
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

8-2010

A new hardware-assisted PIR with O(n) shuffle cost A new hardware-assisted PIR with O(n) shuffle cost

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Yanjiang YANG
Singapore Management University, yjyang@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Shuhong WANG
Sumavision Technologies

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
DING, Xuhua; YANG, Yanjiang; DENG, Robert H.; and WANG, Shuhong. A new hardware-assisted PIR with
O(n) shuffle cost. (2010). International Journal of Information Security. 9, (4), 237-252. Research
Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/629

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email library@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Int. J. Inf. Secur. (2010) 9:237–252
DOI 10.1007/s10207-010-0105-2

REGULAR CONTRIBUTION

A new hardware-assisted PIR with O(n) shuffle cost

Xuhua Ding · Yanjiang Yang · Robert H. Deng ·
Shuhong Wang

Published online: 6 May 2010
© Springer-Verlag 2010

Abstract Since the concept of private information retrieval
(PIR) was first formalized by Chor et al., various construc-
tions have been proposed with a common goal of reducing
communication complexity. Unfortunately, none of them is
suitable for practical settings mainly due to the prohibitively
high cost for either communications or computations. The
booming of the Internet and its applications, especially, the
recent trend in outsourcing databases, fuels the research on
practical PIR schemes. In this paper, we propose a hardware-
assisted PIR scheme with a novel shuffle algorithm. Our PIR
construction entails O(n) offline computation cost, and con-
stant online operations and O(log n) communication cost,
where n is the database size.

Keywords Algorithms · Privacy · Information retrieval ·
Trusted hardware

1 Introduction

Databases, as the storage systems of information, are one of
the cornerstones of IT infrastructures. Across the network
links of either intranets or the Internet are millions of data-
base queries sent by various users around the world. While
database services facilitate information sharing and retrieval,
they open a door for attacks on user privacy. If no proper

X. Ding (B) · R. H. Deng
School of Information Systems, Singapore Management
University, Singapore, Singapore
e-mail: xhding@smu.edu.sg

Y. Yang
Institute of Infocomm Research, Singapore, Singapore

S. Wang
Sumavision Technologies, Beijing, China

security measure is in place, a database query transaction not
only reveals to the server the exact information accessed by
the involved user, but allows the server to infer other infor-
mation about a particular user or even a group of users. The
former leakage obviously deprives a database client of her
query privacy, whereas the latter is likely to pose a bigger
threat, as the server is able to derive a group of users’ activ-
ity pattern by running statistical analyses on the transaction
history. Such threats are particularly ominous for databases
storing sensitive data, such as patents, medical records and
stock quotes. For instance, a query on a patent may imply that
the user is pursuing a related idea; stock queries to a data-
base server may indicate that certain stock is exceptionally
popular among a group of users sharing a common profile.
A malicious server may exploit the privacy exposure due to
database transactions to mount attacks against users’ inter-
ests.

Recent works on keyword search on encrypted data
[17,28] do not fully solve the aforementioned problem.
Searchable encryption indeed helps to hide the data infor-
mation requested by a user. Nonetheless, it is incapable of
hiding users’ access patterns. We also note that techniques
for anonymous communications, e.g., onion routing [54],
Crowds [55] and mix networks [22], do not resolve the above
privacy threat either, since these schemes only protect user
identities from communication’s perspective. None of them
addresses user privacy issues related to database transactions.

The right remedy is called Private Information Retrieval
(PIR) that enables a user to retrieve data items from a data-
base without revealing any information about her queries.
The concept of PIR was first introduced by Chor et al. in
[25]. Since then, various schemes have been proposed. The
main objective of previous studies on PIR is to reduce the
communication complexity. In Sect. 2, we provide a system-
atic review on the security notion of PIR and the landmark

123

Published in International Journal of Information Security, 2010, 9, (4), 237-252.
DOI: 10.1007/s10207-010-0105-2
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
Accepted version

238 X. Ding et al.

results developed in the past decade. Despite all the efforts, a
remaining open challenge in this line of research, as pointed
out by the panelists in SECURECOMM’06, is how to design
a practical PIR scheme. This problem remains unsolved as
all existing PIR schemes require either impractically high
communication cost or computation cost, though the results
on asymptotic complexity are attractive. Sion and Carbunar
even argue in [57] that a carefully designed PIR scheme with
sophisticated cryptographic techniques on popular platforms
costs more time delay than the trivial solution, i.e., transfer-
ring the entire database, because of the capability difference
between processors and network bandwidth. One of the con-
clusions of their analysis is that existing PIR solutions are far
from being practical.

Our work presented in this paper aims to constructing a
more efficient PIR scheme,1 which has not only the lowest
communication and computational asymptotic complexities,
but also the potential for practical deployment. Besides pro-
posing the PIR protocol, we achieve the following theoretic
results:

– We prove the semantic privacy of our construction. It is
shown that our scheme exposes no extra user query infor-
mation to a polynomially-bounded malicious server. The
notion of semantic privacy is equivalent to the notion of
indistinguishability of query distributions.

– Compared with existing PIR constructions, our scheme
achieves the best performance in all aspects: O(log n)

communication complexity, O(1) online computation
cost and O(n) offline computation cost, where n is the
database size.

Organization The rest of the paper is organized as follows.
We provide a review on private information retrieval in the
next section. In Sect. 3, we define the model and the architec-
ture of our scheme. We then elaborate the algorithm details in
Sect. 4, followed by a formal security analysis in Sect. 5 and
a performance analysis in Sect. 6. Further discussions from a
system perspective are provided in Sect. 7. We conclude this
paper in Sect. 8.

2 A review on PIR

The earliest references on “query privacy” date back to
Blakely et al. [15] and Feigenbaum [31]. Several subsequent
papers such as [1,7,8] refined and extended the model in [31].
The first and currently commonly accepted formal notion of
PIR was defined by Chor et al. [25]. In their formalization,
a database is modeled as a n-bit string x = x1x2 . . . xn , and
held by one or multiple servers. A user sends to the server(s)

1 A preliminary version of this work [60] appeared in ESORICS’06.

a query q(i) to retrieve xi . The privacy is defined as the
indistinguishability of q(i) and q(j) for any two indexes i
and j . Based on this formalization, many results have been
produced in recent years.

We group existing PIR schemes roughly into three cate-
gories: information theoretical PIR, computational PIR and
hardware-based PIR, according to the models in use. Infor-
mation-theoretical PIR schemes provide the strongest secu-
rity notion, where any two query distributions are identical.
Such a security is at the cost of a high communication com-
plexity, which can only be reduced by replicating the database
to multiple servers and assuming no collusion among them.
To further significantly reduce the asymptotic complexity, the
concept of computational PIR was proposed whereby secu-
rity is traded for efficiency. A computational PIR scheme
ensures that the distributions of two queries cannot be dif-
ferentiated within polynomial time. Though offering a less
stronger privacy notion, the computational PIR schemes,
using a single copy of the database, are comparatively more
practical than their predecessors. Nonetheless, the computa-
tion complexity remains high. Hardware-based PIR schemes
are one of the ongoing efforts aiming at further reducing
the computation cost. We observe that all those studies have
one common objective: to reduce the communication cost
or computation cost, or both. The ultimate goal is to design
a practical PIR scheme. We provide an abridged discussion
on these three categories. Interested users are referred to [32]
and [4] for more complete coverages.

2.1 Information-theoretical PIR

Information-theoretical PIR refers to PIR schemes that
achieve information theoretical privacy, i.e., user privacy
against computationally unbounded adversaries. A naive
solution is for the server to return the entire database to the
user. The downside of this solution is its O(n) communi-
cation complexity, which is measured by the number of bits
transmitted between the user and the server per query. There-
fore, the major challenge in PIR design has been to minimize
the communication cost. For a database of n bits, the upper
bound of the communication, derived from the naive solu-
tion, is O(n). It also seems straightforward to derive the lower
bound as O(log n), since the user has to provide an index at
least. In fact, Chor et al. [25] proved that for any single-server
information-theoretical PIR, the lower bound of communi-
cation complexity is also O(n).

