
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2007

The business model of "Software-as-a-Service"
Dan MA
Singapore Management University, madan@smu.edu.sg

DOI: https://doi.org/10.1109/SCC.2007.118

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Sciences Commons, and the Management Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MA, Dan. The business model of "Software-as-a-Service". (2007). IEEE International Conference on Services Computing SCC 2007:
Proceedings: Salt Lake City, UT, 9-13 July 2007. 701-702. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/572

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SCC.2007.118
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

The Business Model of “Software-As-A-Service”

Dan Ma
School of Information Systems

Singapore Management University
Singapore 178902

madan@smu.edu.sg

Abstract

In the recent years, the emergence of the Software-
as-a-Service (SaaS) business model has attracted great
attentions from both researchers and practitioners. Under
the SaaS business model, vendors deliver on-demand
information processing services to user firms, and thus
offering computing utility rather than the standalone
software itself. The SaaS has become an attractive
alternative to the traditional software delivery model,
which typically requires users to purchase, install, and
maintain software systems by themselves. In this work, we
propose an analytical model to study the competition
between the SaaS and the traditional COTS (Commercial
off-the-shelf) solution for software applications. The
competitive model considers heterogeneous users who
differ in terms of their transaction volume, while the SaaS
and COTS vendors differ in terms of their pricing
structure, setup cost, and system customization. We
conclude that when commercial software becomes more
open, modulated, and standardized, the SaaS business
model will take a significant market share. In the extreme
case, it may dominate the whole software industry and
drives the traditional software out of the market. We also
show that it is never optimal for the SaaS vendors to exert
their full lock-in power through harsh software contracts.
Under certain conditions, we suggest SaaS vendors to
offer their existing users an easy exit option rather than
to establish switching barriers to lock them in.

1. Introduction

In the past few years, the Internet has given rise to
the Software-As-A-Service (SaaS) business model. The
SaaS vendors offer a bundle of software applications, an
IT infrastructure, and all necessary support services to
users across a network. Under the SaaS business model,
the software system and users’ data are stored off-site in a
central location run by the vendor. The vendor is in
charge of all IT support services, including daily software
maintenance, data backups, software upgrades, and
security. Therefore, it is delivering computing utility,
rather than the software only.

In a recent memo, Bill Gates proclaimed that the
emergence and rise of the SaaS will be the “next sea-
change” in computing [14]. According to AMR Research,
the SaaS market is growing more than 20% a year,
compared with single-digit growth in traditional software
[13]. An increasing number of software vendors,
including industry giants such as IBM, SAP, Oracle, and
Microsoft, are moving to such a service-oriented business
model. For example, IBM is offering “IBM-on-demand,”
which allows corporate users to acquire IBM’s computing
power and software applications as a service.1 IBM is also
providing a package of services and incentives to help
other software companies deploy their products as hosted
applications [15]. Another good example is Oracle.
Oracle is ranked as one of the top ten SaaS providers. In
January 2006, it acquired Seibel, and now is delivering its
fledgling CRM on-demand software through the Internet
[16].

To many corporate users, SaaS has become an
attractive alternative to the traditional software solution.
Traditionally, most software has been delivered in the
form of commercial off-the-shelf (COTS) products.2 The
vendor sells the software application to users and helps to
install it on users’ sites. The users possess the full
ownership of the software, and must provide IT
infrastructure, hardware, and support services in order to
enable continuous use of the software. However, the SaaS
deliver the software in a novel way. Under the SaaS
model, unlike the software perpetual licensing, the
software is priced as a service, and typically users pay a
fee per transaction. Users’ payments are closely tied to
the actual utility obtained -- they pay only when they have
demand for the software. In many cases, the SaaS may
prove cheaper than owning and maintaining an in-house
IT system. Users expect to save money on support and
upgrade costs, IT infrastructure, IT personnel, and
implementation [13]. In a web survey by ThinkStrategies
fully one-third of 118 respondents were already using

1 See http://www-1.ibm.com/services/ondemand/success.html.
2 A COTS product is a commercial software application that “is designed
to be easily installed and to interoperate with existing system
components.” Almost all software bought by the average computer user
fits into the COTS category: operating systems, office product suites,
word processing, and e-mail programs are among the myriad examples.
 See http://whatis.techtarget.com for more information.

