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LTAM:
A Location-Temporal Authorization Model

Hai Yu and Ee-Peng Lim

Center for Advanced Information Systems,
Nanyang Technological University, Singapore

yuhai@pmail.ntu.edu.sg, aseplim@ntu.edu.sg

Abstract. This paper describes an authorization model for specifying
access privileges of users who make requests to access a set of locations
in a building or more generally a physical or virtual infrastructure. In the
model, primitive locations can be grouped into composite locations and
the connectivities among locations are represented in a multilevel loca-
tion graph. Authorizations are defined with temporal constraints on the
time to enter and leave a location and constraints on the number of times
users can access a location. Access control enforcement is conducted by
monitoring user movement and checking access requests against an au-
thorization database. The authorization model also includes rules that
define the relationships among authorizations. We also describe the prob-
lem of finding inaccessible locations given a set of user specified autho-
rizations and a multilevel location graph, and outline a solution algo-
rithm.

1 Introduction

Access control is an important aspect of computer security. It provides a frame-
work for protecting resources within a system by restricting the accesses to ob-
jects (or resources) by subjects (or users). Other than objects and subjects, a basic
access control model consists of rules that govern the way subjects are granted
accesses to objects. Access control models can be discretionary or mandatory. In
discretionary access control (DAC), owners of objects may grant access to others
and are responsible for protecting the objects they own. In contrast, mandatory
access control (MAC) assigns each object a security label that is used as the
basis of restricting accesses of the users to the object. DAC has been widely
adopted by commercial applications and databases systems. Due to its rather
constrained way of granting access, the use of MAC has not been popular among
commercial applications.

As wireless devices (e.g., RFIDs, handphones) become ubiquitous and are
often equipped with positioning capabilities, they have been increasingly used for
tracking user and object movements to support a wide range of applications[1–
3]. For example, Singapore has used RFIDs to track movements of hospital users
during the outbreaks of SARS (Severe Acute Respiratory Syndrome), a highly
contagious and deadly disease. From the user movement data, users who were in
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contact with diagnosed SARS patients could be traced and placed in quarantine
or observations[4].

In homeland security, preventive measures are highly critical. As part of the
efforts to safeguard the security of physical infrastructure, movements of users
within a secured building can be tracked and their accesses to various locations
in the building can be controlled by a security system that supports flexible
access control. The ability of user tracking is also assumed in this research on
authorization model.

In this paper, we propose a location-temporal authorization (LTAM) model
that allows locations to be treated as objects and user accesses to these loca-
tions are restricted. The enforcement of such an authorization model requires
maintaining the current locations of users and processing their access requests.
Based on this model, computation and reasoning can be conducted on the au-
thorizations to derive useful properties and knowledge about the location and
time where authorizations are given.

Our proposed LTAM model differs from the existing office security systems
that involve the use of card readers to authenticate and register user access
requests for entering a room. The key differences are:

– The existing systems only enforce access control upon access requests while
LTAM monitors the user movement at all times. This eliminates situation
where a group of users enters a restricted location based on a single user
authorization.

– LTAM can support more expressive access control restrictions. For example,
one may be authorized to leave a location only during a certain time interval.
Should this restriction be violated, security alerts can be triggered.

– LTAM can support an interesting range of queries on the authorizations and
these queries are necessary to implement applications that manage movement
and accesses to locations in a secure infrastructure. This is clearly a large
improvement over the existing ad-hoc implementations.

– LTAM provides a framework for analyzing the security shortfalls due to
human errors in specifying authorizations.

– LTAM protects the location privacy [5] of the users by restricting the loca-
tion information in the central control station and not releasing it to other
applications.

1.1 Outline of Paper

The rest of the paper is organized as follows. Section 2 reviews the existing work
in temporal authorization models and context-aware information security. Our
proposed authorization model is defined in Section 3 followed by the enforcement
of the model described in Section 5. The authorization rules that allow new
authorizations to be derived will be defined in Section 4. The problem of finding
inaccessible locations and its solution are given in Section 6. Finally, Section 7
concludes the paper.
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2 Related Work

Our proposed location-temporal authorization model falls under the area of
spatio-temporal access control. Our literature survey however has found very
little research work on this topic. We therefore examine some of the related
work in temporal access control and spatial access control.