One way to break the O(n) barrier is to have multiple
servers, each holding a copy of the database with the assump-
tion of no server collusion. In the landmark paper [25,26],
Chor et al. presented several schemes for k database servers.
They differentiate scenarios where k is small, e.g. k = 2
from those where k is large. When k = 2, their scheme

123

A new hardware-assisted PIR with O(n) shuffle cost 239

has communication complexity of O(n1/3). To illustrate their
idea, we start by explaining their basic two-server PIR model.
In this construction, a user selects a uniformly random sub-
set S0 ∈R 2[1,..,n], where 2[1,..,n] denotes the power set of
{1, 2, . . . , n}. She also prepares another subset S1 such that
S1 = S0 ∪ {i} if i /∈ S0; Otherwise S1 = S0 \ {i}. S0 is
sent to the database D0 and S1 is sent to the second data-
base D1. For b = 0, 1, the database Db replies with Ab:
Ab = xc1 ⊕ xc2 · · · ⊕ xckb

, where kb is the cardinality of set
Sb and c j ∈ Sb for all 1 ≤ j ≤ kb. Namely, each database
computes an exclusive-OR result over all the bits indicated
in the received subset. The user computes xi as A0 ⊕ A1. It
is obvious that neither of the two servers has obtained any
information about i , as each of them only obtains a uniformly
distributed subset. Note that this scheme does not reduce the
communication complexity, since the user still needs to send
O(n) bits. Nonetheless, it leads to a construction of a commu-
nication complexity O(kn1/ log k) for k servers. The key idea
here is to represent the database as a log k dimensional cube
and each dimension is treated as in the same aforementioned
manner. With the same communication cost, the number of
servers can be reduced by using covering codes, a technique
from coding theory, which allows two servers to emulate 8
servers. Thus, the complexity for two-server model is further
reduced to O(n1/3).

For general cases with large k, Chor et al constructed a
scheme with communication complexity of O(k2 log kn1/k)

by using low-degree polynomial interpolation. In this
scheme, for each query on i , a client designs a polynomial
function F() of degree at most k − 1 such that F(i) = xi .
Then the client gathers k points from the servers, which
enable her to recover xi . This complexity were reduced to
O(2k2

n1/(2k−1)) in [2] when k is not big. Further improve-
ments in [41,42] cut the complexity to O(f (k).n1/(2k−1)),
where f (k) is a linear function of k. Beimel et al. improved
the k-database model in [10], where the communication com-

plexity is only nO(
lg lg k
k lg k). The improvement comes from their

recursive PIR construction. They first design a PIR proto-
col P with a key feature that each answer from a server is
composed of multiple sub-answers and each sub-answer is
known to several servers. Built on top of P , they build a
recursive PIR P ′ providing the claimed complexity. In P ′,
a client queries the servers as in P . However, the servers
do not reply with long answers as in P . Instead, the client,
together with those servers with a common sub-answer, exe-
cute another PIR protocol so that the client is able to retrieve
the bit from this sub-answer with less communication over-
head. Recently, Woodruff and Yekhanin [63] further reduced
the communication complexity to O(k2

t log kn1/�(2k−1)/t�),
where t is the maximum number of malicious servers.

All the PIR schemes discussed earlier treat the database as
a n-bit binary string. A different model is considered in [25]

where the database is composed of blocks of equal length.
Each time, a user retrieves an entire block at the commu-
nication cost of O(l(n

l + 1)
1
k), where l is the bit length of

the block, n is the number of blocks in the database, and
k is the number of database copies. In [24], the database is
modeled as a set of n keywords. Though the structure of the
database is unknown to users, a user is still able to perform
a private search on the database with communication com-
plexity O(n + l). The desired keyword is returned if only if
it is stored in the database.

2.2 Computational PIR

The aforementioned information-theoretical PIR provides
privacy against computationally unbounded adversaries.
Nonetheless such an adversary model might be unnecessar-
ily strong in practical settings. Another critical problem with
information-theoretical PIR is its need for multiple database
servers and the assumption that they do not collude. This
assumption, unfortunately, is hard to hold in reality, as the
copies of the database are often under the same administra-
tion. These standing issues motivate researches on compu-
tational PIR whereby the adversaries’ computation power
is polynomially bounded and, usually, a single database is
used.

Two computational PIR schemes were independently pro-
posed in STOC’97. One is due to Chor and Gilboa [23].
This scheme is a 2-server construction with communica-
tion complexity O(nε), for any ε > 0, assuming the exis-
tence of pseudo-random generators [38], or equivalently the
existence of general one-way functions. The other is due to
Ostrovsky and Shoup [52]. This scheme allows both private
read and write, using two servers which may keep different
data. Assuming the existence of one-way trapdoor permuta-
tion, the communication complexity is O(gO(1)(log n)O(1)),
where g is a security parameter.

The first single server computational PIR was proposed in
[46] based on the assumption on the intractability of the qua-
dratic residuosity problem [37]. The database in this scheme
is viewed as an r × c bit matrix M . To retrieve the bit Ma,b

at position (a, b), a user runs the following algorithm.

1. The user generates a large RSA modulus N such that fac-
torization of N is computationally hard. She then chooses
c random numbers y1, y2, . . . , yc ∈ Z

∗
N such that: yb is

a quadratic non-residue in Z
∗
N , whereas y j is a quadratic

residue in Z
∗
N for all 1 ≤ j ≤ c and j
= b. Both N and

{y1, . . . , yc} are sent to the database while the trapdoor
of factorization of N is kept secret to the user.

2. For the υ-th row, 1 ≤ υ ≤ r , the database computes
zυ ∈ Z

∗
N as follows: for 1 ≤ j ≤ c, it computes wυ, j =

y2
j mod N if Mυ, j = 0; otherwise wυ, j = y j . Then it

123

240 X. Ding et al.

calculates zυ = ∏c
j=1 wυ, j mod N . Finally, z1, . . . , zr

are sent to the user.
3. The user retrieves za and ignores the rest. She sets

Ma,b = 0 iff za is a quadratic residue in Z
∗
N . Note that

the user can compute Ma,b efficiently, since she knows
the factorization of N .

The correctness of the protocol is straightforward. It is inter-
esting to observe that the process of retrieving za from
{z1, . . . , zr } is in fact a naive PIR scheme where the entire
database {z1, . . . , zr } is transferred to the user. Based on this
observation, the communication cost can be further reduced
by recursively applying the same approach for retrieving za .
This yields a more efficient PIR scheme with O(nε) com-
munication complexity for any ε > 0. The same method
was used in [64] which has the same complexity based
upon the hardness of subgroup membership problem. Assum-
ing the intractability of �-hiding problem, Cachin et al.
[21] obtained a probabilistically correct PIR scheme of
polylogarithmic communication complexity. Note that this
complexity is almost optimal, since even without the pri-
vacy requirement, the communication overhead is at least
O(log n). This result was further improved in [44] as an appli-
cation of secure game with polynomial expressions, whereby
the correctness of PIR is deterministic while the com-
munication complexity remains in the order of polylogar-
tithm. Another improvement on [21] is due to Limppa [47].
Limppa claimed that the scheme in [21] is only of theo-
retic virtue, since when n ≤ 240, it requires even more
communication than transferring the entire database. This
problem is overcome in [47] by using the length-flexible
additively homomorphic public-key cryptosystem [29]. The
new scheme, with cheaper computation overhead as well,
reduced the complexity to O(log2 n) for practically any value
of n. Under the assumption of the existence of one-way per-
mutations, which is much weaker than the assumptions in
[21,44,47], Kushilevitz and Ostrovsky [45] demonstrated
that there exists a single-server computational PIR with
O(n − cn

k) communication complexity, where c is a constant
and k is the security parameter.

2.3 Variants of information-theoretic/computational PIR

We now review a number of variants of information-theoretic
PIR and computational PIR schemes, which have various
interesting features.

Resilient information retrieval Since many PIR schemes
rely on database replication, it is worthwhile to consider the
reliability of the server group. The so-called t-PIR schemes
[9,16,25,41] deal with Byzantine failures where a collu-
sion of (up to) t out of k database servers may manipulate
their replies in order to compromise user privacy. The best

communication performance, due to [9], is O(n1/�(2k−1)/t�).
The non-Byzantine failure of servers was studied by Beimel
and Stahl in [12] where a portion of servers could be faulty,
e.g. one may fail to respond to a user’s query. By making use
of perfect hash families [48], Mehlhorn first showed how to
transform a regular PIR scheme into a robust PIR. He then
utilized Shamir’s secret sharing scheme to construct a robust
PIR with O(n1/3 log k) communication complexity, in which
at least 2-out-of-k servers are able to respond correctly.

Symmetric PIR Symmetric PIR are PIR schemes that not
only preserve user privacy but protect the secrecy of a data-
base against users. Gertner et al. [34] showed that for any
k ≥ 2, there exists a k-server symmetric PIR protocol with
communication complexity O(n1/(2k−1)) against honest-but-
curious users; and a �log n + 1
-server symmetric PIR pro-
tocol with communication complexity O(log2 n log log n)

against dishonest users. Symmetric PIR was also stud-
ied in the setting of computational PIR model [46,49,51].
For example, Mishra et al. [49] showed that there exists
a single-server symmetric PIR scheme against honest-but-
curious users, with communication complexity O(nε) where
ε is a parameter of the underlying assumption on the
intractability of quadratic residuosity problem. Remarkably,
1-out-of-n Oblivious Transfer (OT) (e.g., [19,20]) and sym-
metric PIR have the equivalent security implications, though
they have different origins. PIR originates in the privacy
concerns in database applications, whereas OT was initially
investigated as a cryptographic building block for secure
multi-party computations.