SaaS, and another third were considering using one
within the following 12 months [7]. A research report
from Summit Strategies indicates that small and medium
businesses with limited IT resources and constrained
budgets are more likely to use such fee-per-transaction
applications [5]. The SaaS is a powerful trend, which is
becoming an important disruptive force in the software
industry: “It is not the end of software. It is just another
way of deploying it” (Shai Agassi, president of SAP’s
product and technology group).

Despite of numerous advantages, the SaaS market is
still in its formative stage. Data security and reliability as
well as application control are among users’ top concerns
[1]. In addition, most SaaS vendors offer a one-to-many
solution, with limited customization.3 The vendors keep
the software in their own sites, and users access and run
the software remotely. The software therefore is not
tailored to fit an individual user’s specific requirements or
unique business environment. As a result, the user may
need to pay extra to make the standard software
application work smoothly with its existing IT systems.
Software pricing / contracting is another issue. In reality,
many vendors demand users’ long-term commitments
through contracts. For example, a typical contract offered
by the SaaS vendor in the radiology industry requires
client hospitals to use the product for at least five years.
An early exit incurs cancellation fees that can be as high
as a full year’s payments. Hence, the potential of being
locked in by an outside provider becomes a barrier for
users to use the SaaS. All these factors cast doubts on the
future of the SaaS business model. So far, little research
work has been done in analyzing the long run viability of
the SaaS from the economic perspective. Specifically, it is
unclear how such a new business model can compete with
the well-established software solution (i.e., the COTS in-
house system), what factors play important roles in
software users’ choices, and what is the optimal
contracting strategy for the SaaS vendors. This motives
our work.

In this study, we propose a model to study the
competition between a SaaS and COTS software. We
focus on a software market in which corporate users have
these two IT options for external sourcing. The competing
vendors are differentiated in the following ways. First,
they deliver different products: an easy-to-be-customized
software application (from the COTS) versus a bundle of
standard software and services (from the SaaS). Second,
they adopt distinct pricing modes: an outright purchase
(the COTS) versus a “per transaction” fee structure (the
SaaS). Third, they employ different delivery methods:
software installed on a user’s in-house server (the COTS)

3 SAP believes that this lack of integration will eventually lead most
large corporations that currently are users of online CRM move back to
an in-house system [6].

versus an interface delivered over the Internet remotely
(the SaaS). Users have different cost structures and bear
different risks in dealing with each business arrangement.
In addition, our model considers software quality
uncertainty and investigates the two-stage competition
with users’ switching costs. Although, in practice, the
comparison between the SaaS and COTS involves
multiple criteria, such as pricing structure, data
integration ability, service level arrangements, as well as
technological and security issues, we do not attempt to
include all the related factors. Instead, we are particularly
interested in estimating the relative economic advantages
and disadvantages of the SaaS business model.

Our findings show that the emergence of the SaaS, at
the expense of the traditional COTS vendor, benefits
every user firm. It offers small and medium firms cost-
saving access to software, and competitively reduces
large firms’ implementation costs even if they will still
stick to the traditional COTS software. In specific, the
SaaS model is superior to the COTS model when the user
firms face a low transaction volume, expensive in-house
IT services, or when the user’s unfit costs from using a
standard product are low. Importantly, we show that the
long-run viability of the SaaS business model largely
depends on the magnitude of the unfit costs imposed on
the users. As such costs decrease, the SaaS’s competitive
advantage monotonically increases, and eventually will
dominate the whole software market. In addition, we find
a non-monotonic relation between the users’ switching
costs and the SaaS vendor’s profit. In a matured software
market, when users’ switching costs decrease below a
certain level, the market share of the SaaS vendor
increases and its profit improves. In other words, the SaaS
vendor may find it profitable to allow users to exit the
contract easily. This finding challenges many existing
SaaS software contracting strategies.

