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CHAPTER 1

PREDICTION OF PROTEIN SUBCELLULAR

LOCALIZATION: A MACHINE LEARNING

APPROACH

1.1 INTRODUCTION

Over the years, large-scale genomic and proteomic efforts have produced large amounts of

sequence data. One of the key challenges in the post-genomic era is to predict functions and

roles of gene products. Proteins are essential to the structure and function of all living cells,

and many of the them are enzymes or subunits of enzymes that catalyze chemical reactions.

Other types of proteins play structural roles as well as engage in mechanical integrity and

tissue signalling functions. Eukaryotic cells are comprised of various compartments that are

functionally and morphologically distinct. Once different kinds of proteins are synthesized

by a cell, they are targeted to one or more appropriate organelles in the cell. It is crucial

that a protein is transported to its final destination in order to perform its function optimally.

Subcellular localization is a key functional characteristic of proteins [1]. Therefore, the

use of resources concerning subcellular localization would be useful for the assignment of

functions to uncharacterized proteins.

However, the growth rate of the amount of sequence data far exceeds experimental

determination of protein structure and function. Hence, much of the efforts in computational

biology today in protein structure and function determination has focused on assigning the

protein’s putative function from sequences alone, and it is one of the most challenging

problems in functional genomics [2]. Over the years, there have been many advances in

annotating protein sequences. Continuing efforts in the development of sequence-based

protein structure and function prediction can be expected to bring significant improvements

in gene annotations.
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2 PREDICTION OF PROTEIN SUBCELLULAR LOCALIZATION: A MACHINE LEARNING APPROACH

Sequence-driven protein function prediction techniques can be broadly classified into

two categories. The first major category relies on the comparison of a query sequence to

other sequences of known functions. Often times, pairwise sequence similarity searches

are performed using programs such as FASTA [3] and BLAST [4]. However, sequence

similarity-based prediction of putative function suffers some major drawbacks [5]. First,

finding the best hit among multiple hits returned by such sequence search programs requires

careful interpretation of results often involving human expertise. The best hit that such

programs present is only hypothetical, and poor annotation of target sequences (sequences

against which similarity search is performed for a query protein) may lead to erroneous

results.

The second major category of sequence-driven protein function prediction techniques

relies on data mining and machine learning techniques to identify conserved patterns in

sequences. The sequence-motif method is one such example. Such methods rely on char-

acteristic signatures extracted from conserved regions in multiple sequence alignments. One

of the earliest motif databases is known as PROSITE [6], and it catalogues an extensive list

of many known protein families by using regular expressions or generalized profiles. Other

well-known and widely used motif databases are eMOTIF [7], BLOCKS [8], SMART [9],

Pfam [10], PRINTS [11], and InterPro [12]. Given a query protein sequence, searching a

motif database will return a list of conserved sequence patterns and their associated func-

tions. The search results can then be used for determining the putative function of the

query protein sequence. Protein motif databases containing a substantial number of protein

sequences that are well characterized serve as a good platform for applying data mining

and machine learning techniques [13]. Specifically, these techniques are used to construct

classifiers for predicting and assigning putative functions to query protein sequences whose

functions are unknown. The construction of such classifiers takes a set of training sequences

whose functions are known. The classifiers learn certain information that is encoded in the

training sequences. Having learned the encoded information, the classifiers are validated

using a set of testing sequences. The classifiers can then assign a query protein sequence

to one of the functional categories as represented in the training sequences.

1.2 LITERATURE REVIEW

There have been many previous efforts in predicting protein subcellular localization in

eukaryotic organisms. ESLPred [14] assigns eukaryotic proteins to nucleus, mitochon-

drion, cytoplasm or extracellular space by using Support Vector Machine and PSI-BLAST.

HSLpred [15] utilizes Support Vector Machine and PSI-BLAST to generate predictions

for four localization sites for human proteins. iPSORT [16] is a localization prediction

program that classifies eukaryotic N-terminal sorting signals. LOCSVMPSI [17] incorpo-

rates evolutionary information into its predictions for eukaryotic localization prediction.

It utilizes Support Vector Machine and PSI-BLAST to generate predictions for up to 12

localization sites. LOCtree [18] is a eukaryotic and prokaryotic localization prediction tool.

