
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2009

Continuous Monitoring of Spatial Queries in
Wireless Broadcast Environments
Kyriakos MOURATIDIS
Singapore Management University, kyriakos@smu.edu.sg

Spiridon Bakiras

Dimitris Papadias
Hong Kong University of Science and Technology

DOI: https://doi.org/10.1109/TMC.2009.14

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MOURATIDIS, Kyriakos; Bakiras, Spiridon; and Papadias, Dimitris. Continuous Monitoring of Spatial Queries in Wireless Broadcast
Environments. (2009). IEEE Transactions on Mobile Computing. 8, (10), 1297-1311. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/770

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TMC.2009.14
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F770&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

IEEE TRANS. ON MOBILE COMPUTING 1

Continuous Monitoring of Spatial Queries in
Wireless Broadcast Environments

Kyriakos Mouratidis, Spiridon Bakiras, Member, IEEE, and Dimitris Papadias

Abstract— Wireless data broadcast is a promising technique
for information dissemination that leverages the computational
capabilities of the mobile devices, in order to enhance the
scalability of the system. Under this environment, the data are
continuously broadcast by the server, interleaved with some
indexing information for query processing. Clients may then
tune in the broadcast channel and process their queries locally
without contacting the server. Previous work on spatial query
processing for wireless broadcast systems has only considered
snapshot queries over static data. In this paper we propose
an air indexing framework that (i) outperforms the existing
(i.e., snapshot) techniques in terms of energy consumption, while
achieving low access latency, and (ii) constitutes the first method
supporting efficient processing of continuous spatial queries over
moving objects.

Index Terms— Spatial databases, query processing, location-
based services, wireless data broadcast, air indexes.

I. INTRODUCTION

Mobile devices with computational, storage, and wireless com-
munication capabilities (such as PDAs) are becoming increasingly
popular. At the same time, the technology behind positioning
systems is constantly evolving, enabling the integration of low-
cost GPS devices in any portable unit. Consequently, new mobile
computing applications are expected to emerge, allowing users
to issue location-dependent queries in a ubiquitous manner. Con-
sider, for instance, a user (mobile client) in an unfamiliar city,
who would like to know the 10 closest restaurants. This is an
instance of a k nearest neighbor (kNN) query, where the query
point is the current location of the client and the set of data objects
contains the city restaurants. Alternatively, the user may ask for
all restaurants located within a certain distance, i.e., within 200
meters. This is an instance of a range query.

Spatial queries have been studied extensively in the past, and
numerous algorithms exist (e.g., [10], [11], [21]) for processing
snapshot queries on static data indexed by a spatial access method.
Subsequent methods [22], [24], [30] focused on moving queries
(clients) and/or objects. The main idea is to return some additional
information (e.g., more NNs [22], expiry time [24], validity
region [30]) that determines the lifespan of the result. Thus, a
moving client needs to issue another query only after the current
result expires. These methods focus on single query processing,
make certain assumptions about object movement (e.g., static in
[22], [30], linear in [24]) and do not include mechanisms for
maintenance of the query results (i.e., when the result expires, a
new query must be issued).

Recent research considers continuous monitoring of multiple
queries over arbitrarily moving objects. In this setting, there is
a central server that monitors the locations of both objects and

K. Mouratidis is with the Singapore Management University. S. Bakiras is
with John Jay College, CUNY. D. Papadias is with the Hong Kong University
of Science and Technology.

queries. The task of the server is to report and continuously
update the query results as the clients and the objects move.
As an example, consider that the data objects are vacant cabs
and the clients are pedestrians that wish to know their k closest
free taxis until they hire one. As the reverse case, the queries
may correspond to vacant cabs, and each free taxi driver wishes
to be continuously informed about his/her k closest pedestrians.
Several monitoring methods have been proposed, covering both
range (e.g., [4], [7], [18]) and kNN (e.g., [19], [26], [29]) queries.
Some of these methods [19], [18], [26], [29] assume that objects
issue updates whenever they move, while others [4], [7] consider
that data objects have some computational capabilities, so that
they inform the server only when their movement influences some
query.

In the aforementioned methods, the processing load at the
server side increases with the number of queries. In applications
involving numerous clients, the server may be overwhelmed by
their queries or take prohibitively long time to answer them.
To avoid this problem, [14] propose wireless data broadcast, a
promising technique that leverages the computational capabilities
of the clients’ mobile devices, and pushes the query processing
task entirely to the client side. In this environment, the server
only monitors the locations of the data objects, but is unaware of
the clients and their queries. The data objects are continuously
broadcast by the server, interleaved with some indexing informa-
tion. The clients utilize the broadcast index, called air index, to
tune in the channel only during the transmission of the relevant
data and process their queries locally. Thus, the server load is
independent of the number of clients.

Previous work on location-dependent spatial query processing
for wireless broadcast systems has only considered snapshot
queries over static data. On the other hand, existing spatial
monitoring techniques do not apply to the broadcast environment,
because they assume that the server is aware of the client locations
and processes their queries centrally. In this paper we propose
the Broadcast Grid Index (BGI) method, which is suitable for
both snapshot and continuous queries. Furthermore, BGI extends
to the case that the data are also dynamic. Figure 1 shows an
example of continuous monitoring using BGI. The data objects are
taxis that issue location updates to a central server using unicast
uplink messages. The server processes the location updates, and
continuously broadcasts the object information along with an up-
to-date index using a wireless (e.g., 3G) network. Finally, the
interested clients (e.g., mobile devices) listen to the broadcast
channel and process their queries locally. Note that since the
server tasks are independent of the number and the positions
of the clients, this architecture may theoretically support infinite
concurrent clients/queries. On the other hand, high object (e.g.,
taxi) cardinality increases both the server load (for processing the
updates) and the length of the broadcast cycle.

BGI, and broadcast techniques in general, are preferable for

IEEE TRANS. ON MOBILE COMPUTING 2

applications where the number of clients is large with respect to
the number of data objects. As an example [33], Microsoft’s MSN
Direct (www.msndirect.com) uses broadcasting as an information
dissemination method. Subscribers can receive live information
regarding traffic conditions, stock quotes, gas prices, movie times,
weather reports, etc. Even though location-based queries are not
supported, we believe that this will be the next step, i.e., allowing
the user to filter out unnecessary information using selective
tuning (thus reducing the power consumption).

Server
Broadcast(Data + Index)

Clients Data objects (taxis) issuing location updates
Unicastmessages

Fig. 1. Example of BGI

BGI indexes the data with a regular grid. The grid structure
is beneficial in broadcasting environments because the spatial
extents of its cells are implicit, leading to a small index size
(and, thus, less broadcast information). Moreover, a grid supports
fast object updates (as opposed to a more complicated index),
avoiding server overloading in the presence of numerous updates
[15]. In the case of static data, the index information is broadcast
in two parts. The first one contains the cell cardinalities, and
the second one contains the coordinates of the objects falling in
each cell. This allows for efficient query processing at the client
side. For applications where the objects are moving, the server
broadcasts a dirty grid in the beginning of each cycle. The dirty
grid indicates the regions of the data space that have received
updates since the last cycle. The clients re-evaluate their queries
only if the affected regions can potentially invalidate their current
result.

The remainder of the paper is organized as follows. Section
II briefly describes wireless broadcast systems, and overviews
previous work on air indexes. Sections III and IV present the
BGI method for snapshot and continuous kNN queries over static
data, respectively. Section V extends the proposed framework to
dynamic data objects. Range queries are collectively discussed
in Section VI, due to their relative simplicity. Section VII ex-
perimentally evaluates our algorithms and, finally, Section VIII
concludes the paper.

II. RELATED WORK

Section II-A introduces the main concept of wireless broad-
casting and discusses techniques for query processing on one-
dimensional data. Section II-B overviews previous work on spatial
query processing using air indexes.

A. Wireless Broadcasting and Air Indexes

The transmission schedule in a wireless broadcast system
consists of a series of broadcast cycles. Within each cycle the data
are organized into a number of index and data buckets. A bucket
(which has a constant size) corresponds to the smallest logical unit
of information, similar to the page concept in conventional storage
systems. A single bucket may be carried into multiple network

packets (i.e., the basic unit of information that is transmitted over
the air). However, they are typically assumed to be of the same
size (i.e., one bucket equals one packet).