One of the first papers about temporal authorization model came from
Bertino, Bettini and Samarati[6]. In their proposed authorization model known
as TAM, each authorization for a user to access an object is augmented with
a temporal interval of validity. In other words, the user is only able to access
the object during the specified temporal interval and the dependencies among
temporal authorizations can be specified within the proposed model. In [7], Gal
and Atluri proposed another temporal authorization model called TDAM to sup-
port discretionary access control based on the temporal attributes of the objects
themselves. Both TAM and TDAM are complementary models and can be used
together.

An authorization model that specifically addresses access control issues of
geospatial objects was proposed by Atluri and Mazzoleni[8]. This model known
as GSAM can authorize users to view specific region within a satellite image ob-
ject with a certain resolution. An indexing structure supporting efficient retrieval
and enforcement of GSAM authorizations on satellite image has been developed.
GSAM however does not include spatial locations of users and temporal dimen-
sion in the specification of authorizations.

In the area of pervasive computing, context aware role-based access control
was proposed to model transitions of user roles and object states due to contex-
tual changes and to grant users access privileges to objects based on the context
at the time of access requests[9]. This proposed model however does not include
the temporal and location dimensions of authorizations. Jiang and Landay fur-
ther defined the notion of information space to organize information objects and
services into different boundaries for better privacy control[10]. The boundaries
can be defined by physical space, social grouping, or activity. By granting ac-
cess privileges differently for different information spaces, authorizations can be
made more context aware. We believe that information space can be viewed as
some kind of locations in our proposed authorization model. Using our proposed
model, information spaces can be linked together representing their relation-
ships, and users are required to be authorized before entering an information
space or moving from one information space to another.

Finally, a location and user authentication architecture was given in [11]. The
paper however did not provide a comprehensive model to represent authoriza-
tions that involve both time and locations.

3 Location-Temporal Authorization Model

In this section we describe our Location-Temporal Authorization model (LTAM)
in detail.
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3.1 Preliminaries

Locations in LTAM are both semantic and physical. When represented physi-
cally, a location is described by its absolute spatial coordinates. In [12], Pradhan
describes semantic locations as objects with unique identifiers so as to give se-
mantic meanings to the locations. The physical location information are used
to define the spatial boundaries of location so that it is possible to track users
in different locations. A location can be primitive or composite. A primitive lo-
cation is a location that cannot be further divided into other smaller locations.
A composite location is a collection of related primitive, composite, or a mix of
both locations. For instance, a room in a building is a primitive location, and
the building which consists of a number of rooms is a composite location. All
rooms in the building forms a location graph that represents the building. The
building together with other buildings form a multilevel location graph. Formally,
we define location graph and multilevel location graph as follows.

Definition 1 (Location Graph). A location graph is defined as (L,E) where

– L is a set of primitive locations
– E is a set of edges connecting pairs of locations

Within a location graph, if (l1,l2) is an edge e, it implies that l2 can be
reached from l1 directly without going through other locations, and vice versa.
By definition, an edge is bidirectional.

Definition 2 (Multilevel Location Graph).
If G1, ..., Gk are location graphs or multilevel location graphs with mutu-

ally disjoint locations, then (L′, E) is a multilevel location graph where L′ =
{G1, ..., Gk} and E ⊆ L′ × L′

Each location graph or multilevel location graph must have at least one
location designated as entry location. An entry location serves as the first location
a user must visit before visiting other locations within the graph. A entry location
also serves as the last location where the user may visit before his/her exit. In
some cases it is possible that the entry and exit locations have to be treated
separately, which we have not considered in this paper. We believe our proposed
model can be easily extended to deal with these cases.

Let H be a multilevel location graph and li be a primitive location (or com-
posite location), we say that li is part of H if li is a primitive location (or
composite location) that directly or indirectly belongs to H .

Fig. 1 depicts the location layout of School of Computer Engineering and
School of Electrical and Electronic Engineering in Nanyang Technological Uni-
versity. Fig. 2 shows the corresponding multilevel location graph, where NTU
is a multilevel location graph and SCE, EEE, CCE, SME, NBS1 are all location
graphs. The locations with double lines denote the entry locations.

