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Reliability  and  Throughput  Analysis of a 
Concatenated  Coding  Scheme 

Abstract-In this paper, the performance of a concatenated coding 
scheme  for error control  in ARQ systems  is analyzed for  both randoni- 
error and burst-error channels. In particular,' the probability of unde- 
tected error and the system throughput are calculated. In this scheme, the 
inner code is used for  both error correction  and error detection, and the 
outer code  is  used  for error detection  only. Interleaving/deinterle&ving of 
the  outer  code is assumed. A retransmission is requested if either the inner 
code or the  outer  code  detects  the presence of errors. Various  coding 
examples are considered.  The results show that, concatenated  coding can 
provide extremely  high system reliability (i.e.,  low probability of 
undetected error) and high system throughput. 

I 
I. INTRODUCTION 

N a  companion  paper [ 11, the  probability of undetected error 
in a  specific.concatenated  coding  scheme on a  memoryless 

binary  symmetric  channel (MBSC) was  calculated. Two linear 
block codes,  denoted by C' and cb,  are used ' in the 
concatenated  code.  The  inner  code Cf, called the frame code, 
is  an (it. k)  systematic  ,binary, block code with minimum 
distance df. The,  frame  code is designed  to  correct t or  fewer 
errors and to  simultaneously  detect X(X > t )  or  fewer  errors 
where t + h + 1 6 df [ 2 ] .  The  outer  code is an (nb, kb) 
binary block code with 

nb = rnk (1) 

where rn, a positive  integer,  is  the  number of frames.  The 
outer  code is desighed  for  error  detection only. 

-No interleaving/deinterleaving within the  concatenated  cod- 
ing scheme  was  assumed in [ 11. In this  paper, we modify the 
coding  scheme of [ 11 by assuming interleaving/deinterleaving 
within an  outer  code  word.  In  addition, we extend  the  analysis 
to include  burst-error  channels. 
, The  encoding of the concatenated  code  is  achieved in two 
stages  (see  Fig. 1). A message of kb bits is  first  encoded  into a 
code  word of nb bits in the  outer  code c b .  Then *is code  word 
is interleaved  to  depth rn. After  interleaving,  the  nb-bit block 
is divided  into rn k-bit  words  for  encoding by the frame  code 
C'. Each n-bit  code  word is called a  frame..  The  .two- 
dimensional  block  format  is  depicted in Fig. 2 ;  

Decoding  consists of error  correction  and  error detection  on 
each  frame  and  error  detection  on the rn decoded  k-bit 
segments.  When  a  frame is received, it is first  decoded based 
on the frame  code Cf. The n-k parity  bits are  then removed 
from  the  decoded  frame. If there  are t or  fewer  transmission 
errors in a  received  frame,  the  errors will be  corrected,  and the 
decoded  segment is error  free. If there are  more than t errors 
in the  received  frame,  the  errors will be either  detected, or 
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Fig.  1.  A concatenated coding system 

t FRAME 

FRAME  PARITY - CHECK  BITS 

Fig. 2. Block format of a concatenated code  word. 

undetected. If the errors  are detected,  the  decoder  stops 
decoding immediately and  requests a retransmission of the 
entire  block.  On  the  other  hand, if the errors in a  frame  are 
undetected,  the  decoded  segment  are  stored in a buffer,  and 
the  decoder  begins  to  decode  the next frame.  After  the rn 
frames of a  block  have  been  decoded,  the rn k-bit  decoded 
segments  are  then deinterleaved.  Error,  detection is then 
performed  on  these  deinterleaved  segments based on  the  outer 
code cb.  If no errors  are detected,  the rn decoded  segments  are 
assumed  to be error free  and are  accepted by the  receiver. If 

0090-6778/87/0700-0698$01 .OO 0 1987 IEEE 



DENG AND COSTELLO: ANALYSIS OF A CONCATENATED CODING SCHEME 699 

the presence of errors  is  detected,  the rn decoded segments are 
discarded, and the  receiver  requests a retransmission of the 
entire  block. 