The rest of the paper is organized as follows. In
Section 2, we describe our model. We analyze the
competition and identify the key determinants of the
future of the SaaS model in Section 3. Section 4 discusses
the business implications of our findings, and concludes
the paper.

2. The Model

Consider the software market with three parties:

software users --- firms in need of software applications;
the COTS vendor --- the software provider delivering the
traditional COTS software; and the SaaS vendor --- the
software provider delivering software as a service. The
two software vendors are competing on prices. They set
their respective prices, and then the users will choose one
of them or just stay out of the market.

Software users have different IT needs. Users’ IT
needs are measured by the expected volume of their use

of the software. Some firms may use the software
application more frequently than others, and these firms
have larger IT needs. In order to capture this
heterogeneity, we assume users are uniformly distributed
on a unit-length line normalized from 0 to 1. The location
of a user on this line represents its transaction volume.
Hence, a user at the location id has a demand id for the
software use (in terms of the number of transactions).

The COTS vendor operates in the traditional way. It
sells the packaged software application to users and
charges a one time upfront fee. The source code of the
application can be modified to fit the user’s specific
business needs, which assures a good integration with the
user’s existing IT system. The vendor bears an operating
cost C to serve one user and receives a one-time
payment P from the user. The user must install hardware
and IT infrastructures, hire IT staff, and organize an
internal IT group to provide software maintenance, data
backups, and security and capacity management. The
service costs associated with each use of the software is
denoted by c (i.e., the service costs per transaction). Each
transaction creates a value of u to the user.

The SaaS vendor sells the bundle of software and
services, rather than the software only. In reality, most
SaaS vendors have established large data centers and
strong network infrastructures. To start doing business
with a user, the vendor first moves the user’s data to its
own server, which costs the vendor a one-time setup cost
S. The vendor provides all necessary IT services to enable
the software use, which imposes a service cost c per
transaction on the vendor. Users “pay as they go”. Hence,
they bear no initial setup costs, but need to pay a price

ap per transaction. The software application is installed
on the vendor’s site and all users can access and run it
remotely via the Internet. Thus, the SaaS vendor is using
the “one to many” business structure since one software is
serving many users. To any individual user, the
application is not well-customized, and each transaction
gives the user a total value of u-t. The parameter t
measures the user’s disutility from not using its ideal
product. In many cases, it also represents the cost of extra
effort to make the outside application work with the
user’s existing IT components smoothly. In the rest of the
paper, we call t a user’s “unfit costs.” We assume that the
exact value of the unfit costs is unknown by the user ex
ante, the reason being that software applications are
experience goods. Before a user firm uses the software
application, it does not know in advance how the
application fits its specific business environment or how
much effort it must exert in order to run this new
application with its existing applications smoothly. Such
information will be fully revealed only after the user runs
the application in the real settings. We assume that the

unfit costs can be low (Ltt =) or high (Htt =), each
equal probability.

Figures 1 and 2 demonstrate the COTS and SaaS
solutions respectively. The black dot in the figures
indicates the location of the software system.

Under the SaaS business model, software users are

outsourcing their IT services to the vendor. They form a
close partnership instead of the simple buyer-seller
relationship, which makes users highly dependent on the
outside provider. If a user wants to stop using the SaaS
software, it bears the costs of getting the data back and
recovering the data, which constitute non-negligible
exiting costs. In addition, many SaaS vendors will require
users to pay a high cancellation fee to stop the business
relation. We denote the total exiting costs by the
parameter E.