PIRs with preprocessing Another key performance metric
that has not been discussed so far is computation complexity.
All the aforementioned PIR schemes require high computa-
tion cost at the server end. Beimel et al. [11] proved that the
expected computation of the server(s) is Ω(n).2 They fur-
ther suggested to offload part of the computation workload
to offline by means of pre-processing and pre-retrieving at
the cost of additional storage space. In particular, they con-
structed for any k ≥ 2 and ε > 0: (1) a k-server protocol with
O(n1/(2k−1)) communication, O(n/(lg n)2k−2) computation,
and O(n1+ε) storage; (2) a k-server protocol with O(n1/k+ε)

computation and communication, and nO(1) storage; (3) a
computational k-server protocol with O(nε) communication,
O(n1/k+ε) computation, and nO(1) storage; (4) a protocol
with a polylogarithmic number of servers, polylogarithmic
communication and computation, and O(n1+ε) storage.

2 Ω is the notation for asymptotic lower bound. f (n) = Ω(g(n)) if
there exists a positive constant c and a positive integer n0 such that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0.

123

A new hardware-assisted PIR with O(n) shuffle cost 241

Other variants To reduce the security risks due to external
attacks on replicated database servers, Gertner et al. [33]
proposed a new paradigm of replication, where a combi-
nation of each server’s database share yields the original
database while individual shares reveal no useful informa-
tion. DiCrescenzo et al. [30] considered minimizing direct
communications between a user and the server(s) by intro-
ducing a third party to facilitate retrieval. This gives rise to
information-theoretical PIR as well as computational PIR
with communication complexity O(log n) between the user
and the server(s). Other results include quantum PIR as
shown in [13,43]. Recently, Boneh et al. [18] proposed
a PIR scheme on encrypted data, by using a new homo-
morphic public key encryption scheme couple with Bloom
filters.

2.4 Hardware-based PIR

Hardware-based PIR is an alternative to the idea of pre-
processing PIR aiming to improve performance of PIR.
It is inspired by the seminal work ORAM [35]. The first
hardware-based PIR was introduced by Smith and Safford
in [58], where the database server is equipped with a tam-
per- resistant hardware such as an IBM 4758 secure copro-
cessor to assist handling user queries. Residing inside the
server, the hardware functions in a self-contained execution
environment with its own processor and secure storage. The
scheme in [58] only managed to reduce the communication
cost. Upon each query, the hardware reads all the data items
from the database and returns the requested one to the user.
Following this line, Asonov proposed a scheme in [5], which
has the optimal communication cost and the online compu-
tation cost, and only requires O(n

√
n) time to shuffle the

entire database. Another improvement was due to Iliev and
Smith [39,40]. In this scheme, the database is encrypted and
secretly shuffled by the hardware, so that the server is unable
to link an encrypted entry with its original form and position.
Their scheme takes advantage of the co-processor’s cache
which is able to store at most β database entries. For each
database read, the touched item is stored into the cache. For
each user query, its online process only requires one data-
base read. Specifically, if the requested item is in cache, a
new random item is read into the cache; otherwise, the cor-
responding one is retrieved. Thus, only one read is needed
in all cases. Nonetheless, after every β queries, the database
has to be secretly reshuffled, which requires a computation
cost O(n log n). Note that the user’s communication cost is
optimal, i.e. O(log n). Essentially, the approach in [39,40]
offloads the normal computation cost offline in a batch pro-
cess manner. The security of a hardware-based PIR depends
on the strength of the underlying encryption scheme of the
database. Therefore, computational security is offered in any
practical setting.

Recently, Williams and Sion [61] made an algorithmic
improvement on ORAM and constructed a PIR scheme with
O(log2 n) computation complexity. The complexity was fur-
ther improved to O(log n log log n) in [62]. However, both
schemes are at the cost of O(

√
n) trusted storage. More-

over, the big-O notation of their complexity hides a big
constant factor. If the database is not large, e.g. n < 220,
the actual operation counts for both the poly-logarithm
algorithm in [35] and its derivative in [61,62] are even
larger than the shuffle-based algorithms [5,39,40] and our
scheme.

Remark As evident from the discussions above, the main
spirit of PIR research is to improve its efficiency. The
researches on PIR over the past decade demonstrate a notice-
able trend: the focus of research has drifted from reducing
the asymptotic communication complexity to reducing the
computation complexity. Apparently, the theoretical work on
communication complexity seems fully developed, since the
best result, polylogarithm complexity, is quite close to the
optimal and is practical for real application settings. None-
theless, the computation complexity remains too high for
practical use. It is straightforward to observe that the compu-
tation complexity should be at least O(n) in the conventional
PIR model. Otherwise, the server is able to compromise the
privacy by analyzing those data items not involved in com-
putation.

Sion et al. in [57] study the computational practicality of
PIR. They consider both the trivial PIR (i.e., transferring the
whole database) and the one in [46], and estimate the actual
time expense in seconds. Their results show that in terms of
time overhead, the existing computational PIR schemes are
inferior to the trivial solution.3 They even observe that this
conclusion will still hold within at least two more decades.
The key reason to this somewhat discouraging observation is
the disparity between CPU performance in executing large
number operations and network speed for data transmission.
The analysis in [57] will drive more efforts to study how to
reduce the computation cost. It remains an open problem to
construct an efficient PIR scheme with practically affordable
computation cost and communication cost.

In the end, we organize those major PIR constructions, as
well as our scheme proposed in this paper, into a family tree
shown in Fig. 1. Unless explicitly specified, the complexity
in the figure refers to communication cost.

3 Note that this does not depreciate the value of the previous works in
PIR research. Asymptotic complexity of a protocol only describes how
the protocol cost rises when the problem size grows. It does not indicate
its absolute cost.

123

242 X. Ding et al.

Fig. 1 A family tree of PIR schemes and their complexities

3 Model and architecture

3.1 Database model and permutation

A database D is modeled as an array of data items of equal
length,4 represented by D = [d1, d2, . . . , dn], where D[i] =
di is the i-th item in its original form, for 1 ≤ i ≤ n. We use π

to denote a permutation of n integers (1, 2, . . . , n), and π−1

to denote its inverse. For 1 ≤ i ≤ n, the image of i under π

is denoted by π(i). For example, let n = 4 and π = (1324),
which means π(1) = 1, π(2) = 3, π(3) = 3, π(4) = 4.
Let Dπ,k denote the resulting database by encrypting and
permuting D with k and π . The relation between Dπ,k and
D is that the i-th element of Dπ,k is the encryption of the
π(i)-th element of D. Specifically,

Dπ,k[i] = Ek(D[π(i)]) = Ek(dπ(i))

where Ek() denotes a symmetric encryption function using
a secret key k. In order to highlight the correlation between
the two databases and to simplify the presentation, we use
Dπ [i] � dπ(i) hereafter as an abbreviation of the previous
equation by removing the notations for encryption. decryp-
tion will be applied to every database read, Further, we use
the term data items to denote the original d1, d2, . . . , dn in
D and data records to denote their encrypted forms in Dπ .

3.2 Architecture of our PIR scheme

Figure 2 depicts the architecture of our proposed PIR system,
whose participants include multiple users and a single server
hosting database D = [d1, . . . , dn]. Embedded in the server
is a trusted hardware denoted by T H, which consists of a
processor and a memory chip. T H is capable of performing
symmetric key encryptions, generating pseudo-random num-
bers and accessing the main memory of its host. A typical

4 If necessary, we use padding for those data items with different length.

Fig. 2 A PIR system using trusted hardware

example is the latest secure co-processor IBM PCIXCC5 [3].
The hardware is tamper-proof so that its internal states and
computations is not accessible to adversaries. However, the
hardware’s accesses to the server’s memory or disk can be
observed by the server. To avoid confusion between the hard-
ware’s memory and the server’s memory, we use cache to
refer to the former. This trusted hardware

The users are interested in retrieving items from the data-
base. The trusted hardware securely handles user queries
by executing the PIR algorithm described in Sect. 4. In
brief, the hardware maintains a permuted and encrypted data-
base Dπ at the server’s memory. A user queries the data-
base by interacting with the hardware via a secure channel,
e.g. an SSL connection. To retrieve the i-th data item of D,
a user sends the index i to the hardware through the secure

5 IBM PCIXCC is connected to a host through a PCI bus. It consists of a
PowerPC 405GPR processor operating at 266 MHz, 64 MB DRAM and
16 MB EPROM for persistent data. It can perform 128 AES encryptions
at the rate of 185 MB/s.

