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ABSTRACT

Tag-based social image search has attracted great interest
and how to order the search results based on relevance level
is a research problem. Visual content of images and tags
have both been investigated. However, existing methods
usually employ tags and visual content separately or sequen-
tially to learn the image relevance. This paper proposes
a tag-based image search with visual-text joint hypergraph
learning. We simultaneously investigate the bag-of-words
and bag-of-visual-words representations of images and ac-
complish the relevance estimation with a hypergraph learn-
ing approach. Each textual or visual word generates a hy-
peredge in the constructed hypergraph. We conduct exper-
iments with a real-world data set and experimental results
demonstrate the effectiveness of our approach.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Content Anal-
ysis and Index; H.4 [Information Systems Applications]:
Miscellaneous

Keywords

Tag-based image search, hypergraph learning, visual-text

1. INTRODUCTION
In recent years, the amount of social media grows in an

explosive way due to the fast development of multimedia
and network technology, such as Flickr and Youtube. The
development of efficient search for these media corpus be-
comes highly desired. On these websites, users are allowed
to not only upload multimedia data but also annotate their
content with tags. Therefore, many social media entities
are associated with user-provided tags. By indexing media
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data with these tags, tag-based search becomes a solution
for users in interesting data on social media websites.

However, the performance of existing tag-based search
methods is usually not satisfactory. This can mainly be
attributed to the following two facts. First, user-provided
tags are usually noisy. Second and more important, there
lacks a good ranking strategy to order the multimedia enti-
ties that contain a query tag. For example, currently Flickr
provides two ranking options for tag-based image search,
one is time-based ranking and the other is interestingness-
based ranking. However, they both rank images according
to measures that are not related to relevance and thus in
many cases the search results are not good enough in terms
of relevance.

Several research efforts have been dedicated to develop-
ing relevance-based ranking for social media search. Given
a query tag, the task is to estimate the relevance levels of
the images that contain the tag. The visual content of im-
ages and tags have both been explored. However, existing
methods usually use the two information sources separately
or sequentially. For example, the method in [10, 19] mainly
works as follows. First, an initial relevance score of each im-
age is learned according to the similarity between the query
tag and the image’s tag set. A graph-based learning is then
performed to refine the relevance scores based on the pair-
wise visual similarities of images. Therefore, tag and visual
information is actually used in the first and second steps,
respectively. This is due to the fact that visual features
and tags are different characteristics and are not easy to be
integrated.

In this work, we propose a visual-text joint hypergraph
learning approach to simultaneously explore the two infor-
mation sources. Each image can be represented by bag-
of-words and bag-of-visual-words, which are generated from
the image’s tags and visual content, respectively. A hyper-
graph is constructed to model the relationship of all images,
in which each vertex denotes an image and a hyperedge is
a visual or textual word (i.e., tag), and a hyperedge con-
nects to multiple vertices. We define the weight of each
edge based on the visual similarities of images belonging to
the edge. The relevance scores of images are learned based
on the hypergraph and then we can order the images with
their relevance scores in descending order. Experiments on a
Flickr data set demonstrates the superiority of our approach
over the state-of-the-art methods.
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Figure 1: The flowchart of the proposed method.

The rest of the paper is organized as follows. Section
2 briefly reviews related work. In Section 3, we introduce
the tag-based image search with visual-text joint hypergraph
learning approach. Experiments on a Flickr data set are
provided in Section 4. Finally, we conclude the paper in
Section 5.

2. RELATED WORK
Multimedia analysis and retrieval [5,6,14,15,17,18,20,21]

has attracted a lot of attention recently, and extensive re-
search efforts have been dedicated to topics related to web
image search in the past years [3, 4, 16]. Different from
these web images, social images can be indexed with user-
contributed tags and tag-based image search is an effective
approach for social image search. However, user-provided
tags are usually noisy. Therefore, several research has been
conducted towards improving search performance by tag re-
fine or tag relevance learning [2, 9, 11–13, 19, 24]. Liu et
al. [?] proposed a relevance-based ranking method for so-
cial image search. It first learns relevance scores based on
images’ tags and then refines the scores by exploring images’
visual content. In [19], a diverse relevance ranking scheme
was proposed to re-rank images by exploring the content of
images and their associated tags. The first component of
their approach estimates the relevance scores of images and
it is actually the same with [10]. However, these methods
usually use visual and tag information separately or sequen-
tially, whereas our approach integrates them in a hypergraph
learning scheme such that they can be simultaneously inves-
tigated. Experiments will demonstrate the superiority of our
approach.