The  error  control scheme  described above is actually a 
combination of forward error  correction (FEC) and automatic 
repeat request (ARQ). In  this  paper,  we analyze the  perform- 
ance of this error  control scheme. Specifically, the system 
reliability and throughput are calculated. The system reliabil- 
ity is measured in  terms of the probability of undetected error 
after decoding. 

First, by assuming  the  inner channel to be an MBSC with a 
bit error rate (BER) E ,  we  look at  the  outer channel created by 
the combination of the  interleaver,  the  frame  code, and the 
inner  channel.  Then we develop  precise  expressions  for both 
the probability of undetected error and the system throughput. 
Various coding examples are considered, and one  case studied 
in [l] is included for  comparison. Our results indicate that 
concatenated coding  can  provide high throughputs and ex- 
tremely low undetected error probabilities at moderate values 
of E ,  and for the example considered in [ 11, the probability of 
undetected error is slightly lower with interleaving than 
without interleaving. In  addition, interleaving randomizes the 
errors made by the inner  decoder and simplifies the perform- 
ance analysis compared to the analysis without interleaving, 
which requires a detailed knowledge of the algebraic structure 
of both the inner  code and the outer  code.  This allows us to 
easily compare the performance of several different coding 
examples. 

Finally, the analysis is extended to a Gilbert-type burst- 
error channel [3]-[5]. The  burst-error channel contains two 
states. Each state  represents  an  MBSC with BER e j ,  j = 1 ,  2 ,  
and € 2  + E , .  The probabilities of undetected error on burst- 
error channels  degrade slightly compared to those on MBSC's 
with the same  average  BER, while the system throughputs 
remain almost the same  for  moderate values of average  BER. 
Therefore, the proposed coding  scheme is quite robust for a 
variety of channels. 

11. SYSTEM PERFORMANCE ON AN MBSC 
A .  The Outer Channel Model 

Let P ; ~ ) ( E )  denote the probability of correct decoding for  the 
inner  frame  code.  Suppose that a bounded-distance decoding 
algorithm is employed. Bounded-distance decoding  corrects 
all received n-bit frames with t o r  fewer errors. When an n-bit 
frame with more than t errors is  detected, no attempt is made 
to  correct the errors. Since  there are (I) distinct ways in which 
i errors may occur  among n bits, 

for bounded-distance decoding. 
For a code  word u in  the  frame  code Cf,  let w ( u )  denote  the 

Hamming weight of u. If a decoded frame  contains  an 
undetectable error  pattern,  this  error pattern must be a nonzero 
code word in C f .  Let e, be an undetectable error pattern after 
decoding. The probability P f ( w ,  E )  that a decoded frame 
contains a specific nonzero error pattern e, of weight w after 
decoding is given by [l], [6]-181: 

where w = w(e,)  and E is the BER of the inner  channel. If E Q 
(l/n), then 

Pf(W, E ) =  ( 7 )  E W - ' ( l  - E ) " - W + ' .  

Let P:$)(E) denote the probability of undetected error  for  the 
frame  code.  Let { A  F), df G w < n }  be  the weight 
distribution of C f .  It follows from (3 )  and (4) that 

w=df 

and 

Now consider  any  one of the rn frames. If the decoded 
frame contains undetected errors, the BER E ,  after decoding is 
given  by 

1 n  

For E a (l/n), 

is a good approximation to E , .  Let E be defined as the event 
that a frame  contains undetected errors. Let E , , ~  denote the 
BER embedded in a decoded frame conditioned on the 
occurrence of event E.  It follows from (7) that 

E,/E=E,/PT { E }  = E , / P ~ ~ ( E ) .  (9) (f 1 

For E 4 ( l / n ) ,  substituting (6) and (8) into (9) yields 

( l / n ) d f A  L;Pf(df9 E)-df 
€, /E = _ -  (10) 

A p f  ( d f ,  €1 n 
Now define S to be a random variable such that when h of 

the rn frames contain undetected errors, and the remaining rn 
- h frames are decoded correctly, S = h, h = 0, 1, 2, . * . , 
rn. It follows from (2)  and (5 )  that 

Note that (1 1) is not a binomial distribution because P:$)(E) + 
P : ~ ) ( E )  < 1 ,  i.e., some received frames with more than t 
errors  are detected by the frame  code. 