123

A new hardware-assisted PIR with O(n) shuffle cost 243

channel. Upon receiving i , the hardware computes the index
for the corresponding record in the database Dπ and retrieves
it accordingly. (Note the different implication between a data-
base item and a database record.)

3.3 Security definitions

Access pattern: Essentially, the access pattern models all
the information that is directly observed by the adversary
from the query execution. The information includes what
is retrieved from the database and from what position. As
in [35], the access pattern for a time period is defined as
A = [a1, . . . , aN], where N is the total number of database
accesses during the period and ai denotes the i-th retrieval
from the shuffled database. Suppose that ai is the second
record in the encrypted and permuted database Dπ,k , namely
ai = Dπ,k[2]. By enclosing ai in A, we mean that the adver-
sary observes that the second record is retrieved and what
the record is. However, the adversary does not know what is
encrypted within the record.

Note that for PIR schemes without using trusted hardware,
a query’s access pattern is independent of other queries. In
contrast, for hardware-assisted PIR, such as our scheme, the
access pattern of a query execution varies with preceding
queries and all the past coin tosses by the hardware.

Stained query and clean query: We differentiate two types
of queries based on an adversary’s prior knowledge of its
private information. A query is stained if its content, e.g.
the index of the requested data item in the original database
D, is known to the adversary without observing the access
pattern. This may occur in several scenarios. For instance, a
query is compromised or revealed accidentally; or the query
could be originated from the adversary herself. On the other
hand, a query is clean if the adversary does not know its
content before observing the access pattern.

Adversary: We consider a probabilistic polynomially
bounded adversary who attempts to derive private informa-
tion from user queries. Possible adversaries include both out-
side attackers and the server (note that we do not assume any
trust upon the server). The adversary in our model is more
powerful than an eavesdropper. They are not only able to
observe all the inputs and outputs of the database, but allowed
to query the database in the same manner as a honest PIR user
does. Note that the attacks upon the trusted hardware are dis-
missed, since they are out of the scope of this paper.

Security model: Following the security notion in Oblivious
RAM [35], we measure the information leakage from PIR
query executions. A secure PIR scheme ensures that a PPT
adversary A does not gain advantages in determining the dis-
tribution of queries from the PIR protocol execution, where
A is allowed to freely ask queries. We use AQUE to model

that A is given access to a query oracle QUE, through which
the adversary freely queries the database at any time. This
implies that an arbitrarily mixed sequence of stained queries
and clean queries are executed, and A observes all access
patterns.

We consider a (original) database D and the correspond-
ing shuffled and encrypted version Dπ . Let Q be the random
variable representing a query, whose value is denoted by q ∈
[1, n]. Then Q = q denotes that query Q is accessing on the
q-th item in D. Let A be the random variable representing a
read access in Dπ for replying Q, whose value is denoted by
a ∈ [1, n]. Then A = a denotes that the access is on the a-th
record of Dπ .

Definition 1 Let κ be a security parameter. For a database
D = [d1, d2, . . . , dn] and a corresponding shuffled and
encrypted database Dπ , a PIR scheme in our model is secure,
if and only if for any PPT A, there exists a PPT A′ such that
for any clean query Q = q ∈ [1, n], whose read access in
Dπ is a ∈ [1, n], the following holds,

|Pr[AQUE(a) = q] − Pr[A′QUE
(1κ) = q]| < ε(κ)

where ε(κ) is a negligible function on κ . Intuitively, the defi-
nition states that by observing access patterns, the adversary
A gains negligible advantages in figuring out the item a clean
query retrieves, over the guess based on his a-priori knowl-
edge.

4 The PIR scheme

We start by listing the notations used throughout this paper
in Table 1.

4.1 System setup

We consider applications where a trusted third party (TTP) is
available to initialize the system. This TTP is involved only in
the initialization phase and then stays offline afterward. For
those scenarios where a TTP is not available, an alternative
solution is provided in Sect. 7.

TTP secretly selects a random permutation π0 and a secret
key sk0. It permutes the original database D into Dπ0 , which
is encrypted under sk0, such that Dπ0 [j] � dπ0(j) for
j ∈ [1, n]. Dπ0 is then delivered to the server. TTP secretly
assigns π0 and sk0 to T H, who then stores π0 and sk0 in its
cache. TTP also initializes a set of SSL parameters including
the SSL public/private key pair for T H. This completes the
system initialization.

4.2 Scheme overview

The outline of our PIR scheme is as follows. Every β con-
secutive query executions are called a session. For the s-th

123

244 X. Ding et al.

Table 1 Notations
Notation Description

T H The trusted hardware embedded in the server.

β The maximum number of data items stored in the cache of T H.

D The original database in the form of (d1, d2, . . . , dn).

π0, π1, . . . A sequence of secret pseudorandom permutations of n elements {1, 2, . . . , n}.
Dπs A permuted/shuffled database of D using permutation πs such that Dπs [j] � dπs (j), for

1 ≤ j ≤ n, where Dπs [j] denotes the j-th record in Dπs .
ai The retrieved data record by T H during its i-th access to a shuffled database.

A The access pattern comprising all the retrieved records (a1, . . . , aN) during a fixed time period.

As The access pattern comprising all the retrieved records during the s-th session.

Γ The sorted list of (original) indices of all data items stored in the cache.

session, s ≥ 0, let πs,Dπs and sks be the permutation, the
shuffled database, and the encryption key, respectively. Upon
receiving a query from the user, T H retrieves a data record
from Dπs , decrypts it with sks to get the data item, and stores
the item in its cache. Then T H replies to the user with the
desired data item. The detailed operations on data retrieval are
described in Algorithm 1. After β queries are executed, T H
generates a new random permutation πs+1 and an encryption
key sks+1. It then reshuffles Dπs into Dπs+1 by employing
πs+1 and sks+1. Note that in the new produced database
Dπs+1 , all data records are encrypted under the new secret
key sks+1. The details on database reshuffle are given in
Algorithm 2. The old secrets πs and sks are securely erased.

Caveat The original database D is not involved in any
database retrieval operations. Since T H always performs a
decryption for every read operation and an encryption for
every write operation, we omit them in the algorithm descrip-
tion in order to keep our presentation concise.

4.3 Retrieval query processing algorithm

The basic idea of our retrieval algorithm is the following. T H
always reads a new record on every query and every record is
accessed at most once. Thus, if the database is well permuted
(in the sense of oblivious permutation), all database accesses
within a session appear random to the adversary.

Without loss of generality, suppose that the user intends
to retrieve di in D during the s-th session (s ≥ 0). Upon
receiving the query for index i , T H performs the following:
It searches Γ for di . if di is not in its cache, it locates the
corresponding record in the shuffled database Dπs by com-
puting the record index as π−1

s (i); Otherwise, it reads from
Dπs a random record which has not been accessed before.6

The algorithm is elaborated in Fig. 3.

6 The operation should be implemented so that both “if” and “else”
situations take the same amount of time to stand against side-channel
attack. This requirement is also applied at a similar situation in the
reshuffle algorithm introduced later.

Fig. 3 Retrieval query processing algorithm

Access Pattern. The access pattern As produced by
Algorithm 1 is a sequence of data records which are retrieved
from Dπs during the s-th session. It is clear from Fig. 3 that
on each query, exactly one new data record is read from Dπs .
Therefore, when the s-th session terminates, As has exactly
β records.

Cache Management. All items and their indexes stored
in the cache are organized in an array denoted by Γ . Depend-
ing on the structure of Γ , T H may apply different search
techniques. Possible implementation include hash table and
binary search trees. Note that the choice of searching algo-
rithm is a trade-off between space and time. Since T H has
limited cache size, a binary search is more suitable, which
has O(log k) cost. Though the internal search time adds
to the actual time for query execution, it does not affect
the asymptotic complexity of the proposed PIR scheme in
big-O notation. This is because the cache size k is a constant
parameter that does not grow with the database size n.

4.4 Reshuffle process

After β retrievals, T H’s cache reaches its limit, which
demands a reshuffle of the database with a new permutation.
Note that simply using cache substitution introduces a risk of

123

A new hardware-assisted PIR with O(n) shuffle cost 245

privacy exposure. The reason is that when a discarded item
is requested again, the adversary knows that a data record
is retrieved more than once by T H from the same location.
Therefore, a reshuffle procedure must be executed at the end
of each session.