Hypergraph has been widely investigated in information
retrieval and pattern recognition tasks [1, 3, 7, 23] for its
capability of capturing high-order relationship of samples.
A probabilistic hypergraph matching method was proposed
in [22] to match two feature sets. In the transductive learn-
ing framework for image retrieval [8], each image was repre-
sented by a vertex in a probabilistic hypergraph, and the im-
age retrieval was formulated as a hypergraph ranking task.

Considering the capability of hypergraph in high-order re-
lationship mining and unified modeling (the hyperedge can
be generated based on different information sources), our
work employs the hypergraph learning method for a tag-
based image search with joint visual-text information.

3. VISUAL-TEXT JOINT HYPERGRAPH

LEARNING
We introduce the proposed tag-based image search with

visual-text joint hypergraph learning in this section. Figure
1 demonstrates the schematic illustration.

3.1 Feature extraction
By feature extraction, we aim to generate the bag-of-

words and the bag-of-visual-words representations for each
social image.

For bag-of-words representation, we simply generate it by
selecting several informative tags. From our dataset, which
will be introduced in the next section, we have 12,921 unique
tags. We first perform a filtering with the help of Wikipedia,
and those tags that do not have coordinate in Wikipedia
are removed (they are usually misspelling or meaningless
words). Then we select 2,000 tags that are with the highest
TF-IDF values. With the 2,000 tags, we generate the bag-
of-words representation for each image.

For bag-of-visual-words representation, we perform Difference-
of-Gaussian (DoG) method to detect keypoints in each im-
age and then employ 128D SIFT descriptor. A 1,000-D code-
book is built by grouping the keypoint features with hierar-
chical K-means and in this way a 1000-D bag-of-visual-words
representation is generated for each image.

3.2 Hypergraph construction
A hypergraph G = (V, E , w) is composed by the vertex set

V, the hyperedge set E , and the hyperedge weight w . Each
hyperedge ei is given a weight w(ei). The hypergrpah G can
be denoted by a |V| × |E| incidence matrix H with entries:

h(v, e) =

{

1 if v ∈ e
0 if v /∈ e

(1)

For a vertex vi ∈ V, the vertex degree is estimated by:

d (vi) =
∑

e∈E
ω (e)h (vi, e). (2)

For a hyperedge ei ∈ E , the edge degree is estimated by

δ(ei) =
∑

v∈V
h(v, ei). (3)

We let Dv andDe denote the diagonal matrices of the vertex
degrees and the hyperedge degrees, respectively, and we let
W denote the diagonal matrix of the hyperedge weights.

In our approach, we regard each image in the database as
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a vertex in the visual-text hypergraphG = (V, E , w). For ex-
ample, assuming there are totally n images in the database,
the generated hypergraph G = (V, E , w) thus contains n
vertices. Taken both the visual content and the text infor-
mation into consideration, there are two types of hyperedges
generated from the visual content and the tags respectively.

For visual content-based hyperedge, each visual word is se-
lected as a hyperedge, and the images that contain the same
visual word are connected by the hyperedge. These visual-
content based hyperedge is denoted by Evisual. Analogously,
for tag-based hyperedge, each tag is selected as a hyperedge,
and the images containing the same tag are connected by
the hyperedge. These tag-based hyperedges is denoted by
Etext. Let nvisual and ntext denote the number of the two
types of hyperedges, there are totally nE = nvisual + ntext

hyperedges.
We let Dv andDe denote the diagonal matrices of the ver-

tex degrees and the hyperedge degrees respectively, and the
incidence matrix H is constructed using Equation (1). The
weight of a hyperedge w is estimated based on the similarity
of images connected by the hyperedge, i.e.,

w(ei) =
∑

Ia,Ib∈ei

exp

(

−‖Ia − Ib‖2
σ2

)

, (4)

3.3 Hypergraph Learning
For hypergraph learning, the Normalized Laplacian method

proposed in [23] is employed, and it is formulated as a reg-
ularization framework:

argmin
f

{λRemp(f) + Ω(f)} , (5)

where f is the classification function to be learned, Ω(f) is
a regularizer on the hypergraph, Remp(f) is empirical loss,
and λ > 0 is a weighting parameter. The regularizer on the
hypergraph is defined as

