
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2007

Discovering and Exploiting Causal Dependencies
for Robust Mobile Context-Aware Recommenders
Ghim-Eng YAP
Nanyang Technological University

Ah-Hwee TAN
Nanyang Technological University

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

DOI: https://doi.org/10.1109/TKDE.2007.1065

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YAP, Ghim-Eng; TAN, Ah-Hwee; and PANG, Hwee Hwa. Discovering and Exploiting Causal Dependencies for Robust Mobile
Context-Aware Recommenders. (2007). IEEE Transactions on Knowledge and Data Engineering. 19, (7), 977-992. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1210

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2007.1065
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Discovering and Exploiting Causal
Dependencies for Robust Mobile
Context-Aware Recommenders

Ghim-Eng Yap, Ah-Hwee Tan, Senior Member, IEEE, and Hwee-Hwa Pang

Abstract—Acquisition of context poses unique challenges to mobile context-aware recommender systems. The limited resources in

these systems make minimizing their context acquisition a practical need, and the uncertainty in the mobile environment makes

missing and erroneous context inputs a major concern. In this paper, we propose an approach based on Bayesian networks (BNs) for

building recommender systems that minimize context acquisition. Our learning approach iteratively trims the BN-based context model

until it contains only the minimal set of context parameters that are important to a user. In addition, we show that a two-tiered context

model can effectively capture the causal dependencies among context parameters, enabling a recommender system to compensate

for missing and erroneous context inputs. We have validated our proposed techniques on a restaurant recommendation data set and a

Web page recommendation data set. In both benchmark problems, the minimal sets of context can be reliably discovered for the

specific users. Furthermore, the learned Bayesian network consistently outperforms the J4.8 decision tree in overcoming both missing

and erroneous context inputs to generate significantly more accurate predictions.

Index Terms—Recommender systems, context-awareness, Bayesian networks.

Ç

1 INTRODUCTION

A recommender [1] is an application that ranks a set of
available choices with respect to certain criteria. For

instance, in information retrieval, search criteria are
submitted as queries and the most relevant documents are
recommended. With the proliferation of e-services, recom-
mender systems are actively researched due to their
obvious commercial values (for example, [2], [3]). In
practice, recommender systems have contributed greatly
to e-commerce successes like Amazon.com.

The two most popular recommendation techniques today
are the collaborative filtering [4] and the content-based approach
[5], although a number of other techniques exist [6]. A
collaborative filtering recommender compares its users for
similarity in rating profiles and returns items that similar
users have rated highly. On the other hand, a content-based
recommender learns from the properties of the items and
returns the items that are similar to those that the user has
rated highly in the past. A shortcoming of these techniques is
that they do not take into account situational information,
which seriously reduces their effectiveness. For instance,
suppose that a user requests to “recommend me a restaurant
with Japanese food.” A restaurant recommender selects a place
with Japanese food but does not realize that the user would
have preferred a nearer place as it is raining. Clearly, the

1

. G.-E. Yap and A-.H. Tan are with the School of Computer Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore 639798.
E-mail: {yapg0001, asahtan}@ntu.edu.sg.

. H.-H. Pang is with the School of Information Systems, Singapore
Management University, 80 Stamford Rd., Singapore, 178902.
E-mail: hhpang@smu.edu.sg.

Manuscript received 6 Feb. 2006; revised 5 Oct. 2006; accepted 30 Jan. 2007;
published online 6 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0057-0206.
Digital Object Identifier no. 10.1109/TKDE.2007.1065.

recommender is disadvantaged because it is unaware of its
context of use, that is, the relevant situational information that
characterizes the user-application interaction [7].

Recent years see a growing interest in context-aware
recommender systems (for example, [8], [9], [10]). In parti-
cular, context-aware recommender systems promise far and
viable business applications for mobile e-commerce, or
m-commerce (for example, [2], [10]). However, current
mobile context-aware recommenders face a number of
unique challenges that have to be resolved, particularly,
with respect to the acquisition of context in the volatile and
highly constrained mobile environment.

1.1 Current Challenges and Our Proposed Solution

The first challenge is to identify the minimal set of important
context parameters for a user. Mobile context-aware
recommenders face serious resource limitations, so they
need to acquire just the important context in order to
conserve resources. A common solution to this problem is
feature selection (for example, [9]), where statistical tests are
used to retain the individually significant parameters. Other
works like that by van Setten et al. [10] suggest allowing the
users to explicate their own preferences via rules like
“recommend me a café based on its location, but not on prices,”
and Yap et al. [11] automates the personalization by using
Support Vector Machines to identify the important context
parameters for a user. All these prior approaches recognize
and exploit the fact that, to individual users, some context
parameters may be more important than others. However,
they assume that the context parameters affect users’
decisions independently and fail to model their causal
dependencies.

The second challenge is the presence of missing and
erroneous, or noisy, context inputs. Within the volatile

mobile environment, lapses in context acquisition fre-
quently occur due to reasons such as failure to negotiate
access rights to protected information, faulty sensors, and
also intermittently broken or unstable communication links.
Similarly, sources of context (for example, hardware and
software sensors) are prone to errors. Mobile context-aware
recommenders have to be equipped to maintain accurate
predictions even under these imperfect conditions. To the
best of our knowledge, no prior work has considered
exploiting the causal dependencies among context para-
meters so as to address the problem of missing and
erroneous context inputs. In particular, learning methods
like decision tree (DT) and support vector machine do not
encode causal dependencies and, thus, cannot compensate
readily for missing and erroneous context inputs.

1.2 Our Contributions and Paper Organization

This paper has two primary research contributions. First,
we propose a Bayesian network (BN)-based recommender
that learns the minimal set of important parameters for a
user to minimize context acquisition. Our learning proce-
dure iteratively discards parameters that are not connected
to the user rating variable in the learned BN. The remaining
parameters constitute the minimal context for that user. In
applications that reason with defined markers, that is,
higher level concepts derived from the primitive context
parameters, we apply the procedure on the markers. Those
context parameters feeding into the minimal marker set
would then constitute the minimal context. Since there are
typically far fewer markers than context parameters,
learning on markers allows the corresponding minimal
context for a user to be identified from fewer examples.

Our second contribution is that we harness the causal
dependencies among context parameters to make our
recommender resilient against missing and erroneous
context inputs. We show how causal dependencies can be
captured effectively using a two-tiered context model. The
BN learned on this context model is able to compensate for
those context inputs that are left unspecified during the
prediction. We also introduce a procedure for overcoming
erroneous context inputs. The procedure uses the learned
BN to estimate the error rates of individual context
parameters from the training set. It then discards those
inconsistent or outlier examples and learns a new network
from the cleansed data. During the prediction, the erro-
neous context inputs are entered as likelihood estimates in
order to account for their uncertainty.

We have evaluated the proposed techniques on a
restaurant recommendation problem involving defined
markers and strong causal dependencies among context
parameters. We have also experimented with a Web page
recommendation problem where there are only weak
dependencies between word attributes. The results for both
problems show that our iterative learning procedure
reliably identifies the minimal set of important context
parameters for the users. In addition, the learned BN
consistently outperforms the J4.8 DT in overcoming missing
and erroneous context inputs to produce consistently more
accurate predictions on user ratings.

The rest of this paper is organized as follows: In Section 2,
we describe the BN, the Causal discovery via Minimum
Message Length (CaMML) program [12] for learning BN,
and the prior works. We define context-aware content-based

recommender systems in Section 3, and we present our two-
tiered context model in Section 4. In Section 5, we introduce
our proposed techniques to overcome missing and erro-
neous context inputs. Section 6 presents our restaurant
recommender application, and we evaluate our techniques
on this application in Section 7. Section 8 presents a further
validation on a benchmark Web page recommendation
problem. Section 9 concludes this paper.

2 BACKGROUND

2.1 The Bayesian Network

Causal dependencies among the variables in a domain can be
effectively modeled within the directed acyclic graphical
model of a BN. These causal dependencies are captured
qualitatively by the network structure, that is, the arcs
linking the network variables (nodes), and quantitatively by
the table of conditional probabilities that is associated with
each node.

Heckerman [13] states that the local distribution func-
tions in a BN are actually classification models. Past works
[14], [15] have argued that, given complete data for
prediction, neither DT nor BN would significantly outper-
form each other. However, unlike the DT, BN encodes the
causal dependencies among parameters. The results we
present in this paper clearly demonstrate that this makes
the BN more suitable than the J4.8 DT for compensating
missing and erroneous context inputs.

Most prior works rely on BNs that are either manually
crafted or translated from existing ontologies [16]. How-
ever, because both the causal dependencies and the relative
importance of the context parameters are user specific, we
need techniques to automatically learn the network struc-
ture and to parameterize the learned network based on the
data. In this work, we adopt the CaMML program [12] for
automatic BN learning from the data.