T H first secretly chooses a new random permutation
πs+1. The expected database Dπs+1 satisfies Dπs+1 [j] �
dπs+1(j), j ∈ [1, n]. The correlation between Dπs and
Dπs+1 is

Dπs+1 [j] � Dπs [π−1
s ◦ πs+1(j)], (1)

for 1 ≤ j ≤ n, where π−1
s ◦ πs+1(j) means π−1

s (πs+1(j)).
The reshuffle algorithm is to generate Dπs+1 using Dπs and

the cache. In a nutshell, T H fills in Dπs+1 [1], Dπs+1 [2], . . . ,
Dπs+1 [n], sequentially. If the item to be written to Dπs+1[i] is
in the cache, T H writes it directly from the cache; otherwise,
T H fetches it from Dπs . Therefore, the challenge is how to
efficiently and obliviously generate Dπs+1 , i.e. the adversary
cannot distinguish whether Dπs+1 [i] is set by an item in cache
or not.

The basic idea is as follows. We sort the items in T H’s
cache in ascending order based on their new positions in
Dπs+1 . Since the database allows index-based direct record
retrieval, those un-cached items in Dπs do not need to be
physically sorted. Instead, they can be regarded as being vir-
tually sorted as T H can calculate their new indexes in Dπs+1 .
The reshuffle process is similar to a merge-sort of two sorted
sequences: the sorted items in the cache and those un-touched
items. T H plays two roles: (1) participating in the merge-
sort to initialize Dπs+1 ; (2) obfuscating the read/write pattern
to protect the secrecy of πs+1.

T H first sorts indices in Γ based on the ascending order
of their images under π−1

s+1. It assigns the entries in database
Dπs+1 sequentially, starting from Dπs+1 [1]. For the first n−β

assignments, T H always performs one read operation and
one write operation per record; for the remaining β assign-
ments, it always performs one write operation per record
as they are in its cache. The initialization of Dπs+1 [j], j ∈
[1, n], falls into one of the following two cases, depending
on whether its corresponding item is in the cache or not.

Case (i) The corresponding item is not cached (i.e.,
πs+1(j)
∈ Γ): T H reads it (i.e., the record Dπs [π−1

s ◦
πs+1(j)]) from Dπs and writes it to Dπs+1 as Dπs+1 [j].

Case (ii) The corresponding item is in the cache (i.e.,
πs+1(j) ∈ Γ): Before retrievingDπs [π−1

s ◦πs+1(j)] from
the cache and writing it into Dπs+1 as Dπs+1[j], T H also
performs a read operation for two purposes: (a) to dem-
onstrate the same reading pattern as in Case (i) so that the
secrecy of πs+1 is protected; (b) to save the cost of future
reads. Thus, instead of randomly reading a record from
the Dπs , T H looks for the smallest index which has not

Fig. 4 Database Reshuffle algorithm

been initialized and falls in Case (i). It then retrieves the
corresponding data record from Dπs . Since Γ is sorted,
this searching process costs β comparisons for the entire
reshuffle process.

The details of the reshuffle algorithm are shown in
Fig. 4, where min denotes the head of sorted Γ . We use
sortdel(i)/sortins(i) to denote the sorted deletion/
insertion of index i from/to Γ and subsequent adjustments.

The reshuffle algorithm is secure and efficient. An intui-
tive explanation of its security is as follows. After a reshuf-
fle, the new database is reset to its initial status. If an item
has been accessed in the previous session, it is placed at a
random position in the whole new database by the reshuffle.
A record retrieved from Dπs will be written out in one of the
subsequent β writes. Since those items are not accessed in
the current session, the information about their data items is
not exposed. Furthermore, for every write operation in the
reshuffle algorithm, the probability that the item is originally
in cache, i.e. it has been queried before reshuffle, is always
β/n, because the access pattern of the retrieval algorithm is
uniformly random. Therefore, every newly encrypted record
has the same probability in being queried before. In other
words, the entire database appears uniform to the adversary.

Note that the increment of j ′ in the inner loop (Step 4) is
executed at most n−1 times in total, since j ′ never decreases.
Because Γ is a sorted list and the inserted and deleted indices
are in an ascending order, the insertion and deletion are of
constant cost. Totally n comparisons are needed for the whole

123

246 X. Ding et al.

execution. Therefore, the overall computation complexity of
Algorithm 2 is O(n).7

Reshuffle Pattern The access pattern produced by
Algorithm 2 is denoted by Rs . We call it reshuffle pattern so as
to differentiate it from the access pattern due to Algorithm 1.
Since T H only reads n−β data records, Rs has exactly n−β

elements. Note that the writing pattern is omitted because it
is in a fixed order, i.e., sequentially writing from position 1 to
position n. The writing pattern does not give the server extra
advantages, since the entire database is still in the server’s
storage.

5 Security analysis

We now proceed to analyze the security of our scheme based
on the notion defined in Sect. 3.3. We show in Theorem 1 that
our scheme is secure with respect to Definition 1. The key
components of the proof are two lemmas. Lemma 1 proves
that the reshuffle procedure is oblivious in the same notion as
in Oblivious RAM [35]. Thus after each reshuffle, the data-
base is reset into the initial state such that the accesses among
different sessions are not correlated. In Lemma 2, we show
that each individual query session does not leak information
of the query, which leads to the conclusion of the theorem.

Recall that our architecture includes a secure communi-
cation channel between users and T H. Therefore, we do not
consider attacks on the communications.

Theorem 1 For a database D = [d1, d2, . . . , dn] and a cor-
responding shuffled and encrypted database Dπs , s ≥ 0, for
any PPT adversary AQUE against our scheme, there exists a
PPT A′QUE, such that for any clean query Q = q ∈ [1, n],
whose read access in Dπs is a ∈ [1, n], we have

|Pr(AQUE(a) = q) − Pr(A′QUE
(1κ) = q)| < ε(κ) (2)

Proof We prove the theorem by using a series of games [56]
between A and a challenger who simulates an environment
with respect to our scheme.
Game 0. Fix a PPT adversary A. Game 0 is defined to be
an attack game between A and the challenger, who runs an
instance our scheme by simulating T H. The game is con-
ceptually equivalent to A attacking against our scheme as
defined in Definition 1. In particular, the challenger sets up
the system and simulates T H, following our scheme: deter-
mines a database D = [d1, d2, . . . , dn]; picks πs and sks ,
and generates Dπs (s ≥ 0), as per the reshuffle algorithm;
replies to A’s queries as per the retrieval query-processing
algorithm. At a certain time, the challenger challenges A with

7 This complexity is exactly the same as the complexity of a merge-sort
algorithm on two sorted arrays.

a read access a on Dπs for a clean query Q retrieving dq . At
the end of the game, A outputs an index q ′.

Let us define s0 be the event that q ′ = q in Game 0. Then
it is evident that Pr(s0) = Pr(AQUE(a) = q).
Game 1. We transform Game 0 into Game 1 by the follow-
ing modification. Let

∏
n be the set of all permutations over

[1, n]. Instead of generating Dπs , s ≥ 0, using a pseudoran-
dom permutation πs , the challenger picks a random
s ∈ ∏

n
and generates D
s ; other steps remain unchanged.

Let s1 be the event that q ′ = q in Game 1. We claim that

|Pr(s1) − Pr(s0)| = εprp (3)

where εprp is the advantage of some PPT adversary in distin-
guishing between a pseudorandom permutation over [1, n]
and a random permutation in

∏
n .

Indeed, the following adversary “interpolates” between
Game 0 and Game 1, and has an advantage equal to |Pr(s1)−
Pr(s0)|:

Distinguisher DO

Sets up a system according to our scheme, with the
only exception that using O to generate a shuffled
and encrypted database DO.
ChallengesAQUE with a read access a onDO, which
corresponds to a clean query Q = q.
if AQUE(a) = q

then output 1
else output 0.

It is clear that if O is a pseudorandom permutation (prp)
over [1, n], then Distinguisher D proceeds just as in Game
0, we thus have Pr(Dprp = 1) = Pr(s0). Otherwise, Distin-
guisher D proceeds as in Game 1 if O is a random permu-
tation (rp) from

∏
n , and we have Pr(Drp = 1) = Pr(s0).

Game 2. Game 2 proceeds identically as Game 1, except
for the the following difference: the challenger generates
shuffled and encrypted databases using perfect encryption
(e.g., one-time pad), rather than semantically secure Esks (.),

s ≥ 0.
Let s2 be the event that q ′ = q in Game 2. We claim that

|Pr(s2) − Pr(s1)| = εsem (4)

where εsem is the advantage of some PPT adversary in distin-
guishing between semantically secure encryption and perfect
encryption (i.e., breaking the semantic security of the encryp-
tion scheme). Similarly, it is straightforward to construct a
distinguisher D as mentioned earlier (given oracle access to
either semantically secure encryption or perfect encryption),
“interpolating” between Game 1 and Game 2.