The most common data organization method is the (1, m)

interleaving scheme [14], as shown in Figure 2. The data objects
are divided into m distinct segments, and each data segment in the
transmission schedule is preceded by a complete version of the
index. In this way, the access latency for a client is minimized,
since it may access the index (and start the query processing)
immediately after the completion of the current data segment. [14]
also introduces an alternative distributed index that reduces the
degree of replication in order to further improve the performance.
Specifically, instead of the entire index being replicated prior
to each data segment, only the index that corresponds to the
subsequent segment is included (i.e., replication occurs at the
upper levels of the index tree).Broadcast cycle iBroadcast cycle i-1 Broadcast cycle i+1

Index bucket Data bucketData segment 1 Data segment 2 Data segment m
Fig. 2. The (1, m) interleaving scheme

The main motivation behind air indexes is to minimize the
power consumption at the mobile client. Although in a broadcast
environment the uplink transmissions are avoided, receiving all
the downlink packets from the server is not energy efficient. For
instance, the Cabletron 802.11 network card (wireless LAN) was
found to consume 1400 mW in the transmit, 1000 mW in the
receive, and 130 mW in the sleep mode [5]. Therefore, it is
imperative that the client switches to the sleep mode (i.e., turns
off the receiver) whenever the transmitted packets do not contain
any useful information. Based on the data organization technique
of Figure 2, the query processing at the mobile client is performed
as follows: (i) the client tunes in the broadcast channel when the
query is issued, and goes to sleep until the next index segment
arrives, (ii) the client traverses the index and determines when
the data objects qualifying its query will be broadcast, and (iii)
the client goes to sleep and returns to the receive mode only to
retrieve the corresponding data objects.

To measure the efficiency of an indexing method, two perfor-
mance metrics have been considered in the literature: (i) tuning
time, i.e., the total time that the client stays in the receiving mode
to process the query, and (ii) access latency, i.e., the total time
elapsed from the moment the query is issued until the moment
that all the corresponding objects are retrieved. In other words,
the tuning time is a measure of the power consumption at the
mobile client, while the access latency reflects the user-perceived
quality of service.

Most of the existing work on query processing for wireless
data broadcast focuses on conventional data and one-dimensional
indexes. Imielinski et al. [13] introduce two methods, namely
hashing and flexible index, for retrieving records based on their
key values. The same authors [14] propose the aforementioned
(1, m) and distributed index techniques, and study their perfor-
mance under the B+-tree index. Hu et al. [12] consider multi-

IEEE TRANS. ON MOBILE COMPUTING 3

attribute queries, and investigate the performance of three indexes
(index tree, signature, and hybrid index) under this scenario. In a
recent study, Xu et al. [27] propose the exponential index, which
offers the ability to adjust the trade-off between access latency
and tuning time.

Acharya et al. [1] propose Broadcast Disks, a method that
assumes knowledge of the user access patterns. Objects with
high access frequency are replicated within the broadcast cycle to
reduce access latency. Ref. [2] complements the Broadcast Disks
approach with a set of update dissemination policies. Chen et al.
[6] also address the problem of skewed data access; they build
unbalanced tree structures based on the object frequencies. In this
paper, we assume no knowledge about the user access patterns
(i.e., objects are equally likely to be queried). In this setting, a
flat broadcast program (where each object appears once in the
broadcast cycle) achieves the best expected performance [2].

B. Spatial Query Processing using Air Indexes

Hambrusch et al. [9] explore the possibility of broadcasting
spatial data together with a data partitioning index. They present
several techniques for spatial query processing that adjust to the
limited memory of the mobile device. The authors evaluate their
methods experimentally for range queries (using the R∗-tree [3]
as the underlying index), and illustrate the feasibility of this
architecture.

Xu et al. [28] and Zheng et al. [34] focus on single nearest
neighbor (NN) search in broadcast environments. Both methods
utilize a pre-computed Voronoi diagram that can answer any NN
query by identifying the Voronoi cell that encloses it. Specifically,
the Voronoi diagram of the data objects is built prior to the
construction of the air index. The D-tree [28] then recursively
partitions the data space (containing the Voronoi cells) into areas
with a similar number of cells. This procedure is repeated until
each area contains exactly one cell. On the other hand, the grid-
partition index [34] divides the space into disjoint grid cells,
each intersecting multiple Voronoi cells. Both methods are found
superior to broadcast solutions based on R∗-trees.

Zheng et al. [33] investigate another class of NN queries,
namely linear NN (LNN) queries, in the context of wireless
broadcast systems. A LNN query retrieves the NNs of every
point on a line segment, i.e., the solution comprises of a series of
points, each being the NN of a particular segment of the line. The
authors adjust the methods introduced by Tao et al. [25] to fit the
broadcast environment, and show that their techniques outperform
the naı̈ve solution where there is no index available.

Most relevant to our work are the techniques related to kNN
search on the air. [31] proposes an approximate kNN query
processing algorithm that is not guaranteed to always return k

objects. The idea is to use an estimate r of the radius that is
expected to contain at least k points. Using this estimate, the
search space can be pruned efficiently at the beginning of the
search process. The authors also introduce a learning algorithm
that adaptively re-configures the estimation algorithm to reflect the
distribution of the data. Regarding the query processing phase,
two different approaches are proposed: (i) the standard R∗-tree
index enhanced with the aforementioned pruning criterion, and (ii)
a new sorted list index that maintains a sorted list of the objects
on each spatial dimension. The sorted list method is shown to be
superior to the R∗-tree only for small values of k.

Gedik et al. [8] describe several algorithms to improve kNN
query processing in sequential-access R-trees. They investigate
the effect of different broadcast organizations on the tuning time,
and also propose the use of histograms to enhance the pruning
capabilities of the search algorithms. Park et al. [20] focus on
reducing the access latency of kNN search by accessing the data
segment of the broadcast cycle. In particular, they propose a
method where the data objects are sorted according to one spatial
coordinate. In this way, the client does not need to wait for
the next index segment to arrive, but can start query processing
immediately by retrieving the actual data objects.

The Hilbert Curve Index (HCI) [32] is a general framework
for processing both range and kNN queries in wireless broadcast
systems. HCI is based on the (1, m) interleaving scheme; it
exploits the linear access of the broadcast channel by transforming
the two-dimensional space into a one-dimensional one, using the
Hilbert space-filling curve [16]. Once the objects are mapped onto
the Hilbert curve, they are indexed with a B+-tree which is then
broadcast on the air (as the index segment). Range queries are
processed as follows. Consider Figure 3(a) where the Hilbert
values range from 0 to 15, and the query region is the shaded
rectangle. The client first determines the first (a) and the last
(b) points on the Hilbert curve that intersect the query window
(illustrated as crosses in the figure). Letting H(a) and H(b) be the
Hilbert values of a and b, the client listens to the first broadcast
index segment, and retrieves all objects inside the Hilbert range
[H(a), H(b)]. In our example, H(a) = 2 and H(b) = 13 (note
that the Hilbert value of a point is the integer that corresponds
to its closest solid square in the two-dimensional space). Objects
p1, p2, p3, p4 are identified (with H(p1) = 2, H(p2) = 6, H(p3) =

7, H(p4) = 9), but not all of them satisfy the query. Thus, they are
mapped back to the two-dimensional space, and their associated
data are received (from the corresponding data segment) only
if they are inside the query region; in our example, the result
includes only p1.

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

y

x(0,0)

q

× ×a b

p4
p3

p2
p1

(a) Range query

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

y

x(0,0)

q
p4

p3
p2

d max
p1

(b) 2-NN query

Fig. 3. HCI examples

In HCI, kNN queries are processed with a two-step approach.
In the first step, the query point q is mapped onto the Hilbert
curve, and the k objects closest to q (on the curve) are determined.
In the second step, the maximum distance dmax (from q) across
these k objects is calculated, and a range query is processed (in
the way described above) to retrieve a set of candidate neighbors.
Within this set, the k closest objects to q are identified by compar-
ing their individual distances from q. Figure 3(b) exemplifies this
procedure for a 2-NN query q, where H(q) = 8. In the first step,
the client identifies the k = 2 data objects with the closest Hilbert
values to H(q) = 8; these are p3 and p4, with H(p3) = 7 and

IEEE TRANS. ON MOBILE COMPUTING 4

H(p4) = 9, respectively. In the second step, the client additionally
retrieves p1 and p2 since they fall inside the circle with center at
q and radius dmax = max(dist(p3), dist(p4)) (shown shaded).
Among these candidate objects, the k = 2 closest ones (i.e.,
p1 and p2) are selected and their contents are retrieved from
the corresponding data segments. To conclude the description of
HCI, [32] includes an optimization (applicable to both range and
kNN queries) that improves the accuracy of the Hilbert curve by
partitioning the original space into smaller sub-grids.

The Distributed Spatial Index (DSI) [17] is another general
air index, supporting both range and kNN queries. DSI is a
distributed index that aims at minimizing the access latency at
the cost of an increased tuning time. Similar to HCI, it uses the
Hilbert curve to order the data. The broadcast cycle is constructed
as follows. The ordered data are partitioned into a number of
frames. Each frame contains a fixed number of consecutive objects
(on the Hilbert curve) and an index table. Each entry of the
index table contains a pointer to a subsequent frame, along with
the minimum Hilbert value inside that frame. Specifically, the
ith entry points to the eith future frame, where e is a system
parameter. Figure 4 illustrates a situation where each frame
contains 2 data objects, e = 2, and the subscripts of the objects
coincide with their Hilbert order. The index table of every frame
contains pointers (and the corresponding minimum Hilbert values)
to the 1st, 2nd, 4th, and 8th subsequent frame; the arrows in the
figure represent the index entries in Frame 1. These exponentially
increasing frame intervals enable fast access to both nearby and
distant frames. To identify the object with a specific Hilbert value,
the client listens to the current frame, and follows the pointer to
the furthest frame that does not exceed the target Hilbert value
(i.e., goes to sleep until that future frame is broadcast). The
procedure is repeated for this coming frame and terminates when
the search converges to the frame that contains the target object.
Query processing in DSI is similar to HCI, relying on the locality
preservation of the Hilbert curve. The improved access latency of
DSI stems mainly from the fact that the client retrieves indexing
information directly when it first tunes in the channel (instead of
waiting for the next index segment to be broadcast).