2.2 Learning BN from the Data with CaMML

CaMML [12] stochastically searches over the entire space
of causal models to find the best model h that
maximizes a Minimum Message Length (MML) posterior
metric [17]. The MML structural posterior metric that is
used in CaMML is defined as PMMLðhÞ ¼ e�IMMLðhÞ, for
IMMLðhÞ ¼ logN!�

P
i logpi �

P
j logð1� pjÞ, where N re-

presents the number of nodes in model h, pi reflects the
prior probability for a directed arc i present in h, and pj
reflects the prior probability for a possible arc j absent
from h.

CaMML performs a Metropolis search in the space of all
possible models. For each real model it visits, it computes a
representative model and counts only on these representa-
tives to overlook the trivial variations. This grouping of real
models is necessary in practice because the space of real
models is exponential in the number of nodes, and each
model would otherwise get only a very small number of
visits even for the sizable data sets [17]. The MML posterior
of each representative is computed as the total MML
posterior of its members. This total posterior approximates
the probability that the true model lies within the MML
equivalence class of the representative. The best model is
hence the representative model with the highest MML
posterior. For more details, please refer to [12] and [17]. It

2

suffices for us to note that, since the number of possible
models is factorial in the number of nodes N , the theoretical
worst-case complexity of the CaMML learning process is
OðN !Þ, although, in practice, the average complexity of the
stochastic Metropolis sampling should at most be exponen-
tial in the number of nodes.

2.3 Related Works

Context-awareness enhances both collaborative filtering
and content-based recommendation. Collaborative filtering
now considers also the context in which the user ratings are
given. Recent works including [9] and [18] have recorded
the context of each rating, such that if user A rates a
restaurant in good weather, this rating would not be
considered when it is raining. Effectively, this matches the
users based on context in addition to their rating profiles. In
[9], a context parameter is identified as consequential if it
produces statistically different average user ratings across
its values, for example, weather is consequential if user
ratings are generally lower when it rains. However, such a
classic application of feature selection weighs the context
parameters separately and does not capture the causal
dependencies among the consequential context parameters.

Collaborative filtering sidesteps the need to analyze and
understand exactly what are the factors that go into making
a certain user prefer a certain item. However, this also
means that they cannot make recommendations on unrated
items, cannot personalize their recommendations to a
unique user, and cannot explain their recommendations
easily. In contrast, content-based techniques use attributes
of the items to make recommendations. This enables them
to recommend unrated items to users with unique interests
and also to provide explanations for all their recommenda-
tions [19]. A context-aware content-based recommender can
further explain its recommendations in terms of the
captured causal dependencies among context parameters
specific to individual users. As such, we use this as our
platform to address the challenges highlighted in Sec-
tion 1.1. A formal definition of context-aware content-based
recommenders is provided in Section 3.

Among the prior works that have used BN in context-
aware computing, Gu et al. [16] add dependency and
probability markups to the World Wide Web Consortium
(W3C)-endorsed Web Ontology Language. Their manually
defined context ontology can then be mapped to a BN. These
prior works are motivated by the efficient probabilistic
reasoning capability of a BN and its graphical superiority in
representing causal dependencies among context para-
meters. Indeed, BN has many meaningful applications in
context-aware systems, for example, the context-aware
robotic aid for the elderly blind [20]. Unfortunately, all of
these prior works do not discover the user-specific causal
dependencies among context parameters by learning from
the data.

Similarly, BN is not new to recommender systems.
Breese et al. [21] propose a probabilistic collaborative
filtering approach that learns BN from transactional data,
with each node representing an item on sale or a commodity.
Likewise, Ji et al. [3], [22] propose to learn BN from a
customer’s shopping history, such that each network node
represents one commodity. Commodities are then recom-
mended based on probabilistic inference according to the
last known shopping actions. Effectively, all these prior

works learn BN to capture purchase patterns among
commodities. A drawback is that this approach suffers
from the sparsity problem, where data points are often far
fewer than the commodities. More importantly, just the
purchase patterns among specific commodities are learned
from past transactions without exploiting those potentially
useful causal dependencies among the context parameters.

In all of the above prior works, either the causal
dependencies are manually crafted and, hence, not user
specific or context is not exploited at all in the learned BN.
Thus, they cannot identify the minimal context nor can they
overcome missing and erroneous context inputs.

3 CONTEXT-AWARE CONTENT-BASED

RECOMMENDER SYSTEMS

The goal of a context-aware content-based recommendation
system is to predict the utility of an unrated item, for a user
ua 2 U , based on her rated items Iua and the context in
which those ratings, or scores, are recorded. The advices are
typically presented to the user in two forms:

. Prediction. A numerical value Pa;j that expresses the
predicted utility of item ij 62 Iua for the user ua. Pa;j
would be within the same scale (for example, from 1
to 10) as ratings given by ua.

. Recommendation. A list of top-N unrated items that
the model predicts ua to like the most.

Fig. 1 shows a schematic diagram of the context-aware
content-based recommendation process. The ratings ma-
trix A records past ratings for items by users. A record of
the rating by a user ua on an item ij is a triplet
< ca;j; fa;j; rua;ij > . This triplet comprises the vector of
user context ca;j and the vector of item attributes fa;j for
that interaction, as well as the given rating value rua;ij .
For example, in restaurant recommendation, item attri-
butes might include whether vegetarian food is available
and also whether an eating place is crowded. User
context might include whether the user is a vegetarian
and whether he or she minds a crowded restaurant at the
time of interaction.

Although collaborative filtering considers all m rows of
user ratings to recommend for user ua, here, we only
consider the items that are rated before by user ua. Each of
these records provides an example for learning ua’s profile,
comprising of the vector of user context inputs, the vector of
item attributes inputs, and the recorded rating, or score
value (the class variable).

From the data, the context-aware content-based algo-
rithm computes for an unrated item ij, Pa;jðSj ¼ vjca;j; fa;jÞ
for v 2 RS , where RS are values that the score S can take
(for example, v is one of values “1” to “5” for a five-point

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 3

Fig. 1. The context-aware content-based recommendation process.

rating scale). This is the posterior probability that a user ua
gives a score of v to an item ij with context vector ca;j and
attribute vector fa;j. The algorithm computes this for each
item, and it recommends items with the highest predicted
ratings.

Based on this formalism of context-aware content-based
recommenders, the objective of our work presented in this
paper is to automatically discover, for user ua, a minimal set
that contains only context parameters important to ua. In
addition, we aim to harness the causal dependencies among
context parameters to effectively overcome missing and
erroneous context inputs.

4 A CONTEXT MODEL FOR EFFECTIVE LEARNING

As discussed earlier in Section 2.2, the time complexity of
the BN learning algorithm is dependent on the number of
network parameters. This is a concern as there are often far
too many context parameters that are eligible for considera-
tion in a recommender. Also, many context inputs are
acquired from sources that can become intermittently
unavailable and require alternatives to be used, especially
in service-oriented frameworks (for example, [23], [24]). To
achieve a compact and more manageable set of learning
parameters, we propose the use of domain-specific markers,
popular among existing clinical (especially cancer) research
works.

In the context of recommender systems, a marker is a
domain-specific factor that is considered by the system
designer as suitable for evaluating an item. For instance, a
marker for a restaurant recommender could be “Is the
restaurant open during the visit?” because this condition
would be a relevant concern for the typical users of that
system. A marker can therefore be regarded as a Boolean
function that takes in several specific user context and item
attributes as parameters to gauge whether a certain condi-
tion of concern is satisfied by a particular item. Since the
defined markers are typically far fewer than the relevant
context parameters, learning on markers allows us to
discover the minimal marker set from fewer examples. We
can then identify only those context parameters that feed
into this minimal marker set as being important to that user.

With reference to our context model in Fig. 2, an item
refers to one of the many choices that are to be rated and
possibly recommended, for example, a restaurant. A lower
tier handles the user context and item attributes. The user
context includes higher level context like the user’s pre-
ference for cleanliness, as well as more primitive situational
context like the weather. An upper tier handles the item
markers and the item score. An item marker’s value is
computed using designer-specified heuristics based on the
values of its associated user context and item attributes. The
item score for an item is a rating value that is provided by the
user to reflect the suitability of that item.

Our proposed two-tiered context model can take advan-
tage of markers to reduce the number of learning parameters

when looking for the minimal context. In principle, the
heuristics used to compute the marker values can be
generated automatically. For instance, a similar user-
adaptation problem has been addressed by bootstrapping
the recommender with user profiles sampled from a
probabilistic model built from prior knowledge [25]. In
applications without defined markers, our two-tiered model
applies directly on the context parameters. In such cases, we
look for the minimal set of parameters and include the
parameters connected to this minimal set as our second tier.
Doing so effectively captures their causal dependencies, as
we would be demonstrating via the Web page recommenda-
tion problem presented in Section 8. For the rest of this
section, we shall describe our techniques within the context
that markers are available for the recommender system, but
the same proposed techniques are equally useful in cases
where there are no markers.