After the deinterleaving of the rn decoded segments (with 
the n - k parity bits removed from  each  frame), the BER 
embedded in the nb-bit block, conditioned on S = h, is given 
by 

h 
m E o ( h ) = E a / E  - ) h=O, 1, 2, . . a ,  m. (12) 

We call the channel specified by (1 1) and (12) the outer 
channel, and it is depicted in Fig. 3. Note that ~ ~ ( 0 )  = 0. This 
outer channel can  be viewed as a block interference (BI) 
channel,  as described in [9]. A,,, h = 0,  1, 2 ,  . * * , m, is called 
the hth component channel of the BI channel. Each block of 
nb bits (nb is  the length of the outer code) is transmitted over 
one of the rn + 1 component channels. The random variable S 

I We assume that the  frame  code has a large  number of minimum-weight 
code  words.  This implies that after deinterleaving each position in the  outer 
code  contains  an  error with the  same  probability, so that each component 
channel can be viewed as a BSC. 
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(15) and (16) that 

Fig. 3.  The outer channel resulting from decoding the inner code on an 
MBSC. 

determines  which  component  channel is used  to transmit  a 
given &-bit block. 

B. The  ProbabiIity of Undetected Error and the System 
Throughput 

Let { A  Ib), db < i < n b }  be the weight distribution of the 
outer  code  where db is the minimum  distance of c b .  Let 
P : ~ ( E )  be the  probability of undetected  error for the  outer  code 
c b .  If the &-bit block  is  transmitted  over  the  hth  component 
channel Ah of the outer  channel,  it  follows  from (12) that 

"b 

P :J(co(h)) = x A!b)(eo(h)) i ( l  - e o ( h ) ) " b - i .  '(13) 
i=  db 

Let Pud(E) be  the  average  probability of undetected error of the 
concatenated  code.  From  (1 1) and  (13), we obtain 

m 

P u d ( t ) = C . P r { S = h } P ~ ( € o ( h ) )  
h = O  

"b 
. AIb)(Eg(h))i(l -E,(h))"b-' 1 (14) 

i=db 

where Pkf)(~)  and  P$)(E)  are  given by (2) and ( 3 ,  respec- 
tively. 

The  system  throughput  is  defined  as  the  ratio  of  the  average 
number of information  bits  successfully  accepted by the 
receiver  per unit time  to  the total number of bits  that  can  be 
transmitted  per unit time  [2].  It  is  determined by the 
retransmission  strategy,  which may  be one of the  three basic 
types:  stop  and  wait,  go  back N, or selective  repeat. All three 
basic  ARQ  schemes  achieve  the  same  reliability;  however, 
they have  different  throughputs.  Suppose  that selective-repeat 
ARQ is used as the  retransmission  strategy.  The  specific 
manner in which  the  receiver  signals to the transmitter  for a 
retransmission will not be considered. It will be assumed, 
however,  that  this  backward  signal is error free  and that repeat 
retransmissions of a  block  are possible.  Then  the  throughput 
of  the  concatenated  coding  system is [2] 

where PC(€) is the  probability of accepting  a  correct  block. 
Note  that a  transmitted  block will be  received  correctly if and 
only if all m  frames  are  decoded correctly.  Therefore, 

For  the  usual  situation  where  Pud(e) 4 PC(€), it  follows  from 

It can easily be seen  that 11 increases monotonically as  t 
increases; but for small E ,  7 is only a weakly  increasing 
function of t .  