Index table Data

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8

H(p3) H(p9)
H(p5)

Frame 9 ...

H(p17)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 ...

Fig. 4. DSI example

HCI and DSI are the most general and efficient indexes for data
on air and, thus, we use them as benchmarks in our experimental
evaluation. Note, however, that these methods are designed for
snapshot queries over static data. Their adaptation to continuous
queries and dynamic data would be inefficient, since they cannot
utilize previous results and require query re-computation from
scratch at the beginning of each broadcast cycle.

III. SNAPSHOT kNN QUERIES

For ease of presentation, we first describe the Broadcast Grid
Index (BGI) method focusing on snapshot kNN queries over
static data. Section III-A introduces the data index and the
procedure that forms the index segment. Section III-B discusses

the query processing algorithm at the client side. The application
of our techniques to continuous queries, moving objects and
range search is presented in Sections IV, V and VI respectively.
Although our examples are two-dimensional, the extension to
higher dimensionalities is straightforward.

A. Air Index Structure

BGI indexes the data objects with a regular grid, i.e., a
partitioning of the data space into square cells of equal size
with side-length δ (a system parameter). Each cell stores the
object coordinates falling inside, and maintains their total number.
Consider Figure 5(a), where the data objects in the system are p1

to p20, and δ is set as shown. In this example, cell c0,0 contains
the coordinates of objects p1 and p2 and has cardinality 2. Given
an object with coordinates x and y, its covering cell is ci,j ,
where i = bx/δc and j = by/δc. Similarly, given a cell ci,j ,
its corresponding region is [i · δ, i · δ + δ) × [j · δ, j · δ + δ). The
grid information is placed into packets to form the index segment
of BGI. Note that the index segment contains only1 the object
coordinates to keep its size small. Following the (1, m) scheme,
the full object information is broken into m data segments, each
preceded by a copy of the index segment. The value of m is
determined using the analysis of [14].

p1 p3p2
p4

p6
p7
p5

p8
p10 p9 p11

p12
p13
p14
p15p17 p16

p18 p19
p20c0,0

δ

(a) The object index

Hilbert
Curve

p1 p3p2
p4

p6
p7
p5

p8
p10 p9 p11

p12
p13
p14
p15p17 p16

p18 p19
p20c0,0

B2

B1

B3
B4

c0,1
c1,0
c1,1

c3,2

(b) Forming the index segment

Fig. 5. The grid index and the index segment

In BGI, the first packet of the index segment provides general
system information. It is called header packet and contains (i) the
data space spatial extents, (ii) the cell side-length δ of the grid,
(iii) the data object size in bytes, (iv) the number m of index/data
segments per broadcast cycle, (v) the order of the current index

1Returning to the restaurant example, each object record may contain
several items such as type, menu, prices, etc. Such attributes are not stored in
the index segment, but are transmitted in the data segments of the broadcast
cycle.

IEEE TRANS. ON MOBILE COMPUTING 5

segment in the broadcast cycle (i.e., an integer between 1 and
m), and (vi) the cell side-length of the dirty grid (used only
in the case of moving objects, as discussed in Section V). The
rest of the index segment consists of two parts. The first one,
called the upper level, contains the cell cardinalities appearing in
a specific order (to be discussed next). The second part of the
index segment is called the lower level, and contains the object
coordinates. The lower level is formed by scanning the upper level
cells in the specified order, and sequentially placing their contents
(object coordinates) into a list. The upper level is transmitted first,
followed by the lower one. The detailed structure of the index
segment is depicted in Figure 6.

Xmin
Xmax
Ymax Ymin
Grid

Dirty-grid
Object size (bytes)
m (# idx seg/cycle)
Order (1 to m)
c0,0 cardinality

Header

cn,n cardinalityc0,1 cardinality

Upper level

p0 x-coordinate
p0 y-coordinate
p1 x-coordinate
p1 y-coordinate
pN x-coordinate
pN y-coordinate

Lower level

Fig. 6. The structure of the index segment

Concerning the upper level, since the bucket2 size is typically
small, the list of cell cardinalities has to be divided into multiple
packets. Let C be the maximum number of integers that fit in
a packet. Each bucket Bi consists of a number, called offset,
followed by C − 1 cell cardinalities. BGI benefits from compact
packet MBRs (minimum bounding rectangles), as it will become
clear from the kNN computation algorithm at the client side
(described in Section III-B). Therefore, the cells of the grid are
visited according to some space-filling curve. In our implemen-
tation we use the Hilbert curve, but BGI can be applied with
other space-filling curves as well (e.g., the Peano curve). The
cell cardinalities are stored into packets in this order, in blocks
of size C − 1. The offset Bi.offset of a bucket Bi is set to the
sum of all the cell cardinalities contained in the preceding buckets
(i.e., in buckets Bj , where j < i).

Returning to our running example, Figure 5(b) shows how the
upper level is formed, assuming that the packet size is C = 5.
Initially, we sort the cells according to the Hilbert value of their
centroids, and consider them in this order. Every C − 1 (= 4)
of them are stored in a bucket. For example, the cardinalities
of cells c0,0, c1,0, c1,1, and c0,1 form bucket B1. The offset
of B1 is 0 because it constitutes the first bucket, and B1 =

{0, 2, 1, 1, 1}. The upper level construction continues with B2. Its
offset equals the sum of cardinalities in B1, i.e., B2.offset = 5

2The words bucket and packet are used interchangeably, since they are
assumed for simplicity to have equal size.

and B2 = {5, 1, 1, 1, 2}. Similarly, B3 = {10, 1, 1, 1, 1}, and
B4 = {14, 2, 1, 1, 2}. The boundaries of the upper level buckets
appear bold.

Regarding the lower level of the index, we first form the list of
object coordinates. In our example, this order coincides with the
object name subscripts. Since C = 5 and each object p has a pair
of coordinates p.x and p.y, the first lower level packet contains
{p1.x, p1.y, p2.x, p2.y, p3.x}, the second one {p3.y, p4.x, p4.y,
p5.x, p5.y}, and so on. Note that when a client receives an upper
level bucket B, it can determine when the contents of each cell
c in B will be broadcast. Assume for simplicity that m = 1, i.e.,
the broadcast cycle consists of one index segment followed by
a single data segment. If a client receives packet B3 (when the
upper level is transmitted) and determines to process the positions
of the objects in cell c3,2, then it can acquire the contents of
c3,2 as follows. The client knows how many more upper level
packets remain to be broadcast (their number is fixed). Given
that B3.offset+3 (= 13) objects precede the contents of c3,2 in
the lower level, it can compute when to wake up and enter the
receiving mode.

Concerning the data segments, the order of the full information
of an object in the broadcast cycle is the same as its order in the
lower index level. To conclude the broadcast cycle description,
each index or data packet contains a pointer to the first packet
(i.e., the header packet) of the next index segment, so that a client
that first tunes in the channel knows when to wake up for query
processing. We omit these pointers from our examples for the sake
of simplicity. After local query processing (i.e., after receiving
the necessary packets of the index segment), the client knows
the order of its result objects in the lower level and, thus, in
the subsequent data segments. Since the full object information
has fixed size, it can determine when to tune in to receive the
corresponding data packets.

BGI has several advantages compared to other indexing meth-
ods. First, the index segment is concise, leading to a shorter
broadcast cycle, and lower tuning time and access latency. This is
because: (i) the spatial regions of the cells are implicit and they
do not have to be transmitted, and (ii) the ordering of the cells
and the objects can be easily inferred by the clients, avoiding
the extra cost of previous methods that store pointers within their
index segment, and from the index segment to the data objects.
Finally, the index building and index segment creation procedures
are very fast because of the simplicity of the grid. Even though
for static objects this is a one-time cost spent when the system
starts functioning, in the case that the objects are dynamic (as
in Section V) it is essential to keep this cost low; when objects
move frequently, the index has to support fast updates so that the
new broadcast cycle can be designed on-the-fly.

B. Query Processing

The kNN computation runs completely at the client side. Let
q be the client location. Given a cell c, maxdist(c) is the
maximum possible distance between any point in c and q. If
the cardinality of c is c.card, then at least c.card objects lie
within distance maxdist(c) from q. Similarly, mindist(c) is the
minimum possible distance between any point in c and q. If there
are at least k objects within distance dmax from q, then a cell c

(or bucket) does not have to be considered if mindist(c) ≥ dmax,
since it cannot contain any better neighbor.