4.1 Identifying and Learning on the Optimal Set of
Predictors

We develop an iterative procedure for learning a BN with
only the minimal set of context parameters. First, we learn
with just the markers and the score to find the minimal set
of important markers. Learning on all the markers initially,
we retain those markers that connect to the user rating, or
score variable, for a second learning. In this way, the
procedure iteratively trims away markers until the remain-
ing markers are all connected to the score variable. We can
now include those context parameters and item attributes
that feed into the minimal marker set as part of our learning
parameters. The resulting BN learned using this procedure
effectively captures the causal dependencies among the
context parameters important to that user.

Our proposed context model eliminates the need to learn
on the large set of context parameters in applications where
a far smaller set of markers are available. Also, unlike in
prior works that model specific commodities as network
nodes, we learn a compact and explanatory BN to capture
the user-specific causal dependencies among context para-
meters. As such, we can predict ratings even for new items,
without having to add new nodes or relearn the network.

4.2 Performing Prediction Using Learned BN

Using the Netica-J Application Programmer Interfaces (API)
[26], we predict the score with the learned network by
feeding in the values of the user context and item attributes
therefore allowing the beliefs of the marker values and, in
turn, those of the item score to be updated. We then
recommend the highest scoring items to the user. Invoking
Netica-J’s belief updating mechanism for prediction is
straightforward once CaMML has recorded the learned
model in the Netica format. It involves the following steps:

. Step 1. For an unrated item ij, it presents its current
context vector ca;j and attribute vector fa;j for a user
ua to the learned BN.

. Step 2. Let the BN update all Pa;jðSj ¼ vjca;j; fa;jÞ,
where v represents each of the values that the item
score variable can take.

. Step 3. Predict, for the unrated item ij, the score
value v with the highest Pa;jðSj ¼ vjca;j; fa;jÞ.

Netica uses the fastest known algorithm for the exact
general probabilistic inference in a compiled BN, known as

4

Fig. 2. A two-tiered context model.

message passing in a join tree (“junction tree”) of cliques. For
details of this algorithm, please refer to the software’s
manual [26] and the more technical discussions in [27]. As
belief updating is done once for each item in each round of
recommendation, time complexity of each recommendation
is OðnÞ, where n is the number of items. Empirically, we
observe that the BN inference mechanism is very efficient.
In the experiments, hundreds of predictions are completed
within seconds on a PC.

5 HANDLING MISSING AND ERRONEOUS CONTEXT

INPUTS FOR ACCURATE PREDICTION

5.1 Handling Missing Context Inputs

In most supervised learning techniques, including DT and
the support vector machine, missing values in the test
examples are handled by filling in the blanks. We can build
a prediction model for each missing attribute to estimate its
missing values. Otherwise, we can fill in missing values
with aggregate values (for example, mean and mode) that
are determined from the training set. Besides these, there
are other sophisticated techniques in the statistical litera-
ture. One popular approach is Multiple Imputation [28],
which involves the processes of imputation, analysis, and
pooling. A good reference on this and other statistical
techniques for handling missing data is [29].

Although all of the above techniques require manipula-
tion of data to prepare them for prediction, in a BN, partial
evidence can be entered during prediction, and the network
would compensate for the unspecified inputs using its
captured causal dependencies.

5.2 Handling a Single Error Context

Our procedure to handle erroneous context inputs is shown
in Fig. 3. The training set comprises the parameters
identified through our iterative learning procedure in
Section 4.1. The error-handling procedure learns an initial
BN from this training set with context in error. Predicting
on the training set with this network, the procedure iterates
over the individual context to identify the erroneous
context, such that the percentage of misclassified training

examples for each context is its estimated error rate. The
procedure retains the correctly classified examples, or the
hits, and learns a more accurate BN on these examples. This
final BN then takes into account the estimated error rate
when predicting on unseen examples.

The subprocedure for automatically identifying a single
erroneous context and cleansing the training set is
summarized into Algorithm 1. First, a process identifies
the context that is in error and estimates its error rate;
second, the training set is “cleansed” by discarding training
examples that are misclassified for that context. The time
added by steps 1 and 2 is linear in the size of the training
set, K, due to repeated predictions on the examples. Letting
the number of context parameters be p, the complexity of
these steps is OðpKÞ. This is efficient in practice as K is
usually small (the typical user would seldom have seen too
many examples). With reference to Section 2.2, CaMML
learning has the worst-case time complexity of OðN !Þ,
where N is the number of nodes in the network. The overall
complexity of Algorithm 1 is therefore OðpK þN!Þ, with the
bulk of the time taken up by the CaMML learning from the
cleansed data.

Algorithm 1. Handing a Single Unidentified Erroneous

Context with an Unknown Error Rate

Input: Initial BN ðBnInÞ that is learned on the original
training set with errors ðdataInÞ.

Output: Final BN ðBnOutÞ learned on cleansed data

ðdataOutÞ, the error context ðerrCtxÞ and its

estimated error rate ðerrEstÞ.
Step 1: Identify errCtx and find errEst

Set the first context, C1, as errCtx.

Treat C1 as missing and predict its values in all of dataIn

using BnIn.
Set errEst to the proportion of dataIn for which C1 is

misclassified ðPerrðC1ÞÞ.
for each remaining context Ci do

Treat Ci as missing and predict its values in all of

dataIn using BnIn.

if PerrðCiÞ > errEst then

Set errCtx to Ci.

Set errEst to PerrðCiÞ.
Step 2: Cleanse dataIn of suspicious examples

for each example in dataIn do

Treat errCtx as missing and predict its value using

BnIn.

if the predicted value of errCtx differs from its labeled

value then

Remove this example from dataIn.

{If resources permit, Step 2 simply recalls and removes
examples misclassified earlier from Step 1.}

Step 3: Complete the error context identification and

data-cleansing procedure

Learn BnOut on cleansed training set dataOut from

Step 2.

return BnOut, dataOut, errCtx, and errEst.

Training BN on “cleansed” data makes sense as we
expect better models when the training set contains fewer
error examples. This intuition is an important motivation

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 5

Fig. 3. Procedure for handling erroneous context inputs.

behind the traditional works on outlier detection methods
[30], as well as recent works that have extended the notion
of “noise” to include examples that are irrelevant or weakly
relevant [31].

5.2.1 Identifying Error Context and Estimating

Error Rate

In the data mining field, dealing with noisy or erroneous
data usually involves identifying training examples with
inconsistent values as outliers and removing these from the
training set so that we learn an improved model [30]. In
general, the outlier detection methods (for example,
distance-based, density-based, and clustering-based) assign
an outlier score to each example and remove those
examples above some threshold [31]. For instance, Brodley
and Friedl [32] employ majority voting to discard the
mislabeled training examples.

We take an inspiration from the outlier detection
methods—we build a prediction model using the entire
training set to make predictions on each context in turn, so
that we can identify those examples where the predictions
differ from their observed values as the outliers. For a start,
we assume that only one of the context important to the
user is in error, but we do not know which one it is or what
its rate of error is. All we are initially presented with is the
set of training examples that are noisy. Hence, we begin by
using CaMML to learn an initial BN, which we use to
predict in turn on each context to estimate their individual
error rates.

5.2.2 Cleansing the Training Set

Having estimated the individual error rates, we identify the
context with the largest error as the one that is erroneous.
We now have its training error rate (proportion of training
examples for which the initial learned BN prediction model
misclassifies the erroneous context) as our “knowledge of
context with largest error” (Fig. 3). Each correctly classified
training example is termed as a hit, and we separate these
hits from the misses to get a reduced set of training
examples. We cannot ascertain in practice if this reduced
set of training examples is in fact error free. We are trying to
remove as many of those examples with possibly erroneous
context inputs, so that our BN learned on the “cleansed”
training set can better reflect the actual causal dependencies
among context parameters.

5.2.3 Predicting on Score Using Likelihood Findings to

Account for Uncertainty in Context

After obtaining the cleansed set of training examples (the
hits from the initial BN, that is, those correct predictions on
the identified error context), we learn a final BN for
predicting the user ratings, or the scores, of unrated items.
We can verify the final BN’s accuracy by predicting the user
ratings for an unseen set of test examples. This test set
should be noisy too, with similar noise characteristics as the
original training set.

When predicting the user rating, BN can take into
account the estimated error rate, or the uncertainty, in the
erroneous context. This is an important capability not
available in other classifiers like DTs. In the normal

inference scenario, where we are not aware of possible
errors in the context inputs, we enter each input from the
test example as specific evidence. For example, suppose that
the input values for the context parameter “weather” can be
“hot,” “rainy,” or “fine.” Now, if we enter an input of “fine”
as specific evidence, a likelihood probability of 1.0 would be
used for “fine,” whereas 0.0 would be used for the other
two values. However, when there are errors in the inputs of
a context, entering these erroneous inputs as specific
evidence is likely to result in wrong inferences. Fortunately,
a BN allows us to specify such potentially erroneous
evidence as likelihood findings instead of specific evidence.

