
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Information 
Systems School of Information Systems 

7-2005 

Approximate strategic reasoning through hierarchical reduction of Approximate strategic reasoning through hierarchical reduction of 

large symmetric games large symmetric games 

Michael P. WELLMAN 
University of Michigan 

Daniel M. REEVES 

Kevin M. LOCHNER 

Shih-Fen CHENG 
Singapore Management University, sfcheng@smu.edu.sg 

Rahul SURI 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems 

Engineering and Industrial Engineering Commons 

Citation Citation 
WELLMAN, Michael P.; REEVES, Daniel M.; LOCHNER, Kevin M.; CHENG, Shih-Fen; and SURI, Rahul. 
Approximate strategic reasoning through hierarchical reduction of large symmetric games. (2005). 
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05): July 9-13, 2005, 
Pittsburgh, PA. 502-508. Research Collection School Of Information Systems. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1200 

This Conference Proceeding Article is brought to you for free and open access by the School of Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email libIR@smu.edu.sg. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Approximate Strategic Reasoning through Hierarchical Reduction of Large
Symmetric Games

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen Cheng, and Rahul Suri
University of Michigan

Ann Arbor, MI 48109-2110 USA
{wellman,dreeves,klochner,chengsf,rsuri}@umich.edu

Abstract

To deal with exponential growth in the size of a game with the
number of agents, we propose an approximation based on a
hierarchy of reduced games. The reduced game achieves sav-
ings by restricting the number of agents playing any strategy
to fixed multiples. We validate the idea through experiments
on randomly generated local-effect games. An extended ap-
plication to strategic reasoning about a complex trading sce-
nario motivates the approach, and demonstrates methods for
game-theoretic reasoning over incompletely-specified games
at multiple levels of granularity.

Motivation
Consider the task of selecting among a large set of strate-
gies to play in an 8-player game. Through careful judgment
you manage to narrow down the candidates to a reasonable
number of strategies (say 35). Because the performance of a
strategy for one agent depends on the strategies of the other
seven, you wish to undertake a game-theoretic analysis of
the situation. Determining the payoff for a particular strat-
egy profile is expensive, however, as your observations of
prior game instances are quite limited, and the only opera-
tional description of the game is in the form of a simulator
that takes a non-negligible time (say 10 minutes) to produce
one outcome. Moreover, since the environment is stochastic,
numerous samples (say 12) are required to produce a reliable
estimate for even one profile. At two hours per profile, ex-
haustively exploring profile space will require 2 · 358 or 4.5
trillion hours simply to estimate the payoff function repre-
senting the game under analysis. If the game is symmetric,
you can exploit that fact to reduce the number of distinct
profiles to

(
42

8

)
, which will require 236 million hours. That

is quite a bit less, but still much more time than you have.
This is the situation we face as entrants in the annual Trad-

ing Agent Competition (TAC) travel-shopping market game
(Wellman et al. 2003). The necessity of empirical evaluation
in this setting combined with the infeasibility of exhaustive
analysis prompts us to seek principled ways to direct a non-
exhaustive exploration. In this paper we investigate the ex-
ploitation of hierarchical structure in the space of profiles to
balance the goals of spanning the overall space and focusing
effort on the most promising regions.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The idea is that although a strategy’s payoff does depend
on the play of other agents (otherwise we are not in a game
situation at all), it may be relatively insensitive to the ex-
act numbers of other agents playing particular strategies.
For example, let (s,m; s′) denote a profile where m other
agents play strategy s, and the rest play s′. In many natural
games, the payoff for playing any particular strategy against
this profile will vary smoothly with m. If such is the case,
we sacrifice relatively little fidelity by restricting attention to
subsets of profiles, for instance those with only even num-
bers of any particular strategy. To do so essentially trans-
forms the N -player game to an N/2-player game over the
same strategy set, where the payoffs to a profile in the re-
duced game are simply those from the original game where
each strategy in the reduced profile is played twice.