IEEE TRANS. ON MOBILE COMPUTING 6

Based on the above observations, the NN computation al-
gorithm consists of two steps. During the first step, the client
receives (some) upper level buckets. According to the cardinalities
and the maxdist of the contained cells, it computes a conservative
upper bound dmax of the radius around q that contains at least k

objects. During the second step, the client listens to the contents
of cells c (in the lower level) that have mindist(c) < dmax;
cells (and buckets) with mindist above dmax are skipped. After
the second step, the client already knows the coordinates and the
packets containing the full information of its k NNs. An important
remark is that during each step, the bound dmax keeps decreasing,
excluding more unnecessary packets from consideration.

Continuing the example of Figure 5(a), Figure 7(a) shows the
first step of a 2-NN query at point q. The client initializes dmax to
infinity, tunes in the broadcast channel, and listens to the packets
of the upper level, starting with B1 = {0, 2, 1, 1, 1}. Recall from
Figure 5(b) that 0 is the number of objects preceding B1, 2 is the
cardinality of c0,0, 1 is the cardinality of c1,0, and so on. The first
cell c0,0 has maxdist(c0,0) equal to d1 and cardinality 2. Two
virtual entries <c0,0, d1> are inserted in a list best NN that stores
the k NNs ordered according to their (actual or conservative)
distance from q. The dmax equals the key of the kth entry in
best NN , i.e., after the consideration of c0,0, dmax becomes
equal to d1, because at least k = 2 objects lie within distance
d1 from q. The next cell c1,0 has maxdist d2 > dmax and
it is ignored. The following cell (in the Hilbert order) c1,1 has
maxdist d3 < dmax and cardinality 1. A new entry <c1,1, d3>

is inserted in best NN and an entry <c0,0, d1> is deleted, i.e.,
best NN =<c1,1, d3>, <c0,0, d1>. The dmax remains d1, i.e.,
the distance of the kth (2nd) entry. The last cell c0,1 updates
best NN to <c0,1, d4>, <c1,1, d3> and dmax becomes equal to
d3.

c0,0

B2

B1

B3

B4c0,1

c1,0

c1,1
d1 d2

d3d4

q

(a) Processing B1

B2

B1

B3

B4

d3
d4=dmax

q

c0,2c0,3
c1,2
c1,3

d5

d6 d7

d8

(b) Processing B2

Fig. 7. The first step of a 2-NN computation

The next upper level bucket is B2 = {5, 1, 1, 1, 2}. Since
mindist(B2) < dmax (= d3), B2 has to be processed. Its cells
(c0,2, c0,3, c1,3, and c1,2) and their cardinalities are considered
like before. As shown in Figure 7(b), dmax is updated to d4,
which is the minimum maxdist guaranteed to contain 2 objects
(one from c0,2 and one from c0,1). The first step terminates
here and the client sleeps, because mindist(B3) ≥ dmax and
mindist(B4) ≥ dmax, meaning that they cannot lead to a better
bound.

In the second step (and while the lower level is transmitted), the
client listens to the contents of the cells with mindist less than
dmax. Whenever some new object enters the best NN list, the
dmax is updated to the distance of the kth element in best NN .

Thus, dmax shrinks as more objects are considered, enhancing the
pruning of the algorithm and skipping unnecessary packets. Con-
tinuing our example in Figure 8(a), after processing the objects
(coordinates) in cells c0,0, c1,0, c1,1, c0,1, best NN = {p5, p4},
and dmax = dist(p4). Next, the contents of cells c0,2, c0,3, c1,3,
and c1,2 are broadcast (Figure 8(b)). Object p6 in c0,2 updates
best NN = {p5, p6} and dmax = dist(p6). Processing continues
with c0,3 but the result does not change. The next cell contents in
the lower level correspond to c1,3. Since mindist(c1,3) > dmax,
the client does not listen to the objects in c1,3. Finally, the objects
in c1,2 are considered without, however, altering the result. The
algorithm terminates here with best NN = {p5, p6}. When the
information about p5 and p6 is broadcast in the data segment, the
client wakes up and receives it.

B2

B1

B3

B4
dmax

q

p1 p3p2
p4p5

(a) Processing c0,0, c1,0, c1,1, c0,1

B2

B1

B3

B4

q

c1,3

p4
p6

p7
p5

p8
p10 p9
dmax

(b) Processing c0,2, c0,3, c1,2

Fig. 8. The second step of a 2-NN computation

The kNN computation algorithm is shown in Figure 9. Lines 1
to 8 implement step one, while lines 9 to 15 implement step two.
The first step uses the best NN list to store the cells with the
lowest maxdist values. In particular, each cell c in a considered
bucket B, generates up to c.card virtual entries <c, maxdist(c)>

into the best NN list, where c.card is the cardinality of c. In the
second step, when a cell c is considered, we delete from best NN

all its virtual entries (<c, maxdist(c)>) and insert its actual
objects p (if dist(p) ≤ dmax). Maintaining the same best NN

list in both steps enhances the pruning power of the method; the
maxdist of a cell not transmitted so far is used to prune cells in
line 9, even though its exact contents are not known.

kNN Computation
// Client at q goes online, and listens to the first index segment

// Step 1: The upper level is broadcast
1. best NN = ∅; dmax = ∞
2. for each bucket B
3. if mindist(B) < dmax // Prune upper level buckets
4. for each cell c in B
5. for iter = 1 to c.card
6. if maxdist(c) < dmax

7. Delete the kth entry of best NN
8. Insert <c, maxdist(c)> to best NN ; Update dmax

// Step 2: The lower level is broadcast
9. for each cell c with mindist(c) < dmax

10. Delete all entries of c from best NN
11. for each object p in c
12. if dist(p) ≤ dmax

13. Delete the kth entry of best NN
14. Insert <p, dist(p)> into best NN ; Update dmax

15. return best NN

Fig. 9. The kNN computation algorithm

IEEE TRANS. ON MOBILE COMPUTING 7

B2

B1

B3

B4

q

p6
p5 dmaxq'

(a) First step

p6
p5 dmaxq'

p4

p8
p10 p9

c0,0 c1,0

c0,3

(b) Second step

Fig. 10. 2-NN monitoring over static data

IV. CONTINUOUS kNN QUERIES ON STATIC DATA

In this section we consider continuous kNN queries from
moving clients over static data objects. In this scenario, the server
broadcasts exactly the same information as above, but the clients
continuously monitor their k NNs as they move. A straightforward
processing method is to compute from scratch the k NN set
whenever the client changes position. This, however, may be very
expensive. We propose an alternative monitoring algorithm that
re-uses the previous query result in order to reduce the number
of packets received.

Assume that a client moves from point q to point q′, and let
best NN be its previous result (i.e., the kNN set at q). Since
the objects are static, the old NNs of the client are still at
their previous location. Thus, we can directly compute an upper
bound dmax as the maximum distance between the old NNs
and the new client location q′. This bound allows the client to
start pruning index buckets immediately. The kNN monitoring
algorithm for static objects is the same as in Figure 9, the
difference being in line 1, where dmax should be initialized
as dmax = maxp∈best NN (dist(p, q′)). Figure 10(a) shows an
example, where a 2-NN query moves from q to q′.

The old NNs are p5 and p6 and dmax is initialized to
dist(p5, q′). When the upper level is broadcast (Figure 10(a)),
the client receives bucket B1 but the cells therein do not have
sufficiently small maxdist to further decrease dmax. Bucket B2

is also considered. Similar to B1 its cells have maxdist greater
than dmax. On the other hand, buckets B3 and B4 are ignored
since their mindist is larger than dmax. The client sleeps and
waits until the lower level is broadcast to perform the second
step of the NN computation algorithm (Figure 10(b)). During
this step, cells c0,0, c1,0, c0,3 are pruned and only the contents
of the shaded cells are considered. The algorithm finally returns
best NN = {p6, p10} as the result.

V. CONTINUOUS kNN QUERIES ON MOVING DATA

In this section we address the problem of continuous kNN
queries, where both the query points and the data objects may
move arbitrarily. Section V-A describes the basic algorithm, while
Section V-B introduces an optimization that utilizes some stored
information at the client side.

A. Basic Algorithm

We now assume that the data objects may move, appear or
disappear; e.g., in our taxi example, cabs may move, new ones

may enter service or existing ones may go off duty. When an
object moves, it sends an update to the server including its id, its
old and its new coordinates. When an object appears (disappears),
it informs the server of this event, providing also its id and
(expired) location. The task of the server is to update the data
grid and restructure the broadcast cycle. If the object lists of the
cells are implemented as hash-tables, the grid supports updates
(i.e., object insertions and deletions) in constant expected time.
Note that an object movement is equivalent to a deletion from its
old location and an insertion to its new one.

The object updates that arrive to the system during a broadcast
cycle are buffered and take place on the grid at the end of the
cycle. That is, the index segments during a broadcast cycle are
identical, and the up-to-date information is broadcast when the
next cycle commences. The creation of the index segment for
the next broadcast cycle is performed on-the-fly. The upper level
buckets Bi contain the same cells in the same order, and their
new offset and cell cardinalities are found at transmission time.
The lower level simply places into buckets the new contents of
the cells. Similarly, the full object information is placed in the
same order into consecutive packets, forming the data segments.