NucPred [19] takes into consideration the presence of nuclear localization signals identi-

fied through a genetic programming algorithm for its classification method. predictNLS

[20] is a nucleus localization prediction program that considers nuclear localization signal

motifs. Predotar [21] is a localization prediction program for identifying the presence of

mitochondrial and plastid targeting peptides in plant sequences. Protein Prowler [22] is

a localization prediction program for classifying eukaryotic targeting signals as secretory,

mitochondrion, chloroplast, or other. Proteome Analyst’s Subcellular Localization Server
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[23] is designed to classify Gram-negative, Gram-positive, fungi, plant, and animal pro-

teins to several localization sites. pSLIP [24] uses Support Vector Machine and a variety

of physiochemical properties of amino acid residues to assign a eukaryotic protein to one

of the six localization sites. PSLT [25] is a Bayesian network-based method designed to

predict human protein localization based on motif or domain co-occurrence. PSORT [26]

is a localization prediction program designed for plant sequences. PSORT II [27] is a local-

ization prediction program designed for eukaryotic sequences. pTARGET [28] takes into

consideration localization-specific Pfam domains and amino acid composition to assign

a eukaryotic protein sequence to one of the nine localization sites. SecretomeP [29] is a

prediction program for eukaryotic proteins that are secreted via a non-traditional secretory

mechanism. SignalP [30] is a prediction program for prokaryotic and eukaryotic proteins

that considers traditional N-terminal signal peptides. SubLoc [31] is a localization pre-

diction program that uses Support Vector Machine. It is designed to assign a prokaryotic

protein to the cytoplasmic, periplasmic, or extracellular sites. Also, it assigns a eukaryotic

protein to the cytoplasmic, mitochondrial, nuclear, or extracellular sites. TargetP [32] is

designed to predict the presence of signal peptides, chloroplast transit peptides, and mito-

chondrial targeting peptides in plant proteins. It is also designed to predict the presence of

signal peptides and mitochondrial targeting peptides in eukaryotic proteins.

1.3 MOTIVATION

1.3.1 Gene Ontology

The Gene Ontology (GO) is developed by the Gene Ontology Consortium [33]. The main

goal of the GO consortium is to annotate gene products with a consistent, controlled,

and structured vocabulary. The GO is independent from any biological species. Using a

controlled vocabulary across a variety of species enables dynamic maintenance and inter-

operability among many different types of biological databases. It represents terms in a

Directed Acyclic Graph (DAG), providing a vocabulary of genetic annotation terms in three

categories, and they are molecular function, biological process, and cellular component. The

GO graph consists of over 18,000 terms where each term is represented as a node within the

DAG. The terms are connected by relationships that are represented as edges in the DAG.

Terms can have multiple parents as well as multiple children. There are two different types

of relationship between terms. The first relationship is the "is-a" relationship. The second

type of relationship is the "part of" relationship that describes, for instance, that regulation

of cell differentiation is part of cell differentiation. Providing a standard vocabulary across

any biological resources, the GO enables researchers to use this information for automatic

data analysis done by computers and not by humans.

Some of the recent efforts in protein subcellular localization have focused on incorporat-

ing gene ontology into their prediction systems. Chou and Cai [34,35,36,37] devised hybrid

approaches for protein subcellular localization prediction by combining functional domain

composition, pseudo-amino acid composition, and gene ontology. A recent study by Lu

and Hunter [38] examined the relationship between GO molecular function annotations and

localization information, and found highly predictive GO molecular function terms with

respect to subcellular location: endoplasmic reticulum, extracellular, membrane, mitochon-

drion, Golgi, and nucleus. More specifically, the contribution that molecular function and

its existing annotation in GO make to the prediction of subcellular localization was explored

in their work. Information gain was used as a measure of the amount of knowledge that
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each of the selected highly discriminating GO terms had in terms of providing information

regarding protein subcellular localization. Table 1 lists six subcellular localization sites and

corresponding GO molecular function terms. In this paper, we explore machine learning

approaches to the construction of classifiers for assigning protein sequences to appropri-

ate GO subcellular localizations as defined in [38] using a kernel representation of amino

acid sequences and secondary structures. Specifically, we represent protein sequences and

secondary structures using the spectrum kernel [39].

1.3.2 Protein Secondary Structure

In living cells, proteins perform a variety of biological tasks. Each protein has a particular

three-dimensional structure that determines its function. Structure is more conserved than

sequence, and protein structure is central for understanding protein functions. Protein

secondary structure prediction is one of the key problems in computational biology today.

The prediction of a protein’s secondary structure is an important problem because it serves

as an essential step to predicting the full three-dimensional structure of a protein. If the

secondary structure of a protein is known, it is possible to derive a comparatively small

number of possible tertiary structures using knowledge about the ways that secondary

structural elements pack.