The potential savings from reduced games are consider-
able, as they contain combinatorially fewer profiles. The
4-player approximation to the TAC game (with 35 strate-
gies) comprises 73,815 distinct profiles, compared with 118
million for the original 8-player game. In case exhaustive
consideration of the 4-player game is still infeasible, we
can approximate further by a corresponding 2-player game,
which has only 630 profiles. Approximating by a 1-player
game is tantamount to ignoring strategic effects, considering
only the 35 “profiles” where the strategies are played against
themselves. In general, an N -player symmetric game with
S strategies includes

(
N+S−1

N

)
distinct profiles. Figure 1
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Figure 1: Number of distinct profiles (log scale) of a sym-
metric game, for various numbers of players and strategies.



shows the exponential growth in both N and S.
The main contribution of this paper is to introduce the

concept of approximation through hierarchical game reduc-
tion. We begin by providing a more precise definition of
reduced games. Next we present evidence supporting the ap-
proximation of games by reduced versions, based on theoret-
ical and experimental studies of three game classes. The rest
of the paper focuses on our application to the TAC travel-
shopping domain, demonstrating the use of game-theoretic
reasoning about possible equilibria based on only incom-
plete evaluation of the underlying payoff function.

Hierarchy of Reduced Games
We develop our hierarchical reduction concepts in the
framework of symmetric normal-form games.1

Definition 1 Γ = 〈N, {Si}, {ui()}〉 is an N -player normal-
form game, with strategy set Si the available strategies for
player i, and the payoff function ui(s1, . . . , sN ) giving the
utility accruing to player i when players choose the strategy
profile (s1, . . . , sN ).

Definition 2 A normal-form game is symmetric if the
players have identical strategy spaces (Si = S) and
ui(si, s−i) = uj(sj , s−j), for si = sj and s−i = s−j for all
i, j ∈ {1, . . . , N}. Thus we can denote a symmetric game
by 〈N,S, u()〉, with u(t, s) the payoff to any player playing
strategy t when the remaining players play profile s.

Our central concept is that of a reduced game.

Definition 3 Let Γ = 〈N,S, u()〉 be an N -player symmet-
ric game, with N = pq for integers p and q. The p-player
reduced version of Γ, written Γ↓p, is given by 〈p, S, û()〉,
where

ûi(s1, . . . , sp) = uq·i(s1, . . .
︸ ︷︷ ︸

q

, s2, . . .
︸ ︷︷ ︸

q

, . . . , sp, . . .
︸ ︷︷ ︸

q

).

In other words, the payoff function in the reduced game is
obtained by playing the specified profile in the original q
times.

The idea of a reduced game is to coarsen the profile space
by restricting the degrees of strategic freedom. Although the
original set of strategies remains available, the number of
agents playing any strategy must be a multiple of q. Every
profile in the reduced game is one in the original game, of
course, and any profile in the original game can be reached
from a profile contained in the reduced game by changing at
most p(q − 1) agent strategies.

To search a profile space hierarchically, we apply a series
of game reductions. The game resulting from such a series
is independent of the reduction ordering. Let q = r ·r′. Then

(Γ↓p·r)↓p= (Γ↓p·r′)↓p= Γ↓p .

Example 1 (FPSBn) In the n-player first-price sealed-bid
auction, player i has a private value vi, decides to bid bi,

1Although the methods may generalize to some degree to par-
tially symmetric games, or to exploit extensive forms, we do not
pursue such extensions here.

and obtains payoff vi − bi if its bid is highest (and zero oth-
erwise). We define FPSBn as a special case where vi ∼
U [0, 1], and agents are restricted to parametrized strategies,
bidding kivi for ki ∈ [0, 1].

Let n = pq. In the reduced game FPSBn↓p, each agent
i = 1, . . . , p selects a single action ki, which then gets ap-
plied to q valuations vi1 , . . . , viq

to define q bids. The auc-
tion proceeds as normal, and agent i’s payoff is defined as
the average payoff associated with its q bids. Note that the
game FPSBn↓p is quite a different game from either FPSBn
or FPSBp. When represented explicitly over a discrete set of
actions, FPSBn↓p is the same size as FPSBp, and both are
exponentially smaller than FPSBn.

Reduced-Game Approximations
Our premise is that the reduced game will often serve as a
good approximation of the full game it abstracts. We know
that in the worst case it does not. In general, an equilibrium
of the reduced game may be arbitrarily far from equilibrium
with respect to the full game, and an equilibrium of the full
game may not have any near neighbors in the reduced game
that are close to equilibrium there.2 The question, then, is
whether useful hierarchical structure is present in “typical”
or “natural” games, however we might identify such a class
of games of interest. Although we have no general charac-
terization of the class of games for which the approximation
works well, we provide positive evidence for three specific
classes of symmetric games in the sections below.

