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Mining Diversity on Networks

Lu Liu1, Feida Zhu3, Chen Chen2, Xifeng Yan4,
Jiawei Han2, Philip Yu5, and Shiqiang Yang1

1 Tsinghua University
2 University of Illinois at Urbana-Champaign

3 Singapore Management University
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5 University of Illinois at Chicago

Abstract. Despite the recent emergence of many large-scale networks in dif-
ferent application domains, an important measure that captures a participant’s
diversity in the network has been largely neglected in previous studies. Namely,
diversity characterizes how diverse a given node connects with its peers. In this
paper, we give a comprehensive study of this concept. We first lay out two cri-
teria that capture the semantic meaning of diversity, and then propose a com-
pliant definition which is simple enough to embed the idea. An efficient top-k
diversity ranking algorithm is developed for computation on dynamic networks.
Experiments on both synthetic and real datasets give interesting results, where
individual nodes identified with high diversities are intuitive.

1 Introduction

Mining diversity is an important problem in various areas and finds many applications
in real-life scenarios. For example, in information retrieval, people use information en-
tropy to measure the diversity based on a certain distribution, e.g., one person’s research
interests diversity[12]. In social literature, diversity, which has been proposed under
other terminologies like bridging social capital, proves its importance in many social
phenomena. Putnam found that bridging social capital benefits societies, governments,
individuals and communities[11]. In particular, bridging social capital helps reduce an
individual’s chance of catching certain diseases and the chance of dying, e.g., joining an
organization cuts in half an individual’s chance of dying within the next year, leading
to the conclusion that “Network diversity is a predictor of lower mortality”.

Mining diversity on network data is also critical for network analysis as network data
emerge in abundance in many of today’s real world applications. For example, adver-
tisers may be very interested in the most diverse users in social network because they
connect with users of many different types, which means “word of mouth” marketing
on these users could reach potential customers of a much wider spectrum of varied
tastes and budgets. In a research collaboration network of computer scientists, the di-
versity of a node could indicate the corresponding researcher’s working style. A highly
diverse researcher collaborates with colleagues from a wide range of institutions and
communities, while a less diverse one might only work with a small group of people,
e.g., his/her students. As such, an interesting query on such a network could be “Who
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(a) Example 1 (b) Example 2 (c) Example 3

Fig. 1. Three Examples

are the top ten diversely-collaborating researchers in the data mining community?”. To
illustrate the intuition of diversity on networks, let us look at an example.

Example 1. Consider a social network example in which nodes represent people and
edges represent social connections between corresponding parties. Suppose we examine
two nodes A and B in Fig.1(a) where A connects to 5 neighbors and B connects to 4
neighbors. However, the 5 neighbors of A are all from the same profession and the
same community, while the 4 neighbors of B are from 4 different professions and/or
communities. Here, although the neighborhood of B is smaller than that of A, it is
obvious that B connects to a more diverse group of people, which could have important
implications regarding the role he/she may play in the network, e.g., the profitability
and impact if we are to choose a node to launch a marketing campaign.

Example 1 demonstrates that the diversity of a node on network is determined by the
characteristics of its neighborhood. Greater difference between the neighbors translates
into greater diversity of the node. In Example 1, the attributes or the labels are used
to distinguish the neighbors. Then how can we measure the diversity if no attribute
information is given? Example 2 illustrates another way to mine diversity which is
based on the topological structure of the network.

Example 2. In Fig.1(b), comparing nodes A and C with the same degree of 3, it is
easy to observe significant difference between the diversities of their neighborhoods. A
connects to three neighbors, each of which belongs to a distinct community, while C
connects to three closely connected neighbors that form a cohort. In many applications,
A might be more interesting, because of its role of joining different persons together.

The two examples above give two different ways to measure diversity on networks.
However regardless of using either neighborhood attributes or topology, certain com-
mon principles conveying the semantic meaning of diversity underlie any particular
kind of computation or definition of diversity. In fact, it is our observation that there are
two basic factors impacting the diversity measure on a network.

• All else being equal, the greater the size of the neighborhood, the greater the diversity.

When all the neighbors are the same, in terms of both associated labels and neigh-
borhood topology, more neighbors lead to a greater diversity.

• The greater the differences among the neighbors, the greater the diversity.
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The neighbors can be distinguished either by their attributes and labels or by the
topological information of the neighborhood. Whichever way, a larger difference
should translate into a greater diversity.

The above two factors can also been treated as two criteria taken as the basis for propos-
ing a reasonable definition for measuring diversity. In this paper, we focus on mining
the diversity on network based on the topological structure. As pointed out in Section
2, existing measures like centrality can not accurately capture the notion of diversity in
general, although certain degree of correlation between them can be observed for some
data sets.

