vectors, r : distance, s : size)
7: The code size range for the 1st group← [0, s + r]
8: The range for the 2nd group←
9: r = 0 ? [s+1, s+1] : [s, s+3r+1]

10: repeat compute [li+1, ui+1] as
11: li+1 ← r = 0 ? (ui + 1) : (ui − li

s
r)

12: ui+1 ← r = 0 ? (ui + 1) : ( s+2d
s

ui − 2 d2

s2 li + 1)
13: until ui ≥ maxv∈V{S(Cv)}
14: end function

We can estimate S(C) with the size of C’s vector v =
〈x1, . . . , xn〉, i.e., S(C) ≈ S(v) =

∑n
i=1 xi. Although ir-

relevant nodes may cause S(v) < S(C), this should have
little impact on clone detection because each S(C) is ad-
justed accordingly.

It is also worth mentioning that vector grouping has the
added benefit to improve scalability of our detection al-
gorithm. Because the vectors are separated into smaller
groups, the number of vectors will usually not be a bot-
tleneck for LSH, thus enabling the application of LSH on
larger programs. In addition, because vector generation
works on a file-by-file basis and the separated vectors are
processed one group at a time, our algorithm can be easily
parallelized.

4. Implementation and Empirical Evaluation
This section discusses our implementation of DECKARD

and presents a detailed empirical evaluation of it against two
state-of-the-art tools: CloneDR [4, 5] and CP-Miner [17].

4.1. Implementation

We have implemented our algorithm as a clone detec-
tion tool called DECKARD. In our implementation, we use
1-level vectors to capture tree structures. DECKARD is lan-
guage independent and works on programs in any program-
ming language that has a context-free grammar. It auto-
matically generates a parse tree builder to build parse trees
required by our algorithm. DECKARD takes a YACC gram-
mar and generates a parse tree builder by replacing YACC
actions in the grammar’s production rules with tree building
mechanisms. The generated parse tree builders also have
high tolerance for syntactic errors. Thus, DECKARD is more
applicable than other tree-based clone detection tools, even
for languages with incomplete or inaccurate grammars. As
an example, only 2 files out of 8, 453 in JDK 1.4.2 cannot
be parsed by DECKARD, whereas 81 cannot be parsed by
CloneDR.

Section 4.3 will show that DECKARD works effectively
for both C and Java. In addition, YACC grammars are



available for many languages, often with the requisite er-
ror recovery to localize syntax problems. Thus, it should be
straightforward to port DECKARD to other languages.

4.2. Experimental Setup
We performed extensive experiments on DECKARD, and

the most detailed ones were on JDK 1.4.2 (8,534 java
files, 2,418,767 LoC) and Linux kernel 2.6.16 (7,988 C files,
5,287,090 LoC).2 We also compared DECKARD to both
CloneDR [4, 5], a well-known AST-based clone detection
tool for Java, and CP-Miner [17], a token-based tool for C.

To compare with CloneDR, we ran experiments on a
workstation with a Xeon 2GHz processor and 1GB of
RAM, with both Windows XP (for CloneDR) and Linux
kernel 2.4.27 (for DECKARD). CloneDR has several pa-
rameters that may affect its clone detection rates, and we
chose the most lenient values for all those parameters: (1)
The minimal depth of a subtree to be considered a clone is
set to two; (2) The minimal number of tree nodes a clone
should contain is set to three; (3) The maximal number of
parameters allowed when using parameterized macros to
refactor clones is set to 65535; and (4) Similarity is set
to a value between 0.9 and 1.0, where CloneDR [5] defines
Similarity as the following:

Similarity(T1 , T2) =
2H

2H + L + R
(Eq. 1)

where H is the number of shared nodes in trees T1 and T2, L
is the number of different nodes in T1, and R is the number
of different nodes in T2. This definition takes tree sizes into
account, similar to our definition in Section 3.4. To make
our comparisons fair despite the different configuration op-
tions in each, we compute DECKARD’s threshold σ from
Similarity as follows. Suppose v1 and v2 are the 1-level
vectors for T1 and T2 respectively. Because the l1 norm of
v1 and v2 can be approximated as L + R and l2 ≥ √

l1 for
integer vectors, we can transform a given Similarity s to
an approximate l2 distance:

Ds(v1, v2) ≥
p

H(v1, v2) ≈ √
L + R

{Eq. 1}
=

p
(1 − s) × (|T1| + |T2|)

≥
p

2(1 − s) × min(S(v1), S(v2))

Given a vector group V ,
√

2(1 − s) × minv∈VS(v) can
serve as the threshold σ used by DECKARD for the group.
This is similar to Section 3.4, where we use vector sizes
to approximate tree sizes. In Figures 3 and 4, we show
Similarity only, without showing the derived σ.