FPSBn

The n-player FPSB auction has a unique symmetric Nash
equilibrium, at k = n−1

n
(Krishna 2002). For example, the

equilibrium for FPSB2 is 1/2, and for FPSB4 it is 3/4. From
the following theorem, giving the equilibrium of FPSBn↓p,
we have 2/3 in equilibrium for FPSB4↓2.

Theorem 1 The unique symmetric Nash equilibrium of
FPSBn↓p is

n(p− 1)

p + n(p− 1)
.

(Proofs of this and subsequent theorems are omitted.)
The difference between equilibrium strategies of

FPSB4↓2 and FPSB4 is one measure of their distance. An
alternative measure of approximation quality is to evaluate
solutions of the reduced game in the context of the original.
Specifically, we ask: If the agents play a reduced-game
equilibrium in the original game, how much can a single
agent gain from deviating from such a profile? If the
answer is zero, then the equilibria coincide. More generally,
the smaller the gain from deviating, the more faithful the
reduced game approximation.

2
FPSBn↓1 is an example (albeit a degenerate one) of a reduced

game having very different equilibria than the full game. The op-
timal strategy in the 1-player reduction is to bid zero (as it is in
FPSB1) whereas in the n-player game, for n > 1, equilibrium
players bid a large fraction (at least 1/2) of their types.



Let us denote by εΓ(s) the potential gain to deviating
from strategy profile s in game Γ. For symmetric game
Γ = 〈N,S, u()〉,

εΓ(s) = max
s′∈S

u(s′, s)− u(s, s). (1)

This usage follows the standard notion of approximate equi-
librium. Profile s is an εΓ(s)-Nash equilibrium of Γ, with
0-Nash corresponding to exact equilibrium. Henceforth, we
drop the game subscript when understood in context.
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Figure 2: Epsilons for symmetric profiles of FPSB2 (left
dashed curve), FPSB4↓2 (dots), and FPSB4 (right dashed
curve). Unique symmetric equilibria (1/2, 2/3, 3/4) are in-
dicated by arrows on the x-axis.

Figure 2 plots ε(k) for the three game variations. We
derived a closed-form expression for εFPSBn, whereas the
curve for εFPSB4↓2

was estimated numerically (though we
know its exact root by Theorem 1). Our estimation proce-
dure considered all profiles over discrete values of k, at in-
tervals of 1/40. At this granularity, FPSB4 comprises 158
times as many profiles as does FPSB4 ↓2. Based on our
analysis, FPSB4↓2 compares quite favorably to FPSB2 as
an approximation of FPSB4. In particular, taking their re-
spective equilibrium values, εFPSB4(2/3) is nearly ten times
smaller than εFPSB4(1/2).

We can generalize this conclusion to arbitrary n and p.
Let s∗(Γ) denote the unique symmetric equilibrium for Γ,
which is well-defined for our FPSB games of interest.

Theorem 2 For all n > p > 1,

εFPSBn(s∗(FPSBn↓p)) < εFPSBn(s∗(FPSBp)).

We can also confirm that for any number of players, less
drastic FPSB reductions provide better approximations.

Theorem 3 For all n > p > q ≥ 1,

εFPSBn(s∗(FPSBn↓p)) < εFPSBn(s∗(FPSBn↓q)).

Bertrand Oligopoly
The preceding analysis is reassuring, but of course we do not
actually need to approximate FPSBn, since its general solu-
tion is known. To further evaluate the quality of reduced-
game approximations, we turn to other natural games of
potential interest. Facilitating such studies was precisely

the motivation of the authors of GAMUT (Nudelman et al.
2004), a flexible software tool for generating random games
from a wide variety of well-defined game classes. Using
GAMUT, we can obtain random instances of some class, and
examine the relation of the original games to versions re-
duced to varying degrees. The advantage of a generator
such as GAMUT is that we can obtain a full game specifi-
cation quickly (unlike for TAC), of specified size based on
our computational capacity for analysis. Moreover, we can
sample many instances within a class, and develop a statis-
tical profile of the properties of interest.