1 SCE, EEE, CCE, SME, NBS are the schools in the university
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NTU

SCE

EEE

SCE.Dean  Office CAIS

SCE.GO SCE.SectionBSCE.SectionA SCE.SectionC

CHIPES

EEE.Dean  Office Lab1

EEE.GO EEE.SectionBEEE.SectionA EEE.SectionC

Lab2

CEE SME NBS

Fig. 1. A Location Layout

In Fig. 2, primitive locations SCE.GO, SCE.Dean’s Office, CAIS, CHIPES,
SCE.SectionA, SCE.SectionB, SCE.SectionC2 form a location graph named
SCE. The entry locations of SCE are SCE.GO and SCE.SectionC. To access any
location that is part of SCE, one has to go through at least one of these two entry
locations. The edge between SCE.SectionB and SCE.CAIS shows one to go from
SCE.SectionB to CAIS directly and vice versa.

A simple route in a location graph, (G, E), refers to a series of primitive
locations 〈l1, l2, ..., lk〉 (li′s ∈ G) through which a subject can move from location
l1 to location lk, i.e., (li, li+1) ∈ E, ∀1 � i < k. For example, 〈 SCE.Dean’s
Office, SCE.SectionA, SCE.SectionB, CAIS 〉 is a simple route.

A complex route in a multilevel location graph (G, E) refers to a series of
primitive locations 〈l1, l2, ..., lk〉 through which a subject can move from l1 to
location lk such that ∀1 � i < k,

– (li, li+1) is an edge in some location graph; or
– li and li+1 are entry locations in two different location graphs Gi and Gi+1

respectively. Gi and Gi+1 are multilevel location graphs of two composite
locations l′i and l′i+1, respectively, such that (l′i, l

′
i+1) is an edge in some

multilevel location graph G′ that contains both Gi and Gi+1.

For example in Fig. 2, 〈 EEE.Dean’s Office, EEE.SectionA, EEE.GO, SCE.GO,
SCE.SectionA, SCE.Dean’s Office 〉 is a complex route.

In a route r,〈l1, l2, . . . , ln〉, l1 and ln are called the source and the destination
of r, respectively. Note that there can be multiple routes from a source to a
destination.

Location graphs are connected graphs. For a given location graph (L, E),
there exist a route r such that ld can be reached from ls, for any ls, ld ∈ L.
Similarly multilevel location graphs are also connected graphs.

2 SCE.GO denotes the general office of SCE. CAIS and CHIPES are research centers in
SCE
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SCE.GO SCE.SectionA SCE.SectionB

CAIS CHIPES

SCE.SectionC

SCE.Dean 
Office

SCE

EEE.SectionA EEE.SectionB

Lab1 Lab2EEE.Dean 
Office

EEE

EEE.GO EEE.SectionC

NTU

CEESMENBS

Fig. 2. A Multilevel Location Graph

Time is another important concept in the access control. We adopt the ap-
proach similar to that in [6]. A time unit is a chronon or a fixed number of
chronons, where a chronon refers to the smallest invisible unit of time. A time
interval is a set of consecutive time units. The size of the time interval is the
number of time units in the time interval.

3.2 Location-Temporal Authorization

Location Authorizations are policies created by security officers for defining the
accesses that the users have over the locations. Location-Temporal authorizations
are location authorizations augmented with temporal conditions to limit the
period during which the authorization is valid. Formally, they are defined as
follows.

Definition 3 (Location Authorization). A location authorization is a pair
(s, l) where

– s is a subject (user) who requests authorizations; and
– l is a primitive location

A location authorization (s,l) means that user s is authorized to enter
the primitive location l. For example, (Alice, CAIS) denotes that Alice is
authorized to access location CAIS.

Definition 4 (Location-Temporal Authorization). A location-temporal
authorization is a quadruple (entry duration, exit duration, auth, entry) where

– entry duration is a time interval [tis, tie] during which a subject can enter a
primitive location

– exit duration is a time interval [tos, t
o
e] during which a subject can leave a

primitive location, where tos � tis and toe � tie
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– auth is an location authorization
– entry is the number of accesses that the subject can exercise within entry

duration. The range of entry is [1,∞).