To compare with CP-Miner (available for Linux), we ran
experiments on a workstation running Linux kernel 2.6.16
with an Intel Xeon 3GHz processor and 2GB of RAM. CP-
Miner uses a different distance metric, called gap, which is

2We have also done experiments on the following programs and ob-
tained consistent results: GCC 3.3.6 (C), PostgreSQL 8.1.0 (C), Derby
10.0.2.1 (Java), and Apache 2.2.0 (C). Due to space limitations, we do not
report the detailed data here.

the number of statement insertions, deletions, or modifica-
tions to transform one statement sequence to another. Such
a parameter is invariant w.r.t. different code sizes.

4.3. Experimental Results

We have evaluated DECKARD in terms of the following:
clone quantity (i.e., number of detected clones), clone qual-
ity (i.e., number of false clones), and its scalability. Our
results indicate that DECKARD performs significantly bet-
ter than both CloneDR and CP-Miner.

4.3.1 Clone Quantity

We measure clone quantity by the number of lines of code
that are within detected clone pairs.

In the first experiment, we compared DECKARD with
CloneDR on JDK. CloneDR failed to work on the entire
JDK at once. It also failed on files with minor syntactic
problems. Thus, we excluded those syntactically incor-
rect files reported by CloneDR and separated the remain-
ing files into nine overlapping groups, with each group con-
taining around 1,000 files. Figure 3(a) shows the total de-
tected cloned lines over many runs on JDK. For DECKARD,
we used a variety of configuration options: minT (mini-
mal number of tokens required for clones) was set to 30 or
50, stride (size of the sliding window) ranged from 2 to
inf (equivalent to no merging of vectors), and Similarity
ranged between 0.9 and 1.0. The setting with an infinite
stride means that vector merging was disabled. The total
number of cloned lines for DECKARD ranges from 204,263
to 1,943,777, while for CloneDR the number ranges from
246,708 to 727,701.

In our second experiment, we compared DECKARD with
CP-Miner on the Linux kernel. Figure 4(a) shows the total
number of detected clone lines by DECKARD under differ-
ent configuration options with minT set to 30 or 50, stride
ranging from 2 to inf, and Similarity ranging from 0.9 to
1.0. The total number of detected cloned lines ranges from
338,519 to 3,936,242. For CP-Miner, we used four config-
uration options with minT set to 30 or 50 and gap set to 0
or 1. Its total number of detected clone lines ranges from
498,113 to 1,108,062 as shown in Table 1. It failed to oper-
ate with gap > 1.

In addition, Figure 4(c) plots the decline in clone de-
tection rates as minT increases for both CP-Miner and
DECKARD. Even with Similarity set to 1.0, DECKARD

detects more clones than CP-Miner.

4.3.2 Clone Quality

The number of reported spurious clones is also important
in assessing clone detection tools. We performed random,
manual inspection on rcAN sets (i.e., clustered similar vec-
tors) using two criteria: (1) Does an rcAN set contain at
least one clone pair that corresponds to copy-pasted frag-
ments? (2) Are all clones in an rcAN set copies of one
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Figure 3. Results for DECKARD (with grouping and full parameter tuning) and CloneDR on JDK 1.4.2.
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minT Gap Cloned LoC (#) Time (min)

30 0 684,119 18.7
1 1,108,062 19.7

50 0 498,113 11.9
1 783,925 18.7

Table 1. Results for CP-Miner.
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Figure 4. Results for DECKARD (with grouping and selective parameter tuning) and CP-Miner (Table 1) on Linux kernel 2.6.16.

another? If a set fails to satisfy either of the criteria, we
classify it as a false clone report.

It may be difficult to decide for certain whether two code
fragments are clones or not. For example, consider the fol-
lowing code fragments from JDK 1.4.2:

1 else if (option.equalsIgnoreCase("basic")) {
2 bBasicTraceOn = true;
3 } else if (option.equalsIgnoreCase("net")) {
4 bNetTraceOn = true;
5 } else if (option.equalsIgnoreCase("security")) {
6 bSecurityTraceOn = true;
7 } else ...
8 ...
9 else if (opt.equals("-nohelp")) {

10 nohelp = true;
11 } else if (opt.equals("-splitindex")) {
12 splitindex = true;
13 } else if (opt.equals("-noindex")) {
14 createindex = false;
15 } else ...