Concerning the query processing at the client side, the first-
time result of a continuous kNN query is computed in the way
described in Section III, by listening to the next broadcast index
segment. The kNN monitoring, however, is more complex; the
ordering of the previous NNs might have changed since the
previous broadcast cycle (timestamp), and some outer objects
may now lie closer to the query than the old NNs. If the
client also changes position, the problem becomes even more
complicated. To avoid frequent NN computations from scratch,
BGI re-evaluates only the queries that may be affected by the
updates in the last timestamp.

In particular, a dirty grid is broadcast in the beginning of
each cycle (prior to the upper level of the first index segment),
indicating the regions of the data space that received updates
during the cycle. The dirty grid is a regular grid, whose granularity
is typically finer than that of the object grid (i.e., its cell side-
length is smaller). Each cell of the dirty grid contains one bit (and
no actual objects or cardinality information). Before applying the
updates received in a broadcast cycle, all the cells of the dirty grid
are initialized to contain 0. If some object insertion or deletion
takes place inside the region covered by a cell of the dirty grid,
then its bit is set to 1, and the cell is said to be dirty. Note that,
even if an object moves within the boundaries of its dirty cell,
the cell is still marked as dirty (since each object movement is
equivalent to a deletion followed by an insertion).

Each client tunes in the broadcast channel and listens to the
dirty grid in the beginning of each broadcast cycle. It re-evaluates
its query only if: (i) some dirty cell overlaps with the circular disk
circ(q) with center at the client location q and radius equal to the
distance of its previous kth NN, or (ii) if the client moves to a
new position q′. Otherwise, the result is unaffected by the updates
in the last timestamp, and the client can sleep until the beginning
of the next broadcast cycle. Even if re-evaluation is necessary,
existing information may be re-used to facilitate efficiency.

Consider the example of Figure 11(a), where the client moves
to a new location q′ and object p8 moves to p′8. Since the
dirty cells do not contain any of the previous NNs p6 and p10,
these objects have not moved. This provides an initial bound
dmax=max(dist(p6, q′),dist(p10, q′)) =dist(p6, q′) for the NN

IEEE TRANS. ON MOBILE COMPUTING 8

computation at q′. On the other hand, in Figure 11(b), the update
of p17 affects the cell of p10. The client does not know whether
p10 is at its previous position (e.g., it may have been deleted),
and no bound dmax can be computed before the call of the NN
computation algorithm.

p6
q

p8
p10

p'8
dirty cells

q'dmax

(a) p8 issues an update

p6
q

p10 dirty cells

p17
p'17
q'

(b) p17 issues an update

Fig. 11. 2-NN monitoring over dynamic data

B. Optimization

In order to provide “tight” dmax values for NN re-computations
in highly dynamic environments, we may store some extra infor-
mation at the client side. Since for the received cells we have the
concrete object locations, the maintained information is kept at the
finest, i.e., dirty grid granularity. We illustrate this optimization
using the running example of Figure 8, where the client computes
from scratch its 2 NNs. During the second step of the algorithm,
the client listens to the contents of cells c0,0, c1,0, c0,1, c1,1,
c0,2, c1,2 and c0,3. We map the received object coordinates into
dirty grid cells. Then, we insert each such non-empty cell into
a list, along with the number of objects inside3. In our example,
we store the id and the cardinality of the shaded cells in Figure
12(a).

q
p4

p6
p7

p5 p10 p9
p1 p3p2

p8
p'8

c0,0 c1,0
c0,1 c1,1

c0,2 c1,2c0,3

(a) Dirty cells maintained

q

q'
d2d1

(b) q moves to q′

Fig. 12. NN re-computation optimization

In the subsequent broadcast cycles, (i) if some stored cells
become dirty, we remove them from the list, and (ii) if a re-
computation is necessary, we acquire an initial dmax according
to the cardinalities and maxdist of the stored cells, prior to the
NN retrieval. Continuing the example of Figure 12(a), assume
that in the next timestamp object p8 moves to p′8. Its old and
new cells are marked as dirty. The client receives the dirty grid

3Note that since the memory of the client is limited, we store the cardinality
and not the actual contents of the cell.

information and removes the cell of p′8 from its list, but it does not
resort to NN re-computation because its NN list {p5, p6} is not
affected by the update. Assume now that in the next timestamp,
the client moves from q to q′ (Figure 12(b)) and has to re-evaluate
the query. Before invoking the algorithm of Figure 9, it considers
the cardinalities of the cells in its list (i.e., the shaded cells). For
each such cell, it assumes that all the objects inside lie at distance
maxdist from q′, and computes a bound dmax accordingly. In
our example, all the cells have cardinality 1 and the client sets
as dmax the second smallest maxdist (i.e., dmax = d1). The
complete kNN monitoring algorithm is shown in Figure 13.

kNN Monitoring
// Client at q has completed the kNN computation of Figure 9,
// and maintains a list L of dirty grid cell cardinalities
1. Listen to the contents of the next dirty grid
2. for each dirty grid cell c with its bit set
3. Delete c from L
4. if no dirty cell overlaps with circ(q) and q′ = q
5. return // result set has not changed
6. else
7. best NN = ∅; dmax = ∞
8. for each object p in the current result
9. if p’s cell is not dirty
10. Insert <p, dist(p, q′)> to best NN
11. for each cell c in L
12. for iter = 1 to c.card
13. if maxdist(c) < dmax

14. Delete the kth entry of best NN
15. Insert <c, maxdist(c)> to best NN ; Update dmax

16. Invoke the kNN computation algorithm of Figure 9,
17. using the current value of dmax

18. return

Fig. 13. The kNN monitoring algorithm

The overhead of the dirty grid is expected to be low since
for each cell we send a single bit. Furthermore, its size can be
reduced by the run-length compression scheme. In this scheme,
large blocks of consecutive bits with the same value (i.e., all 0
or all 1) are represented by a single integer. To achieve high
compression ratios, the order of bits follows the Hilbert order of
the corresponding cells in the dirty grid. Since object updates in
most real-world applications exhibit locality, ordering according
to a space-filling curve leads to long blocks of ones or zeros, when
the corresponding spatial region is “hot” (in terms of updates) or
not. Finally, as the header packet is typically not full, the free
space can be occupied by (part of) the dirty grid information.

VI. RANGE QUERIES

In this section we discuss how BGI extends to range queries.
For simplicity we assume that the ranges are rectangular. Snapshot
queries over static data can be answered trivially. The client tunes
in the channel and waits until the first index segment is broadcast.
Among the buckets Bi of the upper level, it listens only to the
ones whose MBRs overlap with its range. Similarly, it considers
only the cells in the lower level that intersect the range.

Next, we consider continuous range monitoring over static data.
The first-time result of the query is computed with the algorithm
described above. When the client moves, we make use of the
previous result of the query. In particular, the client already knows
the objects falling in the intersection of the old and the new
ranges. Therefore, it computes only the objects falling in the
remaining part of the new range.

IEEE TRANS. ON MOBILE COMPUTING 9

Regarding continuous ranges queries over dynamic data, BGI
uses the dirty grid technique. Assume that the query is static. If
no dirty cell intersects its range, then re-computation is avoided.
If some dirty cells overlap the range, then partial re-computation
is performed. Figure 14(a) illustrates such a case, where a dirty
cell intersects the query rectangle. The client computes the
overlapping area (appearing striped) between the range and the
dirty cell, and evaluates a range query for this area.

p9
p12dirty cells

p11
q

overlapping area

p'12

(a) p12 issues an update

p9
p12dirty cells

p11p'12
old range

p11 q'
p13

new range

roverlap rresidual
q

(b) q moves to q′

Fig. 14. A continuous range query over dynamic data

In the case that the query moves, then its new range rnew

is partitioned into: (i) the overlapping area roverlap between the
old and the new range, and (ii) the residual area rresidual =

rnew − roverlap. The client has to compute all the objects in
rresidual. Additionally, if some dirty cells intersect the roverlap,
then it also has to compute the objects falling in the intersection
of these dirty cells with roverlap. Consider Figure 14(b) where q

moves to q′. Object p12 moves to a new position p′12, resulting in
two dirty cells. One of these cells overlaps with roverlap and
their intersection is the striped rectangle. The client tunes in
the channel and listens to all upper level buckets whose MBRs
intersect either the striped area or rresidual. Similarly, from the
lower level it listens to the contents of the cells intersecting one
of the aforementioned areas.

VII. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the proposed
methods under various system parameters. We use a real4 spatial
dataset (REAL) containing the locations of 5,848 cities and vil-
lages in Greece (available at www.rtreeportal.org). Additionally,
in order to investigate scalability, we generated 5 skewed datasets
(SKEW) where the object locations follow a Zipf distribution
with parameter 0.8. All datasets are scaled to fit in a [0,10000]2

workspace. Assuming that the data objects are distributed on
a 50km×50km area, the average density of the objects varies
between 2.3 and 80 objects/km2.

For static data, each object corresponds to a point in the
dataset. For generating moving data, we randomly select the
initial position and the destination of each object from the spatial
dataset. The object then follows a linear trajectory (with constant
velocity) between the two points. Upon reaching the endpoint,
a new random destination is selected and the same process is
repeated. Distance is defined according to the Euclidean metric.
To further control the object movement, only a certain fraction

4The same dataset is used in the evaluation of [17] and [32].

