View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2003

Efficient Native XML Storage System (ENAXS)

Khin-Myo WIN
Wee-Keong NG

Ee Peng LIM

Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1007/3-540-36901-5_6

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Numerical Analysis and
Scientific Computing Commons

Citation
WIN, Khin-Myo; NG, Wee-Keong; and LIM, Ee Peng. Efficient Native XML Storage System (ENAXS). (2003). Fifth Asia Pacific Web

Conference. 2642, 59-70. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/888

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.


https://core.ac.uk/display/13248294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/3-540-36901-5_6
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

ENAXS: Efficient Native XML Storage System*

Khin-Myo Win, Wee-Keong Ng, and Ee-Peng Lim

Centre for Advanced Information Systems, School of Computer Engineering, NTU
Nanyang Avenue, N4-B3C-13, Singapore 639798, SINGAPORE
khinmyo@pmail.ntu.edu.sg, wkn@acm.org, aseplim@ntu.edu.sg

Abstract. XML is a self-describing meta-language and fast emerging as
a dominant standard for Web data exchange among various applications.
With the tremendous growth of XML documents, an efficient storage
system is required to manage them. The conventional databases, which
require all data to adhere to an explicitly specified rigid schema, are un-
able to provide an efficient storage for tree-structured XML documents.
A new data model that is specifically designed for XML documents is
required. In this paper, we propose a new storage system, named FEffi-
cient Native XML Storage System (ENAXS), for large and complex XML
documents. ENAXS stores all XML documents in its native format to
overcome the deficiencies of the conventional databases, achieve optimal
storage utilization and support efficient query processing. In addition,
we propose a path-based indexing scheme which is embedded in ENAXS
for fast data retrieval. We have implemented ENAXS and evaluated its
performance with real data sets. Experimental results show the efficiency
and scalability of the proposed system in utilizing storage space and ex-
ecuting various types of queries.

1 Introduction

Within a few decades, the Web has been growing incredibly and has become
the main information interchange among various organizations. Many applica-
tions produce and consume semistructured data which contains irregularities
and evolves rapidly making the use of predefined rigid schemas infeasible. XML
is emerging as a dominant standard for representing and exchanging semistruc-
tured data among applications over the Web. With the tremendous growth of
XML data, an efficient storage system is required to manage them.

Several XML storage solutions [1,2,4,6,9,11,12,15] proposed in recent years
are based on the conventional databases, such as relational (RDBMS) and object
(ODBMS). The main reason is that these databases are matured enough to
handle large volume of data and provide robust data management features. But
in practice, they have a lot of limitations to deal with their rigid schema and XML
irregular structure. They require an additional transformation to map XML data
into their formats and vice-versa. This process is complex and requires more
space when the document structure is deep and nested. In addition, they have to

* This work is partially supported by the SingAREN21 research grant M48020004

X. Zhou, Y. Zhang, and M.E. Orlowska (Eds.): APWeb 2003, LNCS 2642, pp. 59-70, 2003.
(© Springer-Verlag Berlin Heidelberg 2003



60  K.-M. Win, W.-K. Ng, and E.-P. Lim

convert XML queries into appropriate patterns understood by underlying query
engines. It is time-consuming and performance degradation in data retrieval.

Due to above deficiencies and limitations, a new data model which is specifi-
cally designed for XML is emerging recently. This system is able to store XML in
its native hierarchical structure and eliminates transformation processes. It pro-
vides efficient query processing and document navigation. Currently proposed
solutions [8,10,14,17] are designed to provide such advantages but they have not
addressed how to efficiently store large collection of documents which contain
data with similar hierarchical structure. They disregard the common structural
properties of elements, as a result, the storage consumes additional space to
maintain redundant structural information and requires more I/O accesses when
all elements or contents (values) with a unique path from multiple documents
are retrieved.

In this paper, we propose a new schema-conscious efficient native XML stor-
age system, named ENAXS. It organizes a large volume of XML documents
with common hierarchical structures and collectively stores elements and con-
tents according to their paths. The new storage aims to eliminate transformation
overhead produced in the conventional databases, and overcome inefficient space
utilization and query processing of the existing native XML storages. We also
embed a new path-based XML indexing scheme into ENAXS to speed up tree
traversing and reduce 1/0 cost for loading and scanning data in query execution.

The rest of the paper is organized as follows. Section 2 reviews related work
and Section 3 explores the proposed index structure and storage design for XML
data. Section 4 contains the results of our experiments using real data sets and
Section 5 concludes the paper.