We further claim that Pr(s2) = Pr(A′QUE
(1κ) = q),

which will conclude the proof. To see this, by Lemma 1
we first show that our reshuffle algorithm is oblivious, so
that database accesses in different sessions are independent
from each other; then by Lemma 2, we show that observing

123

A new hardware-assisted PIR with O(n) shuffle cost 247

the access patterns of database accesses provides the adver-
sary no more knowledge to determine a clean query than a
random guess, which implies Pr(s2) = Pr(A′QUE(1κ) = q).
Note that the following analysis are in the context of Game 2,
where random permutation and perfect encryption are used;
hence, the adversary computes its outputs based on the obser-
vation of the access patterns (caused by either the adversary’s
queries or other users’ queries) and the reshuffle patterns.

Lemma 1 The reshuffle algorithm in Fig. 4 is oblivious, i.e.,
for all s ≥ 0, all integer j ∈ [1, n],
Pr(D
s+1 [j] � dl |A0, R0, . . . , As, Rs) = 1/n, (5)

for all l ∈ [1, n], where Ai and Ri , i ∈ [0, s], are the access
pattern and reshuffle pattern for i-th session, respectively.

Proof Given any j ∈ [1, n], we prove Lemma 1 by induc-
tion on the session index s. Naturally, the proof applies to all
j ∈ [1, n].

I. s = 0. Since D
0 , the initial shuffled database, is con-
structed in advance under a secret random permutation

0, the probability Pr(D
0 [j] � dl | ∅) = 1/n holds
for all 1 ≤ l ≤ n.

II. Suppose Eq. 5 holds for s = i − 1, i.e.

Pr(D
i [j] � dl |A0, R0, . . . , Ai−1, Ri−1) = 1/n. We pro-
ceed to prove that it holds for s = i , i.e.

Pr(D
i+1[j] � dl |A1, R1, . . . , Ai , Ri) = 1/n,

for all l ∈ [1, n].
In order to use the recursive assumption, we link the two

databases D
i+1 and D
i by the following conditional prob-
ability,

Pr(D
i+1[j] � dl |A1, R1, . . . , Ai , Ri)

=
n∑

x=1

{Pr(D
i+1[j] � D
i [x] |A1, R1, . . . , Ai , Ri)

·Pr(D
i [x] � dl |A1, R1, . . . , Ai , Ri)}.
Then the formula is evaluated depending on cases that

whether or not l is stained and whether or not the item corre-
sponding to x is in the cache. The conclusion is obtained by
showing that the sum on the right hand side of the equation
is 1/n in all cases.

For clarity, we define px and qx as

px � Pr(D
i+1[j] � D
i [x] |A1, R1, . . . , Ai , Ri),

and

qx � Pr(D
i [x] � dl |A1, R1, . . . , Ai , Ri).

The objective now is to prove
n∑

x=1

px qx = 1/n.

Define X = {x | x ∈ [1, n],
i (x) ∈ Γ } and Y = {x | x ∈
[1, n],
i (x) /∈ Γ }. Note that |X | = |Γ | = β, |Y | = n − β

and X ∪ Y = [1, n]. Thereafter,

n∑

x=1

px qx =
∑

x∈X

px qx +
∑

x∈Y

px qx

We observe that the adversary would have different pro-
jections on the new indices for those records in D
i . For
those items in T H’s cache, i.e. those whose indexes in D
i

are in X , the adversary obtains no information about their
positions in D
i+1 . On the other hand, for the other items,
i.e. those whose indexes in D
i are in Y , the adversary is
certain that they would not be placed to positions which have
been initialized before their retrievals from D
i . Moreover,
the item retrieved by the first read in reshuffle will appear in
one of the first β + 1 positions in D
i+1 . Therefore, only for
x ∈ X ,

px = Pr[
i+1(j) =
i (x)] = 1/n

But this does not hold for px , x ∈ Y . Consequently,
∑

x∈Y

px = 1 −
∑

x∈X

px = (n − β)/n.

The computation of qx is related to the stained queries.
Let C denote the set of stained queries in the i-th session. We
have two cases for 1 ≤ l ≤ n:

– Case (1) l ∈ C:
∑

x∈X qx = 1, because in the adver-
sary’s perspective, there exists one and only one item in
the cache which corresponds to query on dl . For x ∈
Y, qx = 0 because none matches. Thus

n∑

x=1

px qx = 1/n + 0 = 1/n, for l ∈ C.

– Case (2) l /∈ C: Suppose
∑

x∈X qx = δ for 0 ≤ δ ≤ 1,
then

∑
x∈Y qx = 1 − δ. Note that the execution of

queries does not affect the adversary’s observation on
those not cached records, since they are not accessed.
Therefore, by induction assumption: Pr(D
i [x] � dl |
A0, R0, . . . , Ai−1, Ri−1) = 1/n, for all l ∈ [1, n], we
have qx = 1−δ

n−β
due to equiprobability. 8 Hence,

n∑

x=1

px qx = δ/n + (1 − δ)/n = 1/n. (6)

8 Hint: Otherwise, for x0, x1 ∈ Y, qx0
= qx1 implies Pr(D
i [x0] �
dl)
= Pr(D
i [x1] � dl) where d /∈ C. This result is also provable by the
indistinguishability for the adversary using two different permutations
which are identical for l ∈ C.

123

248 X. Ding et al.

Combining Case 1 and Case 2, we have

n∑

x=1

px qx = 1/n, for all 1 ≤ l ≤ n,

which concludes the proof. ��
Lemma 2 implies that the reshuffle procedure resets the

observed distribution of the data items. Therefore, the acces-
ses occurring during separated sessions are independent of
each other. Theorem 1 below proves the security of the pro-
posed PIR scheme as a whole.

Lemma 2 Given a time period, the observation of the access
pattern A = (a1, a2, . . . , aN), N > 0 provides the adver-
sary no more knowledge to determine any clean query Q
than a random guess, i.e. for all q ∈ [1, n],
Pr(Q = q|A) = Pr(Q = q) (7)

where Pr(Q = q) is the a-priori probability of query Q being
on index q.

Proof Since we have

Pr(Q = q |A) = Pr(Q = q, A)/Pr(A)

= Pr(A | Q = q) · Pr(Q = q)

Pr(A)

Therefore, to prove Lemma 2 is equivalent to prove that
Pr(A | Q = q) = Pr(A) for all possible access pat-
terns A.

For 1 < t ≤ N , let Pr(at | a1, . . . , at−1) denote the prob-
ability of the event that data at is accessed immediately after
the access of t −1 records. Let Pr(at | a1, . . . , at−1, Q = q)

be the probability of the same event with additional knowl-
edge that the requested index of the target query is q. Note
that we do not assume any temporal order of the query q and
the t-th query. We proceed to show below that

Pr(at | a1, . . . , at−1) = Pr(at | a1, . . . , at−1, Q = q)

Without loss of generality, suppose at is read from D
s dur-
ing the s-th session. Consider the following two cases:

1. at ∈ Rs , i.e. at is accessed during a reshuffle process:
Obviously,

Pr(at | a1, . . . , at−1) = Pr(at | a1, . . . , at−1, Q = q)

due to the fact that the access to at is completely deter-
mined by permutation
s and
s+1.

2. at ∈ As , i.e. at is accessed during a query process:
Let this query be the l-th query in this session, l ∈
[1, β]. Therefore, l − 1 data items are cached by T H
before at is read. We consider two scenarios based upon
Algorithm 1:

(a) The requested data is cached in T H: at is randomly
chosen from those data items not cached in T H.
Thus, Pr(at | a1, . . . , at−1) = 1

n−(l−1)
.

(b) The requested data is not cached in T H: at is
retrieved from D
s based on the permutation

s . According to Lemma 1 (equiprobability, c.f.
Hint 8), the probability that at is selected is 1

n−(l−1)
.

Note that the compromise of a query, i.e. knowing Q =
q, possibly helps an adversary to determine whether at is
in case (2a) or (2b). Nonetheless, this information does
not change Pr(at | a1, . . . , at−1), since their values are

1
n−(l−1)

in both cases. Thus, Pr(at | a1, . . . , at−1) =
Pr(at | a1, . . . , at−1, Q = q) when at ∈ As .

In total, we conclude that for any t > 1 and Q = q,

Pr(at | a1, . . . , at−1) = Pr(at | a1, . . . , at−1, Q = q).

As a result,

Pr(A | Q = q) = Pr(a1, . . . , aN | Q = q)

= Pr(aN | a1, . . . , aN−1, q) · Pr(a1, . . . , aN−1 | Q = q)

= Pr(a1 | Q = q)

N∏

t=2

Pr(at | a1, . . . , at−1, Q = q)

= Pr(a1 | Q = q)

N∏

t=2

Pr(at | a1, . . . , at−1)

Since a1 is independent of Q = q (determined by initializa-
tion π0), then Pr(a1 | Q = q) = P(a1). Thus, we have

Pr(A | Q = q) = Pr(A).