Our contributions can be summarized as follows.

• As far as we know, there has been no research work to investigate diversity on
network structure data based on network characteristics. We are the first to propose
the diversity concept on network and give two criteria that capture the semantic
meaning of diversity.

• We investigate mining diversity based on topological information of a network, find
a function which is simple enough to embed the two criteria and propose an efficient
algorithms to obtain top-k diverse nodes on dynamic networks.

• Extensive experiment studies are conducted on synthetic and real data sets includ-
ing DBLP. The results are interesting, where individual nodes identified with great
diversities are highly intuitive.

The remaining of this paper is organized as follows. In Section 2, the related work is
introduced and compared with our work. In Section 3, we propose a diversity defini-
tion based on topological information of network and develop an efficient top-k diver-
sity ranking algorithm for dynamic networks in Section 4. The experiment results are
reported in Section 5. Other kinds of diversity definition are discussed in Section 6.
Section 7 concludes this study.

2 Related Work

As network data emerge in abundance in many of today’s real world applications, many
research work has been done on network analysis in recent literatures. Properties re-
flecting the overall characteristics of network, such as density, small world, hierarchical
modularity and power law [15,5,2,10], have been observed for a long time. Compared to
these, many measures that focus on individual components, e.g., degree, betweenness,
closesness centrality, clustering coefficient, authority and etc, have also been proposed
to distinguish the roles of nodes in network [13,9,14,7]. Besides, some other types of
patterns, e.g., frequent subgraphs that focus more on local topologies [8,16], can be
mined from the network.

However, all these measures are different from diversity and thus could not accu-
rately capture the idea behind. Degree centrality, which is defined as the number of
links for a given node, does not consider whether the neighbors are similar. Between-
ness centrality assigns higher value to nodes appearing on the shortest paths of more
node pairs. As we shall observe in the experiments, it might be correlated with di-
versity to some extent in particular data scenarios, but it is not a direct modeling of
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diverseness and thus would not satisfy the two criteria we have proposed in general.
Closeness centrality, which measures the average shortest-path length from a node to
all other nodes in the network, has similar problems. Moreover, such shortest-path based
measures require the global computation of all-pair shortest paths, which leads to the
time-consuming measure calculations on a large network. The clustering coefficient
value of a node corresponds to the number of edges among its neighbors normalized
by the maximum number of such edges; intuitively, with higher clustering coefficient,
the neighbors have more connections among them and thus are more similar to each
other, which leads to lower diversity. However, clustering coefficient does not consider
the scale of the neighborhood and only counts number of edges as the sole parameter,
which is inevitably restricted. Interestingly, it can be treated as a degenerated version of
our diversity definition when the latter is confined to a very special setting.

3 Diversity Definition

In this section, we will propose concrete diversity definitions based on nodes’ neigh-
borhood topology. First, a simple definition is given out and the calculation results on
Example 2 illustrate that it matches our intuition of diversity. Then we will propose
a general definition and show its calculation results on more examples, in which we
analyze its parameters and compare it with centrality.

3.1 Terminology and Representation

Let an undirected unweighted network be G = {(V, E) | V is a set of nodes and E is a set
of edges, E ∈ V ×V , an edge e = (i, j) connects two nodes i and j, i, j ∈ V , e ∈ E}.
N(v) denotes the set of v’s neighbors. |N(v)| denotes the cardinality of N(v), i.e., the
number of neighbors. r is the radius of the neighborhood. If it is set to be 1, N(v) is
the set of directly connected nodes and |N(v)| equals to the degree of node v. N−u(v)
denotes the set of v’s neighbors which excludes the nodes that become v’s neighbors
through u. For example, when r = 1, N−u(v) is the set of the direct neighbors of v
except u itself; when r = 2, N−u(v) = N(v) - {x|there is only one shortest path from
v to x which is through u}. L(i, j) denotes the length of shortest path from node i to
node j.

3.2 A Simple Diversity Example

To illustrate the diversity measure, we first use a simple definition as below, which can
get the intuitive results of Example 2 in Fig.1(b).

Definition 1. Given a network G and a node v ∈ V (G), the diversity D(v) is defined
as

D(v) =
∑

u∈N(v)

(
1− |N(v)

⋂
N(u)|

|N(u)|
)

(1)

The underlying intuition of the definition is that, for a target node v, if a neighbor u
has fewer connections with other neighbors of v, u is considered to contribute more to
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the diversity of v. Therefore the diversity of v is defined as the aggregation of every
neighboring node u’s contribution which equals to the probability of leaving the direct
neighborhood of v through u [7].

Based on this definition, we can get that the diversity values of A,B,C in Example 2
are 3, 2, 1.167 respectively. The relative values match our intuition of diversity ranking
on this network.