Let the observation on the “weather” context be O. The
likelihood finding for O is given by

fprob ðO j fweather ¼ 00hot00gÞ;
prob ðO j fweather ¼ 00rainy00gÞ;
prob ðO j fweather ¼ 00fine00gÞg:

For the example where we observe “weather” as “fine,”
suppose we are also aware that this observation carries an
estimated error probability of e. This means that each of
the inputs for “weather” might be wrong e � 100 percent
of the time. This error probability for the erroneous
context can be estimated using the training error rate
discovered by our error-handling procedure. The like-
lihood finding for O : fweather ¼ 00fine00g would then be
given by fe�0:5; e�0:5; 1:0� eg. This is because O may be
wrong with a probability of e, and “weather” has only
three states, so the probability of inputting “weather” as
“fine” when it is actually “hot” or “rainy” is e � 0:5.
Depicting S as the number of states of the erroneous
context, we can generalize this formulation of the like-
lihood finding from the estimated error probability e as
follows:

Likelihood for the observed state ¼ 1:0� e; and

Likelihood for any other state ¼ e�½1:0=ðS � 1Þ�:

As the effect of entering an error rate of zero for each
context is equivalent to entering a specific evidence, the
above likelihood formulation is appropriate even when the
evidence is known to be certain. As explained in [17], we
should consider the prior probabilities within the training
set when computing the likelihoods. However, as our
restaurant recommendation data set covers all states of each
context without bias, the input priors are roughly uniform.
Results in Section 7.3 show that, by taking account of the
uncertainty in the erroneous context inputs, BN overcomes
erroneous context inputs to predict accurately on unseen
examples.

5.3 Handling Multiple Erroneous Context

So far, we have assumed the knowledge that a single
context is in error. In practice, we do not know how many
context might be erroneous, so we need to make sure that
our procedure is not restricted by this assumption. Our
proposed procedure factors out the negative effects of the
highest error context one at a time until the estimated error
in the remaining context is below some defined threshold.
This error handling procedure has been summarized into

6

Algorithm 2. Since steps 1 and 2 iterate over the set of
p context parameters, the worst-case time complexity of this
procedure is Oðp2K þ ðpþ 1ÞN!Þ, where K is the number of
training examples, and N is the number of nodes in the
network. Most of this complexity ðOððpþ 1ÞN!ÞÞ is actually
due to the CaMML learning. As such, our iterative learning
procedure (Section 4.1), which finds the minimal set of
important parameters, can significantly improve the effi-
ciency of error handling.

Algorithm 2. Handing Multiple Unidentified Erroneous
Context with Unknown Error Rates

Input: Initial BN ðBnInÞ learned on the original training set

ðdataInÞ, and the minimum threshold for an error

context ðerrMinÞ.
Output: Final BN ðBnOutÞ learned on cleansed data

ðdataOutÞ, the error context ðerrCtxsÞ and their

estimated error rates ðerrEstsÞ.
Step 1: Identify errCtxs and find errEsts

Identify the top most erroneous context Ctop as per

Algorithm 1.

Add Ctop to errCtxs and set errEsts to error rate of Ctop.

while minimum errEsts � errMin do

Estimate likelihoods using errEsts.

Entering the values of errCtxs as likelihoods, identify

the next most erroneous context Cnext.

Add Cnext to errCtxs and set errEsts to current error
rates of errCtxs.

Step 2: Cleanse dataIn of suspicious examples

while mean error on errCtxs is significant under a

statistical t-test do

Remove the training examples that misclassify the

context in errCtxs with the largest error.

Learn on this partially cleansed data for the next

iteration.
Step 3: Complete the error context identification and

data-cleansing procedure

Learn BnOut on cleansed training set dataOut from

Step 2.

return BnOut, dataOut, errCtxs, and errEsts.

5.3.1 Identifying Error Context and Estimating

Error Rates

Our error-handling procedure described in Section 5.2 is
extended as follows: First, we iteratively predict on the
important context with all inputs entered as specific
evidence, and we take note of the error rate for the single
most erroneous context. We again iterate over all the
context, but now we specify all inputs for that most
erroneous context as likelihood findings computed based on
its noted rate of error. The next most erroneous context is
identified, and its error rate, as well as that of the most
erroneous context, are noted. Then, we iterate over all the
context using the likelihood findings for these two most
erroneous context. This process is repeated until the
estimated error rate of the next most erroneous context
falls below a specified minimum error threshold. In this
way, the procedure identifies the erroneous contexts in
sequence based on their estimated error rates. Although

contexts with the largest error rates may not be necessarily
erroneous, this is a reasonable basis for identifying the
contexts in order of how likely they are to be in error.

This iterative error discovery process is analogous to the
Principle Component Analysis (PCA). We first identify the
single most erroneous context, remove its dismal effects
from the training set by inputting it with uncertainty in the
next round, then we look for the second most erroneous
context, and so on. Analogous to Henry Kaiser’s recom-
mendation for retaining only principle components with an
eigenvalue exceeding 1.0, our procedure stops looking for
erroneous context when the estimated error in the next most
erroneous context drops below some threshold. As users
generally do exhibit some reasonably small degree of
natural randomness in their behaviors, this minimum error
threshold allows our procedure to filter out such back-
ground noises.

5.3.2 Cleansing Training Set by Removing Examples

with Errors in One or More Context

Now, we have to decide upon the amount of “data
cleansing” before we commence the final learning. Under
the previous assumption of a single error context, we
simply remove wrong predictions on that context from the
training set. Now, with multiple context in error, we have
the alternatives of either to remove misses for all the error
context identified or remove just misses on the most
erroneous context, learn a network on the hits, and then
evaluate the model on an unseen validation set to decide
whether to proceed with removing misses on the second
most erroneous context, and so on. We note that removing
all the training misses for all the error context presents the
danger of overfitting as the size of our training set dwindles,
so the second approach provides us with a means to cross
validate on the given examples in order to avoid overfitting
the data.

We implement the second approach above with certain
modifications, so as to overcome the two limitations of
having to set aside a validation set and having to predefine
a fixed threshold for deciding when to stop cleansing. In the
first iteration of data cleansing, we perform a statistical
t-test [33] to check if the mean estimated context error is
significant at some desired level (for example, 0.01 or 0.05).
If so, we remove those training examples that have
misclassified the single context with the largest error, learn
on this partially cleansed training set for the next iteration,
and so on. We stop cleansing when the mean estimated
error is not significantly different from 0.0 in any iteration.
The experimental results for this procedure are presented in
Section 7.5.

6 A RESTAURANT RECOMMENDER APPLICATION

We demonstrate how our proposed approach works in a
restaurant recommender application named “RR II” (our
second restaurant recommender). This application learns
automatically from the data the underlying causal depen-
dencies among parameters as a BN for a specific user and
then predicts the scores for candidate restaurants using this
learned network. To make the application realistic, a rich set
of real-world context parameters, restaurant attributes, and

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 7

user considerations is used to generate data examples that
represent multiple users. During the evaluation, only these
data examples are presented. This enables us to evaluate
whether our proposed approach is indeed useful for
reliably discovering from the data the unique personal
characteristics of different users and exploiting these to
maintain robust predictions.

Fig. 4 shows the context model of RR II, which
implements the model in Fig. 2. We define a total of 26 user
context parameters, 30 restaurant attributes, and 21 mar-
kers. In a typical mobile recommender, the number of
contexts is much greater than the number of markers, so our
advantage of not learning on all the context is even more
significant in practice. User context includes relevant
aspects of the user’s current situation (for example, “weath-
er”), as well as the relevant aspects of the user’s preferences
(for example, “cleanliness”). Restaurant attributes include
“category” and “is clean.” The markers are defined to
represent typical user concerns like whether a restaurant
is “open during visit.” In all, 15 restaurants have been
modeled for selection.

Each marker is defined as a boolean variable. For
example, a restaurant is either “open” or “not open” at
the time of visit. We develop a software simulator program
that generates examples spanning across all of the possible
values of each parameter while adhering to a user-specific
causal model. The corresponding causal models are defined
on user context and not on system markers, so as to
accurately reflect how a typical and logical user would
consistently behave.

For example, our first model (Table 1) represents a user
who knows how to dress for different occasions. A set of
causal rules can be used to model how such a user would
dress up for different eating places. For example, she
dresses consciously when visiting a club; otherwise, she
prefers to stay casual when eating in a café or canteen. In
addition, this user prefers to eat in open-air canteens for
informal occasions because fresh air improves her appetite.
The corresponding causal model that represents this user,
User 1, is illustrated below.

Model 1. Causal Dependencies among Context for User 1

if UP.category == “café” then

US.attire = “casual”; UP.ventilation = “aircon”;

else if UP.category == “club” then

US.attire = “formal”; UP.ventilation = “aircon”;

else if UP.category == “canteen” then

US.attire = “casual”; UP.ventilation = “nonAircon”;

else if UP.category == “dunCare” then

US.attire = “dunCare”; UP.ventilation = “dunCare”;

For each recommendation cycle, the user context values
and restaurant attribute values are compared via heuristics

to determine whether a marker should take on a value of 1
(“satisfied”) or 0 (“not satisfied”). Examples of heuristics for
deriving three of the defined markers, M3, M11, and M12,
are given below. The two prefixes of “US.” and “UP.” refer
to a user situation and a user preference context, respectively,
while the prefix “RA.” refers to a restaurant attribute.