The first class of games we examined using GAMUT is
a discrete symmetric version of Bertrand Oligopoly (BO),
which models price competition among a set of identi-
cal producers (Mas-Colell, Whinston, & Green 1995, Sec-
tion 12.C). In the Bertrand model, each firm declares a price,
and total demand at the lowest price is divided among those
firms offering that price. The payoffs are given by net profit,
which is zero for firms priced above the minimum. To gener-
ate a BO game in GAMUT, we specify the numbers of agents
and discrete price levels (i.e., the actions), and parameters
for the demand and cost functions. By specifying ranges for
some function parameters, we define a class of such games.

We generated three random 8-player BO games, with 3, 4,
and 5 actions, respectively. We measured εBO for each pure
profile in the original and reduced games. Figure 3 presents
the correlation coefficients, for each BO game instance, of
the εBO for profiles shared by each pair of game versions. As
we see, the correlation is quite strong between the original
and reduced games, with relative values depending on the
degree of reduction.
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Figure 3: Correlation among εBO values for profiles in BO
(BO↓8) and reduced versions, for 3-, 4- and 5-action random
BO instances. (q, r) marks the column comparing BO ↓q

with BO↓r. The 4-action BO↓8 and BO↓4 showed no vari-
ation in εBO for profiles shared with BO↓1.

Local-Effect Games
We performed a more thorough experimental study of a par-
ticular class known as local-effect games (LEGs) (Leyton-
Brown & Tennenholtz 2003), a localized version of conges-
tion games motivated by problems in AI and computer net-
works. Specifically, we consider symmetric bi-directional
local-effect games randomly generated by GAMUT by creat-
ing random graph structures and random polynomial payoff
functions decreasing in the number of action-nodes chosen.

In a preliminary experiment, we generated 15 symmet-
ric LEG instances with six players and two strategies, and



payoffs normalized on [0, 1]. For each of these we gener-
ated the corresponding 3-player reduction. We then fed all
30 of these instances to GAMBIT (McKelvey, McLennan, &
Turocy 1992), a general game-solving package, which com-
puted the complete set of Nash equilibria for each. In 11
of the original games, all equilibria are pure, and in these
cases the equilibria of the reduced games match exactly. In
the remaining four games, GAMBIT identified strictly mixed
equilibria. In two of these cases, for every equilibrium in the
full game there exists an equilibrium of the reduced game
with strategy probabilities within 0.1. In the remaining two
games, there are long lists of equilibria in the full game and
shorter lists in the corresponding reduced games. In these
cases, most but not all of the equilibria in the reduced game
are approximations to equilibria in the full.

In broader circumstances, we should not expect to see
(nor primarily be concerned with) direct correspondence of
equilibria in the original and reduced games. Thus, we eval-
uate the approximation of a reduced game in terms of the
average ε(s∗) in the original game over all its equilibrium
profiless∗ in the reduced game. Note that to calculate this
measure, we need not be able to solve the full game. Since
the games under consideration are symmetric, our assess-
ment includes only the symmetric equilibria, where every
agent plays the same (mixed) strategy.3

We next evaluated 2-strategy local-effect games with n
players, for n ∈ {4, 6, 8, 10, 12}, generating 200–10,000
random instances of each. Figure 4 shows the average ε(s∗)
for every possible reduction of every game, starting with the
most drastic reduction—to one player—and ending with the
highest-fidelity reduction, i.e., to half as many players. We
also include the average ε for the social optimum (the profile
maximizing aggregate payoff) in each game class as calibra-
tion. We find that the social optimum fares better than the
equilibria in the 1-player reduction (i.e., the strategy yield-
ing the highest payoff if played by everyone) but that all
the higher fidelity reductions yield equilibria with average
ε significantly better. The only exception is the case of ap-
proximating 4-player games with their 2-player reductions.
We note that in fully 90% of the 4-player LEG instances,
the social optimum is also an equilibrium, making it partic-
ularly hard to beat for that game class. The percentages are
also high in the other classes—decreasing with the number
of players to 77% for the 12-player instances—yet the social
optima in all the other classes are beaten by solutions to the
reduced games.

In addition to confirming the hypothesis that we can ap-
proximate a game by its reduction, we conclude from this
analysis that, as in FPSBn, we get diminishing returns on
refinement. There is a large benefit to going from 1- to 2-
player games (i.e., bringing in strategic interactions at all),
then progressively less by adding more fidelity.