3.3 Diversity: General Definition

While the previous definition based on direct common neighborhood is simple and in-
tuitive in some cases, we need more flexibility and generality in the diversity definition
for most applications to capture the measure more accurately. As we discussed above,
the diversity in general grows in proportion with the size of the neighborhood. With this
notion of each neighbor contributing to the diversity of the central node, we propose the
general definition of diversity in an aggregate form as follows.

Definition 2 [Diversity]. The diversity of a node v is defined as an aggregation of each
neighbor u’s contribution to v’s diversity.

D(v) =
∑

u∈N(v)

wv(u) ∗ F (u, v) (2)

where F (u, v) is a function measuring the diversity introduced by u. wv(u) is u’s weight
in the aggregation.

According to our guiding principles, if a neighbor u is less similar to other neighbors
of v, u would contribute more to v’s diversity. Thus F (u, v) is a function evaluating the
dissimilarity between u and other neighbors of v in the set radius r, i.e., the set N−u(v).
In general, F (u, v) can be defined as a linear function of the similarity between u and
N−u(v) as

F (u, v) = 1 − α ∗ S(u, N−u(v)) (3)

S(u, N−u(v)) is a function measuring the similarity between u and N−u(v) up to a nor-
malization. α indicates its weight, which can be set empirically. We define S(u, N−u(v))
as the average similarity between u and each node x of N−u(v). There are various ways
to measure the similarity between two nodes u and x, e.g., shortest path is a reasonable
choice for many real-world scenario. However, computing shortest paths on a global
scale is inefficient. Fortunately, since diversity is a local property defined on a neigh-
borhood with a set radius, we can use the following definition based on local shortest
path computation.

Definition 3 [Similarity Between Node Pair]. The similarity between two nodes u and
x is defined as:

S(u, x) =
{

δ(l−1), 0 < δ < 1 if L(u, x) = l ≤ r
0 otherwise
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Table 1. Computation Results for Example 2

Node DC BC
Diversity (α = 0.8 δ = 0.8)
r=1 r=2 r=3 r=4

A 3 48 3 5.208 5.208 5.208
B 4 27 1.6 2.763 4.147 4.245
C 3 0 0.867 1.767 2.962 4.489

If two nodes are too far apart, in the sense that their distance is larger than the neigh-
borhood radius r of our interest, their similarity is considered to be zero; Otherwise,
their similarity is inversely proportional to their distance. δ is a damping factor to re-
flect the notion that nodes farther apart share less similarity. The effect of δ is further
explored in Section 3.4. With the similarity between a pair of nodes defined, we can
give the definition of similarity between a node and a set of nodes.

Definition 4 [Similarity Between Node and Node Set]. The similarity between a node
u and a set of nodes N−u(v) is defined as

S(u, N−u(v)) =

∑
x∈N−u(v)∩N−v(u) (wv(x) ∗ S(u, x))

∑
x∈N−v(u) S(u, x)

(4)

where wv(x) is the weight of x in v’s neighborhood.

The purpose of setting weight, e.g., wv(u) and wv(x), is to prioritize all the nodes in
v’s neighborhood. There are more than one possible ways to define the weights. In this
paper, we define wv(x) = S(v, x) based on the argument that distance-based similarity
is an appropriate way to evaluate the priority of a node in v’s neighborhood when a
radius larger than 1 is needed. Putting it together, we have

S(u, N−u(v)) =

∑
x∈N−u(v)∩N−v(u) (S(v, x) ∗ S(u, x))

∑
x∈N−u(v) S(u, x)

(5)

It is easy to notice that the definition in Section 3.2 is a special case of this general
definition.

3.4 Examples and Analysis

To illustrate the intuition of the diversity measure above and analyze the impact of its
parameters, we get the computation results for Example 2 and 3 in Fig.1(b)(c) with
changing parameters and show them in Table 1 and 2, where the computation results of
degree and betweenness centrality are also listed1.

Comparison with Degree and Betweenness. Example 2 demonstrates that diversity
does not equal to degree. E.g., A and C are with the same degree but their diversities dif-
fer a lot. In Example 3, as the neighbors of all the nodes are not directly connected with

1 DC and BC denote degree and betweenness centrality for short respectively in this paper.
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Table 2. Computation Results for Example 3

Node DC BC
Diversity (α = 0.8, δ = 0.5) Diversity (α = 0.8, δ = 0.8)
r=1 r=2 r=3 r=4 r=5 r=6 r=1 r=2 r=3 r=4 r=5 r=6