Heuristic M3 userAttireIsAppropriate (M3)

if RA.attireRequirement==“formal” then

if US.attire==“formal” then valueof(M3)=“yes”;

else if US.attire==“casual” then valueof(M3)=“no”;

else if RA.attireRequirement==“none” then

valueof(M3)=“yes”;
Heuristic M11 matchesIsAirConditionedPref (M11)

if UP.ventilation==“aircon” then

if RA.isAirConditioned==“yes” then

valueof(M11)=“yes”;

else valueof(M11)=“no”;

else if UP.ventilation==“nonAircon” then

if RA.isAirConditioned==“yes” then valueof(M11)=“no”;

else valueof(M11)=“yes”;
else if UP.ventilation==“dunCare” then

valueof(M11)=“yes”;

Heuristic M12 isOfDesiredCategory (M12)

if UP.category==RA.category then

valueof(M12)=“yes”;

else valueof(M12)=“no”;

Fig. 5 shows the defined causal dependencies corre-
sponding to each of these three markers of M3, M11, and
M12. Based on the corresponding derived marker values,
we simulate the user rating given for a restaurant, or the
restaurant’s score value, using the formula below:

8

Fig. 4. Context model of our restaurant recommender application,

RR II.

TABLE 1
User Preference Rules and Models

Fig. 5. Causal dependencies for markers (a) M3, (b) M11, and (c) M12.

score ¼ No: of Important Markers with value 00100

No: of Important Markers
:

This formula reflects the behavior of a logical user who
rates each of the presented restaurants according to their
overall performance on a minimal set of markers that are
important to him or her. The equal weighing of important
markers is just an example of the many possible scoring
functions for a user, which of course can be much more
complex and flexible for an idiosyncratic user. In fact, in the
actual application scenario, there would not be any explicit
scoring function, but the users would instead have stated
their preferences among items based on some given scales.
As in the actual scenario, just the data examples are
presented for analysis in our evaluations, and we have to
learn the scoring model for each user based only on these
past records. Each example presented in our experiments
thus comprises the generated user context and attribute
values, the marker values derived using the heuristics, and
the scores for the restaurants.

7 EXPERIMENTAL VALIDATION

7.1 Learning the Minimal Set of Important
Parameters

The first set of experiments aims to verify that the minimal
set of markers that is truly important to a certain user could
be effectively recovered in the BN learned from observation
data. To generate observation data, we define a set of
preference rules to represent different user logics in con-
sidering markers when scoring restaurants, and a set of
causal models to state the causal interdependencies among
the corresponding important context. The preference rules
and their corresponding causal models are listed in Table 1.
For example, according to the preference rule for User 1, the
three markers “userAttireIsAppropriate,” “matchesIsAirCondi-
tionedPref,” and “isOfDesiredCategory,” labeled as “M3,”
“M11,” and “M12,” respectively, are equally important.

For each rule, we learn using CaMML from 1,000 ob-
servations and retain only those markers that are directly

connected to the score node in the resulting network. We
then learn again on the same set of examples, but with all
other markers removed. This process of automatic learning
and pruning is repeated until a learned model has all of its
markers directly linked to the score.

From our first round of learning on the training set
corresponding to User 1, we obtain the BN that is shown in
Fig. 6a. On the right-hand side of this figure, we see that
only the four markers of M3, M11, M12, and M18 are
connected to score. To verify if all these four markers are
truly important for scoring, we retain just these four
markers and the score variable to perform a second round
of learning. From the resulting network as shown in Fig. 6b,
only M3, M11, and M12 (the three nodes on the left) are
directly connected to the score variable. We therefore retain
only the score and these three nodes for our third round of
confirmation learning. The resulting network in Fig. 6c
shows that all the three markers that are supposed to be
important to the first user (as stated in Table 1) are still
directly connected to the score.

To evaluate the system’s performance in discovering the
correct minimal set of markers, we have adapted the
F -measure from the information retrieval field using the
following definitions:

Recall ¼ No: of Important Markers Connected to Score

Number of Important Markers

Precision ¼ No: of Important Markers Connected to Score

No: of Markers Connected to Score

F -measure ¼ 2ðRecallÞðPrecisionÞ
ðRecallÞ þ ðPrecisionÞ :

These modified definitions accurately reflect our context
of analysis where a positive hit refers to an important
marker being directly connected to the score node in the
learned model. The recall value represents the proportion of
truly important markers that are identified, whereas
precision measures the proportion of those markers marked
as important that are truly important. The F -measure is then
the weighted average, or the harmonic mean, of recall and
precision. Therefore, together, they measure how well the set
of important markers matches those connected to the score.

The results of learning from the data sets are given in
Table 2. The learned BNs consistently yield an F-measure
value of 100 percent by the second round for users 1, 2, 3,
and 5, whereas a 100 percent measure is obtained after just
one round of learning for user 4. These results show that
our proposed approach reliably identifies the minimal set of
parameters important to the user.

7.2 Prediction with Missing Context Values

In our second set of experiments, we employ the minimal
sets of important markers identified in our earlier experi-
ments to verify that the prediction accuracy on the score
remains high despite missing context values. For each user,
we prepare the same earlier set of 1,000 observations to
perform five rounds of two-fold cross validation. In the first
fold of each round, 500 examples are randomly chosen for
learning the dependencies among context, and the remain-
ing examples are used to test the prediction accuracy on the
score. In the second fold, we now train on the held-out set

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 9

Fig. 6. Discovered BN in each round of learning. (a) In round 1. (b) In

round 2. (c) In round 3.

and use the previous training set for testing. In each fold,
we learn a BN on the training set consisting of just the score
variable and the minimal set of markers together with their
corresponding user context and restaurant attributes.
Predictions on the test set are then performed using the
Netica-J API as it has been described previously in
Section 4.2.

In each validation fold, prediction accuracies are recorded
for the baseline where all of the context are available and
under scenarios where a context value (and, hence, its
dependent marker value) is missing in the 500 test examples.
We compare the results to the corresponding prediction
accuracies that are achieved with the J4.8 DT classifier as
implemented in the Weka knowledge analysis tool [34], using
the default options given in Weka’s Explorer GUI.

We first investigate if the learned network comprising
just the minimal set of markers and the score (the upper tier
in our model of Fig. 2) is sufficient to handle missing
context values. Over five rounds of two-fold cross valida-
tion, we observe the prediction accuracy on score when all
the contexts are available and when the contexts (and,
hence, their dependent markers) go missing one at a time.
The results are shown in Table 3a. Both the BN and DT
suffer a greater than 20 percent drop in accuracy with
missing context values, suggesting that the important
context and their user-specific dependencies have to be
captured directly in our learning process.

Table 3b summarizes the accuracies when the important
context and restaurant attribute values from the same
examples are incorporated for learning. Clearly, the BN and
the J4.8 DT perform equally well when the data is complete,
that is, when no important context values is missing, but we
observe that the BN significantly outperforms the DT to
maintain a 100 percent prediction accuracy under the
imperfect scenarios of missing context inputs. The results
show that the causal dependencies among the various
context elements are indeed the key to the effective
compensations by the learned BN. The fewer markers
enable the minimal set of important parameters to be
quickly and reliably identified before these relevant causal
dependencies are accurately captured through automatic
learning from the data.

7.3 Prediction with a Single Erroneous Context

In all of our previous experiments, noise or erroneous context
inputs are absent from both our training and our test sets.

Here, in our third set of experiments, we investigate whether
BN learning can indeed reliably identify the same minimal
sets of important markers even in the presence of noisy
context. Furthermore, we evaluate if the prediction accuracy
on the score can still remain high despite the errors in
important context values. For each of the users modeled in
Table 1, we have prepared two sets of 1,000 examples for n
rounds of two-fold cross validation, where n is the number
of contexts that is important for each user. In each round, we
simulate the scenario where one of these n contexts
significant to the user is erroneous, but the system does
not know which is the erroneous context or what is its rate of
error. One thousand observations embedded with errors are
used for learning, and another set of 1,000 unseen test cases
carrying similar errors are used to validate the resulting
prediction accuracy on the score.

Within each fold, we first learn a BN on the training set
consisting of just the score variable and the set of markers.
Through the same stepwise elimination process as de-
scribed previously in Section 7.1, we identify the minimal
set of markers that are important for each user. The optimal
set of learning parameters then consists of the score
variable, together with these important markers and their
corresponding user context and restaurant attributes. With
this information in hand, we can now evaluate our
proposed procedure (Algorithm 1) in Section 5.2 for
handling a single unidentified erroneous context that has
an unknown rate of error.