Ω(f) = 1
2

∑

e∈E

∑

u,v∈V

w(e)h(u,e)h(v,e)
δ(e)

(

f(u)√
d(u)

− f(v)√
d(v)

)2

= 1
2

∑

e∈Evisual

∑

u,v∈V

w(e)h(u,e)h(v,e)
δ(e)

(

f(u)√
d(u)

− f(v)√
d(v)

)2

+ 1
2

∑

e∈Etext

∑

u,v∈V

w(e)h(u,e)h(v,e)
δ(e)

(

f(u)√
d(u)

− f(v)√
d(v)

)2

(6)

Let Θ = D
− 1

2
v HWD−1

e HTD
− 1

2
v , and ∆ = I − Θ, the

normalized cost function can be written as

Ω(f) = fT
∆f. (7)

Here ∆ is a positive semi-definite matrix, and it is usually
called hypergraph Laplacian.

The transductive inference is formulated with a regular-
ization on hypergraphs argmin

f

{λRemp(f) + Ω(f)}, and the

loss term is defined as follows:

‖f − y‖2 =
∑

u∈V

(f (u)− y (u))2, (8)

where y is the label vector. Assuming the number of all
images in the database is n, and the i-th image is selected

as the query image. Denote by y an n × 1 vector, where
all elements of y are 0 except its i-th value is 1. Then the
learning task for social image search is to minimize the sum
of the two terms:

Φ (f) = fT
∆f + λ‖f − y‖2, (9)

where λ > 0 is the regularization parameter. Differentiating
Φ(f) with respect to f , we can obtain:

f =

(

I+
1

λ
∆

)−1

y. (10)

After obtaining the relevance score vector f , we can rank
the images that contain the query tag with the scores in
descending order.

3.4 Analysis of computational cost
According to the process introduced above, it can be an-

alyzed that the computational cost of hypergraph learning
scales as O(n3), where n is the number of images in the
hypergrpah learning procedure. But in fact we can solve
Eq. (10) can be solved with an iterative process, which can
reduce the computational cost to O(n2).

4. EXPERIMENTS

4.1 Experimental Settings
To evaluate the proposed tag-based image search method

with visual-text joint hypergraph learning, we conduct ex-
periments on the dataset in [19]. The data are collected from
Flickr with the search results of 52 tags: airshow, apple,

beach, bird, car, cow, dolphin, eagle, flower, fruit, jaguar,

jellyfish, lion, owl, panda, starfish, triumphal, turtle, watch,

waterfall, wolf, chopper, fighter, flame, hairstyle, horse, mo-

torcycle, rabbit, shark, snowman, sport, wildlife, aquarium,

basin, bmw, chicken, decoration, forest, furniture, glacier,

hockey, matrix, Olympics, palace, rainbow, rice, sailboat,

seagull, spider, swimmer, telephone, and weapon. Time-
based ranking is used in the data collection process and thus
we can estimate the search relevance of time-based ranking.
Mean Average Precision (MAP) is adopted as our perfor-
mance evaluation metric.

Figure 2: The MAP comparison of the two com-

pared methods.
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4.2 Experimental Results
We compare the following methods in the experiment:

• Time-Based Ranking. Time-based ranking orders the
images according to their uploading time.

• Tag-Based Image Search with Visual-Text Joint Hy-
pergraph Learningčň i.e., the proposed method. We
denote it as “Joint Learning”.

In our“Joint Learning”method, the parameter λ is simply
set to 0.9, and the parameter σ in Eq. (4) is simply set to
the median value of the pairwise distances of all images. For
each query tag, we only randomly select 2000 images that
do not contain the tag as negative samples.

Figure 2 demonstrates the results. From the results we
can see that, time-based ranking performs worse than the
“Joint” method. Among the 52 tags, there are 21 queries
where the improvement of search performance is more than
10%. The MAP measures of the two compared methods are
0.576 and 0.593, respectively. Figure 3 demonstrate the top
10 search results of the two compared ranking methods of
an example query “Forest”.

Figure 3: The top 10 results of the two ranking

methods of an example query “Forest”.

5. CONCLUSION
In this work, we propose a tag-based image search with

visual-text joint hypergraph learning. In this method, we
simultaneously investigate the visual and text information
of images with a hypergraph learning approach. Hyper-
edges are generated based on visual and textual words. We
conduct experiments on a Flickr data set and compare the
proposed approach with existing methods. Experimental re-
sults show that our method can achieve better performance.
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