The result shows that, given the access pattern, the
a-posteriori probability of a query equals to its a-priori prob-
ability, which concludes the proof for Lemma 2. ��

Based on the earlier analysis, we conclude the proof for
Theorem 1:

|Pr(AQUE(a) = q) − Pr(A′QUE
(1κ) = q)|

= |Pr(s0) − Pr(s2)| < εprp + εsem

��

6 Performance

We proceed to analyze the communication and computation
complexities of our PIR scheme. They are evaluated with
respect to the database size n. Both our scheme and the
hardware-based schemes in [39,40,58] belong to this cat-
egory of models. We remark that we do not include the costs
for secure channel establishment into the following perfor-
mance calculation. After all, these costs are independent of

123

A new hardware-assisted PIR with O(n) shuffle cost 249

the database size and can be amortized if a user makes mul-
tiple queries at a time.

Communication: We consider the user/system communica-
tion cost per query. In our scheme, the user only inputs
an index of the desired data item and T H returns exactly
one data item. Therefore, its communication complexity per
query is O(log n). Note that O(log n) is the lower bound of
communication cost for all PIR constructions. The commu-
nications between the trusted hardware and the database is
memory I/O and disk I/O. We treat them as part of the com-
putation cost.

Computation: For simplicity purpose, each reading, writing,
encryption, and decryption of a data item is treated as one
operation. The computation cost is measured by the average
number of operations per session and per query. We assumes
that the costs of computing πs() and π−1

s () are independent
of the database size. Our discussion in the next section will
discuss the cost of computing the permutation function.

As evident in Figs. 3 and 4, it costs T H O(1) opera-
tions to process a query9 and O(n) operations to reshuffle
the database. Table 2 compares the computation cost of our
scheme against those in [58] and [39,40]. Our scheme outper-
forms the other two hardware-based PIR schemes in all three
metrics. The advantage originates in our reshuffle algorithm
which utilizes the cache in a more efficient manner.

7 Discussion

7.1 Database initialization without TTP

For applications where no trusted third party exists, the
trusted hardware can be used to initialize the database. T H
first chooses a random permutation π0. For 1 ≤ i ≤ n, it tags
the i-th item di with its new index π−1

0 (i). Using the merge-
sort algorithm [27], d1, d2, . . . , dn are sorted based on their
new indexes. With the limited cache size in T H, Batcher’s
odd-even merges sorter [6] is an appropriate choice which
requires (log2 n − log n + 4)n/4 − 1 comparisons. While
Beneš network [59] and Goldstein et al’s switch networks
[36] incur less comparisons, the former, however, requires at
least n log n- bit (>> β) memory in the application domain
and the latter has a prohibitively high setup cost. Note that
encryption is applied during tagging and merging so that the
process is oblivious to the server.

A simple example is presented in Fig. 5. The database
in the example has four items d1, d2, d3, d4. The permuta-
tion is π0 = (1324), i.e. π0(1) = 3, π0(2) = 4, π0(3) = 2
and π0(4) = 1. The circles denote T H and the squares

9 Note that it costs O(log k) operations for internal search, which is
applicable for [39,40,58] as well.

Fig. 5 Initial oblivious shuffle example using odd-even merges

denote encrypted data items. After initialization, the original
four items are permuted as shown on the right end. All the
encrypted items are stored in the host. In every operation,
only two items are read into the cache of T H and then writ-
ten back to the server.

7.2 Instantiation of encryption and permutation algorithms

An implicit assumption of our security proof in Sect. 5 is the
semantic security of the encryption of the database. Other-
wise, the encryption reveals the data information and conse-
quently exposes user privacy. Our adversary model in Sect. 3
allows the adversary to submit queries and observe the sub-
sequent access patterns and replies. Thereafter, the adversary
is able to obtain β pairs of plaintext and ciphertext in max-
imum for each encryption key, since different random keys
are used in different sessions. Thus, we require an encryption
algorithm semantically secure under CPA (Chosen Plaintext
Attack) model. In practice, CPA secure symmetric ciphers
such as AES, are preferred over public key encryptions, since
the latter have more expensive computation cost and higher
storage space demand.

For the permutation algorithm, we argue that it is
impractical for a hardware-based PIR to employ a true ran-
dom permutation, since it requires O(n log n) bits of storage,
comparable to the size of the whole database. As a result, we
opt for a pseudo-random permutation with a light computa-
tion load.

A k-bit block cipher can be easily used to construct a
pseudo-random permutation of Z2k . Unfortunately, the block
size of standard block ciphers, e.g. AES, is much larger
than the bit-length of the database size n. Several studies
have shown how to tackle with small domains. Black and
Rogaway [14] proposed three methods to construct such
ciphers using off-the-shelf block ciphers. The third method
is based on the Feistel construction. Though efficient, its
security is not strong enough when the domain is small.
Pryamikov [53] proposed a new secure block cipher called
TinyPRP whose block size is either 16-bit or 32-bit. He also
proposed to use TinyPRP, together with the cycle-walking

123

250 X. Ding et al.

Table 2 Comparison of computation costs

Schemes Total cost (per session of β queries) Online cost (per query) Average cost (per query)

Our scheme O(n)

We only take into account the main cost for the sake of simplic-
ity and comparison clarity. The actual cost should be O(n) +
O(β log β), where the second term quantity comes from sorting
Γ , which costs β log β operations.

O(1) O(n/β)

Scheme in [39,40] O(n log n)

Their actual cost is approximately O(n log n) + O(n) +
O(β log β), where O(n)(+O(β log β)) comes from sorting T̄
(Step (i) of [39]), β log β comes from sorting T (Step (ii)), and
O(n log n) comes from Step (iii).

O(1) O(n
β

log n)

Scheme in [58] O(β.n) O(n) O(n)

technique in [14], to build a pseudo-random permutation
on arbitrary finite domain. Morris, Rogaway and Stegers
[50] proposed a new scheme to encrypt messages in a small
domain by using the Thorp shuffle.

When the database size n is not a power of 2, i.e. n < 2l

and l = �log n
, we can use the aforementioned techniques
to construct a permutation on Z2l . Using the cycle walking
technique, if the image is greater than n, the permutation is
repeated until the output is in Zn . Since 2l < 2n, the expected
number of repeat is not greater than 2.

7.3 Service continuity

According to our scheme, the database service is disrupted
during the reshuffle process. The duration of a reshuffle can-
not be viewed as non-negligible, since it is an O(n) pro-
cess. This problem is especially severe in the hardware-based
schemes in [39,40,58], since a smaller cache requires more
frequent reshuffle. Our scheme can mitigate this problem by
maintaining two caches in T H: one is for re-permuting the
database while the other deals with user queries. This triv-
ial solution may not be easy in the hardware-based model
[39,40,58], due to the rigid and highly limited size of hard-
ware: splitting the cache of the hardware into two halves with
each having the capacity of storing β/2 items, will double
the average computation cost in principle.

7.4 Update of data items

A byproduct of the reshuffle process is database update oper-
ations. To update di , T H reads di obliviously in the same
way as handling a read request. Then, di is updated inside
the cache and written into the new permuted database during
the upcoming reshuffle process. Though the new value of di

is not written immediately into the database, data consistency
is ensured since T H returns the updated value directly from
its cache upon user requests.

8 Conclusion

We present in this paper a novel hardware-assisted PIR
system. The new PIR construction is proven secure. The
execution of the PIR protocol does not expose information
to the adversary about the query distribution. Namely, our
PIR protocol ensures the distribution of any two queries are
identical, provided that the underlying database encryption
scheme is semantically secure under chosen plaintext attacks.
The performance of our scheme beats previous constructions.
A query execution costs O(log n) communication cost and
O(1) amount of operations, including database access,
encryption, decryption, and pseudo-random permutation.

Nonetheless, our scheme still steps away from a truly prac-
tical scheme, since it incurs O(n) amortized offline computa-
tion cost. The notion of informational secure PIR was relaxed
to computational secure PIR in order to improve the com-
munication complexity. It is an open problem how to trade
security for a practical computation complexity.

Acknowledgments This research is partly supported by the Office of
Research, Singapore Management University. We would like to thank
anonymous reviewers for their valuable suggestions and criticisms.