A 2 42 2 4.70 4.74 4.74 4.74 4.74 2 5.31 4.97 4.97 4.97 4.97
B 6 47 6 3.19 3.92 3.99 3.99 3.99 6 3.04 4.37 4.39 4.39 4.39
C 5 43 5 2.98 3.90 3.96 3.96 3.96 5 2.85 4.50 4.51 4.51 4.51
D 2 1.6 2 2.39 2.69 3.19 3.24 3.24 2 2.33 2.96 4.25 4.38 4.37
E 2 2.25 2 2.16 2.48 3.10 3.15 3.15 2 2.14 2.82 4.41 4.51 4.51
F 5 5 5 2.34 2.73 3.15 3.39 3.41 5 2.13 3.01 4.11 5.06 5.18
G 4 3 4 2.08 2.47 2.90 3.19 3.21 4 1.92 2.83 3.94 5.13 5.25

each other, the value of diversity equals to degree when r = 1. But when r increases
from 1 to 2, the diversity ranking changes. Example 3 demonstrates that diversity does
not equal to betweenness centrality either. E.g., betweenness centrality of A and C in
Fig.1(c) are roughly the same, but their diversities are obviously different.

Radius of Neighborhood. Table 1 and 2 show all the calculation results when r changes
from 1 to the possible maximal value (it means that the neighborhood would no longer
change when r increases more). It is found that a larger radius may lead to counter-
intuitive ranking results. However, it is our belief and definition that diversity should
measure an aspect of a node’s interaction with its local neighborhood. To judge a node’s
diversity on a global scale (e.g., considering all the nodes as neighbors of the cen-
ter node) is semantically controversial. On the other hand, it is discovered that “small
world” phenomenon applies to a wide range of networks such as the Internet, the social
networks like Facebook and the bio-gene networks, which means most nodes in these
networks are found to be within a small number of hops from each other. In particular,
the theory of “six degrees of separation” indicates that in social network most people
can reach any other individuals through six persons. It follows that when r increases
beyond a small number, a node’s diversity would be aggregated by nearly all the nodes’
contributions in the network, which deviates away from what diversity is meant to cap-
ture based on our previous discussion. Therefore, a small radius should be chosen in
the computation. Furthermore, the results show that the top-k results in the diversity
ranking become stable when r = 2 or r = 3 in most cases.

Damping Factor. The damping factor δ controls a neighbor’s impact on the diversity
measure in relation to its distance to the central node. Intuitively, neighbors far away
should have smaller impact on the central node’s diversity. As we discussed above,
diversity is influenced mainly by two factors: the size of the neighborhood and the dif-
ference among the neighbors. On real data sets, as the radius increases, the number
of neighbors increases enormously, which makes the size of neighborhood be a dom-
inating factor of diversity computation. This imbalance would sometimes distort the
ranking result. Therefore an appropriate damping factor can be chosen to balance the
two factors, e.g., δ = 0.5 in Table 2 .
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4 Top-K Diversity Ranking Algorithm

In real applications, top-k diversity ranking for query-based dynamic networks is often
required in data scenarios. Still take the DBLP example. Suppose the original input net-
work is the entire DBLP co-authorship network G generated by including papers from
all the eligible conferences. If a user poses a query “Who are the most diverse researcher
in Database community?”, it would result in the dropping of edges which correspond
to papers published in non-database conferences. Diversity ranking is then computed
on the resulting sub-network. The challenge for computing measures on dynamic net-
works is that it is no longer possible to compute once for all and answer all the queries
by retrieving saved results. As such, the task is to develop efficient algorithms for top-k
diversity measure on dynamic networks generated by user queries.

Our strategy is to find ways to quickly estimate an upper-bound of D(v) for each
node v in the new sub-network. Meanwhile we store the smallest diversity value of
top k candidates which is denoted as l bound. If the upper-bound of v is smaller than
l bound, it can be tossed away to save computation. Otherwise we perform more costly
computation to get the accurate measure value of D(v) and update l bound.

We obtain the upper-bound based on two scenarios. First, the diversity of a node
should be smaller than the cardinality of its neighborhood. When all the neighbors have
no connections, the diversity reaches the maximal value. On the other hand, as the
query-based dynamic network is a subgraph of original network, one node’s neighbor-
hood should be the sub-set of its original neighborhood. Thus two nodes’ similarity
should be smaller than their similarity on the original network. By using the mono-
tonicity property, we obtain the upper-bounds and propose an efficient top-k diversity
ranking algorithm.

For any quantity W computed on a network G, we use W ′ to represent the same
quantity computed on a sub-network G′ ⊆ G. We use Nu(v) to denote the set of nodes
in v’s r-neighborhood which can only be reached by shortest paths passing through u,
i.e., Nu(v) = N(v) \ N−u(v).

Lemma 1. For a network G and a node v ∈ V (G), D(v) ≤ ∑
u∈N(v) wv(u).