With reference to the same user models that are
described in Table 1, our observations for User 1 are
summarized in Table 4. As before, we compare the average
prediction accuracies for our BN-based approach to the
results achieved with the J4.8 DT.

10

TABLE 2
Minimal Set Learning Performance

TABLE 3
Average Prediction Accuracy with Missing Context Values

(Percentages)

Complete: data is complete; Missing: with one context missing.
(a) Learning and predicting using only the upper tier. (b) Learning and
predicting using a cross-tier approach.

We observe that the DT and BN exhibit comparable
prediction accuracies when we treat the erroneous context
values as specific evidence. However, Table 4 shows that
prediction using the BN on the same test set after taking
into account the error rates in context consistently yields
significantly better results than the DT. This confirms that
our emphasis on discovering error rates for prediction is
indeed sound. Furthermore, results obtained when we
repeat the learning on cleansed data show that BNs trained
on cleansed data perform better than their counterparts
trained on uncleansed data sets on all occasions.

In Fig. 7, we compare the average prediction accuracies
of BN against DT over all of the modeled users when one
context is in error at a time. We observe that, even at the
high error rate of 45 percent, the BN maintains its accurate
predictions unlike the DT. This is because our procedure
has reliably identified the erroneous inputs and has
presented their values to the BN as likelihood estimates
during inferences, such that these could then be compen-
sated by the other presented input values. The strength of
our approach thus stems from its ability to reliably capture
the uncertainty in the erroneous context values in its
estimation of their likelihoods. A baseline of DT induction
from the original uncleansed data is added for comparison.
The results show that both the BN and the J4.8 DT benefit
from cleansing, and that, by using the discovered training
errors on a context as an estimate for its rate of error, our
procedure effectively derives its likelihoods to achieve
higher accuracy on erroneous data.

7.4 Prediction Performance under a Small Number
of Training Examples

We now evaluate the performance of our proposed error-
handling procedure from Algorithm 1 under a smaller
number of training examples. Specifically, we compare the
average prediction accuracy of a BN against a J4.8 DT when
an important context suffers from various rates of error. For
each of our five modeled users, we reserve the last 100 of
their examples for testing. In each trial, we randomly select
k of the remaining examples for training, where k ranges
from 10 to 60 examples. We present the average results from
10 such trials in Fig. 8.

With reference to Fig. 8, we observe that the advantage of
our approach based on the BN is related to the number of
training examples. Using a statistical paired sample t-test

[33] for the difference in mean values, we confirm that our
method significantly outperforms the DT at the 0.05 level
when there are at least 30 training examples, and that we
get an increasingly superior performance beyond 40 exam-
ples. The BN learning is inferior only when the training set
is restricted to a size of only 10 or 20 examples. This
observation is consistent with the CaMML’s authors ex-
pectation that CaMML would not perform as well as
simpler machine learning methods like DTs when the
amount of data is so small that it is unable to find the
correct causal model during its search through the model
space [35].

Our results show that when there are erroneous context
inputs, the BN outperforms the J4.8 DT as more examples
become available. This is a significant advantage because
within the mobile recommender environment, erroneous
context inputs are the norm. It is hence important that our
method effectively overcomes these after a prolonged use.
Earlier results (Fig. 7) have shown that with ample examples,
our method significantly outperforms the J4.8 DT.

It is interesting to note that data cleansing appears to
have a negative effect on the J4.8 DT in these experiments,
where the number of training examples is small. With
reference to the plots in Fig. 8, it appears that any further
elimination of suspicious examples from an originally small
set of training examples can in fact make it harder to
discover meaningful patterns. However, we expect data
cleansing to have a positive effect on performance given
sufficient training examples, as evident from the convergent
trend for lines “DT” and “Baseline” in all the plots as the
number of training examples goes up to 60. This is in
agreement with earlier results from Section 7.3, where the
benefits from data cleansing with ample training examples
are clearly demonstrated.

Our approach outperforms the J4.8 DT as the number of
training examples increases. However, BN learning using
the CaMML is less effective when the number of training
examples is so small that the correct causal model cannot be
identified [35]. As users are generally reluctant to rate
many, say more than 30 examples, various machine-
learning techniques designed to maximize the utility from
the smaller data sets can be adopted in practice. One
popular approach, semisupervised learning [36], selectively
labels (for example, through the use of statistical Expecta-
tion Maximization (EM)) the unlabeled (unrated) examples
to augment the labeled points. Another popular approach

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 11

TABLE 4
Average Prediction Accuracy for User 1 (Percentages)

Error rate of 30 percent is used in all experiments; Err-Ctx: context in
error; DT: J4.8 DT; BN: BN, using likelihood estimates.

Fig. 7. Average prediction accuracy with a single context in error.

Baseline is DT learned on uncleansed data.

that can be explored is that of active learning or sample

selection in which training examples are acquired incremen-

tally, and the system attempts to use what it has already

learned to select only the most informative new examples

for the user to rate [37]. Specific techniques for applying

each of these approaches have been developed, and these

techniques have been shown to significantly reduce the

labeled examples required for real-world problems [19].

7.5 Prediction with Multiple Erroneous Context

In previous experiments with errors in context values, we

assume the knowledge that just a single context is in error.

To validate our procedure with an unknown number of

error context, we simulate a sixth user with eight important

markers (Table 5). We conduct a two-fold cross validation

with three context having errors at different rates unknown

to the learning system.
We observe that the correct minimal set of markers is

identified in both validation folds. Applying our Algo-

rithm 2 from Section 5.3 to the data with errors, we are able

to identify all the three erroneous context and to deduce

close estimates of their error rates. The evolution of our

model at each step of our error-discovery procedure is

traced in Table 6. Error discovery stops when the observed

error rate of the next most erroneous context falls to 0.0.
In Table 7, we compare the performance of the methods

when just the misses for UP5 (the “most erroneous” context)

are removed, when misses for either UP5 or UP3 (the two

most erroneous context) are removed and also when the

misses for all three identified error context of UP5, UP3, and

UP2 are removed from the training set. The results confirm

that test prediction accuracy increases steadily as suspicious

examples are cleansed from the training set. The mean error

is significant at the 0.05 level (one-tailed, that is, whether

mean error is larger than 0.0) only for the first step where no

example has yet been removed. As such, the results suggest

12

Fig. 8. Average prediction accuracy as the context error rate varies. Baseline is DT learned on uncleansed data. (a) Error rate 0 percent. (b) Error

rate 10 percent. (c) Error rate 20 percent. (d) Error rate 30 percent. (e) Error rate 40 percent. (f) Error rate 50 percent.

TABLE 5
User Preference Rule and Model for User 6

the removal of just the single most erroneous context (UP5)
to arrive at the final model. From Table 7, this yields an
average test accuracy exceeding 90 percent, compared to
around 70 percent for the DT.

Fig. 9 compares the prediction performance of the
methods over all of the other modeled users in Table 1.
Fig. 9a shows the results when two contexts (unknown) are
in error, whereas Fig. 9b shows the results with three
erroneous contexts. As expected with the larger proportion
of context in error, performance deteriorates across all of the
methods. However, as per our observations in Section 7.3,
the DT and BN benefit from data cleansing, albeit this
benefit reduces as more contexts are in error. These results
suggest that, by accounting for the uncertainty in the
evidence, our procedure outperforms the DT even when
multiple contexts are in error.

8 FURTHER VALIDATION: PERSONALIZED WEB

PAGE RECOMMENDATION

In this section, we extend our experiments to a real user
recommendation data set known as the Syskill and Webert
Web Page Ratings data set [38] (available from the
University of California (UCI)). This data set comprises
the HTML sources of Web pages and their corresponding
ratings (“hot” and “medium/cold”) from a real user.
Seventy Web pages on the subject of “Goats” are used.
The attributes are English words that are extracted from
these Web pages, excluding those words from the standard
SMART list of stopwords [39]. The original study [40] has
reported the average prediction accuracy, that is, the
percentage of misclassified test examples, for algorithms
including naive Bayesian [41], nearest neighbor [41],
perceptron nets [42], and ID3 DTs [43]. Based on this data
set, we explore if causal dependencies among word

attributes can be effectively discovered and exploited by

our proposed BN-based mechanism for predicting the user

ratings of Web pages.

Following the setup described in [40], we train J4.8 DT

and BN on 20 randomly selected examples and test on the

rest. The average prediction accuracies over 10 trials

obtained by J4.8 DT and BN are presented in Table 8

together with the previously reported results. In each trial,

the top-k most informative words are selected using the

same information gain criterion as in [40]. However,

because Netica-J API [26] has a hard-coded restriction on

the network size, only the top-32 most informative words

are used for BNs, whereas 96 word attributes are used for

the others. As highlighted in [40], using fewer attributes can

cause problems for the BN because important discriminat-

ing attributes may be excluded. Despite this, employing our

proposed minimal set identification procedure, we are able

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 13

TABLE 6
Results of Error Discovery for User 6

Err-Ctx added: error context added in this step/iteration; Err-Ctx found:
the error context found so far; Err-Rate est.: estimated error rates for use
in the next step.