A Location-Temporal Authorization imposes temporal constraints on a loca-
tion authorization. An authorization ([ti1, t

i
2],[t

o
1, t

o
2],(s,l), n) indicates that

user s is authorized to enter primitive location l during [ti1, t
i
2] and exit during

[to1, to2], for a maximum number of n times. If the entry duration is not specified,
it means the subject can enter a location at any time after the creation of the
authorization. On the other hand, if the exit duration is not specified, the de-
fault value will be [ti1,∞] which means that the subject can exit any time after
entering the location. The default entry value is ∞.

Consider the authorization ([5, 40], [20, 100], (Alice, CAIS), 1). Alice is
allowed to enter location CAIS once during the period [5, 40], and to exit during
the period [20, 100]. If she does not exit CAIS during the exit duration, a warning
signal to the security guards will be generated.

4 Authorization Rules

In large organizations, it is impractical to define authorizations for individual
users on every location. In addition, some authorizations may only be valid
when certain conditions are satisfied. Manually specifying all the authorizations
is a very tedious and error-prone job. Authorization rules are therefore intro-
duced to automate the work of deriving additional authorizations based on the
existing authorizations. An authorization rule can also be viewed as a kind of
relationship between authorizations. An authorization rule generates a number
of authorizations based on an input authorization. The input authorization is
called the base authorization. The generated authorizations are called the derived
authorizations. The formal definition of authorization rule is as follows.

Definition 5 (Authorization Rule). An authorization rule is defined as 〈tr :
(a, OP )〉, where

– tr is the time from when the authorization rule is valid.
– a = ([tis, t

i
e], [t

o
s, t

o
e], (s, l), n) is the base authorization

– OP is a tuple of operators (opentry, opexit, opsubject, oplocation, expn), where
• opentry and opexit are temporal operators, which take [tis, t

i
e] and [tos, t

o
e]

of a as inputs, and generate the entry and exit durations for the derived
authorizations, respectively.
The temporal operators can be one of the following:
∗ WHENEVER

WHENEVER is a unary operator which returns the same time in-
terval as the input.

∗ WHENEVERNOT
Given an input time interval, [t0, t1], the unary operator WHENEV-
ERNOT operator returns [tr, t0 − 1] and [t1 + 1,∞].
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∗ UNION
UNION is a binary operator. Given two input time intervals [t0, t1]
and [t2, t3], UNION returns [t0, t3] if t2 � t1; or [t0, t1] and [t2, t3] if
t2 > t1.

∗ INTERSECTION
INTERSECTION is a binary operator. Given two input time inter-
vals [t0, t1] and [t2, t3], INTERSECTION returns [t2, t1] if t2 � t1;
Otherwise it returns NULL.

• opsubject takes subject s of a, and derives the subjects for the derived
authorizations based on some relationships between subjects.

• oplocation is a location operator, which generates a set of primitive lo-
cations for the derived authorizations, given the primitive location l of
a.

• expn specifies a numeric expression on the number of entries.

If any of the rule elements is not specified in a rule, the default value will be
copied from the base authorization.

Example 1. Consider the following authorization.

a1:([5, 20],[15, 50],(Alice,CAIS),2)

If we want the supervisor of Alice to have the same authorization on CAIS
as that of Alice, we can define the following rule.

r1:〈7:a1,(WHENEVER, WHENEVER, Supervisor Of, CAIS,2)〉

The opsubject operator Supervisor Of returns the supervisor of a user by
querying the user profile database described in the next section. Suppose Alice’s
supervisor is Bob, the following authorization can be derived.

a2:([5, 20],[15, 50],(Bob,CAIS),2)

By specifying this rule, it is not necessary to create new authorizations if
Alice is assigned a different supervisor. The system is able to automatically
derive the authorizations for the new supervisor while the authorization for Bob
will be revoked.