Lemma 1 is due to the fact that F (u, v) ≤ 1 by definition and F (u, v) = 1 only when
all the neighbors of v have no connections.

Lemma 2. For a network G and a sub-network G′ ⊆ G, for any two nodes u, v ∈
V (G), 0 ≤ S′(u, v) ≤ S(u, v) ≤ 1.

Lemma 2 is due to the fact that the length of the shortest path L(u, v) for any two nodes
u and v in G increases monotonically in sub-network G′.

We define some notations to simplify the formulas. We set C(v) =
∑

u∈N(v) wv(u).
According to Lemma 1, C(v) is an upper bound of D(v). Since in this paper we define
wv(u) = S(u, v), we also have C(v) =

∑
u∈N(v) S(u, v). Hence, for any sub-network

G′ ⊆ G, C′(v) =
∑

u∈N ′(v) S′(u, v). We denote S =
∑

x∈N−u(v)∩N−v(u)(S(v, x) ∗
S(u, x)) for short.
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Input: Sub-network G′ and K
Output: A set T of K nodes with top diversity
1: Q← Queue of V (G′), sorted by C′(v)
2: l bound← 0; T ← ∅;
3: Pop out the top node v in Q
4: if C′(v) < l boundQ return T;
5: for each u ∈ N ′(v)
6: Compute Upper(u, v);
7: UP (v)← UP (v) + min{1, Upper(u, v)}
8: if UP (v) < l bound continue;
9: for each u ∈ N ′(v)
10: Compute F ′(u, v);
11: D′(v)← D′(v) + F ′(u, v);
12: if D′(v) > l bound insert v into T
13: if |T | > K
14: remove the last node in T ;
15: l bound← smallest diversity in T ;
16: return T ;

Algorithm 1. Top-K Diversity Ranking

Since 0 ≤ S(u, v), S′(v, x) ≤ 1 for any nodes u and v, we have for any node x,

S(v, x)− S′(v, x) + S(u, x)− S′(u, x)

≥ (S(v, x)− S′(v, x)) ∗ S(u, x) + (S(u, x)− S′(u, x)) ∗ S′(v, x)

= S(v, x) ∗ S(u, x)− S′(u, x) ∗ S′(v, x)

If we sum up by x for the above inequality, since S(v, x) = 0 for x /∈ N(v) (resp. for
S(u, x)), and S(v, x) ∗ S(u, x) = 0 for x /∈ (N(v)

⋂
N(u)), we have

C(v)− C′(v) + C(u)− C′(u) ≥ S − S′ +
∑

x∈A

S(u, x) ∗ S(v, x)−
∑

x∈B

S′(u, x) ∗ S′(v, x)

where A = N(u)∩N(v)−N−v(u)∩N−u(v). B = N ′(u)∩N ′(v)−N ′
−v(u)∩N ′

−u(v).
As B ⊆ A, S(u, x) ≥ S′(u, x),

∑
x∈A S(u, x)∗S(v, x)−∑

x∈B S′(u, x)∗S′(v, x) ≥
0. Therefore,

C(v)− C′(v) + C(u)− C′(u) ≥ S − S′

So

F ′(u, v) = 1− α ∗ S′
∑

x∈N−v(u) S′(u, x)

≤ 1− α ∗ (S − (C(u)− C′(u) + C(v)− C′(v)))∑
x∈N−v(u) S′(u, x)

≤ 1− α ∗ (S − (C(u)− C′(u) + C(v)− C′(v)))

C′(u)

= Upper(u, v)

We thus derived another upper-bound Upper(u, v) for F ′(u, v). Thus F ′(u, v) ≤
min{1, Upper(u, v)}.
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To use this upper-bound, we compute S for each pair (u, v) which are each other’s
r-neighbors in the original network and store these values in the pre-computation stage.
Likewise, we also compute and store C(v). When the user inputs a query, we just need
to compute C′(u) and C′(v) for the sub-network, which is simply a local neighbor
checking, to get Upper(u, v).

The top-k diversity ranking algorithm is as shown in Algorithm 1.

5 Experimental Results

In this section, we did extensive experiments on both synthetic and real data and gen-
erated some interesting results. The most diverse nodes on different types of networks
are highlighted to illustrate an intuition of diversity. We compare the results of diversity
with two classical centrality measures – degree and betweenness centrality and show
both the difference and the correlation between them. At last, we implemented our top-
k ranking algorithm on dynamic network and demonstrate its efficiency.

5.1 Results on Synthetic Network

We first applied the algorithm to a synthetic network consisting of 92 nodes and 526
edges shown in Fig.2. The network was generated as following: first, we generated three
clusters of nodes; in each cluster the nodes only connect with the nodes in the same
cluster randomly; then we generated other 10 nodes connecting to any node arbitrarily.