The code between lines 1–7 and that between lines 9–15
have identical structure but different variable names, func-
tions, and constants. CloneDR and CP-Miner may detect
them as clones if the two if-else sequences are standalone
statements, but miss them if they are in the middle of differ-
ent, larger if-else statements. DECKARD always detects
them with reasonably small settings for minT and stride.

We inspected 100 randomly selected rcAN sets reported
by DECKARD for JDK 1.4.2 with minT set to 50, stride set

to 4, and Similarity set to 1.0. Of those, 93 rcAN sets are
clearly real clones. Among the remaining seven rcAN sets,
three involve if-else and switch-case that are similar
to the above if-else example, three involve sequences of
simple import statements, and one involves sequences of
simple declarations. Although it is unclear whether these
are clones, the reported clone pairs are all structurally the
same. Also because both CloneDR and CP-Miner may de-
tect such code as clones, we also classified these as real
clones. This experiment indicates that DECKARD is highly
accurate. Because the version of CloneDR that we have
does not output the actual clones, we cannot directly com-
pare its accuracy with DECKARD. For future work, we
plan to develop a better user interface for DECKARD, which
would allow us to conduct further user studies and to more
rigorously assess the quality of reported clones.

4.3.3 Scalability

Table 2 shows the worst-case time and space complexities
of CloneDR, CP-Miner, DECKARD, and LSH. Although
the number of tree nodes n is usually several times larger
than the number of statements m in a program, DECKARD’s
performance is still comparable to CP-Miner for large pro-
grams because ρ is usually much smaller than one. With
vector grouping, LSH’s memory consumption can be sig-



CloneDR CP-Miner LSH LSH w/ Grouping DECKARD w/ Post-Processing

Time O( n2

|Buckets| ) O(m2) O(dnρ log n) O(d
P

g∈G |g|ρ log |g|) O(n + d
P

g∈G |g|ρ+1 log |g| + c|rcAN |2)
Mem O(n) O(m) O(nρ+1 + dn) O(maxg∈G{|g|ρ+1 + d|g|}) max{O(c|rcAN |),Og∈G(|g|ρ+1 + d|g|)}

Table 2. Worst-case complexities of CloneDR, CP-Miner, and DECKARD (m is the number of lines of code, n is the size of a
parse tree, |Buckets| is the number of hash tables used in CloneDR, d is the number of node kinds, |g| is the size of a vector group,
0 < ρ < 1, c is the number of clone classes reported, and |rcAN | is the average size of the clone classes).

Sim G (#) Cloned LoC (#) T (min)

Full Tuning 1.0 1984 624265 224.8
Selective Tuning 624265 14.9

Full Tuning 0.99 235 792326 58.6
Selective Tuning 792298 16.3

Table 3. Effects of selective parameter tuning in LSH. The
data is for JDK 1.4.2, with minT 50, stride 2.

nificantly reduced to make DECKARD scale to very large
programs.

Figure 3(b) plots running times for both DECKARD

and CloneDR on JDK. When Similarity < 0.9999,
DECKARD is several times faster than CloneDR. We show
next how DECKARD can be configured to run significantly
faster. By default, LSH takes O(kd

∑
g∈G |g|ρ log |g|) time

to tune its own parameters and build optimal (w.r.t. query
time) hash tables, where k is the number of iterations it
uses to find the optimal parameters. Such cost accumulates
when the vectors are split into groups, and thus LSH may
spend much time on parameter tuning. Reusing the parame-
ters computed for certain groups (e.g., the largest group) can
dramatically reduce LSH’s running time with little effect on
clone quantity and quality. Table 3 shows the effectiveness
of such a strategy in reducing the overall running time of
DECKARD, especially when the vectors are split into many
groups.

Figure 4(b) shows DECKARD’s running time on the
Linux kernel with selective parameter tuning. When
Similarity > 0.95, DECKARD runs in tens of min-
utes and is comparable to CP-Miner (cf. Table 1); it can
be even faster when Similarity is close to 1.0. When
Similarity ≤ 0.95, DECKARD may take more time than
CP-Miner. This extra cost is reasonable considering that
DECKARD is tree-based and detects more clones, while CP-
Miner is token-based and cannot operate with gap > 1, and
that Similarity ≤ 0.95 is often too small for clone detec-
tion tasks.

5. Related Work
In this section, we discuss closely related work and split

them into three categories: (1) tree similarity detection; (2)
studies on code clones; and (3) clone detection algorithms.