Many recent efforts in protein secondary structure prediction have led to a sustained

three-state prediction accuracy in the range of 77% ∼ 78%. Furthermore, in some cases,

combinations of secondary structure prediction programs may lead to higher prediction ac-

curacy by one to two percentage points [40]. These improvements are due to an increasing

number of experimentally determined tertiary structures and also due to the use of evo-

lutionary information coupled with advances in algorithms. With much emphasis on and

recent improvements in protein secondary structure prediction programs, we explore in this

paper machine learning approaches that use the resources concerning protein secondary

structure for the purposes of predicting protein subcellular localization sites.

1.4 MATERIALS AND METHODS

1.4.1 Support Vector Machines

Support vector machine (SVM) is a learning algorithm proposed by Vapnik [41,42]. Given a

training set in a vector space, a support vector machine finds the best decision hyperplane that

separates two classes. The distance between two hyperplanes (also called margin) parallel

to the decision hyperplane and touching the closest data points of each class determines the

quality of a decision hyperplane. The decision hyperplane with the maximum margin is the

best one. Support vector machines are only applicable for binary classification tasks. Thus,

discriminating among more than two classes must be treated as a series of dichotomous

classification problems. Typical kernels include linear kernels, polynomial kernels, and

radial kernels.

Let x̃ be the feature vector to be classified. The SVM classifies x̃ to either -1 or 1 using

y(x) =

{

1 if L(x̃) > 0
−1 otherwise

}

where the discriminant function is given by

L(x̃) =
∑T

i=1
αiyiK(x̃, xi)
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Table 1.1. Selected highly discriminating GO molecular function terms [38]

Location Predictive GO Molecular Function terms

Nucleus GO:0003676 Nucleic acid binding

GO:0008134 Transcription factor binding

GO:0030528 Transcription regulator activity

Membrane GO:0004872 Receptor activity

GO:0015267 hannel/pore class transporter activity

GO:0008528 Peptide receptor activity,

G-protein coupled

Extracellular GO:0005125 Cytokine activity

GO:0030414 Protease inhibitor activity

GO:0005201 Extracellular matrix structural constituent

Mitochondrion GO:0015078 Hydrogen ion transporter activity

GO:0004738 Pyruvate dehydrogenase activity

GO:0003995 Acyl-CoA dehydrogenase activity

GO:0015290 Electrochemical potential-driven

transporter activity

Endoplasmic reticulum GO:0004497 Monooxygenase activity

GO:0016747 Transferase activity, transferring groups

other than amino-acyl groups

Golgi GO:0016757 Transferase activity,

transferring glycosyl groups

GO:0015923 Mannosidase activity

GO:0005384 Manganese ion transporter activity

where {xi}
T
i=1

is a set of training vectors and {yi}
T
i=1

are the corresponding classes

(yi ∈ -1, 1). K(xi, xj) is denoted a kernel and is often chosen as a polynom of degree d,

i.e.

K(x̃, xi) = (xT xi + 1)
d

Finally, αi is the weight of training sample xi. It expresses the strength with which that

sample is embedded in the final decision function. Only a subset of the training vectors

will be associated with a non-zero αi. These vectors are called support vectors.

The training of the SVM consists of determining the weights αi that maximizes the

distance between the training samples from the two classes. The goal of the training

process is to learn a set of weights that maximizes the following objective function:

J(α) =
T

∑

i=1

αi(2 − yiL(xi))
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= 2

T
∑

i=1

αi −

T
∑

i=1

T
∑

j=1

αiαjyiyjK(xi, xj)

subject to the following constraints

αi ≥ 0
∑

i αiyi = 0 i = 1, ..., T

The output of the SVM learning algorithm is the optimized set of weights α1, α2, ..., αT .

1.4.2 Feature Representations and SVM Kernel Selection

In this paper, we explore an SVM-based learning method to predict a protein’s subcellular

localization. We classify six subcellular localization sites: endoplasmic reticulum, extra-

cellular, Golgi, membrane, mitochondrion, and nucleus). The two kinds of information we

use for feature representation are amino acid sequences and secondary structures. As for

secondary structures, they are known for training data (secondary structures are derived

from DSSP[43]) and predicted using PSI-PRED [44] for testing data. We use the publicly

available SV M light package to learn the binary classifiers [45].