Example 2. If we modify rule r1 slightly as follows.

r2: 〈7:a1,(INTERSECTION([10, 30]), WHENEVER, Supervisor Of,
CAIS,2)〉

The derived authorization of r2 is

a3:([10, 20],[15, 50],(Bob,CAIS),2)

Rule r2 specifies that the supervisor of Alice is supposed to access CAIS
during [10, 30], however, only when Alice is also authorized to access CAIS.
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Example 3. Now given authorization a1, we would like to grant Alice access to
all locations on the route from SCE.GO to CAIS. The following authorization rule
can be specified for this purpose.

r3:〈7:a1,(WHENEVER, WHENEVER,, all route from(SCE.GO),2)〉

The location operator all route from returns all the locations on the route
from source SCE.GO to destination CAIS, which are {SCE.GO, SCE.SectionA,
SCE.SectionB, SCE.SectionC, SCE.CHIPES}. An authorization will be derived
for each of these locations as the result of rule r2.

Besides the operators aforementioned, customized operators can be defined
as well, which leads to greater degree of flexibility.

It is worth noting that the authorization rules may introduce conflicts of
authorizations, which means the derived authorizations may contradict with
other authorizations. For example, a derived authorization may say that Alice
can enter CAIS during [5, 10]. However, another authorization (either existing
or derived) may state that Alice is authorized to enter CAIS during [10, 11].
This conflict should be resolved either by combining the two authorizations, or
discarding one of them. The problem is left for future work.

5 Location-Temporal Authorization Enforcement

The authorizations are checked when an access request is posed by a subject.
Formally, we define access request as follows.

Definition 6 (Access Request). An access request is a triple (t, s, l) where

– t is the time instant at which the access request is made
– s is the user who requests the access
– l is the location where the user requests to access

For example, a triple (10,Alice,CAIS) denotes that at time 10, Alice issued
an access request to location CAIS.

An access request is checked against the set of authorizations in the system.
If an authorization exists at time t, the access request is authorized. We define
authorized access request as follows.

Definition 7 (Authorized Access Request). An access request (t, s, l) is
authorized if there exists at least one location temporal authorization
A : ([tis, tie], s, l, [tos, toe], n) such that

– tis � t � tie
– s has entered l during [tis, t

i
e] for less than n times.

For example, suppose that the system contains the following authorizations.

– A1: ([10, 20],[10, 50],(Alice,CAIS),2)
– A2: ([5, 35],[20, 100],(Bob,CHIPES),1)
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Fig. 3. System Architecture for Authorization Enforcement

Assume that each subject has not entered any location yet, we have

– At time 10, access request (10,Alice,CAIS) is granted according to A1.
– At time 15, access request (15,Bob,CAIS) is not authorized because there is

no authorization specifies Bob’s access to CAIS.
– At time 16, access request (15,Bob,CHIPES) is authorized based on A2.
– At time 20, Bob leaves CHIPES.
– At time 30, access request (30,Bob,CHIPES) is not authorized because Bob

has only one entry to CHIPES.

Fig. 3 shows the system architecture for location-temporal authorization en-
forcement. The system has five major components.

– Authorization Database
The authorization database stores all authorizations defined by the system
administrators.

– Location & Movements Database
The location & movements database stores the location layout, as well as
users’ movements. These data are then used for authorization validation,
system status checking, etc..

– User Profile Database
As its name indicates, the user profile database stores user profiles, which
are used for creating authorizations, or deriving authorizations, etc..

– Access Control Engine
The access control engine is the core of the authorization enforcement. When
a user issues an access request, the access control engine have to perform a
few tasks.
1. It checks the authorization database to search for any authorization that

has been defined for the user and the location that the user request access
to.

2. It invokes the query engine to find out whether the user has violated any
authorization due to unauthorized access requests or over-staying.
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3. Access control engine is also responsible for authorization derivation.
When the administrator specifies new rules, the access control engine will
evaluate the new rules on the existing authorizations and user profiles.
The derived authorizations are then added to the authorization database.

– Query Engine
The query engine evaluates queries by the system administrators and the
access control engine based on the information stored in all of the databases.

The design of a query language for our proposed authorization model will be
part of our future work. Some of these questions can be complex. In the following
section, we will present a query that find all locations inaccessible (or accessible)
to a given subject.

6 Finding Inaccessible Locations

Given a set of LTAM authorizations, one can query and conduct reasoning or
computation on them to derive useful knowledge. In this section, we will describe
the problem of finding inaccessible locations and develop the corresponding so-
lution algorithm.