Tree Similarity Detection Following the increased pop-
ularity of tree-structured data such as XML databases, sim-
ilarity detection on trees is gaining increasing attention.
However, efficient tree similarity detection still remains an
open problem, while similarity detection on high dimension

numerical vectors has already been extensively studied and
efficient algorithms exist. Yang et al. [23] propose an ap-
proximation algorithm for computing tree editing distances.
We adapt their characterization to capture structural infor-
mation in parse trees, and apply LSH [7] to search for sim-
ilar trees. To the best of our knowledge, DECKARD is the
most effective and scalable tool for tree similarity detection.

Studies on Code Clones A few independent studies ad-
dress the questions of clone coverage and evolution in large
open-source projects. The goal for clone coverage is to de-
termine what fraction of a program is duplicated code. It is
difficult to directly compare these studies because such re-
sults are usually sensitive to: (1) the different definitions of
code similarity used; (2) the particular detection algorithms
used; (3) the various choices of parameters for these algo-
rithms; and (4) the different code bases used for evaluation
(e.g., CCFinder [10] reports 29% cloned code in JDK, and
CP-Miner [17] reports 22.7% cloned code in Linux kernel
2.6.6). However, these studies do confirm that there is a
significant amount of duplicated code in large code bases.

The goal of clone evolution is to understand how clones
are introduced or removed across different versions of a
software. Laguë et al. [16] examined six versions of a
telecommunication software system and found that a sig-
nificant number of clones were removed due to refactoring,
but the overall number of clones increased due to the faster
rate of clone introduction. Kim et al. [11] describe a study
of clone genealogies and find that: (1) many code clones are
short-lived, so performing aggressive refactoring may not
be worthwhile; and (2) long-lived clones pose great chal-
lenges to refactoring because they evolve independently and
can deviate significantly from the original copy.

Clone Detection Many algorithms and tools exist for
clone detection. First, there are tools specifically designed
for estimating similarity in programs for the purpose of de-
tecting plagiarism. Example tools include Moss [20] and
JPlag (http://www.jplag.de). These tools are usually
very coarse-grained and are not suitable for clone detection.
Second, there are token-based tools, such as CP-Miner [17]
and CCFinder [10]. These are usually efficient, scale to mil-
lions of lines of code, and find good quality clones, but they
are sensitive to code restructuring and minor edits, so may
miss clones. Third, there are tree-based techniques, which
are less sensitive to code edits than token-based tools. Bax-
ter et al. [4, 5] apply AST hashing for detecting exact and



near-miss clones. Wahler et al. [21] apply frequent item-
set data mining techniques on ASTs represented in XML to
detect clones with minor changes. DECKARD is also tree-
based, but because of our novel use of characteristic vectors
and efficient vector clustering techniques, it detects signif-
icantly more clones and is much more scalable. Finally,
there are semantic-based techniques [14], which are most
robust against code modifications, such as re-ordered state-
ments, non-contiguous clones, and nested clones. However,
these have not been shown to scale to large programs.

There is recent work applying clone detection algorithms
to find “structural clones” for the purpose of detecting
design-level similarities. For example, two different clone
sets that often occur together in program files are an ex-
ample of structural clones. Basit and Jarzabek [3] first ap-
ply CCFinder to detect simple code clones and then use a
frequent itemset data mining algorithm to correlate simple
clones to find design-level similarities. PR-Miner [18] also
uses frequent itemset mining to detect implicit, high-level
programming patterns for specification discovery or bug de-
tection. Our algorithm can also be used for such purposes as
long as we adjust vector generation to appropriately model
these problems. We leave for future work the application of
our algorithm on such pattern discovery tasks.

6. Conclusions and Future Work
In this paper, we have presented a practical algorithm

for identifying similar subtrees and applied it to detect code
clones. It is based on a novel characterization of trees as
vectors in R

n that effectively captures structural informa-
tion of trees and an efficient hashing and near-neighbor
querying algorithm for numerical vectors. We have imple-
mented our algorithm in the tool DECKARD. It is language
independent and highly configurable. We have evaluated
DECKARD on large code bases, including the Linux kernel
and JDK. It easily scales to millions of lines of code and
has identified more clones than existing tools. Our algo-
rithm is general and can be extended to work on other data
structures such as graphs. It also has many other potential
applications, such as bug detection, code refactoring, and
programming pattern discovery. For future work, we plan
to apply our algorithm to such problem domains.
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