2 Related Work

Some native XML storage models have been proposed in recent years. Lore is an
object-based storage that uses OEM in which all elements are stored as objects
and linked by the use of labels [14]. Lore provides forward traversal but an
additional index is needed to traverse backward. Natix uses a hybrid approach in
which a certain level of data is stored in its structured part and the rest in the flat
object part [10]. Natiz uses an intuitive algorithm to split input document tree
into subtrees which are able to be stored in the physical records. This approach
provides faster data retrieval when an entire document is needed but inefficient
for the query to find all elements with a unique path in multiple documents.
Timber organizes XML documents as the collection of ordered-labelled trees
manipulated by the use of bulk algebra and maps it into Shore [8]. Tamino is
built on the foundation of hierarchical ADABAS database [17]. It groups input
documents into collections by the definition of an open content model. Each
collection contains several document types and each type is assigned a common
schema. These schemas are stored in the repository and used in query evaluation.

Several path indexes are also proposed to support faster query processing.
Lore uses DataGuides as a structural summary for document navigation and im-
plements a set of indexes for query execution [7,13]. ToXin introduces hash table
based indexing scheme that allows efficient traversing along the document [16].



ENAXS: Efficient Native XML Storage System 61

Index Fabric proposes a prefix encoding scheme that encodes all tags along the
path and places together with value as a keyword in the Patricia tries [5]. APEX
uses a structural summary and a hash table to navigate the document and to
resolve frequently used path queries [3].

3 ENAXS

We focus to the scenario of storing nodes with a same path expressions together
in a group. It may reduce storage space and provides faster data retrieval as
most queries expect data with a same structural attribute from multiple doc-
uments. ENAXS deals with the approach that all root nodes, internal nodes
(elements) and external nodes (contents) from multiple documents are collec-
tively grouped according to their paths, and stored together in the repository.
The overall structure of ENAXS is shown in Fig. 1.

Path Expression in User Query

Regular Pathsl Exact Paths
Node Node Sets

i i Repository >
Query Results

Schema Tree Path Index » Node Groups E——

References References Value
Repository

v

Values

Fig. 1. The Overall Structure of ENAXS

We describe some brief definitions used in ENAXS as follows:

— Node repository maintains all root and internal nodes.

— Value repository contains binary form of all external nodes.

— Node group is a set of node-references grouped together according to their
paths regardless of which document they belong.

— Schema tree is an abstract representation of the structure of XML docu-
ments.

— Path indexr maintains a set of keys which are hash values generated from the
path expressions. The leaf nodes of the index tree contain references pointing
to the associated node groups.

3.1 Index Structure

A path index is necessary to support queries that requires exhaustive path traver-
sals. With its support, a query processor executes queries without traversing
along the given path to fetch the required nodes. The path index in ENAXS
comprises of three components: path index, node group and schema tree.



62  K.-M. Win, W.-K. Ng, and E.-P. Lim

Path Index. Index is uploaded into memory and frequently accessed during
query execution, so that, the size, processing efficiency and flexibility of index
structure greatly effect on resource utilization and speed of query processing.
ENAXS is a path-based storage in which path index is embedded as a crucial
component by considering above issues. Instead of indexing long strings of path
expressions, we generate hash values from it and employ as index keys in order
to reduce the overall size of index structure and processing overhead in searching
exact-matched string keys. Fig. 2 illustrates the ENAXS index structure.

CH——» Group 1 < ) Group 1
™ Block 2
3 > Group 2
[ > Group 3 [ Block 3 — Group 2
Block 4
D Group 3
Block 5
e
= Group n D Group n
Node Group % Block m-1
Index Tree

Node Repository

Fig. 2. ENAXS Index Structure

We collectively organize nodes in blocks of physical records and store in the
node repository. Each block is addressed by a block pointer. We implement the
path index using the B'-tree structure, a balanced tree in which leave nodes are
group pointers referring to the node groups. Since all index keys in the BT -tree
are numerical hash values, simple arithmetic comparison can be applied in key
matching, and the number of BT -tree levels can be significantly reduced.

Node Group. In order to perform efficient node insertion, update and deletion,
we add a layer, named node group, between the index and node repository. Each
group in this layer contains references pointing to blocks of nodes in the node
repository as depicted in Fig. 2. Since the hash function may generate a same
hash key for different paths, ENAXS organizes all path groups and forms a single
large one. Fig. 3 shows the general format of a group record.