Given an access request duration [tp, tq] from a user s to a location l and a
location-temporal authorization a = ([tis, t

i
e], [t

o
s, t

o
e], (s, l), entry), the grant dura-

tion of s for l in the access request duration is defined by [max(tp, tis), min(tq, tie)],
and the departure duration of s for l in the access request duration is defined by
[max(tp, tos), t

o
e].

A route r = 〈l1, l2, ..., lk〉 is authorized for a subject s with access request
duration [tp, tq] if,

– The grant duration of s for l1 in [tp, tq], denoted by [tgp1
, tgq1

], is not null;
– The departure duration of s for l1 in [tp, tq], denoted by [tdp1

, tdq1
], is not null;

– The grant duration of s for li in [tdpi−1
, tdqi−1

], denoted by [tgpi
, tgqi

], is not null
∀2 � i < k;

– The departure duration of s for li in [tdpi−1
, tdqi−1

], denoted by [tdpi
, tdqi

], is not
null ∀2 � i < k; and

– The grant duration of s for lk in [tdpk−1
, tdqk−1

], denoted by [tgpk
, tgqk

], is not
null.

The grant duration and departure duration of s for the route r are therefore
[tgp1

, tgq1
] and [tdpk

, tdpk
] respectively.

Definition 8. Given a subject s, a set of authorizations D and a location graph
(or multilevel location graph) G = (L, E), a location (or composite) l is known
to be inaccessible by s if there is no authorized route for s with an access request
duration [0,∞) that covers l from every entry location of G.

Following the above definition, an entry location is inaccessible to a subject
s if it has null exit duration for its authorization.
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B
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Fig. 4. An example of finding the inaccessible locations

From the above definition, we also know that a location can be make in-
accessible to a subject by directly defining appropriate authorizations for that
location, or by blocking all routes to the location. Hence, to ensure that a sub-
ject can visit a location, one should check that the location is not inaccessible
instead of just defining the authorizations for that location.

The inaccessible location finding problem is thus defined as follows:

Definition 9. (Inaccessible Location Finding Problem) Given a subject s, a set
of authorizations D and a location graph (or multilevel location graph) G =
(L, E), find all inaccessible locations in G.

We now outline a solution algorithm to the above problem. Our algorithm
has been developed based on the following lemma which can be easily proven.

Lemma 1. Given a composite location l with a location graph or multilevel lo-
cation graph (L, E), if a location l′ in L is inaccessible to a subject s considering
only the entry locations in L, then the location l′ is also inaccessible to s from
every entry location in the multilevel location graph containing l.

The inaccessible location finding algorithm is shown in Algorithm 1. The
algorithm first associates to each location l an overall grant time and a overall
departure time, denoted by T g and T d respectively. Each of them consists of a
set of time intervals. The overall grant time of each location is initialized to be
null. As the algorithm assigns a location a new overall grant time, a new overall
departure time is derived and the neighboring locations will adjust their overall
grant and departure times accordingly. To indicate whether a location should
be assigned a new overall grant and departure time, a boolean flag (denoted by
flag) is associated with every location.

For example, consider the location graph in Fig. 4, consisting of locations A,
B, C, and D, where A is the entry location. Suppose that a number of location-
temporal authorizations have been defined for these locations as shown in Ta-
ble 1. The steps of finding the inaccessible locations are shown in Table 2

The algorithm starts from the entry location A, by setting its grant duration
T g

A to [2, 35] and departure duration T d
A to [20, 50]. In the next step, its neigh-

boring locations B and D are to be examined since their flags are set to true.
B’s grant duration T g

B is assigned [max(20, 40), min(50, 60)] = [40, 50] and its
departure duration T d

B is assigned [max(20, 55), 80] = [55, 80]. Similarly, we can
obtain D’s grant duration T g

D and the departure duration T d
D, which are [20, 25]
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Algorithm 1 FindInaccessible(G,s)
Input: location graph G = (L, E), subject s
output: set of inaccessible locations

1: initialise l.T g := l.T d := null and l.flag := false for each l ∈ L
2: for each entry location lentry ∈ L do
3: for each location-temporal authorization a of lentry do
4: lentry.T g := lentry.T g ∪ [a.ti

s, a.ti
e]