In order  to find the relationship  between  t  and Pud(e), we see 
from (14) that 

1 
n 

for E - . 

Using  (6), (lo), and (12), Pud(E) can be further  approximated 
as 

where 

is a  constant  that is independent o f t .  Let Q ( t )  denote  the  right- 
hand side of (19). Then 

Q(t+ 1) (d f -  t )  1 1 -=-. - 9 n, for E - . (20) 
QW (t+ 1)  E n 

That  is,  for E 4 ( l / n ) ,  when t increases by 1, Pud(E), the 
probability of undetected  error, will increase by approximately 
E - I .  Thus, Pud(E) is a  strongly  increasing  function of t .  For 
this  reason,  a  large  value o f t  is not desirable in such  a  system. 

C. Coding  Examples 
In  this  subsection, we present  some  concatenated  code 

examples  whose  purpose  is  to  give  a  feeling  for  actual  system 
performance. Recall that  the  concatenated  coding  scheme 
described  above is used in ARQ  systems  and that the  major 
advantage of ARQ  is  that it requires  simple  decoding  while 
achieving high system  reliability  and  throughput.  Therefore, 
only codes  that  require  simple  decoding  are  chosen  as 
examples. 

Example I :  In this  example, the frame  code is an (n,  n - 
1) single-parity-check  code.  The  frame  code  has  a  minimum 
distance df = 2  and is used for  error  detection only. The  frame 
code can detect all odd-weight  error  patterns.  The weight 
distribution of the  frame  code  can  be  calculated  from 

where ( i )  = 0 for k < 0 and k > n.  The  outer  code  is a 
distance4  shortened  Hamming  code with generator  polyno- 
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mial 

g ( x ) = ( x +  1)(x'5+x~4+x'3+x~2+x4+x~+x~+x+ 1 )  

=x'6+xl2+x5+ 1 (22) 
wherexI5 + xL4 + xI3 + X" + x4 + x3 + x2 + x + 1 i s a  
primitive  polynomial of degree 15. This  code is the X.25 
standard  for  packet-switched  data  networks [lo]. The natural 
length of this code is 215 - 1 = 32 767. In this example,  a 
shortened  code of maximum length 3584 bits is considered. 
This  code is used for error detection  only.  Two  cases  are 
considered: 1) The  number of information bytes IB = 7 (n = 
57) and the  number  of.frames in a block rn = 64 ( n b  = km = 
56 X 64 = 3584); and 2) IB = 4 (n = 33), m = 24 (nb = 
768). 

Because the  outer  code can detect  three of fewer  errors, if 
only one  frame  contains  a  weight-3 or less undetected error 
pattern, then this error pattern can always be detected by the 
outer  code.  Thus, (14) can be modified as follows: 

i = d b  J 

where 

and 

( l / n )  W A L f ) P f ( W ,  E )  
w = d f + 2  < o ( l )  = 

1 . _  
rn 

Results for the probability of undetected error P u d ( E ) ,  based 
on (23)  and the system throughput r), are plotted in Fig. 4 for 
rn = 64, IB = 7 and  for rn = 24, IB = 4, respectively, 
where we have used the method in [ 111 to obtain 

nb 

P $(E,(h)) = A jb)(EO(h)y(l - Eo(h))"b-'. 
i=db 

Example 2: This  concatenated  code  example  has been 
proposed for a NASA telecommand system and was also 
considered in [ 11. The  frame  code C, is a  distance4 Hamming 
code with generator polynomial 

~ ( x ) = ( x +  1) (x6+x+  1)=x7+x6+x2+ 1 (25) 

where x6 + x + 1 is a  primitive polynomial of degree 6. The 
natural length of this code is 63.  This code is used for single- 
error  correction ( t  = 1) and is also used to  detect  all error 
patterns of weight 2 and  some  higher odd-weight error 
patterns.  The  same  outer  code as in Example 1 is employed. 