Each record is composed of header and body. Number of groups in the header
indicates the number of node groups in a record, pointer to group points to the
associated group of node-references and path expression consists of a full-path
expression that represents a group. As node-references may exceed a block size,
pointer to next block in the body is used to link an aggregated block and then
group of node-references is used to point nodes in the node repository. Node
insertion, update and deletion in ENAXS become easy because the node group
can be updated directly. The following algorithm describes the node insertion
procedure.



ENAXS: Efficient Native XML Storage System 63

Number or Groups ]
—-| Pointer to group 1 Path expression of group 1
|
‘r**i** Pointer to group 2 Path expression of group 2 Header
R R
;f+:ff}f— Pointer to group N Path expression of group N -
i | > Pointer to next block 7
L Group 1
: | Group of node references to node blocks
i e Pointer to next block Group 2
i Group of node references to node blocks Body
|
i _______
L > Pointer to next block }
Group N
Group of node references to node blocks
Fig. 3. The Node Group Record Format
Algorithm: Insert(node)
1 path < path expression of node
2 sig < hash(path)
3 Search for sig in path index
4 If not found, then
5 Store node to the node repository in a new block
6 Allocate a new block new_block in node group file
7 Create a new node group record, new_group, and
add the reference to new_block into new_group
8 Insert sig and reference to new_group into path index
9 else
10 Get the pointer to existing group old_group
11 Store node into block pointed by the last pointer in old_group
12 if block is full
13 Create new_block
14 Store node into new_block
15 Append new_block pointer to old_group
16 end if
17 end if
18 end

Schema Tree. In order to deal with regular-path queries, we introduce a struc-
ture called schema tree, a tree representation of the common structure for a
set of XML documents. It is constructed by the use of DTD and provides the
parent-child relationship of a pair of nodes. Fig. 4 describes a sample DTD and
a XML document and Fig. 5(a) shows its equivalent schema tree.

Each node in the schema tree is assigned a unique identifier so that two
nodes from different paths with a same node name can be differentiated. ENAXS



64 K.-M. Win, W.-K. Ng, and E.-P. Lim

<lELEMENT bib (pub | article)*>
<!ELEMENT pub (name, book)>
<!ELEMENT article (title, subject, author)>
<|ELEMENT name (#PCDATA)> Addison-
<!ELEMENT book (title, subject, author)> Wesley
<|ELEMENT title (#PCDATA)>
<|lELEMENT subject (#PCDATA)>

<IELEMENT author (#PCDATA)> Foundations  Database . Abiteboul

(a) (b)

A Query Database D. Suciu
Language for
XML

Fig. 4. The Sample DTD and XML Document

traverses along the schema tree to find all possible full-paths that match a given
regular path. We employ bottom-up approach that enables traversing from the
bottom to the root of the schema tree by reducing the possibilities of paths to
choose. We implement an inverted list illustrated in Fig. 5(b) to support that
traversing.

Index File Posting File
0[ author H—»] arice [2]
1] author ] book [4]
2[ atice }—»[ bb ]3]
3[ bib  H—] NULL |

4 ‘ book }»—>| pub | 6 |
5 ‘ name }»—>| pub | 6 |
6 puw  F—»] bb [3]
7 ‘ subject }»—>| article | 2 |
8| subject H—»] book [4]
9| titte H—»] arice [2]
10[ tite  H—»{ book [4]

(a) (b)

Fig. 5. The Schema Tree and Its Inverted Representation

For a given regular path, we first extract the last tag and then lookup in the
index file to locate its parent node in the posting file. We use the resulting node
as an index entry to go next level up. This procedure continues till the root node
is reached, and all possible full-paths are obtained. Then, the query processor
uses the resulting paths to resolve the query. This approach magnifies the capa-
bilities of schema tree not only providing efficient exploring of structure but also



ENAXS: Efficient Native XML Storage System 65

enhancing the query processing because the query can be answered preliminarily
by identifying whether a given tag exists in the schema tree, without needing to
search in all documents.

3.2 Storage Structure

Typically, internal nodes (root and internal) shape the structure of document
and external nodes retain scalar values that are the majority of the document.
ENAXS stores structure and contents separately so that the node operations can
be performed independently. A unique document identifier (DID) is assigned to
each document and a node identifier (NID) to each node (except external) so
that a particular node can be identified by a pair (DID,NID) within the storage.

Value Repository. Value repository is a collection of records that are the
physical representations of all external nodes. The record format is depicted in
Fig. 6(a). An external node record is composed of DID, its Parent Node ID
(PID), Parent Node Block Pointer and Value. The record size varies with the
value length but it is limited by block size. For a record that exceeds a block
size, we employ splitting to make two parts; the first one is allocated in current
block and the rest in a new block, so that documents with long contents such as
novels can be stored and the node operations can be performed efficiently.