Users need make two-stage decisions. In the first
stage, they face incomplete information, i.e., they do not
know the exact value of unfit costs t. Users choose the
SaaS or COTS software by comparing their expected
payoffs. After that, the SaaS users learn their exact unfit
costs. With this new information, some of them may exit
the market or switch to the COTS, at a cost of E. The
decision timeline is shown in Figure 3.

Figure 2. The SaaS business model

The SaaS vendor
(service cost c per transaction)

Software
demand

a user firm

delivers the
bundle of a
“standard”
software
and support
services

pays a price

ap per
transaction

a value of u-t per
transaction
{t=tH or tL }

The COTS vendor

a user firm
with in-house

service capacity
(service cost c per

transaction)

Figure 1. The COTS Software Solution

pays a one-time
purchasing
price P

a value of u
per
transaction

customizes and
installs the
software with an
operating cost C
per user

software
demand

3. The Analysis

We first formally formulate users’ decisions as well
as vendors’ pricing competition in section 3.1. We then
study and compare two scenarios – the software market
with low switching costs and with high switching cost in
section 3.2. Finally, section 3.3 uses numerical examples
to demonstrate how the SaaS vendor’s profit varies as
switching costs gradually increase. To simplify the
analysis, we assume that both software providers and user
firms care long-run profit (utility) only. In other words,
the learning stage []T,0 is short and considered a
“transient” stage.

3.1. Formulate the general problems

The COTS-SaaS competition game takes three steps.
Step 1. The COTS and SaaS vendors determine their

optimal prices, P and ap respectively.
Step 2. Given the prices, users, without knowing

their exact unfit costs, decide which software to take. It
happens at Time 0, as in Figure 3.

Step 3. Given their initial choices, users, now
obtaining the exact unfit costs, decide whether to exit the
SaaS contract (given that they have chosen SaaS
initially). It happens at Time T, as in Figure 3.

We need solve the problem backward, step by step.
We first analyze the Step 3. At time T, the market

outcome must be the following: there is a user with
transaction volume 1d such that all users with transaction

volume smaller than 1d have chosen the SaaS software

while those larger than 1d have chosen the COTS.
Hence, users, who have transaction volume []1,0 ddi ∈
and turn out to have high unfit costs Htt = , need take one
of the following actions: keep using SaaS, switch to the
COTS, or exit the market. The corresponding payoffs

from each action are iHa dtpu)(−− , EPdcu i −−−)(
and E− respectively.

We define “the marginal SaaS user” with transaction
volume SaaSd . This marginal user is the “last switcher,”
given that it has chosen the SaaS initially. Hence, all high
unfit costs type users (Htt =) with transaction volume

smaller than SaaSd will choose to stay with the SaaS,

while larger than SaaSd will exit the SaaS. The value of

SaaSd is given by
{ }EEPdcuMaxdtpu SaaSSaaSHa −−−−=−− ,)()(. (1)

Similarly, we define the “the marginal COTS user”
with transaction volume COTSd :

{ }EdtpuMaxEPdcu COTSHaCOTS −−−=−−− ,)()(. (2)
After users’ switching, the final equilibrium market

outcome is depicted in Figure 4. We need analyze two
cases: the market is fully served (case a), and the market
is partially served (case b). In case a, all users who exit
the SaaS choose to switch to the COTS; i.e.,

ctp
EPdd

Ha
COTSSaaS −+

+
== . In case b, users in

[]COTSSaaS dd , choose to exit the SaaS and stay out of

the market, i.e.,
cu

Pd
utp

EPd COTS
Ha

SaaS −
=<

−+
+

= .

Now we move to the Step 2 to find the expression for

1d . At Time 0, the user with transaction volume 1d is
indifferent between the two options, given that its unfit
costs are unknown yet. So, we have

PdcudtpuEPdcu La −−=−−+−−− 111)()(
2
1])[(

2
1 . (3)

The left-hand side of the equation is this user’s
expected utility from choosing the SaaS at Time 0. With
half probability, the user will be with high unfit costs and
switch to the COTS later; and with half probability, the
user will be with high unfit costs and keep using the

Figure 4. Equilibrium market segmentations

0 1 1dCOTSdSaaSd

Users with tL
use the SaaS;
Users with tH
choose the SaaS
initially and
exit the market
later.