Developing TAC Agents
TAC travel-shopping is an 8-player symmetric game, with
a complex strategy space and pivotal agent interactions.

3Symmetric games necessarily have symmetric equilibria
(Nash 1951), though they may have asymmetric equilibria as well.
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Figure 4: Local-effect games with 4, 6, 8, 10, and 12 play-
ers. Each group of bars shows the average ε for equilibria
of reductions of the given game at increasing fidelity. The
number of players in the full game is shown in parentheses,
with the number in reduced games under each bar. The bars
extend upward to indicate a 95% confidence upper bound
on ε. To the left of each group is shown the ε (with 95%
confidence interval) of the social optimum of the full game.

Strategies include all policies for bidding on flights, ho-
tels, and entertainment over time, as a function of prior
observations. The agents interact in the markets for each
kind of good, as competing buyers or potential trading part-
ners. Based on published accounts, TAC participants de-
sign agents given specified game rules, and then test these
designs in the actual tournaments as well as offline experi-
ments. Testing is crucial, given the lack of any compact an-
alytical model of the domain. In experiments, agent design-
ers explore variations on their agent program, for example
by tuning parameters or toggling specific agent features.

That strategic choices interact, and implications for de-
sign and evaluation, have been frequently noted in the TAC
literature. We omit a detailed catalog due to space lim-
itations, mentioning only the extensive experimental ef-
fort on TAC travel-shopping reported by Vetsikas and Sel-
man (2003). In the process of designing Whitebear for
TAC-02, they first identified candidate policies for sepa-
rate elements of the agents’ overall strategy. They then
defined extreme (boundary) and intermediate values for
these partial strategies, and performed experiments accord-
ing to a systematic and deliberately considered methodol-
ogy. Specifically, for each run, they fix a particular number
of agents playing intermediate strategies, varying the mix-
ture of boundary cases across the possible range. In all, the
Whitebear experiments comprised 4500 profiles, with vary-
ing even numbers of candidate strategies (i.e., profiles of the
4-player game). This systematic exploration was apparently
helpful, as Whitebear was the top scorer in the 2002 tourna-
ment. This agent’s predecessor version placed third in TAC-
01, following a less comprehensive and structured experi-
mentation process. Its successor placed third again in 2003,
and regained its first-place standing in 2004.

TAC Experiments
To apply reduced-game analysis to the TAC domain, we
identified a restricted set of strategies, defined by setting pa-
rameters for Walverine (Cheng et al. 2005). We consid-
ered a total of 35 distinct strategies, covering variant poli-



cies for bidding on flights, hotels, and entertainment. A de-
scription of this parametrization and its use in the design of
our 2005 TAC entry are provided elsewhere (Wellman et al.
2005). We collected data for a large number of games: over
37,000 as of this writing, representing over ten months of
(almost continuous) simulation.4 Each game instance pro-
vides a sample payoff vector for a profile over our restricted
strategy set.

Table 1 shows how our dataset is apportioned among the
1-, 2-, and 4-player reduced games. We are able to exhaus-
tively cover the 1-player game, of course. We could also
have exhausted the 2-player profiles, but chose to skip some
of the less promising ones (around one-quarter) in favor of
devoting more samples elsewhere. The available number of
samples could not cover the 4-player games, but as we see
below, even 2.4% is sufficient to draw conclusions about the
possible equilibria of the game. Spread over the 8-player
game, however, 37,000 instances would be insufficient to
explore much, and so we refrain from any sampling of the
unreduced game.

p Profiles Samples/Profile
total evaluated % min mean

4 73,815 1775 2.4 10 20.8
2 630 467 74.1 15 31.1
1 35 35 100.0 20 91.5

Table 1: Profiles evaluated, reduced TAC games (TAC↓p).

In the spirit of hierarchical exploration, we sample more
instances per profile as the game is further reduced, obtain-
ing more reliable statistical estimates of the coarse back-
ground relative to its refinement. On introducing a new
profile we generate a minimum required number of sam-
ples, and subsequently devote further samples to particular
profiles based on their potential for influencing our game-
theoretic analysis. The sampling policy employed was semi-
manual and somewhat ad hoc, driven in an informal way by
analyses of the sort described below on intermediate ver-
sions of the dataset. Developing a fully automated and prin-
cipled sampling policy is the subject of future research.