References

1. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from
an oracle. J. Comput. Syst. Sci. 39, 21–50 (1989)

2. Ambainis, A.: Upper bound on the communication complexity of
private information retrieval. In: Proceedings of the 24th ICALP
(1997)

3. Arnold, T., Doorn, L.V.: The IBM PCIXCC: a new cryptographic
coprocessor for the ibm eserver. IBM J. Res. Dev. 48, 541–
544 (2004)

4. Asonov, D.: Private information retrieval—an overview and current
trends. Tagungsband der GI/OCG-Jahrestagung (2001)

5. Asonov, D.: Querying Databases Privately: A New Approach to
Private Information Retrieval, LNCS, vol 3218. Springer (2004)

6. Batcher, K.E.: Sorting networks and their applications

123

A new hardware-assisted PIR with O(n) shuffle cost 251

7. Beaver, D., Feigenbaum, J.: Hiding instances in multi-oracle que-
ries. In: Proceedings of Symposium on Theoretical Aspects of
Computer Science (1990)

8. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally ran-
dom reductions: improvements and appliations. J. Cryptol. 10,
17–36 (1997)

9. Beimel, A., Ishai, Y.: Information-theoretic private information
retrieval: a unified construction. In: Proceedings of ICALP (2001)

10. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the
o(n1/(2k−1)) barrier for information-theoretic private information
retrieval. In: Proceedings of IEEE FOCS (2002)

11. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computa-
tion in private information retrieval: PIR with preprocessing. In:
Proceedings of CRYPTO 2000

12. Beimel, A., Stahl, Y.: Robust information-theoretic private infor-
mation retrieval. In: Proceedings of the 3rd Conference on Security
in Communications Networks (2002)

13. Bennett, C., Brassard, G., Crepeau, C., Skubiszewska, M.H.: Prac-
tical quantum oblivious transfer protocols. In: Proceedings of
Crypto ’91

14. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In:
Proceedings of CT-RSA (2002)

15. Blakely, G., Meadows, C.: A database encryption scheme which
allows computation of statistics using encrypted data. In: Proceed-
ings of IEEE Symposium on Security and Privacy (1985)

16. Blundo, C., Darco, P., DeSantis, A.: A t-private k-database infor-
mation retrieval scheme. Int. J. Inf. Secur. 1(1), 64–68 (2001)

17. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Proceedings of EUROCRYP-
TO (2004)

18. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith, W.: Public key
encryption that allows PIR queries. In: Proceedings of CRYPTO
(2007)

19. Brassard, G., Crpeau, C., Robert, J.M.: All-or-nothing disclosure
of secrets. In: Proceedings of CRYPTO ’86

20. Brassard, G., Crpeau, C., Santha, M.: Oblivious transfers and inter-
secting codes. IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996)

21. Cachin, C., Micali, S., Stadler, M.: Computationally private infor-
mation retrieval with polylog communication. In: Proceedings of
EUROCRYPTO 99

22. Chaum, D.: Untraceable electronic mail, return addresses and dig-
ital pseudonyms. Commun. ACM 24(2), 84–88 (1981)

23. Chor, B., Gilboa, N.: Computationally private information
retrieval. In: Proceedings of the 29th STOC (1997)

24. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by
keywords. Tech. rep., Israel Institute of Technology (1997)

25. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private infor-
mation retrieval. In: Proceedings of IEEE FOCS (1995)

26. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private infor-
mation retrieval. J. ACM 45(6), 965–982 (1998)

27. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. 2nd edn. The MIT Press, Cambridge (2003)

28. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable
symmetric encryption: Improved definitions and efficient construc-
tions. In: Proceedings of ACM CCS (2006)

29. Damgård, I., Jurik, M.: A length-flexible threshold cryptosystem
with applications. In: Proceedings of ACISP (2003)

30. DiCrescenzo, G., Ishai, Y., Ostrovsky, R.: Universal service
provides for private information retrieval. J. Cryptol. 14(1),
37–74 (2001)

31. Feigenbaum, J.: Encrypting problem instances: Or..., can you take
advantage of someone without having to trust him. In: Proceedings
of CRYPTO (1985)

32. Gasarch, W.: A survey on private information retrieval. The Bulle-
tin of the European Association for Theoretical Computer Science,
Computational Complexity Column (82) (2004)

33. Gertner, Y., Goldwasser, S., Malkin, T.: A random server mode
for private information retrieval or information theoretic PIR avoid-
ing database replication. In: Proceedings of the 2nd RANDOM
(1998)

34. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data
privacy in private information retrieval schemes. In: Proceedings
of ACM STOC (1998)

35. Goldreich, O., Ostrovsky, R.: Software protection and simulation
on oblivious rams. J. ACM 43(3), 431–473 (1996)

36. Goldstein, J., Leibholz, S.: On the synthesis of signal switch-
ing networks with transient blocking. IEEE Trans. Electron. Com-
put. 16(5), 637–641 (1967)

37. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput.
Syst. Sci. 28(2), 270–299 (1984)

38. Hastand, J.: Pseudo-random generators with uniform assumptions.
In: Proceedings of the 22nd ACM STOC (1990)

39. Iliev, A., Smith, S.: Private information storage with logarithm-
space secure hardware. In: Proceedings of International Informa-
tion Security Workshops (2004)

40. Iliev, A., Smith, S.: Protecting client privacy with trusted comput-
ing at the server. IEEE Secur. Priv. 3(2), 20–28 (2005)

41. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information-
theoretic private information retrieval. In: Proceedings of the 31th
ACM STOC (1999)

42. Itoh, T.: Efficient private information retrieval. IEICE Transactions
on Fundamentals, ES2-A(1) (1999)

43. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query
locally decodeable codes via a quantum argument. In: Proceedings
of the 35th ACM STOC (2003)

44. Kiayias, A., Yung, M.: Secure games with polynomial expressions.
In: Proceedings of the 28th ICALP (2001)

45. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are
sufficient for non-trivial single-server private information retrieval.
In: Proceedings of EUROCRYPTO (2000)

46. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single
database, computationally private information retrieval. In: Pro-
ceeding of the 38th IEEE FOCS (1997)

47. Lipmaa, H.: An oblivious transfer protocol with log-squared com-
munication. In: Proceedings of ISC (2005)

48. Mehlhorn, K.: Data structures and algorithms, vol 1. Sorting and
Searching. Springer, New York (1984)

49. Mishra, S., Sarkar, P.: Symmetrically private information retrieval.
In: Proceedings of 1st INDOCRYPT (2000)

50. Morric, B., Rogaway, P., Stegers, T.: How to encipher messages on
a small domain: Deterministic encryption and the thorp shuffle. In:
Proceedings of CRYPTO (2009)

51. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation.
In: Proceedings of the 31st ACM STOC (1999)

52. Ostrovsky, R., Shoup, V.: Private information storage. In: Proceed-
ings of the 29th STOC (1997)

53. Pryamikov, V.: Enciphering with arbitrary finite domains. In: Pro-
ceedings of INDOCRYPT (2006)

54. Reed, M., Syverson, P., Goldschag, D.: Anonymous connections
and onion routing. IEEE J. Sel. Areas Commun. 16(4), 482–
494 (1998)

55. Reiter, M., Rubin, A.: Crowds: anonymity for web transac-
tions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

56. Shoup, V.: Sequence of games: a tool for taming complexity in
security proofs. Cryptology ePrint report 2004/332, November 30
(2004)

57. Sion, R., Carbunar, B.: On the computational practicality of private
information retrieval. In: Proceedings of NDSS (2007)

58. Smith, S., Safford, D.: Practical server privacy with secure copro-
cessors. IBM Systems Journal 40(3), 683–695 (2001)

59. Waksman, A.: A permutation network. J. ACM 15(1), 159–
163 (1968)

123

252 X. Ding et al.

60. Wang, S., Ding, X., Deng, R., Bao, F.: Private information retrieval
using trusted hardware. In: Proceedings of the 11th ESORICS
(2006)

61. Williams, P., Sion, R.: Usable PIR. In: Proceedings of NDSS (2008)
62. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud:

practical access pattern privacy and correctness on untrusted stor-
age. In: Proceedings of ACM CCS (2008)

63. Woodruff, D., Yekhanin, S.: A geometric approach to
information-theoretic private information retrieval. SIAM
J. Comput. 47(4), 1046–1056 (2007)

64. Yamamura, A., Saito, T.: Private information retrieval based on
subgroup membership problem. In: Proceedings of the 6th ACISP
(2001)

123

	A new hardware-assisted PIR with O(n) shuffle cost
	Citation

	A new hardware-assisted PIR with O(n) shuffle cost
	Abstract
	1 Introduction
	2 A review on PIR
	2.1 Information-theoretical PIR
	2.2 Computational PIR
	2.3 Variants of information-theoretic/computational PIR
	2.4 Hardware-based PIR

	3 Model and architecture
	3.1 Database model and permutation
	3.2 Architecture of our PIR scheme
	3.3 Security definitions

	4 The PIR scheme
	4.1 System setup
	4.2 Scheme overview
	4.3 Retrieval query processing algorithm
	4.4 Reshuffle process

	5 Security analysis
	6 Performance
	7 Discussion
	7.1 Database initialization without TTP
	7.2 Instantiation of encryption and permutation algorithms
	7.3 Service continuity
	7.4 Update of data items

	8 Conclusion
	Acknowledgments
	References