All
users
choose
the
SaaS

Users’ transaction volume

Users with tL
use the SaaS;
Users with tH
choose the SaaS
initially and
switch to the
COTS later.

All users
choose the
COTS

0 T Time Line

Two decision points for users.
Time 0: Users do not know their unfit costs. They choose to use
the COTS or SaaS product.
Time T: Users get the full information of the value of unfit costs.
Some may decide to exit the SaaS due to high unfit level.

Stage1: learning period.
SaaS users learn their
exact unfit costs.

Stage 2

Figure 3. The two-stage decisions

SaaS. The right-hand side is this user’s utility from
choosing the COTS at Time 0. Solving it gives out

ctp
EPd

La −+
−

=1
.

Finally, we analyze the Step 1. Knowing all the
consumers’ behaviors discussed above, the two software
vendors choose their optimal prices simultaneously to
maximize their profits.

⎥⎦
⎤

⎢⎣
⎡ −+−−=∏)(

2
11)(11 COTSCOTS

P
dddCPMax .

() 1
0

1

2
1 SdxdxxdxcpMax

d

d

d

aSaaSp
SaaS

SaaS

a

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=∏ ∫∫ .

The COTS vendor serves all users in]1,[1d and
users with high unfit costs in],[1ddCOTS . The SaaS
vendor serves all users in],0[SaaSd and users with high

unfit costs in],[1ddSaaS , but it bears the initial setup

costs for all users in],0[1d . Note that the COTS payment
is per user, since it is an upfront one time payment for
each user, while the SaaS payment is per transaction.

3.2 Software market with absolute lock-in power
versus partial lock-in power

It seems mathematically too complicated to solve the

general optimal prices analytically. To get useful insights,
in this subsection, we study and compare two special
scenarios:

(1) Users face significantly high switching costs. No
user, once it chooses the SaaS, is able to exit due to the
high switching costs. The SaaS vendor has absolute lock-
in power. We believe that this type of market is close to
the reality given that we do observe many SaaS users are
highly dependent on their outside provider and are
typically facing high penalty fee if they want to stop the
software use.

(2) Users face small switching costs. There are
always some users who choose the SaaS initially and
switch in the later stage. The SaaS vendor has partial
lock-in power. We are interested in examining whether,
and if so, when a loose bond between the users and the
SaaS vendor will benefit the vendor. It will provide useful
managerial implications to the SaaS vendor in their
contracting strategy.

The following propositions state our main findings in
these two types of markets.
Proposition 1. In the market where users face high
switching costs, as users’ unfit costs from using a not
fully customized system decrease, the relative
economic advantage of the SaaS business model
increases monotonically.

Due to the space limit, we are not providing the
details of the proof, which is available upon requests. The
above proposition shows an interesting finding. To some
extent, our model resembles the duopoly competition
model with vertically differentiated products, with the
SaaS as the low-quality provider and the COTS as the
high-quality provider. The unfit cost t measures the
quality difference between their products. In the
traditional vertical differentiation model, when the quality
difference decreases, the low-quality provider initially
gets better off because its product becomes more
attractive, but it gets worse off as the quality difference
decreases further because the competition becomes more
intensive and eventually hurts both vendors. However, in
the setting we study, we find that reducing the value of t
benefits the low-quality provider (i.e., the SaaS vendor)
monotonically. Moreover, when the two vendors’
products are close enough, the high-quality provider (i.e.,
the COTS vendor) could be squeezed out of the market.
We believe that our findings deviate from traditional
vertical differentiation literature because the two vendors
here are using different business models.