1-Player Game
The 1-player game (TAC↓1) would typically not merit the
term “game”, as it assumes each strategy plays only among
copies of itself. Thus, its analysis considers no strategic in-
teractions. To “solve” the game, we simply evaluate which
has the greatest expected payoff. For our experiment, we
obtained 20–267 samples of each of the 35 1-player profiles,
one for each strategy.

Figure 5 displays the average payoffs for each 1-player
profile, sorted from best-to-worst, left-to-right. We tended
to take more samples of the more promising profiles, but

4Our simulation testbed comprises two dedicated workstations
to run the agents, another RAM-laden four-CPU machine to run the
agents’ optimization processes, a share of a fourth machine to run
the TAC game server, and background processes on other machines
to control the experiment generation and data gathering.
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Figure 5: Average payoffs for strategy profiles in TAC↓1.
Error bars delimit 95% confidence intervals.

cannot statistically distinguish every profile in the rank-
ing. Nevertheless our top strategy, number 34,5 performs
dramatically—250 points—better than the next best, num-
ber 35. Pairwise mean-difference tests rank 35 above all
others at significance levels of p < 0.05.

In the absence of further data, we might propose strat-
egy 35, the unique pure-strategy Nash equilibrium (PSNE)
of the 1-player game. In fact, however, this strategy was
designed expressly to do well against itself, and may be vul-
nerable in environments with other agents. By exploring a
less extreme reduction we can start to consider some of the
strategic interactions.

2-Player Game
The two-player game, TAC↓2, comprises 630 distinct pro-
files: 35 · 34/2 = 595 where two different strategies are
played by four agents each, plus the 35 profiles from TAC↓1

where all agents play the same. We can identify PSNE sim-
ply by examining each strategy pair (s, s′), and verifying
whether each is a best response to the other. In doing so,
we must account for the fact that our sample data may not
include evaluations for all possible profiles.

Definition 4 Profiles can be classified into four disjoint cat-
egories, defined below for the 2-player pure-strategy case.
(The generalization to N -player is straightforward.)

1. If (s, s′) has not been empirically evaluated, then û(s, s′)
is undefined, and we say (s, s′) is unevaluated.

2. Otherwise, and for some t, û(t, s′) > û(s, s′) or û(t, s) >
û(s′, s). In this case, we say (s, s′) is refuted.

3. Otherwise, and for some t, (t, s′) is unevaluated or (s, t)
is unevaluated. In this case, we say (s, s′) is a candidate.

4. Otherwise, in which case we say (s, s′) is confirmed.

Based on our TAC↓2 simulations, we have confirmed five
PSNE: (3,23), (4,9), (5,16), (6,17), and (7,24). We have re-
futed 462 profiles, and the remaining 163 are unevaluated.

The definitions above say nothing about the statistical
strength of our confirmation or refutation of equilibria. For
any particular comparison, one can perform a statistical

5Since our present purpose is to demonstrate techniques for ex-
ploration and strategic reasoning rather than to address the sub-
stance of trading strategies, we identify them by index only.



analysis to evaluate the weight of evidence for or against
stability of a given profile. For instance, we could construct
diagrams of the form of Figure 5, but representing the payoff
in response to a particular strategy, rather than in self-play.
Such a plot of responses to strategy 17 would indicate, for
example, that 18 is quite nearly as good as 6, and so the
confirmation of (6,17) as a PSNE is statistically weak.

We can also measure the degree of refutation in terms of
the ε measure defined by (1). Since the payoff function is
only partially evaluated, for any profile we have a lower
bound on ε based on the deviation profiles thus far evaluated.
We can generalize the classifications above (refuted, candi-
date, confirmed) in the obvious way to hold with respect to
any given ε level. For example, profile (17,18) is confirmed
at ε = 0.08, but all other non-PSNE profiles are refuted at
ε > 13. Figure 6 presents the distribution of ε levels at
which the 467 evaluated 2-player profiles have been refuted.
For example, over half have been refuted at ε > 265, and all
but 10 at ε > 30. These 10 pure profiles remain candidates
(9 of them confirmed) at ε = 30.
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Figure 6: Cumulative distribution of ε bounds in TAC↓2.