To obtain a precise  result  for P u d ( E ) ,  a  computer  program 
was written to  help  determine  the-reliability of the  proposed 
concatenated  coding  scheme.  We  found that if only one  frame 
contains  a weight4 undetected  error  pattern, then this error 

70 1 

1 .o 
0.9 

0.8 

0.7 

0.6 

0.5 T l  

0.4 

E 

Fig. 4. Performance of the concatenated code of Example 1. 

pattern can always be detected by the outer  code.  Hence, (23) 
is used to  compute  the  probability of undetected error. Fig. 5 
shows  the  probability of undetected error P " d ( E )  and the 
system throughput 9 for this example.  Comparing the results 
here, to those obtained in [ 11, we see that interleaving slightly 
improves the system reliability.  For  example,  for E = 
P u d ( 6 )  = 6.7 X with interleaving, while 8.05 X 
5 P u d ( E )  5 8.78 X 10 - I 9  without interleaving [ 13. 

The  example  described  above  can be altered by allowing the 
frame  code  to  do  error  detection only (i.e., t = 0). In this 
case, P u d ( 6 )  and r )  are also  shown in Fig. 5 .  

Example 3: The  same  frame  code and outer code as in 
Example 2 are  employed.  However, the inner channel is 
assumed  to be an AWGN channel with  BPSK modulation, and 
the frame  code  is  decoded by using the Viterbi decoding 
algorithm with repeat request  and  infinite  demodulator output 
quantization [ 121, [13].  Let u,  a positive real number, be the 
retransmission  metric  threshold of the algorithm  [13]. Let 
Psi), P a ' ,  and E ,  denote  the probability of undetected error, 
the probability of detected error, and the BER after  decoding, 
respectively,  for the frame  code.  Then [13] 

I Y = l  
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0.8 

702 

l o 5  I 11.0 

E 

Fig. 5 .  Performance of the concatenated code  of Example 2 with m =.64, 
IB = I. 

where 

n 
T ( X )  = c A j f  )X’ 

EN/No is  the  channel  symbol  signal  energy-to-noise  power 
density  ratio,  and BIf) is  the  total  number of nonzero 
information  bits  in  all  code  words of weight i. From (26) and 
(27) ,  we  see  that  the  probability  of  correct  decoding for  the 
frame  code is 

The probability  of  undetected error of  the  concatenated  code, 
P u d , ,  and  the  system  throughput 11 can  be  computed by  using 
(26)-(32) in (23) and (15). In (23),  e o ( h ) ,  h = 2 ,  3 ,  . . , rn, is 
given by (9) and (12), and 

’ .  

1 O 2  1 O 3  1 O4 1 O5 1 ti6 
0.0 

E 

Fig. 6. Performance of the concatenated code of Example 3 with m = 64, 
IB = 7.  

Both P u d  and 11 are shown in Fig. 6 for u = 0.5 and 6 where 
EN/No and E are related by the  equation 

E = Q  (E) (35) 

The  influence of the  value of u on  the  system  performance  is 
obvious. For  larger  values of u,  from (26) ,   (27) ,  and (32) ,  the 
probabilities PLJ) and Pp become  smaller,  and  consequently, 
the  probability of undetected error  and the  system  throughput 
are  lower. 

From  Figs. 4-6, we  observe  that  the  performance  of  a 
particular  scheme  depends  strongly  upon  the channel noise 
conditions.  Therefore,  we  cannot say that  a  particular  one  of 
the  above  schemes is “best.”  However,  we  can  draw  several 
conclusions,  which will be  discussed  below. 

Fig. 4 shows  that  lower  inner  code  rates  provide  higher 
system  reliabilities  and  system  throughputs  for relatively large 
channel  BER. As the  channel BER becomes  small,  higher 
inner code rates outperform lower inner  code  rates  in  terms of 
throughput. 