This result is very important. It reveals the future
evolution of the software market. As Figure 5 shows, as
unfit costs t decreases, the software market will transit in
a way of “the COTS dominates the COTS and SaaS
coexist the SaaS dominates.” Figure 5 depicts three
critical values of unfit costs, 1t < *t < 2t , which define
four different regime. In each regime the market presents
distinct structures.

Regime 1.],0[1tt∈ : All users opt for the SaaS model.
The COTS solution fails out of the market.
Regime 2.],[*

1 ttt∈ : Both the SaaS and COTS models
coexist in the software market. The competition benefits
each software user (i.e., total consumer surplus increases).
Regime 3.],[2

* ttt∈ : Both the SaaS and COTS models
coexist in the software market, but not directly compete
with each other. They serve different market segments.
Regime 4. cut −> : The SaaS business model is not able to
survive. The COTS model is the only software solution.

Hence, we conclude that users’ unfit cost, which
represents users’ disutility from using an non-ideal, not
fully-customized software, is the most important
determinant of the success of the SaaS business model.
Besides, our analyses also find that when it becomes more
expensive to provide on-site IT support services (a large
value of c), user firms will find the SaaS solution of
outsourcing the IT services to outside experts more

Figure 5. The market structure transition with t

*t 1t 2t unfit cost

1 2 3 4

attractive. In such a situation, we can prove that the SaaS
model is expected to take a significant market share.

Another important finding of us is that under certain
conditions, it is optimal for the SaaS vendor to give up its
full lock-in power, which is stated below.
Proposition 2. When the software market is fully
covered, namely, when no users are priced out of the
market, the profit of the SaaS vendor is higher in the
scenario that users can exit the SaaS contract in a less
costly way than in the scenario where exiting costs are
very high.

The proof is omitted and available upon requests.
This result tells us that it is never optimal for the SaaS
vendor to assert absolute lock-in power in a competitive
marketplace. The reason is: high exiting costs reduce the
attractiveness of the SaaS business model. Knowing that
it is easy to become dependent on the outside provider,
potential users become more conservative when deciding
whether to partner with the SaaS vendor in the first stage.

This conclusion, however, is valid only when the
market is fully covered (case a). In other words, it is true
only when all user firms have access to the software
system. We can think of the “matured” software
application markets, such as server operating systems
(e.g. Linux, Windows NT) and basic software systems
(e.g., Microsoft office, email), in which almost all firms
are able to afford such applications. We then suggest that
the SaaS vendors in such areas should not demand users
long term commitments. In contrast, allowing users to
free exit will increase the profitability of the SaaS model.

 Below, we give an example to show that when some
users stay out of the market in equilibrium (case b), a
SaaS vendor may gain higher profits by relying on its
strong lock-in ability.

Consider a market with
3

cutL
−

= , cutH −= , and

6
MOTSCS ≤ . When the SaaS vendor is able to lock in all

existing users, it will charge
3

2* cupa
+

= and keeps all

users in ⎥
⎦

⎤
⎢
⎣

⎡
−

+
)(22

1,0
cu

C . However, when users are able

to switch at low costs, in order to keep users, the vendor
has to reduce its price to a very low level, close to c. This
low price, although giving full market coverage, is likely
to make the vendor unprofitable. If so, the vendor would
rather give up a part of the users — let them exit in the
second stage. For simplicity, we solve the price and profit
of the SaaS vendor at the extreme case of 0=E . It is easy
to show that the optimal price *0

a
E
a pp <= . On the other

hand, all users with high unfit costs will exit the SaaS in
the second stage. As a result, the vendor only serves those
users with low unfit costs and low transaction volume (

[]0
1,0 =∈ E

i dd). We can further prove that the number of
users of the SaaS also reduces. Consequently, the
vendor’s profit is lower.