We can also evaluate symmetric profiles by considering
mixtures of strategies. Although we do not have the full
payoff function, we can derive ε bounds on mixed profiles,
as long as we have evaluated pure profiles corresponding
to all combinations of strategies supported in the mixture.
For example, we can derive such bounds for all 432 pairs
of strategies for which we have evaluated 2-player profiles.
The distribution of bounds for these pairs are also plotted in
Figure 6. Note that the ε bound for a strategy pair is based on
the best mixture possible of that pair, and so the refutation
levels tend to be smaller than for pure strategies. Indeed,
three pairs—(4,9), (5,16), (6,17)—participate in confirmed
equilibria, another—(34,35)—is a candidate, and a total of
17 pairs remain candidates at ε = 10, with 12 confirmed at
that level.

We apply the term k-clique to a set of k strategies such
that all profiles involving these strategies are evaluated. A
clique defines a subgame of the original game, which can be
evaluated by standard methods. We applied iterative elimi-
nation of dominated strategies to all the maximal cliques of
the 2-player game, ranging in size up to k = 23. This indeed
pruned many strategies and induced new subsumption rela-
tions among the cliques, leaving us with only one maximal
clique, of size 16. We applied the Lemke-Howson algorithm

to this subgame, which identified 29 candidate symmetric
equilibria (not refuted by strategies outside the cliques), with
distinct supports ranging in size from two to nine. Nineteen
of these mixtures are confirmed (including the three pairs
mentioned above).

Because any equilibrium of the full game must also be
an equilibrium in any subgame encompassing its support,
this exercise also allows us to prune broad regions of pro-
file space from consideration.6 For instance, the subgame
results effectively refute 3056 strategy triples (out of 6545
total, or 47%) as comprising support for symmetric equi-
libria. By similar reasoning, we refute 14789 strategy
quadruples (28%). Given the importance of small supports
in recent approaches to deriving equilibria (Porter, Nudel-
man, & Shoham 2004), or approximate equilibria (Lipton,
Markakis, & Mehta 2003), focusing the search in these re-
gions can be quite helpful.

Finally, we can account for statistical variation in the es-
timated payoffs by employing sensitivity analysis in our ε
calculations. Specifically, we interpret each payoff value in
the estimated game as normally distributed with mean and
variance given by the sample. We then apply Monte Carlo
methods to generate a distribution of ε values for a given
profile, one corresponding to each draw of a payoff function
from the specified distributions. Naturally, even our con-
firmed equilibria are refuted with substantial probability, and
thus have positive ε in expectation. The most robustly stable
profile we have identified thus far is a mixture of (3,16,23),
with a mean ε value of 64.

4-Player Game
Our analysis of the 4-player game, TAC↓4, parallels that of
the 2-player game, though of course based on a sparser cov-
erage of the profile space. There are 73,815 distinct TAC↓4

profiles, out of which we have evaluated 1775. Of these, 154
are TAC↓2 profiles with no evaluated neighbors in TAC↓4

(i.e., no deviations tested). Although these are technically
PSNE candidates, we distinguish them from the one PSNE
candidate that has actually survived some challenge. The re-
maining 1620 evaluated profiles are refuted, at various lev-
els. The distribution of ε bounds is plotted in Figure 7.

Figure 7 also shows, inset, the distribution of epsilon
bounds over the 128 strategy pairs for which we have evalu-
ated all combinations in TAC↓4 (i.e., the 2-cliques). Among
these are 14 candidate equilibria at ε = 10, two of them
nearly confirmed at ε = 0.1. The TAC↓4 cliques are rela-
tively small: three 5-cliques, 15 4-cliques, and 51 3-cliques.
Eliminating dominated strategies prunes little in this case,
and we have been unsuccesful in getting GAMBIT to solve
any k-clique games in the 4-player game for k > 2. How-
ever, applying replicator dynamics produces sample sym-
metric subgame equilibria, including 11 mixture triples that
constitute candidates with respect to the full game.