Direct Block Indirect Block
Node Info Node info for
record 1 q CIDs CIDs
DID J. Child Node Ptrs Child Node Ptrs
NID Direct Pointer Indirect Pointer | | @ -----
External
Nod Node Order
ode PID
DID Parent Node Ptr Node info for
PID Direct Pointer record 2 L CIDs CIDs
Parent Node Ptr Attribute Flag J—. Child Node Ptrs Child Node Ptrs
Value Value Pointer Direct Pointer Indirect Pointer [ | @ -----

()

(b)

(c)

Fig. 6. The External Node and Internal Node Record Format

Insertion of a node is straightforwardly appended to the last block. The split-
ting is applied for a long record to span it over multiple blocks.
Updating of a record invokes the reallocation to rearrange all subsequent records

by moving up or pushing down within a block. This may acquire a new block if
necessary.

Deletion of a node releases space occupied and applies reallocation within the
block.



66  K.-M. Win, W.-K. Ng, and E.-P. Lim

Node Repository. Node repository is a collection of all internal nodes records.
(The record format is shown in Fig. 6(b) and (c)). A record is composed of three
main parts: node info, direct block and indirect block. A node info basically
maintains the internal node information that can be used to identify whether
it is an element or an attribute and whether it has a value or child nodes. It
also maintains a reference that points to its value (value pointer) or a direct
block (direct pointer) where information of a particular number of child nodes
are stored. The additional child nodes, if any, are maintained in an indirect
block. ENAXS uses a parameter, called the node set threshold denoted by «a,
that predefines the maximum number of child nodes which can be allocated in
a direct block. If the number of child nodes is greater than «, indirect pointer
is set to reference an indirect block where additional child nodes are stored,
otherwise, it is always set to NULL. The value of « is set to 10 by default but it
can be fine-tuned by an administrator to achieve the optimal storage utilization.
Since node information is fragmented into parts, the node operations can avoid
unnecessary loading of vast data.

Insertion of a new node involves creating a new node info, and capturing
child nodes information in the direct and indirect blocks or value in the value
repository.

Updating of a node simply modifies the node info.

Deletion of a node uses the bottom-up approach that removes value of that
node from the value repository or child nodes from direct and indirect blocks.
Then it deletes the node info and performs the necessary updating in its parent
node.

Our approach improves storage utilization because a direct block can keep
several child nodes groups for many internal nodes. It significantly eliminates
the storage overhead and reduces expensive 1/O accesses in data loading and
scanning. Since all node operations modify the structure of documents, it is
necessary to update index structure accordingly to reflect the changes.

4 Performance Results

In this section, we present the performance results measured on two aspects:
space utilization and 1/0O cost for storing and querying XML data with ENAXS.
We developed the system using Java. IBM XML 4J Parser! was used as a parser.
The evaluations were performed on a Pentium-I1I 800MHz machine with 256 MB
RAM under Windows 2000 using 20GB disk. We use two data sets: Shakespeare’s
Plays? (D1) that contains deep and nested node hierarchy with 327K elements
in 37 files (7.6MB in size) and KJV Bible® (D2) that is relatively flat with 32K
elements in 1 file (4.9MB).

! http://www.alphaworks.ibm.com /tech /xml4;
2 http://www.ibiblio.org/bosak /xml/eg/
3 http://www.assortedthoughts.com



ENAXS: Efficient Native XML Storage System 67

4.1 Storage Space Utilization

We evaluate the system by altering block sizes (BS) and a to determine how
the size of data files (node and value repository, node group and index) reflects
the changes. We did not keep track the size of the schema tree as it was small
and unaffected by changes in both data sets. Fig. 7(a) shows the growing trend
of data files sizes for D1 when BS=4KB and 8KB respectively with a=25, and
Fig. 7(b) depicts the situation if a=10.