(which we call agility) of the objects move during each timestamp.
The same pattern is also adopted for the moving queries.

In each experiment we generate and evaluate 10,000 random
queries. In the continuous case the queries are evaluated for a
period of 100 timestamps. We use the tuning time and access
latency as the performance metrics. The results correspond to the
average measurements over all queries, expressed in number of
packets. The size of each data object is fixed to 128 bytes. Table
I summarizes the parameters under investigation, along with their
ranges. Their default (median) values are typeset in boldface. In
each experiment we vary a single parameter, while setting the
remaining ones to their default values. Section VII-A evaluates
snapshot queries, Section VII-B deals with continuous queries
over static objects, while Section VII-C considers the case where
both the queries and the data objects are mobile. Finally, Section
VII-D investigates the effect of packet losses on the performance
of our methods.

TABLE I
SYSTEM PARAMETERS

Parameter Range
SKEW DB size 10K,50K,100K,150K,200K

Packet size (bytes) 64,128,256,512,1024
Range query area (km2) 12.5,25,50,100,200,400

Number of NNs (k) 1,2,4,8,16,32
Object/Query speed (km/h) 5,25,125
Object/Query agility (%) 0,10,20,30,40,50,60,70,80,90,100

A. Snapshot Queries

In this section we compare BGI against HCI and DSI, which,
as discussed in Section II-B, are the current state-of-the-art frame-
works in terms of tuning time and access latency, respectively. For
BGI and HCI we employ the (1, m) interleaving scheme, where
the value of m is set according to the methodology in [14]. For
HCI we use the space partitioning optimization with a 4× 4 grid
(the default setting used in [32] for the REAL dataset).

The first experiment studies the effect of the grid granularity
on the performance of BGI using the REAL dataset. We divide
each axis into a number of equal intervals that varies between 8
and 128. Figure 15(a) shows the tuning time for range and kNN
queries as a function of the grid size. A grid of 16× 16 cells is
the best choice overall, and we use this value in the remainder of
this section. A coarser grid (e.g., 8 × 8) reduces the size of the
upper level index (and, thus, the size of the index segment), but
query processing considers more objects (equivalently, receives
more lower level packets). On the other hand, a finer grid is more
expensive, because the increased index size offsets any potential
benefit in precision. Figure 15(b) illustrates the access latency for
the same experiment. Again, BGI performs best for a 16 × 16

grid. Even though the index segment is smaller for a 8× 8 grid,
the latency is larger because the objects are less clustered and the
full data of the result objects are placed further away from each
other in the broadcast cycle.

Figure 16(a) (16(b)) depicts the tuning time for range (kNN)
queries as a function of the packet size. As the packet size
increases, the clients receive fewer packets with any method. The
tuning time of BGI is 2 to 3 times lower than HCI because the
index (a B+-tree) of HCI is large, and query processing on the
one-dimensional Hilbert curve is less efficient than processing
with a grid in the original space. BGI is around 10 times better

IEEE TRANS. ON MOBILE COMPUTING 10

Range NNk

0
10
20
30
40
50
60
70

8 16 32 64 128

Number of cells in the object grid

Tuning time (packets)

2 2 2 2 2

(a) Tuning time

2

2.5

3

3.5

4

8 16 32 64 128

Number of cells in the object grid

Access latency (packets x 1000)

2 2 2 2 2

(b) Access latency

Fig. 15. Performance versus grid granularity (REAL)

than DSI, mainly because DSI is designed to sacrifice tuning time
for the sake of lower latency, and also because of its Hilbert
curve based query evaluation. Note that the tuning time of HCI
is considerably smaller than that of DSI. To avoid confusion,
this fact does not contradict the results shown in [17], since
[17] evaluates DSI against a distributed version of HCI (which
sacrifices tuning time for access latency compared to the (1, m)

version used here).

BGI HCI DSI

1

10

100

1000

64 128 256 512 1024

Packet size (bytes)

Tuning time (packets)

(a) Range queries

1

10

100

1000

64 128 256 512 1024

Packet size (bytes)

Tuning time (packets)

(b) kNN queries

Fig. 16. Tuning time versus packet size (REAL)

Figure 17 shows the access latency for the same experiment.
For range queries, HCI has around 50% higher latency than our
method, because of its larger index and the Hilbert ordering that
may place the full information of the result objects far from each
other in the broadcast cycle. For kNN queries, the latency of
HCI is even higher (around 2 times worse than BGI), due to
the two-step kNN retrieval that performs a kNN search on the
Hilbert curve, followed by a range query on the returned window.
DSI has 20% and 12% lower latency than BGI, for range and
kNN queries, respectively, because of its distributed nature. Note
that even though DSI achieves slightly lower access latency than
our method, its tuning time is an order of magnitude higher (as
demonstrated in Figure 16).

BGI HCI DSI

0

5

10

15

20

64 128 256 512 1024

Packet size (bytes)

Access latency (packets x 1000)

(a) Range queries

0

5

10

15

20

25

30

64 128 256 512 1024

Packet size (bytes)

Access latency (packets x 1000)

(b) kNN queries

Fig. 17. Access latency versus packet size (REAL)

Figure 18 investigates the effect of the query selectivity on
the tuning time. As the selectivity increases, the performance of
all algorithms deteriorates due to the larger search region and
result size. BGI is consistently better than both its competitors,

BGI HCI DSI

1

10

100

1000

12.5 25 50 100 200 400
Area size (km 2)

Tuning time (packets)

(a) Range queries

1

10

100

1000

1 2 4 8 16 32

Number of nearest neighbors (k)

Tuning time (packets)

(b) kNN queries

Fig. 18. Tuning time versus query selectivity (REAL)

BGI HCI DSI

0

1

2

3

4

5

6

12.5 25 50 100 200 400
Area size (km 2)

Access latency (packets x 1000)

(a) Range queries

0
1
2
3
4
5
6
7

1 2 4 8 16 32

Number of nearest neighbors (k)

Access latency (packets x 1000)

(b) kNN queries

Fig. 19. Access latency versus query selectivity (REAL)

for the reasons explained in the context of Figure 16. For kNN
queries, our method is less sensitive to the parameter k because
multiple nearest neighbors may be found in the same cell of the
grid. Figure 19 shows the access latency for the same experiment.
The latency equals to the number of packets between the first
time tuning in of the client and the position of the furthest result
object in the broadcast cycle. As the selectivity (equivalently, the
result size) increases, so does the latency. The latency for ranges
is larger than kNN because they return more objects; e.g., for
the default settings of Table I, a range query with a 50 km2 area
returns on the average 117 objects, while a 4-NN one retrieves
only 4.

B. Continuous Queries over Static Data

Next, we evaluate the monitoring version of BGI, as discussed
in Section IV. Specifically, we consider static objects and con-
tinuous moving queries. Since both HCI and DSI are designed
for snapshot queries, we compare our method with a naı̈ve re-
computation approach that re-evaluates each query from scratch
at the beginning of every broadcast cycle (using the basic BGI
algorithm of Section III). To verify the generality of our results we
use the synthetic datasets (SKEW) in our experiments, in addition
to the REAL one. Since the database size and distribution of
SKEW are very different from those of REAL, we fine-tuned
the object grid granularity in a manner similar to Figure 15. The
results indicated that a 64×64 grid provides good results for all the
tested database sizes of SKEW. Concerning the query movement,
unless otherwise specified, the queries are assumed to move with
a medium speed and have an agility of 50%.

In the first experiment we study the effect of the DB size
(for SKEW) on the performance of BGI. Figure 20 shows the
tuning time for various database sizes, ranging from 10K to 200K
objects. For range (kNN) queries, the monitoring method is 3 to 5
(6 to 7) times better than re-compute, due to the re-use of previous
results. For kNN queries the gap is larger, because NN processing
is more complicated than the range one.

IEEE TRANS. ON MOBILE COMPUTING 11

Monitoring Re-computation

0

20

40

60

80

100

120

10K 50K 100K 150K 200K

Database size

Tuning time (packets)

(a) Range queries

0

5

10

15

20

25

30

10K 50K 100K 150K 200K

Database size

Tuning time (packets)

(b) kNN queries

Fig. 20. Tuning time versus database size (SKEW)

Figures 21 and 22 illustrate the tuning times of the monitoring
and re-computation versions of BGI versus the query selectivity
for range and kNN queries, respectively. Similar to Figure 18,
higher selectivity implies higher tuning time. The monitoring
technique reduces the number of received packets by a factor
of 2 to 7 compared to re-compute. For range queries, as the
selectivity increases, monitoring becomes even better than re-
computation because there is larger overlapping area between the
old and new range of the moving queries. On the other hand,
for kNN queries, the relative performance of the algorithms is
practically independent of k, since, contrast to range monitoring,
the previous NNs cannot be inserted into the new result directly.