6Pruning is strictly justified only under the assumption that we
have identified all symmetric equilibria of the clique subgames.
The Lemke-Howson algorithm does not guarantee this, but in every
case for which we were able to check using more exhaustive meth-
ods available in GAMBIT, in fact all such equilibria were found.
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Finally, given data in both the 2-player and 4-player
games, we can perform some comparisons along the lines
of our GAMUT experiments described above. The results,
shown in Figure 8, are not as clear as those from the known-
game experiments, in part because there is no “gold stan-
dard”, as the 4-player game is quite incompletely evaluated.
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Figure 8: ε bounds in the 4-player game achieved by play-
ing the best mixture from the 2-player game, versus playing
that best in the 4-player. All points must be southeast of the
diagonal by definition.

Discussion
Given all this simulation and analysis, can we now identify
the “best” strategy to play in TAC? Surely not, though we
do have strong evidence for expecting that a sizable fraction
(about two-thirds) of the original 35 strategies will turn out
to be unstable within this set. However, we still lack a defini-
tive characterization of equilibrium profiles for the game,
and moreover even possessing one would not necessarily
give us the answer. Strategic stability is just one form of evi-
dence bearing on what we should expect other agents to play.
In lieu of a categorical recommendation, what we have is an
improved understanding of the strategic landscape. Perhaps
more importantly, given a new strategy proposal, our anal-
ysis tells us in which strategic contexts (i.e., the relatively
stable profiles) it needs to be evaluated. We have adopted
this heuristic in exploring the strategy space for Walverine,

and will soon learn how well this approach prepared us for
the 2005 tournament (Wellman et al. 2005).

More generally, we conclude that hierarchical analysis of
reduced games can be an effective tool for scaling up em-
pirical game-theoretic methods to symmetric environments
with many agents. Choice of reduction level trades fidelity
for tractability in a controlled way. Further theoretical anal-
ysis and application experience should lead to a fuller un-
derstanding of the tradeoff, and identify additional ways to
apply the reduction approach presented here.

Acknowledgments
We thank Eugene Nudelman and Ted Turocy for assistance
with GAMUT and GAMBIT, respectively. This work was sup-
ported in part by the National Science Foundation under
grants IIS-0205435 and IIS-0414710, and by the DARPA
REAL program.

References
Cheng, S.-F.; Leung, E.; Lochner, K. M.; O’Malley, K.;
Reeves, D. M.; and Wellman, M. P. 2005. Walver-
ine: A Walrasian trading agent. Decision Support Systems
39:169–184.
Krishna, V. 2002. Auction Theory. Academic Press.
Leyton-Brown, K., and Tennenholtz, M. 2003. Local-
effect games. In Eighteenth International Joint Conference
on Artificial Intelligence, 772–780.
Lipton, R. J.; Markakis, E.; and Mehta, A. 2003. Play-
ing large games using simple strategies. In Fourth ACM
Conference on Electronic Commerce, 36–41.
Mas-Colell, A.; Whinston, M. D.; and Green, J. R. 1995.
Microeconomic Theory. Oxford University Press.
McKelvey, R. D.; McLennan, A.; and Turocy, T. 1992.
Gambit game theory analysis software and tools. http:
//econweb.tamu.edu/gambit.
Nash, J. 1951. Non-cooperative games. Annals of Mathe-
matics 54:286–295.
Nudelman, E.; Wortman, J.; Shoham, Y.; and Leyton-
Brown, K. 2004. Run the GAMUT: A comprehensive
approach to evaluating game-theoretic algorithms. In Third
International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 880–887.
Porter, R.; Nudelman, E.; and Shoham, Y. 2004. Simple
search methods for finding a Nash equilibrium. In Nine-
teenth National Conference on Artificial Intelligence, 664–
669.
Vetsikas, I. A., and Selman, B. 2003. A principled study of
the design tradeoffs for autonomous trading agents. In Sec-
ond International Joint Conference on Autonomous Agents
and Multi-Agent Systems, 473–480.
Wellman, M. P.; Greenwald, A.; Stone, P.; and Wurman,
P. R. 2003. The 2001 trading agent competition. Electronic
Markets 13:4–12.
Wellman, M. P.; Reeves, D. M.; Lochner, K. M.; and Suri,
R. 2005. Searching for Walverine 2005. In IJCAI-05 Work-
shop on Trading Agent Design and Analysis.


	Approximate strategic reasoning through hierarchical reduction of large symmetric games
	Citation

	tmp.1574060723.pdf.c1ARm