Fig. 5 shows  the  tradeoffs  between  the  probability  of 
undetected error and  the  system  throughput  obtained by 
varying  the  number  of  correctable errors t in the  frame  code. 
Smaller  values  of t always  result in a  lower  probability of 
undetected error  and,.  therefore, a  higher  system  reliability. 
But as  the  channel BER gets  higher,  the  system  throughput 
degrades  rapidly for small t .  The system  throughput  is  less 
affected by t if  the  channel BER is  small. 

Fig. 6 shows  the  advantages  of  a  Viterbi  decoded (soft 
decision)  frame  code  over  an  algebraically  decoded  (hard 
decision)  frame  code.  The  Viterbi  decoding  algorithm  makes 
the  system much more  flexible  in  trading between system 
reliability and  throughput by simply  changing  the  value of u.  
Varying u can  be  viewed as a  generalized  method of “varying 
t” for  algebraic  decoding of the  frame  code. We conclude 
that,  at moderately  lower  BER’s,  the  concatenated  coding 
scheme  is  capable of achieving high system  throughputs  and 
extremely  low  undetected error probabilities. 

111. SYSTEM  PERFORMANCE ON A BURST-ERROR CHANNEL 
Channels  with  memory  often  occur in practice. Errors  on 

these channels  tend to  occur in.  bursts,  and  hence they are 
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Fig. 7.  The  burst-error inner channel. 

called burst-error channels. In this section, we extend the 
performance analysis of the concatenated coding scheme to 
burst-error channels. 

A. The Inner Channel Model 
The generalized Giibert-type channel [3]-[5], as shown in 

Fig. 7, is used as our  inner channel model. There are two 
states in the model. Each  state represents a BSC. State 1 is the 
“quiet” state where the BER is e l .  State 2 is  the  “noisy” 
state, where the BER is e2 ,  and e2 %- E , .  The transition 
probabilities between states are p I  = Pr { 1 4 2 )  and p2 = Pr 
(2 --* 1 } (see Fig. 7). The probabilities of remaining in states 1 
and 2 are ql = 1 - pl and q2 = 1 - p2,  respectively. To 
simplify the model’s treatment, we assume that one transition 
time in the model corresponds to the transmission of one frame 
of length n bits, i.e.,  the  error bursts last for a multiple of the 
transmission time of a frame. This is a reasonable assumption 
for channeis where error burst lengths are usually long 
compared to the transmission time of one  frame. The average 
burst length is then [3] 

1 

P2 
L = - frames 

or 

1 

P2 
I= Ln = - n bits 

the average BER  is 

(37) 

and the steady-state probability of being in the noisy state is 

Four  parameters  govern  the model.’ They can be chosen to be 
L, E, P,,, and the high-to-low BER ratio E ~ / E I .  

B.  The Outer Channel Model 
Let P : f ) ( e j ) ,  P$)(ej), c a j ,  and E ~ ~ / ~ ,  j = 1 ,  2,  denote the 

probability of correct  decoding  for  the  frame  code,  the 
probability of undetected error  for the frame  code,  the BER  in 
a decoded frame, and the BER embedded  in the decoded frame 
conditioned on the decoded frame containing undetected 
errors, respectively, when the frame  is transmitted in state j. 
(In the following, we will always use the subscript j, j = 1, 2, 
to denote that a frame  is transmitted in state j.) Then P:f)(ej) ,  
f‘sg(Ej),  Eaj? and Eaj/E are given by (2), (5 ) ,  (7), and (9), 
respectively, with E replaced by ~ j ,  j = 1 ,  2. 

* If the frame is not assumed to be synchronized with the error  bursts, the 
number of frames affected by the burst will increase by one and the system 
performance will degrade  slightly. 

Now define E / , h ,  0 < I < h 6 m, to be an event such that h 
of  the m decoded frames contain undetected errors (the other 
m - h decoded frames are  error  free) and 1 of the h frames 
containing undetected errors  are transmitted in state 2 of the 
inner channel. Let Pr { E / , h }  be the probability that event El,h 
occbrs. Then,  after the deinterleaving of the m segments (with 
the n - k parity bits removed from each decoded frame), the 
BER embedded in the nb-bit block, conditioned on the 
occurrence of event E/,h, is given by 

E o ( E / , h ) = [ /  ’ E a Z / E + ( h - / ) E a l / E l / m ,  0 < 1 < h < m.  