Monitoring Re-computation

0

10

20

30

40

50

60

70

12.5 25 50 100 200 400

Area size (km2)

Tuning time (packets)

(a) REAL

0

50

100

150

200

250

300

350

12.5 25 50 100 200 400

Area size (km2)

Tuning time (packets)

(b) SKEW

Fig. 21. Tuning time versus query selectivity (range)

Monitoring Re-computation

0

5

10

15

1 2 4 8 16 32

Number of nearest neighbors (k)

Tuning time (packets)

(a) REAL

0

5

10

15

20

25

30

1 2 4 8 16 32

Number of nearest neighbors (k)

Tuning time (packets)

(b) SKEW

Fig. 22. Tuning time versus number k of NNs

Finally, Figures 23 and 24 investigate the effect of the moving
behavior (i.e., agility and speed) of the query on the tuning
time, for kNN queries. Re-computation is unaffected by query
movements, since it computes the NNs from scratch at every cycle
in any case. For monitoring, a high query agility leads to increased
tuning time, as it performs more frequent partial re-computations.
Nevertheless, it achieves savings of 43% (for REAL) and 74% (for
SKEW) even for constantly moving queries (i.e., agility 1). When
the query moves faster, the performance of monitoring slightly
deteriorates, because dmax becomes looser. The results for range
queries follow the same trends and are omitted.

Monitoring Re-computation

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query agility

Tuning time (packets)

(a) REAL

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query agility

Tuning time (packets)

(b) SKEW

Fig. 23. Tuning time versus query agility (kNN)

Monitoring Re-computation
Tuning time (packets)

0

2

4

6

8

10

12

5 25 125
Query speed (km/h)
(a) REAL

Tuning time (packets)

0

5

10

15

20

25

5 25 125
Query speed (km/h)

(b) SKEW

Fig. 24. Tuning time versus query speed (kNN)

C. Continuous Queries over Dynamic Data

In this section we evaluate BGI (as described in Section V)
in an environment where both queries and objects are mobile.
Again, due to the absence of a competitor, we use the naı̈ve
(re-computation) approach as the baseline. To fine-tune the dirty
grid granularity for the monitoring technique, in Figure 25 we
measure the tuning time for various grid sizes. A 256× 256 dirty
grid achieves the best trade-off between grid size and precision.
We use this granularity for all the remaining experiments. We
focus solely on kNN, since range queries do not benefit from a
monitoring algorithm in a system with a high rate of updates. This
is because range queries need to access only a small number of
cells (i.e., the ones intersecting the query range), and the savings
of the dirty grid are counter-balanced by its overhead. Thus, the
diagrams for the monitoring and re-computation approaches are
almost identical.

0
5

10
15
20
25
30
35

64 128 256 512 1024

Number of cells in dirty grid

Tuning time (packets)

2 2 2 2 2

(a) REAL

0
5

10
15
20
25
30
35

64 128 256 512 1024

Number of cells in dirty grid

Tuning time (packets)

2 2 2 2 2

(b) SKEW

Fig. 25. Tuning time versus dirty grid granularity (kNN)

Figure 26 shows the tuning time as a function of the database
size. Clearly, the monitoring version of BGI scales well with
increasing database size, and is almost 2 times better than re-
computation in all cases. Figure 27 investigates the effect of k.
Comparing the results to Figure 22 (for static objects) it is evident
that frequent object updates decrease the pruning power of the
BGI monitoring algorithm. Nevertheless, it performs considerably
better than re-compute, as it significantly benefits from re-using
the previous NNs and the dirty grid information.

Figures 28 and 29 illustrate the effect of the object moving

IEEE TRANS. ON MOBILE COMPUTING 12

Monitoring Re-computation

0

5

10

15

20

25

30

10K 50K 100K 150K 200K

Database size

Tuning time (packets)

Fig. 26. Tuning time versus database size (SKEW, kNN)

Monitoring Re-computation

0

5

10

15

20

1 2 4 8 16 32

Number of nearest neighbors (k)

Tuning time (packets)

(a) REAL

0

5

10

15

20

25

30

1 2 4 8 16 32

Number of nearest neighbors (k)

Tuning time (packets)

(b) SKEW

Fig. 27. Tuning time versus number k of NNs

behavior on the tuning time. Clearly, re-computation is unaffected
by object movements. The tuning time of monitoring degrades
with object agility, since more query results are re-computed
per timestamp. For constantly moving objects (i.e., agility 1), all
queries are affected and monitoring is worse than re-computation
due to the overhead of the dirty grid. On the other hand, its
performance is independent of the object speed, since an object
movement is treated as a deletion from its old position and an
insertion to the new one, and the probability that any of these
positions affects some query is independent of their distance (i.e.,
the object moving distance).

Monitoring Re-computation

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Object agility

Tuning time (packets)

(a) REAL

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Object agility

Tuning time (packets)

(b) SKEW

Fig. 28. Tuning time versus object agility (kNN)

Monitoring Re-computation
Tuning time (packets)

0

2

4

6

8

10

12

5 25 125
Object speed (km/h)
(a) REAL

Tuning time (packets)

0

5

10

15

20

25

5 25 125
Object speed (km/h)
(b) SKEW

Fig. 29. Tuning time versus object speed (kNN)

Next, we study the feasibility of implementing continuous mon-
itoring over the existing cellular infrastructure. Recall that updates
occurring during the current broadcast cycle are transmitted at
the next one. Thus, clients do not always know the most up-to-

date location of all objects. In order to minimize this inaccuracy,
the broadcast cycle should be short. Figure 30 illustrates the
duration of the cycle (in seconds) as a function of the database size
(the number of clients does not affect the duration) for wireless
networks supporting data rates of 384 Kbps and 2 Mbps. These
rates are chosen because 2 Mbps is the maximum rate for the 3G
standard, while 384 Kbps is the rate of the current systems.

0
100
200
300
400
500
600
700

10K 50K 100K 150K 200K

Database size

Broadcast cycle (sec)

384 Kbps

2 Mbps

Fig. 30. Duration of broadcast cycle versus database size (SKEW, kNN)

For a 384 Kbps bandwidth, 10K objects are supported with
a minimum accuracy of around 30 sec. On the other hand, a 2
Mbps rate can provide an accuracy of 1 minute for 100K objects.
We believe that these delays are acceptable since the targeted
applications (e.g., taxi example of Figure 1) involve a relatively
small number of data objects (in the order of thousands) and a
large number of clients (in the order of millions). Furthermore,
as the infrastructure for wireless broadcasting improves, the
supported database sizes will increase accordingly. Finally, note
that the inaccuracy is not specific to BGI, but inherent to all
broadcasting methods since the broadcast cycle cannot be re-
structured to accommodate object updates on-the-fly. This is the
case also for snapshot queries [14].

D. Robustness to Packet Loss

The results reported in the previous sections assume a perfect
channel where no packet losses occur. However, the typical
wireless channel is error-prone due to several factors, such as
radio interference, fading, attenuation, etc. Specifically, packet
error rates in wireless networks are reported to range from
1% up to 10% [23]; resilience to link errors is, thus, a very
desirable property for any air indexing scheme. In this section we
investigate the performance of our methods in lossy environments.

First, we consider snapshot queries. We compare only against
DSI, because HCI is not designed to deal with packet loss, while
its distributed version (which does take packet losses into account)
is worse than DSI in both access latency and tuning time [17]. In
BGI, errors are handled in a straightforward manner: a lost packet
in the current index segment has to be recovered in the subsequent
index segment. However, query processing may continue in the
current segment even after a packet loss. Specifically, for range
queries, BGI continues normally in the current index segment, but
the lost packet is received in the next segment. If the lost packet is
in the upper level, then the corresponding lower level ones must
also be accessed in the next segment. For kNN queries, error
handling in BGI is similar, except for the case where an upper
level packet is lost; in this situation BGI halts and resumes when
the lost packet is broadcast again (i.e., in the next index segment).

Figure 31 shows the tuning time of BGI and DSI (for snapshot
queries) under different packet loss rates for the REAL dataset.
DSI is affected to a lesser degree than BGI, because its distributed
structure offers multiple search paths towards any frame of the
index. Nevertheless, BGI retains its efficiency achieving a 7-10

IEEE TRANS. ON MOBILE COMPUTING 13

times smaller tuning time than DSI in all cases, because it needs
to (successfully) receive only a few index packets (see Section
VII-A).

BGI DSI

1

10

100

1000

0 0.05 0.1 0.15 0.2

Loss rate

Tuning time (packets)

(a) kNN

1

10

100

1000

0 0.05 0.1 0.15 0.2

Loss rate

Tuning time (packets)

(b) Range

Fig. 31. Tuning time versus packet loss rate (snapshot queries, REAL)

Figure 32 illustrates the access latency for the same experiment.
DSI remains practically unaffected by the link errors, due to
its distributed nature that enables query processing to resume
directly after a packet loss. BGI also performs very well, and
the degradation due to errors is below 14% in all cases. Note
that, similar to the performance evaluation in [17], we assume
that only index packets may be received erroneously. When a
data packet is lost, it has to be recovered in the next broadcast
cycle, and its effect on the access latency is independent of the
underlying air indexing method.