25 30
—=e— Index File —e— Index File
—A— Node Group —~ 25 | —&— Node Group
o 20 1 —¢— Node Repository 1] —¥— Node Repository
E —@— Value Repository ?, 20 —— Value Repository
g 15 | §
&
2 > 15
S 10 g
‘@ 2 10 A
9 a
2> 5 -
[ o 1
0 4 4 L *+——6 @ @ 0 ¢ * g g *
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Original Size (MB) Original Size (MB)
(@)
30 45

—e&— Index File —e— Index File

25 | —A—Node Group 1 —A—Node Group

—k— Node Repository 35 4 ——Node Repository
—@— Value Repository —— Value Repository

Séii *
5
0 3 0 - - - ? S @

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Original Size (MB) Original Size (MB)

Repository Size (MB)
o
Repository Size (MB)
n
o

(b)

Fig. 7. Size of Data Files

Index File. The path index size is small and the curve is relatively flat no matter
how BS changes. It occupies 3 blocks (1 for root and 2 for internal nodes) for
D1 as it contains 57 distinct paths and 1 block for D2 as it has only 5.

Node Group File. We found that the size of the node group file increases
linearly with respect to data set size. From the experiment with D1, the number
of blocks occupied by 57 node groups is 59 when BS is set to 4KB and 57 when
BS=8KB. This shows that the number of blocks does not significantly decrease
when BS is expanded because each group occupies at least one block. It gives
an advantage that there are more spaces available in each block flexible enough



68 K.-M. Win, W.-K. Ng, and E.-P. Lim

to add more node references when the size of data set increases and reduces 1/0
accesses for loading fragmented data. We got a similar result for D2.

Node Repository. Node repository is the majority of the storage and it in-
creases linearly with the size of each data set (shown in Fig. 7(a) and (b)). Fig. 8
shows the number of blocks required to store node info, direct blocks and indirect
blocks for D1 and D2 respectively. From the several experiments, we observed
that ENAXS gives more efficient storage utilization with larger a (25) in both
data sets. We also found that larger BS spends less storage space for complex
documents that contain large number of nodes, but the smaller BS is better for
flat ones with less nodes. For D2 which contains many child nodes for an ele-
ment, the indirect blocks occupy a large portion of the repository. This indicates
that reducing the number of indirect blocks by adjusting a greatly impacts the
storage size and support faster execution of node operations.

7000 1800 -

@ 6000 1 P 1600 —
1400 |+

8 5000 [ — L g
o 5 1200 |+ |
5 4000 4 — s 1000 | — -
5 3000 — o 800 +— —
£ N £ 600
g 2000 A | g oo — L
z z D I

1000 - | | | — 200 |11

0 . . . 0 . . .

O Indirect Block BS=8 BS=8 BS=4 BS=4 0 Indirect Block BS=8 BS=8 BS=4 BS=4
8 Direct Block Alpha=10  Alpha=25  Alpha=25  Alpha=10 @DiectBlock | Alpha=10  Alpha=25 ~Alpha=25 Alpha=10
@ Node Block @ Node Block

ShakeSpeare Plays KJV Bible

Fig. 8. Block Allocations for Two Data Sets

Value Repository. Value repository is almost the same size as the original
data set because values are the majority of both sets.

4.2 Query Performance

We evaluated the performance of ENAXS by executing various queries (described
in Fig. 9(a)) using XQuery? language on D1 and examined the number of block
I/0Os accessed during the execution with and without the support of index. We
set BS to 8KB and « to 10 and examined the number of blocks read. The results
from Fig. 9(b) show that execution of Q1 speeds up approximately 500 times
with the support of the index. The execution of Q2 does not cost much than Q1,
means that, navigating document with the support of the schema tree spends
only a few traversal cost. Q3 and Q4 examine the performance of the value

* http://www.w3.org/TR/xquery/



ENAXS: Efficient Native XML Storage System 69

repository. The results show that both queries are substantially faster with the
support of the index. Q3 costs more because additional I/Os are needed to access
the value repository.

Query Description
Q1 | PLAY.ACT.SCENE.SPEECH.SPEAKER | Exact-match query to extract all speaker in speech
Q2 * SPEAKER Reqular path query to retrieve all speaker in all play
Q3 PLAY.ACT.SCENE.TITLE.# Value query to extract all values of scene/title
Q4 PLAY.ACT.SCENE.TITLE Query to extract all title
(@
Query | Index Node Noc_ie Val'."e Total No. of
Group | Repository Repository Nodes
Q1 1 1 183 0 185 30972
With Q2 7 6 188 0 201 31067
Index Q3 1 1 5 752 759 630
Q4 1 1 5 0 7 748
Q1 0 0 101350 0 101350 30972
Without Q2 - - - - - -
Index Q3 0 0 4658 752 5410 630
Q4 0 0 4658 0 4658 748

(b)

Fig. 9. Queries and Block I/Os Costs in Query Executions

5 Conclusions

In this paper, we proposed a new schema-conscious native XML storage system
called ENAXS to address the shortcoming of maintaining large and complex
structured XML documents with similar schema in the existing systems. We take
the advantage of the common schema of the XML documents and collectively
organize according to their structures so that the system substantially eliminates
storage and processing overheads. We also embed a path-based indexing scheme
to provide direct access to the nodes. It significantly reduces the number of
blocks to be scanned during query processing. With the support of the schema
tree, the system can resolve complex regular path queries efficiently.