The spectrum kernel is used to generate SVM feature vectors. The feature space of this

kernel is a set of sequence models, and each component of the feature space representation

measures the extent to which a given sequence fits the model. The spectrum kernel models

a sequence in the space of all k-mers (subsequences of k-length), and its features count

the number of times each k-mer appears in the sequence. X is the input space of all finite

length sequences of characters from an alphabet A, |A| = l. A feature map from X to ℜlk

is defined as

Φk(x) = (φa(x))a∈Ak

where φa(x) is the number of times a occurs in x.

In our experiment, we move a k-length sliding window across a protein sequence, look

up the current k-length subsequence in the look-up table, and increment the classier value

by the associated coefficient. The same procedure is used for secondary structures. Using

a window size of three, we can map each amino acid residue to an 8000-dimension vector

by the feature map ΦAA and its secondary structure to a 27-dimension vector by the feature

map ΦSS . Different feature representation can be combined by concatenation of feature

vectors. ΦAA x ΦSS represents the direct product of amino acid residue and secondary

structure feature maps.

1.4.3 Datasets

A total of 2,897 protein sequences derived from SwissProt [46] database release 48.7 and

secondary structures were used in the experiment. Each protein sequence has a correspond-

ing PDB [47] ID and GO ID. The GO ID of each protein sequence indicates its subcellular

localization as defined in Table 1.1. For example, if a sequence’s GO ID is GO:0004497,

we assign the sequence to the endoplasmic reticulum localization. The secondary structure

of training sequences is either derived from the DSSP program or predicted using the PSI-

PRED program. Eight states from DSSP are converted to three secondary structure states:
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alpha = (H, G, I), beta = (E, B), and coil = (T, S, ’ ’). For testing sequences, secondary

structures are predicted using the PSI-PRED program and we use the three states: alpha,

beta, and coil.

Table 1.2. SwissProt Dataset - Six Subcellular Localization

Localization Total Number of Sequences

Endoplasmic reticulum 507

Extracellular 588

Golgi 463

Membrane 462

Mitochondrion 182

Nucleus 695

Total 2,897

1.4.4 Evaluation Method

The training and testing were carried out with two-fold jackknife cross-validation where

50% of the protein sequences were used as training cases while the remaining 50% of the

protein sequences were used in testing, and the processes repeat two times each with a

different 50% of the protein sequences. A total of six SVM binary classifiers, one SVM

classifier for each of the six protein subcellular localizations, are built in this experiment.

We compute ROC50 scores and ROCALL scores for each binary classifier. The ROC

score represents the area under the receiver operating characteristic curve. ROC50 is a

plot of true positives as a function of false positives up to the first 50 false positives [48].

ROCALL is a plot of true positives as a function of false positives in all of the samples. On

a scale of zero to one, a score of one means that there is perfect separation between positives

and negatives. A score of zero means that among the samples selected by the method (top

50 for ROC50 and all for ROCALL), none is positive.

1.5 RESULTS AND DISCUSSION

We report results that are computed using two-fold jackknife cross-validation. All the

results shown in Table 1.3 and Table 1.4 are produced using the polynomial kernel with the

default parameters. We also performed experiments using the linear kernel and the radial

(RBF) kernel, but no significant improvements in terms of ROC scores were obtained.

In our experiment, we compare the ROC scores between three different types of feature

maps for SVM classification: ΦAA, ΦSS , and ΦAA x ΦSS . The method involving ΦSS is

divided into two cases. In one case, secondary structures of training sequences are derived

from the DSSP program, and such feature map is denoted as ΦSS−D. In the other case,

secondary structures are predicted using the PSI-PRED program, and such feature map is

denoted as ΦSS−P .

Table 1.3 and 1.4 compares the ROC50 and ROCALL scores between three different

types of feature maps for SVM classification. The second column, ΦAA, shows the ROC
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Table 1.3. Comparative Performance of Different Feature Maps (ROC50 scores)

Localization ΦAA ΦSS−D ΦSS−P ΦAA x ΦSS−D ΦAAx ΦSS−P

E.R. 0.824 0.312 0.327 0.820 0.824

Extracellular 0.777 0.066 0.056 0.734 0.721

Golgi 0.693 0.058 0.106 0.692 0.703

Membrane 0.777 0.020 0.148 0.754 0.752

Mitochondrion 0.717 0.035 0.182 0.797 0.840

Nucleus 0.556 0.081 0.110 0.543 0.546

Average 0.724 0.095 0.155 0.724 0.731

scores achieved by SVM classifiers when only amino acid residue information was used

for feature representation. The third and fourth columns, ΦSS−D and ΦSS−P , show the

ROC scores when only secondary structure information was used for feature representation.