(40) 
We call the channel specified by (40) and the probability 
distribution Pr {E/,h} the  outer channel (see Fig. 8). 

C.  The Probability of Undetected Error and the System 
Throughput 

If the nb-bit block is transmitted over  the component channel 
A/,h of the outer  channel, the probability of undetected error of 
the outer  code  is 

“h 

p $ ( E o ( E l , h ) )  = A :h)(%(E/,h))i(l - Eo(E/,h))”b-i .  (41) 
i=dh  

Based on the above  outer channel model, the average 
probability of undetected error of the concatenated code can be 
expressed as 

m h  

P u d =  Pr { E / , h } P $ ( E o ( E / , h ) ) *  (42) 
h = O  / = 0  

For  large m, the computation of (42) is very complex and 
time-consuming. To reduce the computational work to a 
manageable load, we seek an approximation to (42). Define 

E,,, = max [E,I/E, ~ E I .  (43) 
It follows from (40) that 

‘%(E/,h) < h * Ernaxlm 4 Eo(h),  (44) 
and equality holds when E ,  and E~ are  equal,  i.e., when the 
inner channel is an MBSC. Assuming that P,$)(E) is an 
increasing function of 6 ,  0 < E < (1/2), we obtain from (42) 
and (44) 

m h  

h=O / = 0  

h = O  / = O  

h = O  

where 

/ = 0  

is the probability that h of the m decoded frames contain 
undetected errors (and the remaining m - h decoded frames 
are  error  free). 

P ( h )  can  be readily computed by a recursive method. To 
find P(h),  we model the  decoded  frame status as a Markov 
chain. In state j, j = 1, 2 ,  the decoded frame contains an 
undetected error with probability P:;)(E~) and  is error  free with 
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Fig. 8. The  outer channel resulting from decoding the inner code on a burst- 
error  channel. 

probability  Define G (  h ,   m)  = Pr{ h of the m 
decoded  frames  contain  undetected errors  andlor  the inner 
channel  starts in state l} and B(h,  m) = Pr{h of the m 
decoded  frames  contain  undetected e r rodthe  inner channel 
starts in state 2). By applying  a  similar  argument as in [5], we 
obtain 

P2 PI 
PI f P2 PI +P2 

B(h)=- G(h,  m )  + - B(h,  m),  

0 < h < m. (47a) 

G ( h ,   m )  and @(h,   m)  can be found  recursively  from . 

G(h,  m )  = G ( h ,  m - l )qIPLf)(eI)  + B ( h ,  m - l )p lP:f ) (e l )  

+ ~ ( h  - 1 ,  m - l ) q l P  Ifd)(el) 

+ B ( ~ - I ,  m-l)plPIfk(cl . )  (47b) 

B(h,  m )  = B ( h ,  m - 1)q2PLf)(c2) + G(h, m - 1)p2PLf)(e2) 

+ B(h - 1 ,  rn - l)q,P 3 E 2 )  

+ ~ ( h  - 1 ,  m - I )P ,P  Ifd)(E2) (47c) 

where 

G(0, 1 )  = P$f) (c l ) ,  B(0, 1) = PLfi(e2) 

G ( l ,  l)=P!f,’(el), B(1,  l)=P!fd)(e2) (474  

and G ( h ,   m )  = B ( h ,   m )  = 0 when h < 0 or h > m. 
Note  that  if E , I / E  = €&E, the  upper  bound  of (45) is very 

close  to  (42).  Fortunately,  this  is usually the  case  for 0 < e l  < 
€2 < (1/2), especially for small  and Q, for then E , ~ / E  = E , ~ / ~  