TABLE 7
Prediction Performance for User 6

CTX_for_cleansing: context based on which misses are removed; Avg.
Acc. (percentages): average accuracy on score; DT: J4.8 DT; BN: BN,
using likelihood estimates.

Fig. 9. Average prediction accuracy when there are multiple error

contexts. Baseline is DT learned on uncleansed data. (a) With two error

contexts. (b) With three error contexts.

TABLE 8
Average Prediction Accuracy of Various Classification

Algorithms on the Goats Data Set

to learn BNs that outperform, on the average, many of the

other algorithms including the J4.8 DT. This shows that the

minimal set that our iterative approach has automatically

identified is effective in predicting the real user’s rating,

although for the small training sample size, BN learning

using the search-based CaMML tool is not the best approach

to predict with perfect data. However, we note that, like DT,

the other classification methods do not encode variable

dependencies and thus would not be as robust as our BN-

based approach for handling missing and erroneous values.

Next, training on 60 randomly chosen examples, we

discover the minimal set of important attributes for that

user using our iterative learning procedure. Fig. 10a shows

the network that is learned from the 32 most informative

words in a trial. Our procedure has retained the “dairy,”

“farm,” and “development” attributes for a second round of

learning in which all these three attributes have remained

connected to the score. As such, they constitute the minimal

set of important attributes. Although markers are unavail-

able, our two-tiered context model can effectively capture

the causal dependencies by including also those word

attributes that are connected to the minimal set (“doe,”

“production,” “management,” “break,” and “return”). The

final learned network is given in Fig. 10b. The proposed

approaches for handling missing and erroneous values that

we have evaluated previously with the restaurant recom-

mender data can now be applied to this problem.
Fig. 11 compares the prediction accuracies of BN and J4.8

DT for various rates of missing values in the test sets. In the
experiments, only one attribute from the minimal context
set is missing at a time. A missing rate of x percent means
that the problematic attribute has a x percent probability of
missing from an example. The results show that BN
consistently outperforms the J4.8 DT in overcoming missing
inputs to predict more accurately on the test sets. Fig. 12
compares the performance when various probabilities of
errors are introduced. Specifically, in each of the 10 trials, a

randomly chosen attribute from the minimal set is injected
with errors. We apply our automatic error-discovery and
data-cleansing procedure of Algorithm 2 to this erroneous
data until the error estimate for the next most erroneous
word falls below 10 percent, so as to overlook trivial noises
in the data set. The results show that BN consistently
outperforms J4.8 DT when there are errors among inputs for
important word attributes.

We note that this Web page data set is challenging
because there are no domain markers to help our learning.
Also, causal dependencies among word attributes in this
data set are weak, evident from the fact that J4.8 DT has not
performed very badly in spite of its inability to exploit
dependencies. Other text data sets may contain stronger
dependencies due to the redundancies among data fields,
which our proposed techniques can readily exploit. For
example, the integrity constraints [44] are a form of strong
dependencies. In general, we expect the causal dependen-
cies among context parameters in the mobile recommenders
to be much stronger than those in text recommendation. We
have shown that our approach reliably identifies the
minimal set of important parameters for a particular real
user and also effectively discovers and exploits the
dependencies among these parameters to produce a
recommender that is robust against both missing and
erroneous inputs.

9 CONCLUSION AND FUTURE WORK

In mobile context-aware recommenders, operational con-
straints in context acquisition require us to minimize the

14

Fig. 10. BNs learned from the goats Web page data set for a real user.

(a) With all 32 word attributes. (b) With the two-tier minimal set of

attributes.

Fig. 11. Average prediction accuracy of the BN against the J4.8 DT

when there are missing values.

Fig. 12. Average prediction accuracy of the BN against the J4.8 DT

when there are erroneous values.

context to be acquired, as well as to compensate for missing
and erroneous context inputs effectively. In this paper, we
have presented a BN-based approach to developing con-
text-aware recommender systems that operate robustly
under such challenges.

Specifically, we present a learning procedure that dis-
covers the minimal set of important context parameters for
a user. By iteratively trimming the learned network of those
parameters without connection to the user rating, or score
variable, we identify the minimal context for that user. In
applications that reason on defined markers, we can apply
our procedure on a typically much smaller set of markers.
This allows us to identify the minimal context for a user
from fewer examples when there are many context
parameters to be considered. In addition, we present a
two-tiered context model that effectively captures the causal
dependencies among context parameters to overcome
missing context inputs. To assist the learned BN in
overcoming erroneous context inputs, we have also pre-
sented an automatic error-discovery and data-cleansing
procedure.

Through an extensive series of experiments, we validate
that our system can indeed accurately discover the causal
dependencies among parameters to yield a clear graphical
model of the problem. We are able to consistently identify
the minimal set of important context parameters specific to
each user. Also, results show that because the BN
intrinsically encodes the causal dependencies among con-
text parameters, the learned BN predicts accurately even
when important context inputs are unavailable. Further-
more, our proposed error-handling procedure effectively
harnesses the captured causal dependencies in the learned
BN to overcome erroneous context inputs and achieve
accurate predictions on unseen examples.

Note that BN learning is not without its limitations. The
MML-based approach that is adopted in our work is one of
the best available methods for learning the network
structure from the data. However, it is expected that even
this method might not find the correct causal model when
the number of examples is too small or when the number of
attributes is too large [35]. Furthermore, to the best of our
knowledge, there is not yet any widely accepted mechanism
to adapt the learned network’s structure to new examples.
This means that the BN in the recommender for a user has
to be relearned offline when substantial new data becomes
available over time. As the state of technologies for
automatic BN learning from the data is advancing rapidly,
these and other limiting issues should get resolved in the
near future.

Going forward, there are many other possible directions
for future work. In particular, an alternative approach for
identifying the minimal set of important parameters of a
target node is to consider all of the nodes that are captured in
its Markov blanket, instead of just the set of nodes directly
connected to it in the learned network. The motivation is that
a BN node is in theory independent of all other nodes given
just the nodes in its Markov blanket. However, we can only
ascertain through further experiments whether analyzing
this larger set of parameters would be beneficial in practice.
In addition, although BN is superior in handling missing

and erroneous context, the interactions within a BN are not as

interpretable as the logic that is represented by a DT. For

instance, suppose J4.8 DT splits on attribute “weather,” which

can have a value of “good” or “bad.” In this case, we may

observe that for “bad weather,” “location” yields the greatest

entropy reduction but not so for “good weather.” Such logic

provides explanations for important questions like “Is

location important to that user when the weather is good/bad?”

It is our intention to explore, in addition to the other issues

mentioned above, the extraction of similar explanations

from learned BNs.

ACKNOWLEDGMENTS

Ghim-Eng Yap is sponsored by a graduate scholarship from

the Agency for Science, Technology, and Research (A*Star).

Hwee-Hwa Pang is partially supported by a grant from the

Office of Research, Singapore Management University. The

reported work is supported in part by the I2R-SCE Joint Lab

on Intelligent Media. The authors would like to thank the

associate editor and the anonymous reviewers for their

invaluable comments.

REFERENCES

[1] P. Resnick and H.R. Varian, “Recommender Systems,” Comm.
ACM, vol. 40, no. 3, pp. 56-58, 1997.

[2] H.W. Tung and V.W. Soo, “A Personalized Restaurant Recom-
mender Agent for Mobile E-service,” Proc. IEEE Int’l Conf. E-
Technology, E-Commerce, and E-Service (EEE ’04), pp. 259-262, 2004.

[3] J. Ji, C. Liu, J. Yan, and N. Zhong, “Bayesian Networks Structure
Learning and Its Application to Personalized Recommendation in
a B2C Portal,” Proc. IEEE/WIC/ACM Int’l Conf. Web Intelligence (WI
’04), pp. 179-184, Sept. 2004.

[4] D. Goldberg, D. Nicholas, B.M. Oki, and D.B. Terry, “Using
Collaborative Filtering to Weave an Information Tapestry,” Comm.
ACM, vol. 35, no. 12, pp. 61-70, 1992.

[5] M. Balabanovic and Y. Shoham, “Fab: Content-Based, Collabora-
tive Recommendation,” Comm. ACM, vol. 40, no. 3, pp. 66-72, Mar.
1997.

[6] R. Burke, “Hybrid Recommender Systems: Survey and Experi-
ments,” User Modeling and User-Adapted Interaction, vol. 12,
pp. 331-370, 2002.

[7] A.K. Dey and G.D. Abowd, “Towards a Better Understanding of
Context and Context-Awareness,” Technical Report GIT-GVU-99-
22, panel paper at HUC 1999, June 1999.

[8] O. Madani and D. DeCoste, “Contextual Recommender Pro-
blems,” Proc. Workshop Utility-Based Data Mining (UBDM ’05),
pp. 86-89, Aug. 2005.

[9] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin,
“Incorporating Contextual Information in Recommender Systems
Using a Multidimensional Approach,” ACM Trans. Information
Systems, vol. 23, no. 1, pp. 103-145, 2005.