The last two columns, ΦAA xΦSS−D and ΦAA xΦSS−P , show the ROC scores when both

amino acid residue information and secondary structure information were used for feature

representation.

In Table 1.3, it is shown that when using the amino acid residue information alone, we

obtain an average ROC50 score of 0.724, which is substantially higher than the ROC50

scores obtained when using secondary structure information alone. It is clear that using

secondary structure information alone does not serve as an accurate predictor of protein

subcellular localization. Figure 1.1 shows the results, ROCALL curves, produced by endo-

plasmic reticulum binary classifiers developed using the polynomial kernel. Clearly, using

secondary structure information alone, leads to inferior ROC scores.

We now explore the effect of combining amino acid residue information with secondary

structure information. An average ROC50 score of 0.724 is achieved when combining

amino acid residue information with secondary structure information (derived from DSSP

for training data and predicted using PSI-PRED for testing data). When using PSI-PRED

predicted secondary structure for both training and testing, an average ROC50 score of

0.731 is achieved. The score is not substantially higher than that achieved by using amino

acid residue information alone. From these results, it is clear that the addition of secondary

structure information to amino acid residue information does not lead to better performance

in protein subcellular localization prediction. However, it is noticeable that the addition of

secondary structure information brings a slight improvement in mitochondrion localization

prediction.

1.6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we explored machine learning approaches to construction of classifiers for

assigning protein sequences to appropriate GO subcellular localizations as defined in [38]

using a kernel representation of amino acid sequences and secondary structures. Opti-

mally combining available information is one of the key challenges in knowledge-based

subcellular localization prediction approaches.

In this paper, the two kinds of information we use for features are amino acid sequences

and secondary structures. In using the spectrum kernel for feature vector generation, a fixed
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Table 1.4. Comparative Performance of Different Feature Maps (ROCALL scores)

Localization ΦAA ΦSS−D ΦSS−P ΦAA x ΦSS−D ΦAAx ΦSS−P

E.R. 0.970 0.804 0.804 0.967 0.973

Extracellular 0.975 0.762 0.694 0.966 0.966

Golgi 0.968 0.708 0.806 0.962 0.964

Membrane 0.969 0.705 0.728 0.969 0.969

Mitochondrion 0.975 0.693 0.746 0.985 0.988

Nucleus 0.944 0.526 0.635 0.941 0.942

Average 0.967 0.700 0.735 0.965 0.967

Figure 1.1. ROCALL curve for different feature maps

length of three was used as the window size. One possible extension to the current work

is to use different lengths of k to incorporate more neighboring amino acid residues and

secondary structures. Also, the spectrum kernel is not the only method to represent amino

acid residue information and secondary structure information as feature vectors for use

with SVM. There are other types of kernels such as mismatch kernel [71] and profile-based

kernel [72]. Our experiment shows that using amino acid residue information alone can be

a good predictor. Better representation of amino acid residue information by using other

types of kernels may lead to higher overall prediction accuracy.

Another possible extension is to use a variety of secondary structure programs. Many

of today’s secondary structure prediction programs can be largely classified into three cat-
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egories and they are neighbor-based, model-based, and meta-predictor-based. The predic-

tion approach taken by the neighbor-based programs [49,50,51] identifies a set of similar

sequence-fragments whose secondary structures are known. The model-based programs

[52,53,54,55] utilize machine learning techniques to build a predictive model learned from

training sequences with known secondary structures. Lastly, the meta-predictor-based pro-

grams [56,57] combine the predictions obtained from a variety of neighbor and model-based

programs. It would be interesting to see how different types of secondary structure pre-

diction approaches contribute to the prediction of protein subcellular localization with or

without the use of amino acid residues as part of feature representation.

In our efforts to optimally combine available information for the prediction of protein

subcellular localization, one interesting extension is to use local protein structure and sol-

vent accessibility. Local protein structure is known to describe an amino acid residue’s

environment as well as its relationship to neighboring amino acid residues in a three-

dimensional space [58]. Recent efforts in local protein structure include backbone angle

prediction [59,60] and novel local structure alphabet [43, 58,60,61,62]. Residue solvent

accessibility prediction can help identify the relationship between sequence and structure.

Various approaches have been developed over the years, and these include neural network

[63,64,65,66], Bayesian statistics [67], multiple linear regression [68], information theory

[69], and support vector machine [70].
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