BGI DSI

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2

Loss rate

Access latency (packets x 1000)

(a) kNN

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2

Loss rate

Access latency (packets x 1000)

(b) Range

Fig. 32. Access latency versus packet loss rate (snapshot queries)

Figures 33(a) and 33(b) depict the effect of the packet loss rate
on the tuning time of our monitoring algorithm for continuous
queries over static data (using REAL and SKEW, respectively).
BGI is not affected significantly by link errors, and the maximum
performance degradation compared to a perfect channel (no
packet loss) is 28%.

kNN Range

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2

Loss rate

Tuning time (packets)

(a) REAL

0

5

10

15

20

0 0.05 0.1 0.15 0.2

Loss rate

Tuning time (packets)

(b) SKEW

Fig. 33. Tuning time versus packet loss rate (continuous queries, static data)

Finally, Figure 34 shows the tuning time of our monitoring
algorithm (for dynamic data/queries) as a function of the loss
rate. Recall that, in the case of dynamic data, we use a dirty grid
to mark the cells that have been affected by the object movements.
In the presence of errors, our algorithm works as follows: if the
first packet of the broadcast cycle (that contains the dirty grid)

is corrupted, the client just re-evaluates the query from scratch
(without having to wait for the next broadcast cycle); otherwise,
query processing is performed according to the algorithm of
Figure 13. Range queries are affected less by packet losses, and
the increase of the tuning time for a 20% loss rate (compared to
a perfect channel) is 25% for both datasets. On the other hand,
the maximum performance degradation for kNN queries is 41%
and 65% for the REAL and SKEW datasets, respectively.

kNN Range

0

5

10

15

20

0 0.05 0.1 0.15 0.2

Loss rate

Tuning time (packets)

(a) REAL

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

Loss rate

Tuning time (packets)

(b) SKEW

Fig. 34. Tuning time versus packet loss rate (continuous queries, dynamic
data)

VIII. CONCLUSIONS

In this paper we study spatial query processing in wireless
broadcast environments. A central server transmits the data along
with some indexing information. The clients process their queries
locally, by accessing the broadcast channel. In this setting, our
target is to reduce the power consumption and the access latency
at the client side. We propose an on-air indexing method that
uses a regular grid to store and transmit the data objects. We
design algorithms for snapshot and continuous queries, over static
or dynamic data. To the best of our knowledge, this is the first
study on air indexing that (i) addresses continuous queries, and (ii)
considers moving data objects. We demonstrate the efficiency of
our algorithm through an extensive experimental comparison with
the current state-of-the-art frameworks for snapshot queries, and
with the naı̈ve constant re-computation technique for continuous
queries. A challenging problem is to devise cost models for
continuous monitoring of spatial queries in wireless broadcast
environments. Such models could reveal the best technique given
the problem settings, help fine-tune several system parameters
(e.g., grid size) and potentially lead to better algorithms. Another
interesting direction for future work is to study different types of
spatial queries, such as reverse nearest neighbors, and to extend
our framework to process their snapshot and continuous versions.

ACKNOWLEDGMENTS

We would like to thank Baihua Zheng for providing us with
the implementations of HCI and DSI. This work was supported
by grant HKUST 6184/05 from Hong Kong RGC.

REFERENCES

[1] S. Acharya, R. Alonso, M. J. Franklin, and S. B. Zdonik. Broadcast
disks: Data management for asymmetric communications environments.
In SIGMOD, 1995.

[2] S. Acharya, M. J. Franklin, and S. B. Zdonik. Disseminating updates
on broadcast disks. In VLDB, 1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, 1990.

[4] Y. Cai, K. A. Hua, and G. Cao. Processing range-monitoring queries on
heterogeneous mobile objects. In MDM, 2004.

IEEE TRANS. ON MOBILE COMPUTING 14

[5] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An
energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks. In MOBICOM, 2001.

[6] M.-S. Chen, P. S. Yu, and K.-L. Wu. Indexed sequential data broadcast-
ing in wireless mobile computing. In ICDCS, 1997.

[7] B. Gedik and L. Liu. MobiEyes: Distributed processing of continuously
moving queries on moving objects in a mobile system. In EDBT, 2004.

[8] B. Gedik, A. Singh, and L. Liu. Energy efficient exact kNN search in
wireless broadcast environments. In GIS, 2004.

[9] S. E. Hambrusch, C.-M. Liu, W. G. Aref, and S. Prabhakar. Query
processing in broadcasted spatial index trees. In SSTD, 2001.

[10] A. Henrich. A distance scan algorithm for spatial access structures. In
GIS, 1994.

[11] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
ACM TODS, 24(2):265–318, 1999.

[12] Q. Hu, W.-C. Lee, and D. L. Lee. Power conservative multi-attribute
queries on data broadcast. In ICDE, 2000.

[13] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Power efficient
filtering of data an air. In EDBT, 1994.

[14] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on air:
Organization and access. IEEE TKDE, 9(3):353–372, 1997.

[15] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main memory
evaluation of monitoring queries over moving objects. Distributed and
Parallel Databases, 15(2):117–135, 2004.

[16] I. Kamel and C. Faloutsos. On packing R-trees. In CIKM, 1993.
[17] W.-C. Lee and B. Zheng. DSI: A fully distributed spatial index for

location-based wireless broadcast services. In ICDCS, 2005.
[18] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental

processing of continuous queries in spatio-temporal databases. In
SIGMOD, 2004.

[19] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual parti-
tioning: An efficient method for continuous nearest neighbor monitoring.
In SIGMOD, 2005.

[20] K. Park, M. Song, and C.-S. Hwang. An efficient data dissemination
schemes for location dependent information services. In ICDCIT, 2004.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD, 1995.

[22] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving
query point. In SSTD, 2001.

[23] I. Stojmenovic. Handbook of wireless networks and mobile computing.
John Wiley & Sons, 2002.

[24] Y. Tao and D. Papadias. Spatial queries in dynamic environments. ACM
TODS, 28(2):101–139, 2003.

[25] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.
In VLDB, 2002.

[26] X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scalable
processing of continuous K-nearest neighbor queries in spatio-temporal
databases. In ICDE, 2005.

[27] J. Xu, W.-C. Lee, and X. Tang. Exponential index: A parameterized
distributed indexing scheme for data on air. In MobiSys, 2004.

[28] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy efficient index for
querying location-dependent data in mobile broadcast environments. In
ICDE, 2003.

[29] X. Yu, K. Q. Pu, and N. Koudas. Monitoring K-nearest neighbor queries
over moving objects. In ICDE, 2005.

[30] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based
spatial queries. In SIGMOD, 2003.

[31] B. Zheng, W.-C. Lee, and D. L. Lee. Search k nearest neighbors on air.
In MDM, 2003.

[32] B. Zheng, W.-C. Lee, and D. L. Lee. Spatial queries in wireless broadcast
systems. Wireless Networks, 10(6):723–736, 2004.

[33] B. Zheng, W.-C. Lee, and D. L. Lee. On searching continuous k nearest
neighbors in wireless data broadcast systems. IEEE Transactions on
Mobile Computing, 6(7):748–761, 2007.

[34] B. Zheng, J. Xu, W.-C. Lee, and D. L. Lee. Grid-partition index: a
hybrid method for nearest-neighbor queries in wireless location-based
services. VLDB J., 15(1):21–39, 2006.

Kyriakos Mouratidis is an Assistant Professor
at the School of Information Systems, Singapore
Management University. He received his BSc de-
gree from the Aristotle University of Thessaloniki,
Greece, and his PhD degree in Computer Sci-
ence from the Hong Kong University of Science
and Technology. His research interests include spa-
tiotemporal databases, data stream processing, and
mobile computing.

Spiridon Bakiras received his BS degree (1993)
in Electrical and Computer Engineering from the
National Technical University of Athens, his MS
degree (1994) in Telematics from the University
of Surrey, and his PhD degree (2000) in Electrical
Engineering from the University of Southern Cali-
fornia. Currently, he is an Assistant Professor in the
Department of Mathematics and Computer Science
at John Jay College, CUNY. Before that, he held
teaching and research positions at the University
of Hong Kong and the Hong Kong University of

Science and Technology. His research interests include high-speed networks,
peer-to-peer systems, mobile computing, and spatial databases. He is a
member of the ACM and the IEEE.

Dimitris Papadias is a Professor at the Computer
Science and Engineering, Hong Kong University of
Science and Technology. Before joining HKUST
in 1997, he worked and studied at the German
National Research Center for Information Technol-
ogy (GMD), the National Center for Geographic
Information and Analysis (NCGIA, Maine), the Uni-
versity of California at San Diego, the Technical
University of Vienna, the National Technical Uni-
versity of Athens, Queen’s University (Canada), and
University of Patras (Greece). He has published

extensively and been involved in the program committees of all major
Database Conferences, including SIGMOD, VLDB and ICDE. He is an
associate editor of the VLDB Journal, the IEEE Transactions on Knowledge
and Data Engineering, and on the editorial advisory board of Information
Systems.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2009

	Continuous Monitoring of Spatial Queries in Wireless Broadcast Environments
	Kyriakos MOURATIDIS
	Spiridon Bakiras
	Dimitris Papadias
	Citation

	tmp.1290756243.pdf.DeD8M