Fig.2 shows the top 20 nodes ranked by degree, betweenness centrality and diversity
respectively. The top 10 nodes are highlighted with red color and the sizes of nodes are
linear with the ranking (The higher the rank, the larger the size). The second top 10
nodes are highlighted with blue color [1].

This figure demonstrates that the nodes which connect more nodes from different
clusters tend to be more diverse. When r increases from 1 to 2, the diverse nodes will
further move to the connection points of clusters. It seems that diversity is highly cor-
related with betweenness centrality on this network. Their correlation coefficients are

(a) Diversity when r = 1 (b) Diversity when r = 2(c) Betweenness Cen-
trality

(d) Degree Centrality

Fig. 2. Synthetic network results
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(a) Surajit Chaudhuri (b) Guy M. Lohman (c) Philip Yu (d) Jiawei Han

Fig. 3. Neighborhood of four authors

(a) Diversity when r = 1 (b) Diversity when r = 2 (c) Betweenness Centrality

Fig. 4. Network of American football games

shown in Table 52. This large correlation is caused by the characteristic of this network
structure. As the network consists of three clusters and some other nodes connecting
the clusters, the nodes with high betweenness centrality values also tend to locate on
the connection points of clusters. However, diversity is different from betweenness cen-
trality as we analyzed above. And we will show that they are lowly correlated on some
networks with different structures.

5.2 Results on DBLP Network

We extracted the network of co-authorship on conference SIGMOD, VLDB and ICDE
from DBLP data3, which means that if two authors cooperated a paper published on
these conferences, an edge was generated to link them. Table 3 compares the top 20
author ranked by diversity and betweenness centrality. We set α = 0.8, δ = 0.5. As it
is proved that on an undirected network degree is consistent to authority (eigenvector
centrality) obtained by PageRank [4], we can also treat degree as an authority value and
compare it with diversity. Thus Table 3 demonstrates that diversity ranking is different
from betweenness centrality ranking as well as authority (degree).

2 SN denotes synthetic network for short.
3 This network is called as ”DB” for short in the remainder of the paper.
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Table 3. Author Ranking Results on DB

Diversity when r = 1 Diversity when r = 2 Betweenness Centrality
Author DC Value Author Value Author Value
Rakesh Agrawal 98 50.94 Rakesh Agrawal 450.84 Rakesh Agrawal 971048.8
David J. DeWitt 118 50.60 David J. DeWitt 434.77 Michael J. Carey 785089.9
Hector Garcia-Molina 98 48.20 Surajit Chaudhuri 402.93 Christos Faloutsos 747502.4
Divesh Srivastava 89 46.75 Michael J. Carey 386.85 David J. DeWitt 746523.0
Surajit Chaudhuri 73 45.53 Divesh Srivastava 373.34 Umeshwar Dayal 737304.2
Raghu Ramakrishnan 90 44.95 Jennifer Widom 367.29 Michael Stonebraker 705067.8
H. V. Jagadish 82 41.53 Hector Garcia-Molina 364.51 Hector Garcia-Molina 685955.0
Hamid Pirahesh 83 41.45 Raghu Ramakrishnan 360.98 Surajit Chaudhuri 631760.8
Michael J. Carey 115 41.05 Michael J. Franklin 360.09 Philip A. Bernstein 628037.5
Michael Stonebraker 113 40.93 Jeffrey F. Naughton 349.62 H. V. Jagadish 604977.7
Jennifer Widom 84 40.29 Hamid Pirahesh 343.99 Divesh Srivastava 562573.6
Christos Faloutsos 94 39.21 H. V. Jagadish 339.80 Raghu Ramakrishnan 555216.0
Jeffrey F. Naughton 95 38.86 Gerhard Weikum 333.76 Gerhard Weikum 540029.5
Guy M. Lohman 73 37.98 Umeshwar Dayal 330.88 Elisa Bertino 533129.3
Michael J. Franklin 76 37.42 Philip A. Bernstein 327.75 Dennis Shasha 526097.3
Nick Koudas 69 37.32 Michael Stonebraker 326.91 Jiawei Han 520527.3
C. Mohan 66 36.19 Abraham Silberschatz 326.70 Michael J. Franklin 518074.6
Gerhard Weikum 80 34.11 C. Mohan 322.23 Gio Wiederhold 517573.1
Philip A. Bernstein 61 33.45 Guy M. Lohman 320.67 Kian-Lee Tan 513349.0
Rajeev Rastogi 75 33.36 Bruce G. Lindsay 312.36 C. Mohan 509267.1

Table 3 demonstrates some interesting results. For example, although the difference
between the degrees of R. Agrawal and D. DeWitt is as large as 20, their diversities
are nearly the same. The reason should be that R. Agrawal is from industry area and
has worked in many companies, e.g., Microsoft, IBM Almaden Research Center, Bell
Laboratories, etc. Therefore, Agrawal’s cooperators are very diverse. We also compare
the diversity of two authors, Surajit Chaudhuri and Guy M. Lohman, who have the
same degree. Their neighborhoods as shown in Fig.3(a) and Fig.3(b) demonstrate that
Lohman’s cooperators connect with each other more closely than Chaudhuri’s. There-
fore the diversity of Chaudhuri is larger than Lohman as obtained in Table 3.