5: lentry.T d := lentry.T d ∪ [a.to
s, a.to

e]
6: end for
7: lentry.flag := false // their admissible time will not change further
8: if lentry.T d �= null then
9: for each l next to lentry do

10: l.flag := true
11: end for
12: end if
13: end for
14: while ∃l ∈ L where l.flag = true do
15: for each l ∈ L where l.flag = true do
16: l.flag := false
17: l.T old d := l.T d

18: T := ∪li next to lli.T
d

19: for each [tp, tq] ∈ T do
20: for each location-temporal authorization a of l do
21: t := [max(tp, a.ti

s), min(tq, a.ti
e)]

22: if t �= null then
23: l.T g := l.T g ∪ t
24: l.T d := l.T d ∪ [max(tp, a.to

s), a.to
e]

25: end if
26: end for
27: end for
28: if l.T d �= l.T old d then
29: for each l′ next to l do
30: l′.flag := true
31: end for
32: end if
33: end for
34: end while
35: Return {l|l ∈ L and l.T g = null}

and [20, 30], respectively. After processing B and D, the flags of A and C are set to
true because they are the neighbors of B and D. For C, both the grant duration
T g

C and the departure duration T d
C are null. For A, it updates its T g

A and T d
A to

[2, 35] ∪ [20, 35] = [2, 35] and [20, 50] ∪ [30, 50] = [20, 50], respectively, according
to the new values of the grant and departure durations of its neighbors. Since
there is no change to both durations, A will not update its neighbors. Therefore
the whole process stops because no location has a flag set to true.
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Table 1. A set of authorizations

Location Authorization

A ([2, 35],[20, 50],(Alice,A),1)
B ([40, 60],[55, 80],(Alice,B),1)
C ([38, 45],[70, 90],(Alice,C),1)
D ([5, 25],[10, 30],(Alice,D),1)

Table 2. An illustration of the example

Location A B C D

flag T g
A T d

A flag T g
B T d

B flag T g
C T d

C flag T g
D T d

D

Initiation F φ φ F φ φ F φ φ F φ φ
Update A F [2, 35] [20, 50] T φ φ F φ φ T φ φ
Update B T [2, 35] [20, 50] F [40, 50] [55, 80] T φ φ T φ φ
Update D T [2, 35] [20, 50] F [40, 50] [55, 80] T φ φ F [20, 25] [20, 30]
Update C T [2, 35] [20, 50] F [40, 50] [55, 80] F φ φ F [20, 25] [20, 30]
Update A F [2, 35] ∪

[20, 35] =
[2, 35]

[20, 50] ∪
[20, 50] =
[20, 50]

F [40, 50] [55, 80] F φ φ F [20, 25] [20, 30]

T – True F – False φ – null

The above algorithm has the time complexity of O(N2
L · Nd · Na) where

NL denotes the number of locations in L, Nd denotes the maximum degree
of locations, and Na denotes the maximum number of authorizations for each
location. Though the complexity is of a relatively high order, it should not cause
any problem considering the fact that the number of locations in a building is
limited in most cases. Note that the algorithm covers the possibility that there
may exist multiple routes between two locations, by considering the grant and
departure durations of all neighbors of every location.

7 Conclusions

We have defined a new authorization model for granting accesses to locations
with temporal considerations. This model, LTAM, can represent the location
layout using a location graph or multilevel graph. By monitoring a user’s move-
ment and evaluating location access requests against user specified authoriza-
tions, one can determine if the user can be granted access to a location and
if the user should leave the location. We also describe based on the proposed
model the interesting problem of finding inaccessible locations within a (multi-
level) location graph given a database of authorizations. A solution algorithm
that explores authorized routes to locations in a (multilevel) location graph has
been developed.

As part of the future work, we plan to expand the location-temporal autho-
rization definition to include more access constraints. More authorization rules
will be explored to represent more expressive rules. The consistency issues among
the rules will be studied. A query language and the corresponding query opera-
tors will also be studied. Lastly, we would like to further integrate other context
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about data objects and subjects into our model to provide more comprehensive
mechanisms to support applications with advanced security requirement.
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