= df /n .  
To evaluate  the  system  throughput,  again  assume  that 

selective-repeat  ARQ is used. In  order  to simplify the 
problem, we assume  that  retransmissions do not depend on the 
inner  channel  state  during  the  previous  transmission.  This  is  a 
reasonable  assumption if the  channel  roundtrip delay is  large. 
Then  the  system  throughput  is  given by  (15) where PC, the 
probability  of  correct  decoding,  can be found  from 

P2 PI 
PI + P2 PI + P2 

PC=- G(m)  + - B(m)  (484 

and  where 

G(m)  = G(m - l)q,PLf)(eI)  +B(m - l )p ,PLf)(eI)  (48b) 

B(m)  =B(m - l)q2PLf)(e2) + G(m - 1)p2PLf)(c2) (48c) 

G ( l ) = P : f ) ( ~ l ) ,   B ( l ) = P L f ) ( e z ) .  (484  

D. Coding Examples on a  Burst-Error Channel 

€ 1  = 10 and 1000 for  our  examples. 
For  the  inner  channel,  we  choose P,, = 0.1,L = 5 ,  and e2/ 

PUd 

4 d  

I o 5  1 .o 

- 0.7 

- :pud - 0.2 

I :q - 0.1 

/ 
I _ _ _  

/ 

l , j30  
/ 

1 1 1 , 1 1 1 ,  I I, ,,,,, , , I , , , , , ,  , , 0.0 
1 o 2  1 o3 I 0‘ 1 0’ 1 o 6  
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, I O 2  I O 4  1 06 

rl 

E 
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Fig. 9. (a) Performance of the concatenated code of Example 4 with rn = 
64, IB = 7, P, = 0.1, e = 5 (a) t = 1. (b) t = 0: 

Example 4: The  same  frame  and  outer  codes  are used as  in 
Example 2. The probability of undetected error P u d  and  the 
system  throughput q are plotted in Fig.  9(a)  for t = 1 and in 
Fig.  9(b)  ‘for t = 0, respectively. 

The  performance  of  the  concatenated  coding  scheme  on 
burst-error  channels  depends on the  channel  parameters, 
especially  on  the  high-to-low BER ratio e 2 / q .  As  shown in 
Fig.  9(a)  and (b) for a  given  average BER E, with the  other 
parameters  fixed, as the eZ/eI ratio  becomes  large,  the  system 
performance  becomes  worse. Our results  indicate  that on a 
burst-error  channel, for a  moderate  average  BER,  the  system 
reliability degrades  slightly,  while  the  system  throughput 
remains  about  the  same,  compared.  to  the  same  coding  scheme 
on an  MBSC.  This  shows that the  concatenated  coding  scheme 
is  quite  robust  on  a  variety of channek3 

IV. CONCLUSIONS 
In  this  paper,  the  performance of a  concatenated  coding 

scheme for  error  control in data  communication  is  analyzed. 
By developing  a  block  interference  channel model for  the 
outer  channel,  both  the  undetected  error  probability  and  the 
system  throughput  of  the  concatenated  coding  scheme  were 
calculated  for  burst-error  channels as well as. random-error 
channels. The performance of several  specific  coding  exam- 
ples was  compared. 

In  the  examples,  only  those  codes  that  require  simple 

’ Therefore, if interleaving is also applied to the frame  code,  little 
performance  improvement would be expected. 
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decoding were considered. Results indicate that high through- 
puts and extremely low undetected error probabilities are 
achievable using this scheme, even on burst-error channels. 
Therefore,  the concatenated coding system is suitable for 
applications involving high-speed transmission, such as satel- 
lite telecommand systems  and file transfer systems. 

Although the performance  analysis on the burst-error 
channel is presented for a two-state Markov chain channel 
model, the technique introduced can  be readily extended to 
other types of burst-error channel models,  such as the 
partitioned Markov chain model proposed by Fritchman [14], 
which  has been used to model a variety of burst-error channels 
t151, 1161. 
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