We can also get similar results on the co-author network of conference KDD and
ICDM from DBLP data4 as shown in Table 4. For example, although Philip S. Yu
and Jiawei Han’s degrees are roughly the same, their diversities differ a lot, which can
also be demonstrated from their neighborhoods as shown in Fig.3(c) and Fig.3(d). The
reason should be that Philip S. Yu had worked in industry area and has cooperated with
many different persons who have no close relationship. Thus his diversity value is much
larger than Jiawei Han.

5.3 Results on Network of American Football Games

We obtained another social network of American football games between Division IA
colleges during regular season Fall 2000 [6]. In this data, nodes represent teams and

4 The network is called as ”DM” for short in the remainder of the paper.
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Table 4. Author Ranking Results on DM

Diversity when r = 1 Diversity when r = 2 Betweenness Centrality
Author DC Value Author Value Author Value
Philip S. Yu 76 39.72 Philip S. Yu 160.82 Philip S. Yu 544203.3
Jiawei Han 73 26.25 Haixun Wang 107.15 Christos Faloutsos 335598.8
Christos Faloutsos 60 24.77 Jiawei Han 96.85 Heikki Mannila 179383.3
Jian Pei 51 20.37 Christos Faloutsos 93.26 Mohammed Javeed Zaki 158551.1
Haixun Wang 32 19.21 Ke Wang 92.37 Jiawei Han 132043.5
Ke Wang 36 17.30 Jian Pei 91.13 Eamonn J. Keogh 123389.1
Heikki Mannila 39 16.54 Ada Wai-Chee Fu 82.14 Padhraic Smyth 116926.1
Bing Liu 32 15.15 Jianyong Wang 75.56 Jian Pei 112538.7
Mohammed Javeed Zaki 30 14.50 Charu C. Aggarwal 74.11 Charu C. Aggarwal 107042.4
Eamonn J. Keogh 37 14.32 Wei Fan 73.63 Bing Liu 103081.9
Wei Fan 29 14.26 Wei Wang 71.52 Gregory Piatetsky-Shapiro 101267.2
Padhraic Smyth 32 13.89 Bing Liu 70.26 Srinivasan Parthasarathy 95692.4
Wei-Ying Ma 34 13.73 Spiros Papadimitriou 69.17 Ada Wai-Chee Fu 91889.1
Ada Wai-Chee Fu 25 13.70 Hong Cheng 69.14 Ke Wang 90909.1
Qiang Yang 41 13.68 Eamonn J. Keogh 67.69 Haixun Wang 88484.7
Vipin Kumar 29 13.21 Alexander Tuzhilin 64.71 Vipin Kumar 82333.2
Wei Wang 39 13.13 Jiong Yang 63.58 Rakesh Agrawal 80409.2
Hui Xiong 27 13.02 Hongjun Lu 62.50 Huan Liu 79472.5
Huan Liu 28 12.92 David W. Cheung 60.45 Spiros Papadimitriou 78784.6
Alexander Tuzhilin 17 12.16 Michail Vlachos 60.28 Prabhakar Raghavan 77359.7

edges denote that two teams had a game. Fig.4 shows the top 10 nodes with largest
diversity and betweenness centrality, which are highlighted by the larger sizes of nodes.
The degrees of all the nodes are roughly the same, with the range from 8 to 12. Thus
we do not show the degree ranking results. The data also contain the node labels which
indicate the conference that each team belongs to. We use different colors to distinguish
the labels in the figure. Therefore the results illustrate that the diversity calculated based
on network topology is consistent to the diversity based on node labels, which means
that the nodes whose neighbors are from more clusters tend to be more diverse. Table
55 demonstrates that on this network the diversity is lowly correlated with degree and
betweenness centrality.

5.4 Performance Comparison

Fig.5(a) compares the running time of Top-K algorithm with the time of ranking all the
nodes on DB and DM networks. It demonstrates that Top-K algorithm is much more
efficient and can meet online query needs. We also implemented an efficient between-
ness algorithm [3] and compared it with diversity. Fig.5(b) demonstrates that diversity
calculation is much faster than betweenness calculation. The reason is that to some ex-
tent betweenness centrality is a global measure based on the shortest path calculation
between all the pair-nodes which is very time consuming while the diversity measure
only needs to count the local neighborhood.