We conducted various experiments and evaluated the performance of ENAXS
in terms of space utilization, I/O assess and query processing costs. The results
through experiments have shown that ENAXS supports an efficient and scal-
able storage for the real XML documents. We will extend ENAXS by adding
additional features such as concurrency control, transaction management and
multiuser control in our future work.



70 K.-M. Win, W.-K. Ng, and E.-P. Lim
References
1. D. Alin, F. Mary, and D. Suciu. Storing Semistructured Data with STORED.

10.

11.

12.
13.

14.

15.

16.

17.

SIGMOD Record, pages 431442, 1999.

. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Doc-

uments to Novel Query Facilities. In Proc. ACM SIGMOD Conf., Minneapolis,
Minnesota, May 1994.

C. W. Chung, J. K. Min, and K. Shim. APEX: An Adaptive Path Index for XML
Data. ACM SIGMOD, 4(6), June 2002.

T. S. Chung, S. Park, S. Y. Han, and H. J. Kim. Extracting Object-Oriented
Database Schemas from XML DTDs Using Inheritance. In Proc. 2nd Int. Conf.
EC-Web, Munich, Germany, September 2001.

B. F. Cooper, S. Neal, J. F. Michael, R. H. Gisli, and S. Moshe. A Fast Index for
Semistructured Data. In Proc. 27th Int. Conf. on Very Large Data Bases, pages
341-350, Roma, Italy, 2001.

. D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDBMS.

In Bullettin of the Technical Committee on Data Engineering, 22(3):27-34, Septem-
ber 1999.

R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Op-
timization in Semistructured Databases. In Proc. 23rd Int. Conf. on Very Large
Data Bases, Athens, Greece, 1997.

H. V. Jagadish, Shurug Al-Khalifa, Laks V. S., Andrew Nierman, Stylianos Pa-
parizons, Jignesh Patel, Divesh Srivastava, and Yuqing Wu. TIMBER: A Native
XML Database. VLDB Journal (To appear), 2002.

S. Jayavel, T. Kristin, H. Gang, Z. Chun, D. David, and N. Jeffrey. Relational
Databases for Querying XML Documents: Limitations and Opportunities. In Proc.
25th Int. Conf. on Very Large Data Bases, Edinburgh, Scotland, 1999.

C. C. Kanne and G. Moerkotte. Efficient Storage of XML Data. In Proc. 16th Int.
Conf. on Data Engineering, San Diego, CA, February 2000.

M. Klettke and H. Meyer. XML and Object Relational Database Systems En-
chancing Structural Mapping Based on Statistics. In Int. Workshop on the Web
and Database (WebDB), Dallas, 2000.

K. Loney and G. Koch. Oracle 8i : The Complete Reference. McGrawHill, 2000.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database
Management System for Semistructured Data. SIGMOD Record, 26(3), September
1997.

D. Quass, J. Widom, R. Goldman, K. Haas, Q. Luo an J. MchHugh, S. Nestorov,
A. Rajaraman, H. Rivero, S. Abiteboul, J. Ullman, and J. Wiener. LORE:
A Lightweight Object REpository for Semistructured Data. ACM SIGMOD,
25(2):549-549, June 1996.

M. Rays. Bringing the Internet to Your Database: Using SQL Server 2000 and
XML to Bulid Loosely-Coupled Systems. In Proc. 17th IEEE Int. Conf. on Data
Engineering, Heidelberg, Germany, April 2001.

F. Rizzolo and A. Mendelzon. Indexing XML Data with ToXin. In Proc. 4th Int.
Workshop on the Web and Database (in Conjunction with ACM SIGMOD), Santa
Barbara, CA, May 2001.

H. Schoning. Tamino: A DBMS Designed for XML. In Proc. 17th Int. Conf. on
Data Engineering, pages 149-154, Heidelberg, Germany, April 2001.



	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2003

	Efficient Native XML Storage System (ENAXS)
	Khin-Myo WIN
	Wee-Keong NG
	Ee Peng LIM
	Citation


	Efficient Native XML Storage System (ENAXS)