In this example, a SaaS vendor with full lock-in
power is able to charge a higher price and still possess a
larger market share. In contrast, this vendor will have to
set a lower price but still loses market share when users
are able to switch costless. Hence, in such scenario, we do
suggest the SaaS vendor should only offer long-term
contracts which require high penalty costs for early exits
to lock in users.

3.3. A numerical example

So far, we have focused on the comparison of two

special types of markets: the SaaS provider has absolute
or small lock-in powers. It is more interesting if we can
draw a whole picture to see how the SaaS vendor’s profit
changes as its lock-in power increases. It will help us to
identify the optimal exiting costs (in terms of maximizing
the SaaS vendor’s profit). To show this, we rely on
numerical examples.

Consider the market with following parameters.
15=u , 2=C , 3=c , 5=Ht , 3=Lt , 0=S . Note that in

this case, the whole market will be covered, and so the
conclusion from Proposition 2 should stand.

Figure 6 reveals a non-monotonic relation between
the SaaS vendor’s profit and the users’ exiting cost. As
exiting costs increase, the vendor’s optimal profit
increases first, peaks at 6.0=E , and decreases after that
at a fast speed.

Such a similar non-monotonic curve remains after we
try different parameter values. This suggests that exerting
absolute lock-in power on users is never the ASP’s
optimal strategy (as consistent with our Proposition 2);
instead, the optimal switching costs for the vendor are
likely to be at a middle level.

 Figure 6. The SaaS’ profit versus exiting costs

 Exiting costs

4. Business implications

Delivering software as a service, a novel business
model, has profound impacts on the software vendors,
users and the whole industry. Such a SaaS model has
three most important features: First, the vendor offers
utility rather than the software. Users therefore are
relieved of heavy IT service burdens, which are
outsourced to the outside provider. Second, the vendor
adopts the usage-based fee structure. It does not require
high upfront payments. Users therefore can pay as they
go and smooth their payments over a period. Third, the
vendor installs and manages the software and users’ data
on its own site. Users therefore become very dependent
on the vendor and face potential lock-in risks. In this
work, we identify and model all these important factors,
and analyze the competitive advantage / disadvantage of
the SaaS business model.

We show that when the users’ unfit costs parameter
reduces, the SaaS business model will intensively
compete and even gradually replace the COTS traditional
software. It will result in the transition of the whole
software industry to the service-oriented structure. The
key question then becomes: how to reduce users’ unfit
costs in practice? Most user firms have existing IT
systems in house, such as the legacy systems. When a
new software application is needed, but it is not
customized to fit the user’s existing IT components, the
user has to incur some extra efforts to make them run
smoothly together. For example, a hospital that is using a
new, un-customized PACS (Picture Archiving and
Communications System) has to run an additional
software module to convert the output/ input between the
hospital’s in-house research information system and the
new PACS application. Such efforts represent users’ extra
unfit costs, which may be reduced in multiple ways. On
the vendor’s side, they should create applications that are
most compatible with other systems and programs, by
writing the applications using an open language (for
example, XML), in a proper modular structure, and with a
loosely coupled interface with other applications. All
these strategies would help to increase the application’s
ability of being compatible with other systems. In
addition, industry-wide adoption of software standards
and protocols, once achieved, will also make the
communications and cooperation across different
applications easier and thus would reduce the unfit costs.
In reality, some efforts have been made in this direction.
In January 2006, Salesforce.com developed and launched
AppExchange, an online marketplace for on-demand
business software. It allows Salesforce.com and other
software providers to establish across-application
integration and therefore provides users seamless
extension of their existing systems [2] [12]. Users expect

to have reduced unfit costs because a uniform platform
eases collaboration across software applications.