5 FN denotes the social network of American football games for short.
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Table 5. Correlation Coefficients of Metrics

Network #node #edge
DC vs. DC vs. Diversity BC vs. Diversity

BC r = 1 r = 2 r = 1 r = 2
SN 92 526 0.470 0.874 0.399 0.709 0.828
FN 115 616 0.151 0.345 0.224 0.413 0.463
DB 7640 22309 0.810 0.881 0.819 0.829 0.716
DM 3405 6496 0.665 0.908 0.683 0.701 0.576
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Fig. 5. Performance comparison

6 Discussion

As diversity is a highly subjective concept, we do not think there exists one optimal def-
inition which is applicable for all scenarios. Rather than narrowing ourselves down to
one specific definition, we are fully aware of other possible definitions that may be bet-
ter geared for other applications. For example, a highly intuitive definition can be based
on clustering, where nodes are first assigned labels by certain clustering algorithm and
then diversity is computed by calculating the information entropy of the cluster distri-
bution of neighbors. This kind of definition needs to at least solve the following issues:
(i) The choice of the clustering algorithm dictates the resulting clusters, which in turn
determines the diversity computation. The decision on clustering parameters becomes
critical and difficult. (ii) The internal cohesion of clusters, which reflects the topology
of network, is also an important component for diversity. The diversity of a node con-
nected with a compact cluster should be different from the diversity of a node connected
with a loose cluster. Therefore in general still lots of aspects and factors should be ex-
ploited for the clustering-based definition. In this paper, we propose a straightforward
diversity definition based on the similarity between neighbors instead of solving these
problems of clustering.

7 Conclusion

In this paper, we investigated the problem of mining diversity on networks. We gave
two criteria to characterize the semantic meaning of diversity and to provide the ba-
sis of proposing a reasonable measure definition. Then we studied diversity measure
based on network topology and picked a concrete definition to embed the idea. We
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developed an efficient algorithm to find top-k diverse nodes on dynamic networks. Ex-
tensive experiment studies were conducted on synthetic and real data sets. The results
are interesting, where individual nodes identified with high diversities are intuitive.

Acknowledgements

The work was supported in part by the U.S. National Science Foundation grants IIS-
08-42769 and IIS-09-05215, and the NASA grant NNX08AC35A, and 973 Program of
China grant 2006CB303103, and the State Key Program of National Natural Science
of China grant 60933013. Any opinions, findings, and conclusions expressed here are
those of the authors and do not necessarily reflect the views of the funding agencies.

References

1. http://graphexploration.cond.org/index.html
2. Barabasi, A.-L., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organi-

zation. Nat. Rev. Genet. 5(2), 101–113 (2004)
3. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociol-

ogy 25, 163–177 (2001)
4. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons Inc., Chich-

ester (2006)
5. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topol-

ogy. In: SIGCOMM, pp. 251–262 (1999)
6. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Pro-

ceedings of the National Academy of Sciences 99(12) (2002)
7. Hwang, W., Kim, T., Ramanathan, M., Zhang, A.: Bridging centrality: graph mining from

element level to group level. In: KDD, pp. 336–344 (2008)
8. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM, pp. 313–320 (2001)
9. Lawrence, P., Sergey, B., Motwani, R., Winograd, T.: The pagerank citation ranking: Bring-

ing order to the web. Technical report, Stanford University (1998)
10. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws, shrinking

diameters and possible explanations. In: KDD, pp. 177–187 (2005)
11. Putnam, R.D.: Bowling Alone: America’s Declining Social Capital. Journal of Democ-

racy 6(1) (1995)
12. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and

documents. In: Proceedings of the 20th conference on Uncertainty in artificial intelligence,
Arlington, VA, USA, pp. 487–494. AUAI Press (2004)

13. Stephenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social Net-
works 11(1), 1–37 (1989)

14. Wasserman, S., Faust, K.: Social Network Analysis, Methods and Applications. Cambridge
University Press, Cambridge (1994)

15. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

16. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM, pp. 721–724
(2002)

http://graphexploration.cond.org/index.html

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2010

	Mining Diversity on Networks
	Lu LIU
	Feida ZHU
	Chen CHEN
	Xifeng YAN
	Jiawei HAN
	See next page for additional authors
	Citation
	Author


	Mining Diversity on Networks
	Introduction
	Related Work
	Diversity Definition
	Terminology and Representation
	A Simple Diversity Example
	Diversity: General Definition
	Examples and Analysis

	Top-K Diversity Ranking Algorithm
	Experimental Results
	Results on Synthetic Network
	Results on DBLP Network
	Results on Network of American Football Games
	Performance Comparison

	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