[10] M. van Setten, S. Pokraev, and J. Koolwaaij, “Context-Aware
Recommendations in the Mobile Tourist Application COMPASS,”
Proc. Third Int’l Conf. Adaptive Hypermedia and Adaptive Web-Based
Systems (AH ’04), pp. 235-244, 2004.

[11] G.-E. Yap, A.-H. Tan, and H.-H. Pang, “Dynamically-Optimized
Context in Recommender Systems,” Proc. Int’l Conf. Mobile Data
Management (MDM ’05), pp. 265-272, May 2005.

[12] C.S. Wallace and K.B. Korb, “Learning Linear Causal Models by
MML Sampling,” Causal Models and Intelligent Data Management,
A. Gammerman, ed., Springer, 1999.

[13] D. Heckerman, “A Tutorial on Learning with Bayesian Net-
works,” Learning in Graphical Models, M. Jordan, ed., MIT Press,
1999.

[14] J.H. Friedman, “On Bias, Variance, 0/1-Loss and the Curse of
Dimensionality,” Data Mining and Knowledge Discovery, vol. 1,
no. 1, pp. 55-77, Mar. 1997.

YAP ET AL.: DISCOVERING AND EXPLOITING CAUSAL DEPENDENCIES FOR ROBUST MOBILE CONTEXT-AWARE RECOMMENDERS 15

[15] M. Singh and G. Provan, “Efficient Learning of Selective Bayesian
Network Classifiers,” Technical Report MS-CIS-95-36, Computer
and Information Science Dept., Univ. of Pennsylvania, Nov. 1995.

[16] T. Gu, H.K. Pung, and D.Q. Zhang, “A Bayesian Approach for
Dealing with Uncertain Contexts,” Proc. Second Int’l Conf. Pervasive
Computing (Pervasive ’04), Apr. 2004.

[17] K.B. Korb and A.E. Nicholson, Bayesian Artificial Intelligence. CRC
Press, 2003.

[18] A. Chen, “Context-Aware Collaborative Filtering System: Predict-
ing the User’s Preference in the Ubiquitous Computing Environ-
ment,” Proc. Int’l Workshop Location- and Context-Awareness (LoCA
’05), T. Strang and C. Linnhoff-Popien, eds., pp. 244-253, 2005.

[19] R.J. Mooney and L. Roy, “Content-Based Book Recommending
Using Learning for Text Categorization,” Proc. Fifth ACM Conf.
Digital Libraries, pp. 195-240, June 2000.

[20] G. Lacey and S. MacNamara, “Context-Aware Shared Control of a
Robot Mobility Aid for the Elderly Blind,” Robotics Research,
vol. 19, no. 11, pp. 1054-1065, Nov. 2000.

[21] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering,” Proc. 14th Conf.
Uncertainty in Artificial Intelligence (UAI ’98), pp. 43-52, 1998.

[22] J. Ji, Z. Sha, C. Liu, and N. Zhong, “Online Recommendation
Based on Customer Shopping Model in E-Commerce,” Proc. IEEE/
WIC/ACM Int’l Conf. Web Intelligence (WI ’03), pp. 68-74, Oct. 2003.

[23] J.W. Koolwaaij and P. Strating, “Service Frameworks for Mobile
Context-Aware Applications,” Proc. eChallenges 2003 Workshop,
Oct. 2003.

[24] D. Zhang, X.H. Wang, and K. Hackbarth, “OSGi Based Service
Infrastructure for Context Aware Automotive Telematics,” Proc.
IEEE Vehicular Technology Conf. (VTC ’04), pp. 2957-2961, May
2004.

[25] T. Olsson, “Bootstrapping and Decentralizing Recommender
Systems,” dissertation, Computer Science Division, Dept. of
Information Technology, Uppsala Univ., June 2003.

[26] Norsys Software Corp., “Netica-J: Java Netica API,” http://
www.norsys.com/netica-j.html., retrieved on June 2005.

[27] R.E. Neapolitan, Probabilistic Reasoning in Expert Systems: Theory
and Algorithms. John Wiley & Sons, 1990.

[28] D.B. Rubin, “Multiple Imputation after 18+ Years (with Discus-
sion),” J. Am. Statistical Assoc., vol. 91, pp. 473-520, 1996.

[29] R.J.A. Little and D.B. Rubin, Statistical Analysis with Missing Data.
John Wiley & Sons, 2002.

[30] V.J. Hodge and J. Austin, “A Survey of Outlier Detection
Methodologies,” Artificial Intelligence Rev., vol. 22, pp. 85-126,
2004.

[31] H. Xiong, G. Pandey, M. Steinbach, and V. Kumar, “Enhancing
Data Analysis with Noise Removal,” IEEE Trans. Knowledge and
Data Eng., vol. 18, no. 3, pp. 304-319, Mar. 2006.

[32] C.E. Brodley and M.A. Friedl, “Identifying Mislabeled Training
Data,” J. Artificial Intelligence Research, vol. 11, pp. 131-167, 1999.

[33] S.C. Kachigan, Statistical Analysis. Radius Press, 1986.
[34] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, second ed. Morgan Kaufmann, 2005.
[35] L.R. Hope and K.B. Korb, “A Bayesian Metric for Evaluating

Machine Learning Algorithms,” Proc. Australian Joint Conf.
Artificial Intelligence (AI ’04), G.I. Webb and X. Yu, eds., pp. 991-
997, Springer, 2004.

[36] X. Zhu, “Semi-Supervised Learning Literature Survey,” Technical
Report 1530, Dept. of Computer Sciences, Univ. of Wisconsin–
Madison, 2005, http://www.cs.wisc.edu/~jerryzhu/pub/
ssl_survey.pdf.

[37] D. Cohn, L. Atlas, and R. Ladner, “Improving Generalization with
Active Learning,” Machine Learning, vol. 15, no. 2, pp. 201-221,
1994.

[38] M.J. Pazzani, J. Muramatsu, and D. Billsus, “Syskill and Webert:
Identifying Interesting Web Sites,” Proc. 13th Nat’l Conf. Artificial
Intelligence (AAAI ’96) and Eighth Innovative Applications of Artificial
Intelligence Conf. (IAAI ’96), pp. 54-61, 1996.

[39] G. Salton, The SMART Retrieval System—Experiments in Automatic
Document Processing. Prentice Hall, 1971.

[40] M.J. Pazzani and D. Billsus, “Learning and Revising User Profiles:
The Identification of Interesting Web Sites,” Machine Learning,
vol. 27, pp. 313-331, 1997.

[41] R. Duda and P. Hart, Pattern Classification and Scene Analysis. John
Wiley & Sons, 1973.

[42] M. Minsky and S. Papert, Perceptrons. MIT Press, 1969.

[43] J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, pp. 81-106, 1986.

[44] P. Godfrey, J. Grant, J. Gryz, and J. Minker, “Integrity Constraints:
Semantics and Applications,” Proc. Logics for Databases and
Information Systems, pp. 265-306, 1998.

Ghim-Eng Yap received the bachelor’s degree
in computer engineering—with first class hon-
ors—from Nanyang Technological University in
2004 and is currently pursuing the PhD degree
at the Nanyang Technological University, Singa-
pore, under a full-time graduate scholarship
awarded by the Agency for Science, Technol-
ogy, and Research (A*Star). His current re-
search interests include context awareness,
recommender systems, reasoning under uncer-

tainty, causal interpretation, graphical models, computational intelli-
gence, and biological knowledge discovery.

Ah-Hwee Tan received the BSc (first class
honors) and MSc degrees in computer science
from the National University of Singapore and
the PhD degree in cognitive and neural systems
from Boston University. He is an associate
professor and the director of the Emerging
Research Laboratory, School of Computer En-
gineering, Nanyang Technological University.
He is also a faculty associate of A*Star Institute
for Infocomm Research, where he was formally

the manager of the Text Mining and Intelligent Cyber Agents Groups.
His current research interests include cognitive and neural systems,
intelligent agents, machine learning, media fusion, and information
mining. He holds several patents and has successfully commercialized a
suite of document analysis and text mining technologies. He is a senior
member of the IEEE and an editorial board member of Applied
Intelligence.

Hwee-Hwa Pang received the BSc (first class
honors) and MS degrees from the National
University of Singapore in 1989 and 1991,
respectively, and the PhD degree from the
University of Wisconsin at Madison in 1994, all
in computer science. He is an associate profes-
sor at the Singapore Management University.
He holds a joint appointment as a principal
scientist at the A*Star Institute for Infocomm
Research. His current research interests include

database management systems, data security, and information retrieval.
He has many years of hands-on experience in system implementation
and project management. He has also participated in transferring some
of his research results to industry.

16

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2007

	Discovering and Exploiting Causal Dependencies for Robust Mobile Context-Aware Recommenders
	Ghim-Eng YAP
	Ah-Hwee TAN
	Hwee Hwa PANG
	Citation

	untitled