Our findings suggest that the SaaS vendors can also
enhance their competitive advantage through the
appropriate contracting strategy. The nature of the SaaS
business arrangement endows the vendor significant lock-
in power so that the vendor is able to exploit its existing
users to reach high profitability. However, unlike some of
the classical results on ‘lock in’ pricing [4] [8] [9] [10]
[11], we reach an interesting, and somewhat
counterintuitive result: under certain market conditions,
when the users’ exiting costs decrease below a certain
level, the SaaS vendor’s market share increases and its
profit improves. In other words, the vendor may find it
optimal to help users switch out at low cost to them, and
therefore it should strategically reduce users’ exiting
barriers instead of increasing them. In specific, we show
that it is never optimal for the SaaS vendor to exert full
lock in power in the competitive marketplace. The fear of
being locked in by an outside provider will drive users
away from the SaaS. This challenges many of the existing
contracts in the SaaS market. To negotiate an exit strategy
has been an important part of the software contracts [3].
Users are looking for a smooth and quick exit in order to
avoid being locked in by one outside provider, but many
vendors deliberately increase users’ switching barriers in
order to obtain lock-in advantages. We suggest that under
reasonable market conditions, the interest conflict
between the SaaS vendor and its users in fact does not
exist. The vendor should cooperate and help their users to
have easy exits. Hence, we would suggest the contract
designed in the way that the vendor does not charge users
high cancellation fees, assures users that they can get their
data back intact once they decide to exit the contract, and
cooperates and guarantees the data transition done in days
or hours. The increased attractiveness of a contract that
requires no lengthy commitment and ensures easy exits
allows SaaS vendors to draw users who otherwise might
opt for the traditional COTS software, and finally
increases the SaaS profitability.

To conclude, the future prosperity of the SaaS
business model requires both technological and
managerial efforts. As the technologies further improve to
bring a new set of software applications, and as the
software vendors improve their understanding of the
market and therefore take economically optimal
contracting strategies, we expect to see more software
will be delivered as a service.

References

[1] Bednarz, A., “Manufacturers Eye on On-Demand Software”,
Network World, Apr 24, 2006

[2] Cowley, S., “Salesforce.com Makes Platform Move with

AppExchange”, InfoWorld, Sep 2005

[3] Drummond, M., “The End of Software as We Know It”,
Fortune, Winter 2002

[4] Farrell, J., and Shapiro, C., “Dynamic Competition with
Switching Costs,” RAND Journal of Economics, Vol. 19, No.1,
Spring 1988

[5] Garner, R., “Software for Hire”, CRN, Nov 1, 2004

[6] Hamm, S., “SAP Gets On-Demand Religion”, Business
Week, Feb 2, 2006

[7] Kaplan, J., “Sorting Through Software As A Service”,
Network World, Nov 21, 2005

[8] Klemperer, P., “Markets with Consumer Switching Costs”,
The Quarterly Journal of Economics, Vol. 102, No. 2, 375-394,
1987a

[9] Klemperer, P.,“ The Competitiveness of Markets with
Switching Costs”, The Rand Journal of Economics, Vol. 18,
No.1, 138-150, 1987b

[10] Kelmperer, P., “Price Wars Caused by Switching Costs,”
Review of Economic Studies, 56, 405-420, 1989

[11] Klemperer, P., “Competition when Consumers Have
Switching Costs: An Overview with Applications to Industrial
Organization, Microeconomics, and International Trading,”
Review of Economics Studies, Vol. 62, 515-539, 1995

[12] Kuchinskas, S., “Salesforce Finally Ships AppExchange”,
Ecommerce, Jan 17, 2006

[13] Lacy, S., “The On-Demand Software Scrum”, Business
Week, April 17, 2006

[14] Niccolai, J., “Gates Memo Puts Services at the Heart of
Microsoft”, Network World, Nov 2005

[15] Pallatto, J., “IBM Recruiting ISVs, Partners to SaaS”,
Channel Insider, Feb 23, 2006

[16] Vara, V., “Web Services Face Reliability Challenges”,
Wall Street Journal, Feb 23, 2006

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2007

	The business model of "Software-as-a-Service"
	Dan MA
	Citation

	Microsoft Word - IEEE submission the SaaS model.doc

